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1 Introduction
Simple time series models often forecast well in normal times (see the long literature started

by Nelson (1972)), but in the midst of dramatic upheaval, such as in the first few weeks of the

response to COVID-19, these models do not adjust quickly to changing conditions (Castle,

Clements, and Hendry (2016)). These models exploit a long time series of an aggregate to

estimate precise, consistent estimates, while typically ignoring information on disaggregate

components. We argue that in times of structural change, forecasters should attempt to

exploit information within disaggregates, especially when there exists timing variation in the

breaks among the disaggregate entities. In the case of the spring of 2020, we find variation

in state-level COVID-19-related state-of-emergency declarations provides useful information

for predicting the national quantity of initial unemployment insurance claims.

The number of persons filing initial claims for unemployment insurance (UI) is an important

indicator of current US economic conditions (Berge and Jordà, 2011; Lewis, Mertens, and

Stock, 2020). UI data is both timely and frequent, and is one of a limited number of

macroeconomic indicators available at a weekly cadence. As the COVID-19 pandemic came

to the US, it became an important indicator used to evaluate the state of the economy and

the economic toll of the pandemic and associated stay-at-home orders in near-real-time. It

also became itself a key variable to forecast, in part as an input to estimates of monthly

unemployment rate forecasts.1

In this paper we present current week forecasts (i.e. nowcasts) of the advance estimates of

US national initial unemployment claims produced with different information sets and data

structures.2 We show that a small T panel model performs well shortly after a structural

break if it has relevant information. The variation in emergency declaration date across the

states provides this relevant information and outperforms models including Google Trends

data as well as autoregressive models. We further show that autoregressive models do catch

up within a few periods, but that they perform poorly in the crucial weeks directly after the

dramatic increase in claims that came in mid-March of 2020.

Other researchers have recognized the need for different tools to forecast UI claims in the time

1The insured unemployed in the US is a subset of all unemployed since many jobless do not qualify or
apply for benefits.

2Wright (2019) emphasizes the important role of nowcasts in macroeconomic forecasting.
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of COVID-19 beyond simple time series models. Aaronson, Brave, Butters, Sacks, and Seo

(2020) use an event-study approach based on hurricanes in order to use Google Trends data

to forecast claims. Goldsmith-Pinkham and Sojourner (2020) also use Google Trends at the

state level to forecast claims. Our innovation is to use the timing of emergency declarations

across the states in a panel framework. We compare our forecasts to those produced using

Google Trends in both panel and time series frameworks as well as with autoregressive

models. We show that all models miss the initial shock, but that in the early periods the

information in the declaration weeks panel leads to substantially better forecasts. Quickly

thereafter, the time series models catch up. Google Trends models are typically second-

or third-best in each time period, outperforming autoregressive models initially, but still

underperforming declarations dummy variable models.3

Our research also connects to the debate about forecasting the aggregate or aggregating

forecasts (see discussion in Castle and Hendry (2010), Hendry and Hubrich (2011), Larson

(2015), and Heinisch and Scheufele (2018)). We find support for forecasting the individual

states and then aggregating in the case when we have variation in the timing of the states

that is useful, e.g. the emergency declaration dates, which is consistent with the argument

from Castle, Fawcett, and Hendry (2011) that we need relevant information available to

forecast during breaks. After the usefulness of that information is exhausted, however, simple

autoregressive models perform best with little difference between direct national forecasts

and aggregates of state forecasts.

Research using Big Data for forecasting has emphasized the importance of a large number

of time observations for forecasting but in the face of structural breaks we may not have a

long time series with consistent parameters (Bajari, Chernozhukov, Hortaçsu, and Suzuki,

2019). We may, however, have useful information in the panel dimension. Since we have

variation in the timing of the emergency declaration by state we can exploit this information

using dummy variables in a panel framework. We show that in this case the cross sectional

information does improve forecasts in the periods near the structural break.

The remainder of our paper is as follows. First, we describe the UI claims, Google Trends,

and disaster declaration series. Next, we describe the models used to generate pseudo real-

3Google Trends have been shown useful in other contexts, including forecasting the US unemployment
rate (D’Amuri and Marcucci, 2017) and nowcasting GDP, particularly when official data are not available
(Ferrara and Simoni, 2019).
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time forecasts, paying particular attention to information set assumptions regarding variables

and timing and the structure of the data. Then, we turn to a discussion of our results, after

which we conclude. Detailed model estimates and alternative forecasts can be found in the

appendix.

2 Data

2.1 Unemployment insurance claims

Our target variable is the national total of the advance number of initial unemployment

insurance (UI) weekly claims under state programs, not seasonally adjusted (NSA). Figure

1, panel a reports this variable for each week since January 1998. The previous peak, near

the end of the Great Recession, was just under 1 million people filing initial UI claims. In

early 2020, the US economy was relatively strong, with around 215,000 weekly claims each

week in February. In response to the COVID-19 pandemic and stay-at-home orders, claims

quickly dwarfed the Great Recession high, rising almost 30-fold from this benchmark entry,

with claims exceeded 6 million in a single week (panel b). Our analysis is focused on this crisis

period and our forecasts begin for the week of March 14, 2020. Our objective throughout

the paper is to forecast the advance release of the series presented in Figure 1.

Initial unemployment insurance claims are released each Thursday morning at 8:30 am East-

ern Time by the US Department of Labor (DOL) and the latest data are the preliminary

estimates for the week ending the Saturday five days prior. Each week our dataset contains

initial claims by state for a total of 52 entities in the panel: 50 US states plus the District of

Columbia (DC) and Puerto Rico.4 We refer to all the entities as states for simplicity. The

objective of the forecasts will be the advance national totals which are directly calculated

as a sum of the 52 state entities.5 We focus on not seasonally adjusted (NSA) numbers

throughout our analysis, following the recommendation of Rinz (2020), since the multiplica-

tive seasonal adjustment procedure that is used for UI claims is likely misleading in the case

4We do not model the US Virgin Islands, which typically has fewer than 100 claims per week.
5We are focused on the initial claims under state programs, not the additional claims for the national

Pandemic Unemployment Assistance from the CARES Act (info at https://www.dol.gov/coronavirus/

unemployment-insurance.
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of the magnitudes of changes in the sample we are analyzing.6 Our pseudo real-time dataset

is constructed using the historical weekly file available on the DOL website through the week

ending March 7th, 2020, and then press release PDF files.7

All models are estimated on data available at the time the forecast was made. In our exercise,

forecasts are assumed to be made immediately following the Thursday release for the next

week’s release. Unemployment claims data are generally revised once, meaning that the last

observation used in each week’s estimates will be preliminary data (“advance” estimates in

the Department of Labor terminology) that is updated the following week.8

In our analysis, we develop several forecasting models which exploit different samples of

data and variable transformations. For autoregressive models (both state and national), our

dependent variable is the natural log of weekly UI claims, and our sample begins in January

1998 in order to exploit a large number of periods, satisfy “Large T” asymptotics, and ensure

ergodicity. Augmented Dickey-Fuller tests confirm this series to be stationary despite the

rising labor force over the period, with all tests rejecting the null of non-stationarity at the

1% level.

In models exploiting the panel dimension–“Large N” models–our dependent variable is nor-

malized weekly US claims for each state relative to the last pre-crisis week, which we identified

to be the second week of February (the week ending February 15). Thus, for each state the

normalized data = 1 for the week ending February 15th. We then reverse this normalization

6The use of seasonally adjusted (SA) versus not seasonally adjusted (NSA) numbers has been the subject
of some debate in the COVID-19 downturn. Seasonal adjustments to advance weekly UI claims are multi-
plicative, which we believe to be overestimates of the true seasonal effect. Accordingly, we use NSA numbers
throughout the paper. For some context, the seasonal adjustment to the week ending March 28th was over
600,000 (6.4m SA vs 5.8m NSA). The prior year’s UI claims numbers for the same period were, respectively,
211,000 and 180,000, giving a seasonal effect of 31,000. See https://www.dol.gov/sites/dolgov/files/

OPA/newsreleases/ui-claims/20200551.pdf for the May 2nd, 2020 press release (accessed 5/28/2020).
This file has been downloaded and retained by the authors and is available upon request.

7These files are available at https://oui.doleta.gov/unemploy/DataDownloads.asp series ETA 539
and https://oui.doleta.gov/unemploy/archive.asp, respectively.

8For our real time dataset we assume the data are revised only once, so each week we update our dataset
with the “advance” estimates for the previous week along with revised estimates for the week before that.
There was one clear data error where preliminary data for Connecticut for the week ending on May 9th was
originally reported as 298,680, but was quickly corrected to 30,000 per the Wall Street Journal: https://www.
wsj.com/articles/unemployment-claims-keep-piling-up-in-tri-state-area-11589471382. We
have used the corrected number as the preliminary value for Connecticut in this case and adjusted the
national values appropriately.
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when we aggregate back to the national level to produce the forecast of US national NSA

initial unemployment claims. Our panel sample period begins the week ending February 1st,

week 5 of 2020.

2.2 Emergency declaration dates

Our declaration date analysis is based on the week in which a state of emergency was declared

regarding COVID-19 for that state. All states as well as DC and Puerto Rico declared a

state of emergency within a four week period in February and March of 2020 (Table 1).

Washington State was the first to declare an emergency on February 29th and West Virginia

was the last on March 16th. Figure 2, panels a through d, show normalized state claims

grouped by their week of declaration where 0 on the x-axis for each group is the week that

group declared their emergency. From these figures it is clear that all states experienced

a substantial increase in claims after declaring a state of emergency. The last states to

declare an emergency already had increases before their declaration week, but continued to

experience further increases in the weeks following.

2.3 Google Trends

The Google Trends data is an index of the relative search volume on Google for the keyword

“unemployment” for the US and for each of the 50 states plus DC and Puerto Rico.9 The

Google Trends API only allows five comparison locations per search, so, following Goldsmith-

Pinkham and Sojourner (2020), we include California in each of our rounds of data collection

and re-normalize each state relative to California. This approach allows us to compare across

time and states. In order to get a long daily time series for the national trend we follow a

similar approach pulling each six month time period along with the initial six months.

It is important to note that the models including Google Trends are true nowcasts in the

sense that they are using information available into the target week. Google Trends data is

available with an approximately 36 hour delay, so for forecasts made on Thursday morning

for the data that will be released the following week, we already have Google Trends data

through Monday of the reference week. In order to use all information available at the time

of our forecast, we create two different Google Trends variables. We include the average

of the previous week, where the dates line up with the latest available UI claims numbers,

9Aaronson, Brave, Butters, Sacks, and Seo (2020) also use the keyword “unemployment.” We also
considered “file for unemployment” following Goldsmith-Pinkham and Sojourner (2020) with little impact
on the results. One interesting finding is that including both keywords helps the national forecast and seems
to be a good way to manage sampling error, but we leave deeper exploration of this issue to further research.
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which we call Gt−1. We also include a separate variable that is the average of the two days

that are available in the current week, which we call G̃t.
10

Similar to the UI claims, the Google Trends are normalized by their average value from the

week ending February 15. Since there are many cases of zeros in Google Trends, we first add

1 to all values, and then the Trends are divided by the average of 2/9 through 2/15 in the

case of G and by the average value of 2/9 and 2/10 in the case of G̃.

Google Trends data are available from January of 2014. We use the full series for the national

time series model. For the panel models we start in February of 2020.

3 Models
Our forecast target is weekly US national initial unemployment claims with a focus on the

first release, which is announced the Thursday of the week following the reference week. The

nomenclature for the horizon of our forecast is tricky. Models that do not include Google

Trends or disaster emergency declaration data can plausibly be considered one-week-ahead

forecasts since they are based on data through the previous week. However, the UI claims

data on the previous week is only released on Thursday morning of the current week, which

means we cannot produce the forecasts until well into the current week. Thus if we name

the horizon based on when we are able to make the forecast, it would be a current-week

forecast, aka a nowcast. We estimate each of our models with data available on Thursday

morning of the reference week, thus the Google Trends data is available through Monday of

that week, and declarations for the current week made after Wednesday are assumed not to

have been made at the time of the forecast. Following Banbura, Giannone, Modugno, and

Reichlin (2013), we will use the term nowcasts for all models.

We consider several combinations of data structures and information sets. Data structures

considered include US state level panel models, state time series models that do not exploit

the panel dimension, and national time series models that do not exploit any disaggregate

information. For the state level data we sum up to the national level for evaluation of the

forecast. For information sets we use single-series autoregressive models, Google Trends at

the state and national level, depending on the model, and dummy variables based on the

10We also considered a single variable of the latest 7 days available, but it performed worse in our forecasting
models.
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week of the emergency declaration by state. In the main results section we report a total

of 6 different models, where in the case of state level models we aggregate back to the US

national values for the final forecast, which we describe below in greater detail.

Our main model is a panel model with dummy variables representing the distance week t is

from state i’s emergency declaration date. The variation in this information is what gives

our panel good forecasting properties.11 The panel regression is weighted based on covered

employment for each state for the week ending March 7th.

In this model, state differentials in declarations timing gives us information about future UI

claims behavior. The states are in 4 different groups based on the timing of their emergency

declaration. Washington State was the first to declare an emergency on February 29th,

which we classify as a “Week 1” declaration. The remaining states all followed suit over the

next three weeks (see Table 1) and are given labels of Weeks 2 through 4. Our first nowcast

was made on March 12th for the week ending March 14th.

The timing of our nowcasting exercise affects the availability of information on declaration

dates. To illustrate, for the nowcast for the week ending March 14th, we use all information

available up to March 12th, which includes the UI claims release that morning covering the

week ending March 7th, and all declarations up to March 11th. All Week 1 and Week 2

declaration states have dummies set equal to 1 in their respective week. However, for Week 3

states, only about half of the states would have dummy variables set equal to 1 for the week

ending March 14th in this particular forecast vintage, because declarations after March 11th

are not included. All other Week 3 and Week 4 declaration states have dummy variable set

equal to 0 in all periods in this vintage. For the March 21st forecast vintage, the remaining

Week 3 states would have their dummy variables set equal to 1 for the week ending March

14th, and so on.

In terms of notation, j is how many weeks state i is away from emergency declaration at time

t. So, for instance, in the week ending March 14th, the dummy variable, dijt for Washington,

whose declaration date is February 29th is 1 for j = 2 and 0 otherwise. By the same logic,

the dummy variable in the same time period for California (declaration date of March 4th)

11Once we know the dates of all the emergency declarations, this model is equivalent to a panel structured
around the week each state declared an emergency, but we keep it structured around calendar time to ease
aggregation and forecasting.
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is 1 for j = 1 and 0 otherwise. We also include dummy variables for the two periods in

advance of the declaration once the declaration date is known. Thus we estimate J + 3

dummy variables, where J is the number of weeks since the week ending February 29th: two

leads, one concurrent to the declaration date, and J lags.

NormStateClaimsit = β0 +
J∑

j=−2

βj+3 × dijt + uit (1)

We also estimate panel models including Google Trends data for each state, where Git−1 for

total of the full week before and G̃it for the total of the Monday and Tuesday of the current

week.12

NormStateClaimsit = β0 + β1Git−1 + β2G̃it + uit (2)

Normalized state claims are aggregated to national claims in several steps. First, we undo the

normalization by multiplying estimated normalized claims by the February 15 value of state

claims. Next, we aggregate to the national level by summing the 52 state estimates. Finally,

because the estimator for the normalized data is not unbiased in terms of the national sum,

we include a bias adjustment term b that is equal to the percent error from the last in-sample

predicted value. This is akin to intercept correcting a forecast based on the last estimated

error.13

̂USClaimst = b̂t ×
∑

̂NormStateClaimsit × StateClaimsi,Feb15

where

b̂t = USClaimst−1/
(∑

̂NormStateClaimsit−1 × StateClaimsi,Feb15

)
12A model with both declaration week dummy variables and Google Trends performed similarly to a model

with just declaration week dummy variables. The results for this model are reported in Table A.5 in the
appendix.

13For discussion of aggregation bias, see Goodfriend (1992), Pesaran and Smith (1995) and Baltagi (2008).
Our approach is similar to a forecast error intercept correction, except that instead of taking the forecast
error from the model used the previous period, we re-estimate the model this period and use the in sample
residual for the last observation, which was the forecast target last period.
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The variable b̂t consists of lagged values in the data, but is only available once the information

set at time t is available.

The panel models are then compared to state and national time series models. For state

level autoregressive models, we model the natural log of the state claims separately for each

state i:14

ln(StateClaimsit) = βi0 +

p∑
j=1

φij ln(StateClaimsit−j) + uit (3)

We aggregate the state claims to the national level, first by exponentiating and adjusting for

the variance of the residuals to correct for bias from Jensen’s inequality

̂StateClaimsit = exp
(

ln( ̂StateClaimsit) + 1/2 × σ̂2
u

)
and then summing across the 52 states.

The national level model with Google Trends is as follows, where normalized US claims is

the modeled variable. When calculating the estimated US claims value, we use the same

aggregation bias correction method as the state model but with national claims instead of

state claims.15

NormUSClaimst = β0 + β1Gt−1 + β2G̃t + ut (4)

The national level autoregressive model of order p is estimated in the same way as the states,

with the level value calculated using the estimated residual variance to adjust for Jensen’s

inequality.

ln(USClaimst) = β0 +

p∑
j=1

φj ln(USClaimst−j) + ut (5)

14We also estimated a state level AR model with declaration week dummy variables, but the results were
little different than the model without them.

15We also estimated a model with Google Trends and AR terms. This model slightly outperforms the
model without AR terms. We report forecasts from this model in the appendix.

9 W. Larson, & T. Sinclair — Nowcasting UI Claims



4 Results
We report forecasts for 10 weeks from the week ending on March 14th, 2020, through the

week ending May 16th, 2020. The forecasts are depicted in Figure 3 along with the actual

values of the advance data for the national UI claims which is the target of the forecasts.

Forecast percentage errors and associated statistics are available in Table 2. The models

reported line up with the equations in the previous section. Models 1 through 3 use state

level data while models 4 and 5 use national level data. Models 1 and 2 use a panel data

structure, with our main focus being the panel declaration dummy variable (“declarations

DV”) model. The remaining models use a time series data structure. For the autoregressive

models, both state and national, we report results using with p = 3. We include Google

Trends in the panel framework for Model 2 and in the national time series framework for

Model 4.

Focusing on the beginning of the sample, all models perform poorly in the first two weeks.

The popular narrative surrounding UI claims highlights the spike for the week ending March

21st, when national claims jumped to a historic high of nearly three million from the previous

week of just over 250,000. However, there was also a spike in the week ending March 14th,

when claims rose from around 200,000 to 250,000. We can see from Table 2 that in the first

week all models miss by double-digit percentage points and in the second week the forecast

errors rise to 80-90%. In these two periods, no model forecasts substantially better or worse

than any other.

In the third week of our forecast analysis, the week ending March 28th, all models miss again,

but the declarations DV forecast misses by far less than other models, with a percentage

error of -27%. The national Google Trends forecast is second-best, with an error of -37%.

No other forecast has an absolute error less than 50%.

The information contained in the declaration week dummy variables was fully populated in

this period, with every state having declared a state of emergency by the time of the forecast.

The experiences of Washington, California, New York, and some of the earliest-hit states

were predictive of patterns exhibited in other states. The timing differentials were key in
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forecasting variation in UI claims in states with later declarations.16

Table 3 presents our parameter estimates for each vintage week for the state declaration

models. We add an additional parameter each week as we move one week further away from

the first emergency declaration. Parameter estimates improve from week to week as we get

more variation from additional states. For example if we look at the estimated parameter

on the dummy variable when j = 2 we can follow across the row to see how the parameter

varies as we get more information from more of the states. For the model estimated with

data through March 12th for the week ending March 14th, there is only one observation that

has a one for this variable, Washington in the latest period. Then the following week the

states in the week 2 group have a one for this variable in the last week, and Washington in

the week before, so we get a more precise estimate, and so on for two more weeks until we

get as much information as we can get from the states after 4 weeks. Then the 5th week we

still have data revisions that affect the parameter estimates, but it is stable after that. A

similar pattern appears for all the coefficients on the dummy variables.

In the fourth week, the declarations DV model reaches its peak in terms of benefit relative

to other models. The forecast misses by only 4%, where no other model has an error less

than 22%. In sum, in weeks three and four, the information from the emergency declarations

results in forecast improvements relative to the models without emergency declarations.

This period is crucial because the week ending April 4th was the week of peak claims over

this period (and up to this point in the history of the series) with over 6.2 million people

filing initial unemployment claims across the country. The percentage forecast error does

not fully capture the absolute forecast error in these periods; absolute forecast errors for this

period are about 200,000 for the declarations DV model compared to 1,000,000 to 3,000,000

for the alternative models. In the latter case, these errors far exceeding the previous high in

actual claims before COVID-19 of about 1,000,000 (see the appendix).

In the weeks ending in April 11th and 18th, the relative strength of the forecasting approaches

becomes less clear and it is debatable which forecasting approach is preferred. The trend in

the forecast errors for the panel models is clearly pointing to plateauing performance, with

16We estimated several other variants of the models reported, such as including Google Trends in the AR
models and panel AR(1) models with Google Trends and state declarations, but they typically performed
worse than the models reported (see the appendix).
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both each have average absolute forecast errors of around 10% in these weeks. The state and

national AR models, on the other hand, have similar forecast errors but they are showing

monotonic improvements in forecasting performance since March 21st. The national Google

Trends model continues to forecast poorly.

In the week ending April 25th through the end of the sample on May 16th, the AR models

are clearly superior, thought the percent errors are generally smaller across all models and

the absolute number of claims is also smaller. Consequently, the cost of choosing an inferior

forecast in this period is much lower than in the earlier periods. Absolute forecast errors

hover between 1% and 6% while the panel models continue to average around 10% to 15%.

This corresponds to absolute error differences between the two forecasting approaches of

about 100,000 to 200,000.

The information gained by exploiting the panel dimension is offset by the inefficiency of

estimating individual dummy variable coefficients. Figure 5 illustrates this phenomenon at

a state-level. In the April 4th vintage, the actual values are almost uniformly above the

State AR model forecasts. By the May 16th vintage,the bias is mostly gone and is no longer

significant. The Declarations DV model, on the other hand, is not significantly biased in

either period, but it has a larger variance around the actual values, particularly for the week

ending May 16th. When we observe these vintage coefficients from the declarations DV

models in Table 3, we can see the clear trend in the parameters when look at descending

rows within each column. In the final period model, the coefficients trace out a hump-shaped

curve with a tail that is decreasing at a decreasing rate. This is an inefficient way of modeling

what is essentially the same type of decay found in an AR model. Consequently, AR models

outperform the panel DV model at the end of the sample.

Based on our analysis we can divide our sample into four distinct periods: (1) the first two

periods when the crisis is ramping up and all models perform poorly; (2) the next periods

when panel model with declaration DVs stands out; (3) a period of ambiguity where models

begin to converge; and (4) and at the end when the AR models stand out as best. Not all

periods are equal, however. In the periods immediately following the onset of the COVID-19

outbreak, both the level of the claims and the percent errors are larger. Accordingly, over

the full sample, the Harvey, Leybourne, and Newbold (“HLN”) (Harvey, Leybourne, and

Newbold (1997))-adjusted Diebold Mariano, “DM”) test Diebold and Mariano (2002) rejects

12 W. Larson, & T. Sinclair — Nowcasting UI Claims



equal predictive accuracy in favor of the declaration dates panel model when comparing with

any of the Google Trends models (equations 2, 3, and 6). The AR models also perform worse

over the full sample, but not statistically significantly so.

5 Conclusion
In this paper we produced current week forecasts (aka nowcasts) for the national total of

state initial unemployment insurance (UI) claims for ten weeks in the midst of the COVID-

19 pandemic in the US. We considered different data structures and information sets and

compared their performance. We found that in the weeks immediately following the jump

in UI claims associated with the COVID-19 crisis that a panel model exploiting the time

variation in states declaring a state of emergency performed remarkably well with the lowest

mean absolute error for the full sample across the competing models and statistically signif-

icantly better than models including Google Trends data that was available at the time the

forecasts were made. Autoregressive models caught up in a few weeks and in the last weeks

of the sample had the smallest absolute errors.

Prior research has emphasized the usefulness of simple autoregressive models in normal times,

but has recommended much more complicated models for recessions in order to incorporate

sufficient relevant information to identify the change in regime (Chauvet and Potter, 2013).

Our findings support the view that simple autoregressive models miss dramatic changes,

but we show that it is possible in certain instances to exploit panel information if there is

information on differences in timing in the cross section.17 This allows us to still use a simple

model for forecasting in the time of structural change. Our analysis also emphasizes that

autoregressive models are still remarkably useful just a few periods after a break.

17The use of spatial timing differentials to identify and predict effects is common in the urban and regional
economics literature. See, for instance, the literature which uses Wal-Mart store and distribution center
diffusion from Arkansas for identification (Neumark, Zhang, and Ciccarella, 2008).
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Figure 1: National UI Claims
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Notes: Data present the advance estimate of U.S. total (50 states plus District of Columbia
and Puerto Rico) weekly initial unemployment insurance claims.
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Figure 2: State UI Claims

(a) Week 1 Declaration States
(0 = week ending February 29, 2020)
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(b) Week 2 Declaration States
(0 = week ending March 7, 2020)
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Notes: Data present UI claims normalized with respect to the week ending February 15,
2020 in the respective state. Time is normalized such that 0 is the week of the initial
COVID-19 emergency declaration.
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Figure 2: State UI Claims, Continued

(c) Week 3 Declaration States
(0 = week ending March 14, 2020)
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(d) Week 4 Declaration States
(0 = week ending March 21, 2020)
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Notes: Data present UI claims normalized with respect to the week ending February 15,
2020 in the respective state. Time is normalized such that 0 is the week of the initial
COVID-19 emergency declaration.
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Figure 3: Alternative Forecasts of Weekly UI Claims
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Figure 4: State Panel Declarations DV versus State AR Models
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Notes: This figure presents the MAE for two forecasts: [1] (“Declarations”) and [3] (“State
AR”) from Table 2. The figure shows MAE nearly equal in the first week (Week 11). In
weeks 2 and 3, the Panel Declarations DV forecast substantially outperforms the State AR
forecast. In weeks 4 and 5, both perform similarly. After week 5, the State AR forecast is
consistently more accurate than the Declarations forecast.
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Figure 5: State-Level Forecasts, Declarations DVs vs State AR

(a) Declarations DV, week ending April 4th
α̂ = 0.04(0.07), SER = 0.49
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(b) State AR, week ending April 4th
α̂ = 0.84(0.06), SER = 0.44
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(c) Declarations DV, week ending May 16th
α̂ = 0.09(0.10), SER = 0.69
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(d) State AR, week ending May 16th
α̂ = −0.07(0.05), SER = 0.37
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Notes: Data present actual and forecast UI claims by state in two weeks: the week ending
April 4th and the week ending May 16th. The Declarations DV forecasts are
aggregation-bias corrected. Estimated parameters (and standard errors in parentheses) are
from the following Holden and Peel (1990) models estimated across states i within a
particular week, where f is the forecast in the figure panel:
ln(StateClaimsi) − ln(fi) = α + ui.
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Table 1: COVID-19 Disaster Declaration Dates

Week 1 Week 3, Continued
Washington 2/29/2020 Kansas 3/12/2020

Week 2 Montana 3/12/2020
California 3/4/2020 Nevada 3/12/2020
Hawaii 3/4/2020 Puerto Rico 3/12/2020
Maryland 3/5/2020 Tennessee 3/12/2020
Indiana 3/6/2020 Virginia 3/12/2020
Kentucky 3/6/2020 Wisconsin 3/12/2020
Utah 3/6/2020 Alabama 3/13/2020
New York 3/7/2020 Arkansas 3/13/2020

Week 3 Idaho 3/13/2020
Oregon 3/8/2020 Minnesota 3/13/2020
Florida 3/9/2020 Missouri 3/13/2020
Illinois 3/9/2020 Nebraska 3/13/2020
Iowa 3/9/2020 New Hampshire 3/13/2020
New Jersey 3/9/2020 North Dakota 3/13/2020
Ohio 3/9/2020 South Carolina 3/13/2020
Rhode Island 3/9/2020 South Dakota 3/13/2020
Colorado 3/10/2020 Texas 3/13/2020
Connecticut 3/10/2020 Vermont 3/13/2020
Massachusetts 3/10/2020 Wyoming 3/13/2020
Michigan 3/10/2020 Georgia 3/14/2020
North Carolina 3/10/2020 Mississippi 3/14/2020
Alaska 3/11/2020 Week 4
Arizona 3/11/2020 Maine 3/15/2020
District of Columbia 3/11/2020 Oklahoma 3/15/2020
Louisiana 3/11/2020 Pennsylvania 3/16/2020
New Mexico 3/11/2020 West Virginia 3/16/2020
Delaware 3/12/2020

Source: Authors’ assembly based on publicly available news reports.
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Table 2: Forecasting Results

Data Structure: State - Panel State - Panel State - Time Series National National
Information Set: Declaration DVs Google Trends Autoregression Google Trends Autoregression
Week Ending U.S. Claims [1] [2] [3] [4] [5] Average
3/14/2020 250,869 -20% -20% -16% -20% -16% -19%
3/21/2020 2,898,392 -90% -91% -92% -80% -91% -89%
3/28/2020 5,823,757 -27% -50% -78% -36% -71% -52%
4/4/2020 6,203,348 4% 49% -55% 22% -25% -1%
4/11/2020 4,971,820 16% 9% -15% -60% 6% -9%
4/18/2020 4,267,394 4% 28% -9% 48% -1% 14%
4/25/2020 3,489,173 -14% 22% -1% 22% 5% 7%
5/2/2020 2,849,079 8% 16% 2% 30% 6% 12%
5/9/2020 2,345,376 16% 11% 3% -14% 6% 4%
5/16/2020 2,174,298 10% 0% -4% 26% -5% 5%

Mean Error 264,722 -53,914 1,177,818 221,304 773,600 476,706
MAE 671,228 1,178,798 1,201,582 1,336,233 933,113 758,522
RMSE 1,016,818 1,651,462 2,002,284 1,626,767 1,634,753 1,291,707
MAE-DM -2.832*** -1.676* -4.240*** -1.247

Notes: This table presents percentage forecast errors made on the Thursday of the week ending in the date listed in the

row. MAE is the mean absolute forecast error. RMSE is the square-root of the mean squared forecast error. MAE-DM

is the Diebold-Mariano small-sample test statistic relative to model [1], with ***: p < 0.01, **: p < 0.05, and *: p < 0.1,

respectively. All statistics are at the national level, including Mean Error, MAE, RMSE, and MAE-DM, which are

calculated over the 10 forecast periods.
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Table 3: Model [1] (Declarations DV Model) Vintage Estimates

Dependent variable: Normalized State UI Claims (StateNormClaims)

Model Vintage
Parameter 3/14/2020 3/21/2020 3/28/2020 4/4/2020 4/11/2020 4/18/2020 4/25/2020 5/2/2020 5/9/2020 5/16/2020
dj=−2 -0.153*** -1.430*** -0.0461 -0.0461 -0.0461 -0.0461 -0.0461 -0.0461 -0.0461 -0.0461
dj=−1 -0.130*** -1.411*** -0.0552 -0.0552 -0.0552 -0.0552 -0.0552 -0.0552 -0.0552 -0.0552
dj=0 -0.0402 -1.228*** 1.366* 1.423* 1.423* 1.423* 1.423* 1.423* 1.423* 1.423*
dj=1 0.231*** 11.88*** 14.87*** 15.58*** 15.59*** 15.59*** 15.59*** 15.59*** 15.59*** 15.59***
dj=2 1.355*** 7.141*** 27.73*** 27.84*** 28.40*** 28.39*** 28.39*** 28.39*** 28.39*** 28.39***
dj=3 19.14*** 31.26*** 34.63*** 33.70*** 33.78*** 33.86*** 33.86*** 33.86*** 33.86***
dj=4 29.19*** 33.88*** 28.64*** 28.18*** 28.27*** 28.34*** 28.34*** 28.34***
dj=5 27.47*** 27.57*** 24.04*** 23.51*** 23.87*** 23.87*** 23.87***
dj=6 23.23*** 20.42*** 19.12*** 18.74*** 18.83*** 19.13***
dj=7 13.33*** 15.55*** 14.24*** 14.59*** 14.38***
dj=8 22.46*** 15.49*** 12.28*** 11.71***
dj=9 16.56*** 11.89*** 10.28***
dj=10 17.70*** 10.84***
dj=11 22.38***
Constant 1.038*** 2.380*** 1.035*** 1.035*** 1.035*** 1.035*** 1.035*** 1.035*** 1.035*** 1.035***

Obs 364 416 468 520 572 624 676 728 780 832
RMSE 0.051 0.222 0.607 0.654 0.614 0.590 0.562 0.556 0.540 0.531
R2 0.332 6.039 7.902 9.400 10.70 11.18 11.50 11.27 11.24 11.11

Notes: This table presents parameters estimated using the column-vintage declarations dummy variable models. These
correspond to forecasts made on the date in the column header for the week ending that Saturday (two days following).
These models exploit disaster declarations made up to the day prior to the date in the column header. Standard errors
are omitted from the table, with ***: p < 0.01, **: p < 0.05, and *: p < 0.1, respectively. Parameters stabilize after five
weeks due to the presence of four separate weeks of disaster declarations and that some declarations do not occur until
after the forecast timing cutoff for that week. In the sixth vintage week, a final revision is made due to revisions to the
prior week’s data.
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Table A.1: Forecasting Results

Data Structure: State - Panel State - Panel State - Time Series National National
Information Set: Declaration DVs Google Trends Autoregression Google Trends Autoregression
Week Ending U.S. Claims [1] [2] [3] [4] [5] Average
14-Mar-20 250,869 200,124 200,498 210,613 200,124 209,780 204,228
21-Mar-20 2,898,392 302,526 256,555 240,715 580,881 246,751 325,486
28-Mar-20 5,823,757 4,272,739 2,893,920 1,268,139 3,735,416 1,699,932 2,774,029
4-Apr-20 6,203,348 6,472,376 9,235,556 2,798,412 7,538,163 4,621,571 6,133,216
11-Apr-20 4,971,820 5,764,621 5,413,811 4,247,836 1,979,762 5,269,418 4,535,090
18-Apr-20 4,267,394 4,418,919 5,466,608 3,897,886 6,331,850 4,230,563 4,869,165
25-Apr-20 3,489,173 3,007,053 4,270,662 3,438,980 4,243,381 3,660,814 3,724,178
2-May-20 2,849,079 3,083,641 3,297,980 2,905,236 3,699,928 3,027,102 3,202,777
9-May-20 2,345,376 2,709,145 2,605,137 2,408,037 2,006,348 2,495,679 2,444,869
16-May-20 2,174,298 2,395,143 2,171,923 2,079,470 2,744,618 2,075,898 2,293,410

Notes: This table presents forecasts made on the Thursday of the week ending on the date listed in the row. For percent

errors and statistics to compare these forecasts, see Table 2.
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Table A.2: Model [2] (State Google Trends) Vintage Estimates

Dependent variable: Normalized State UI Claims (StateNormClaims)

Model Vintage
Parameter 3/14/2020 3/21/2020 3/28/2020 4/4/2020 4/11/2020 4/18/2020 4/25/2020 5/2/2020 5/9/2020 5/16/2020

G̃(t) -0.0260 7.228*** 3.790*** 3.298*** 2.774*** 1.140* 0.901** 0.847** 0.937** 0.937***
G(t− 1) 0.270 -6.064** -0.546 -0.849 -0.612 0.610 0.629 0.502 0.335 0.286
Constant 0.779*** 0.864 0.0115 1.745*** 2.601*** 4.096*** 4.580*** 4.994*** 4.942*** 4.751***

Observations 260 312 364 416 468 520 572 624 676 728
R2 0.008 0.607 0.637 0.643 0.591 0.480 0.427 0.381 0.358 0.337
RMSE 0.393 4.869 8.353 10.25 11.64 13.13 13.61 13.67 13.59 13.47

Notes: This table presents parameters estimated using the column-vintage declarations dummy variable models. These
correspond to forecasts made on the date in the column header for the week ending that Saturday (two days following).
These models exploit disaster declarations made up to the day prior to the date in the column header. Standard errors
are omitted from the table, with ***: p < 0.01, **: p < 0.05, and *: p < 0.1, respectively.
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Table A.3: Model [3] (State AR Model) Final Period Estimates

Dependent variable: Log State UI Claims (ln(StateClaims))

State y(t-1) y(t-2) y(t-3) R2 RMSE State y(t-1) y(t-2) y(t-3) R2 RMSE
Alabama 0.764*** 0.0127 0.0660* 0.683 0.270 Montana 0.779*** 0.0363 0.0882** 0.773 0.220
Alaska 0.687*** 0.221*** 0.0140 0.798 0.170 Nebraska 0.753*** 0.0994* 0.0426 0.747 0.232
Arizona 0.833*** -0.0509 0.136** 0.783 0.186 Nevada 0.721*** 0.157* 0.0562 0.814 0.172
Arkansas 0.769*** -0.0298 0.151*** 0.732 0.231 New Hampshire 0.704*** 0.136** 0.0710 0.767 0.272
California 0.612*** 0.289*** 0.000302 0.736 0.154 New Jersey 0.877*** -0.0265 -0.0413 0.674 0.195
Colorado 0.732*** 0.132 0.0668 0.810 0.183 New Mexico 0.668*** 0.154** 0.0602 0.696 0.208
Connecticut 0.824*** 0.00412 -0.00446 0.667 0.224 New York 0.673*** 0.0104 0.136*** 0.564 0.245
Delaware 0.482*** 0.145*** 0.137*** 0.453 0.340 North Carolina 0.684*** 0.107* 0.148*** 0.843 0.281
District of Columbia 0.674*** 0.154*** 0.108** 0.806 0.218 North Dakota 0.636*** 0.154*** 0.0688** 0.655 0.339
Florida 0.756*** 0.0460 0.166*** 0.855 0.188 Ohio 0.830*** -0.0126 0.0988** 0.799 0.201
Georgia 0.684*** 0.0870* 0.130*** 0.716 0.268 Oklahoma 0.544*** 0.284*** 0.0873 0.714 0.236
Hawaii 0.747*** 0.0468 0.122** 0.761 0.189 Oregon 0.667*** 0.128** 0.144** 0.820 0.171
Idaho 0.875*** -0.0338 0.0884** 0.837 0.202 Pennsylvania 0.846*** -0.0645 0.117*** 0.769 0.178
Illinois 0.679*** 0.214*** 0.0301 0.775 0.172 Rhode Island 0.707*** 0.0831 0.000152 0.594 0.288
Indiana 0.817*** 0.0681 0.0438 0.824 0.239 South Carolina 0.582*** 0.123*** 0.157*** 0.650 0.315
Iowa 0.712*** 0.0391 0.137*** 0.698 0.264 South Dakota 0.777*** 0.155** -0.0102 0.801 0.232
Kansas 0.541*** 0.186*** 0.144*** 0.632 0.267 Tennessee 0.833*** -0.0481 0.0905** 0.747 0.271
Kentucky 0.759*** 0.0540 0.0386 0.660 0.313 Texas 0.640*** 0.145* 0.121** 0.699 0.180
Louisiana 0.772*** 0.0888 0.0317 0.747 0.235 Utah 0.792*** 0.0963 0.0409 0.830 0.179
Maine 0.756*** 0.138* 0.0140 0.799 0.221 Vermont 0.718*** 0.0344 0.0990*** 0.651 0.277
Maryland 0.717*** 0.162** 0.0367 0.770 0.185 Virginia 0.698*** 0.177** 0.0581 0.805 0.214
Massachusetts 0.692*** 0.196*** -0.0376 0.667 0.222 Washington 0.851*** 0.0699 0.0404 0.858 0.146
Michigan 0.832*** 0.0675 -0.0301 0.743 0.282 West Virginia 0.696*** 0.0371 0.109*** 0.656 0.239
Minnesota 0.852*** 0.0626 0.0103 0.823 0.196 Wisconsin 0.908*** -0.240*** 0.269*** 0.838 0.197
Mississippi 0.768*** 0.139** 0.0108 0.800 0.235 Wyoming 0.688*** 0.0916* 0.142*** 0.784 0.222
Missouri 0.706*** 0.138*** 0.0113 0.680 0.244 Puerto Rico 0.295*** 0.180*** 0.165*** 0.248 0.585

Notes: This table presents parameters estimated using the final-period state-level autogregression models (constant
terms omitted for brevity but available upon request). These correspond to forecasts made on May 14th for the week
ending May 16th, which use claims data through the week ending May 9th. Standard errors are omitted from the table,
with ***: p < 0.01, **: p < 0.05, and *: p < 0.1, respectively.
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Table A.4: Models [4] and [5] (National Models) Final Period Estimates

Model Google Trends Autoregression
Dependent Variable Normalized Claims ln(Claims)

[4] [5]

G̃(t) 3.470***
G(t− 1) -2.076*
ln(USClaims(t)) 0.932***
ln(USClaims(t− 1)) 0.0148
ln(USClaims(t− 2)) -0.0128
Constant 0.361*** 0.837***

Observations 324 1,121
R2 0.854 0.853
RMSE 1.200 0.140

Notes: This table presents parameters estimated using the final-period national models.
These correspond to forecasts made on May 14th for the week ending May 16th, which use
claims data through the week ending May 9th and Google Trends data through May 11th.
Standard errors are omitted from the table, with ***: p < 0.01, **: p < 0.05, and *:
p < 0.1, respectively.
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Table A.5: Forecasting Results, Additional Models

Data Structure: State - Panel State - Panel State - Panel State - Panel National
Information Set:

Declarations Yes Yes Yes
Google Trends Yes Yes Yes Yes
Autoregression Yes Yes Yes Yes

Week Ending National Claims [6] [7] [8] [9] [10]
3/14/2020 250,869 -22% -20% -23% -24% -24%
3/21/2020 2,898,392 -89% -86% -84% -89% -82%
3/28/2020 5,823,757 481% -172% -10% 83% -18%
4/4/2020 6,203,348 46% 41% 52% 60% 55%
4/11/2020 4,971,820 14% -22% -31% -16% -53%
4/18/2020 4,267,394 -7% -1% -4% 15% 29%
4/25/2020 3,489,173 -20% -12% -19% 6% 6%
5/2/2020 2,849,079 26% -37% 6% 3% 15%
5/9/2020 2,345,376 12% -50% -3% -1% -32%
5/16/2020 2,174,298 3% -19% -4% -1% 29%

Mean Error -2,900,914 1,425,390 220,096 -599,623 89,740
MAE 3,623,648 1,933,248 896,692 1,288,929 1,281,982
RMSE 8,939,559 3,428,374 1,392,995 2,111,187 1,674,856
MAE-DM -1.983** -1.573 -2.794*** -1.821* -3.621***

Notes: This table presents percentage forecast errors made on the Thursday of the week ending in the date listed in the row. MAE is the

mean absolute forecast error. RMSE is the square-root of the mean squared forecast error. MAE-DM is the Diebold-Mariano small-sample

test statistic relative to model [1] in Table 2, with ***: p < 0.01, **: p < 0.05, and *: p < 0.1, respectively. All statistics are at the national

level, including Mean Error, MAE, RMSE, and MAE-DM, which are calculated over the 10 forecast periods. A remark on the forecast errors

for 3/28 is necessary. In this week, panel models with more complex information sets are very sensitive to the jump from the previous week

due to low claims variation and small sample sizes estimated up to this point.
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