Testing the predictive accuracy of COVID-19 forecasts

Author name: 
Coroneo L
Iacone F
Paccagnini A
Monteiro PS

We test the predictive accuracy of forecasts of the number of COVID-19 fatalities produced by several forecasting teams and collected by the United States Centers for Disease Control and Prevention during the first and second waves of the epidemic in the United States. We find three main results. First, at the short horizon (1-week ahead) no forecasting team outperforms a simple time-series benchmark. Second, at longer horizons (3- and 4-week ahead) forecasters are more successful and sometimes outperform the benchmark, in particular during the first wave of the epidemic. Third, one of the best performing forecasts is the Ensemble forecast, that combines all available predictions using uniform weights. In view of these results, collecting a wide range of forecasts and combining them in an ensemble forecast may be a superior approach for health authorities, rather than relying on a small number of forecasts.

Updated:  21 February 2024/Responsible Officer:  Crawford Engagement/Page Contact:  CAMA admin