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1 Introduction

The Beveridge-Nelson (BN) filter approach to trend-cycle decomposition from Kamber, Morley,

and Wong (2018) produces intuitive and reliable estimates of the output gap. This intuitiveness

can be thought of in terms of what Rudd (2024) refers to as the BN filter’s “respectable business

cycle” that displays a reasonable coherence with the output gap implied by the Congressional

Budget Office (CBO) measure of potential output and a strong positive association with the

National Bureau of Economic Research (NBER) reference cycle, unlike what is found using the

traditional BN decomposition based on freely-estimated univariate ARMA models following

Beveridge and Nelson (1981). Reliability can be evaluated in different ways, with good revision

properties providing a necessary condition for reliable estimates, as highlighted in Orphanides

and van Norden (2002). Beyond the initial evidence presented in Kamber, Morley, and Wong

(2018) that BN filter estimates i) have relatively small revisions, ii) provide a more accurate

recovery of the true output gap for state-space processes than even a time series model that nests

the true process, and iii) forecast output growth better out of sample than other approaches

such as the Hodrick and Prescott (1997) (HP) filter and the Christiano and Fitzgerald (2003)

bandpass filter, there have been a number of subsequent studies demonstrating the comparative

reliability of the BN filter, including Barbarino, Berge, and Stella (2024), Jönsson (2024), and

Kuang, Mitra, and Tang (2024).1

However, when faced with large shocks in macroeconomic data such as occurred during

the COVID-19 pandemic, there is a question whether the BN filter retains its favorable real-

time reliability documented in the previous studies. These extreme outliers have created

a need to modify many standard time series techniques, such as how to estimate vector

autoregressions with Covid-era data in Lenza and Primiceri (2022) or conduct multivariate

1Barbarino, Berge, and Stella (2024) conduct a comprehensive analysis of real-time stability for a wide range
of approaches to estimating the output gap and find that the BN filter outperforms the HP filter, the Hamilton
(2018) filter, CBO estimates, and the Federal Reserve’s Tealbook estimates in terms of producing small revisions
in the form of low “noise-to-signal” ratios, as well as more accurate forecasts of inflation, output growth, and
the unemployment rate for multiple forecasting horizons and subsamples. Rather than focus on a particular
sample of data, Jönsson (2024) considers the frequentist revision properties given the same state-space processes
in Kamber, Morley, and Wong (2018) and finds the BN filter performs best of all methods considered, including
the HP filter and the bandpass filter. Kuang, Mitra, and Tang (2024) find that using the BN filter would
help central banks minimize policy mistakes in a theory-based New Keynesian setting with adaptive learning.
Specifically, they show that the BN filter provides the most reliable estimates in terms of revision properties
and is almost as good as the bandpass filter (but even better when considering a model with an inflation target
of 4% instead of 2%) and better than other methods including the HP and Hamilton filters in terms of stability
over a wide range of policy parameters and best or equal in terms of minimizing welfare loss with the original
Taylor rule coefficients or optimally-chosen coefficients.
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trend-cycle decomposition in Holston, Laubach, and Williams (2023) and Morley, Rodriguez-

Palenzuela, Sun, andWong (2023). In this paper, we introduce some modifications or “refinements”

of the BN filter that are designed to be useful for practitioners and to address possible distortions

from large shocks. The four refinements are i) a new trend-smoothness loss function to select

a signal-to-noise ratio when detrending, ii) an iterative dynamic demeaning approach when

estimating time-varying drift, iii) error bands that allow for time-varying volatility, and iv)

backcasting based on time reversibility to produce an estimated cycle for the full sample of the

variable being detrended. We then compare how the Beveridge-Nelson filter and other popular

univariate trend-cycle decomposition methods have performed given the Covid-era data.

Our first main finding is that, perhaps surprisingly, both the original and refined versions

of the BN filter had good revision properties during the pandemic, although they produce

some different implications about the output gap. The refined BN filter output gap is closer

in amplitude to the HP filter, with a smoother estimated trend than for the original BN filter

around the COVID-19 recession and time-varying error bands reflecting heightened uncertainty

about the output gap since the pandemic. Using our new trend-smoothness loss function, the

selected signal-to-noise ratio corresponds to trend shocks accounting for only 2% of the forecast

error variance instead the 24% found in Kamber, Morley, and Wong (2018) when maximizing

the amplitude-to-noise ratio. Notably, this is closer to the 5% fixed level considered in Rudd

(2024) and Kuang, Mitra, and Tang (2024) and is the primary reason why our estimates end up

being even more intuitive than with the original BN filter. The iterative dynamic demeaning

procedure for the refined BN filter produces more positive estimates of the output gap from the

mid-2010s up to the pandemic that are more in line with the final-vintage HP filter estimates.

Our second main finding is that the real-time HP filter estimates of the output gap just

prior to the pandemic turn out to be particularly unreliable. Specifically, the real-time HP

filter estimates in 2018-2019 suggested that the economy was very close to trend, while the

estimates for the same time period have been subsequently revised upwards closer to the more

reliable estimates from the refined BN filter. Thus, the refined BN filter would have provided

a better prediction of the final-vintage HP filter estimates than a one-sided HP filter. At the

same time, the upward revisions for the HP filter estimates just prior to the pandemic may have

been at least partly mechanical, as we demonstrate with projections of future output growth
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that include a large one-time simulated Covid-like shock and result in the HP filter estimating

a spurious transitory boom prior to the shock.

As hinted at by the criticism of the revision properties of the HP filter in Hamilton (2018),

the Hamilton filter is more reliable than the HP filter and this holds during the pandemic.

However, our third main finding is that the Hamilton filter suffers from base effects that

produce a mechanical spike in the estimated output gap exactly two years after the onset

of the pandemic, in line with the filter horizon. This sudden jump in the estimated output gap

in 2022 is unintuitive and strongly at odds with the estimates for the BN and HP filters. A

modified Hamilton filter due to Quast and Wolters (2022) is, as advertised, even more reliable

than the original and avoids such a large discrete jump in the estimated output gap in 2022

given that it averages over different horizons. However, both the original and modified Hamilton

filters generate distorted output gap forecasts given the projections of future output growth

that include a large one-time simulated Covid-like shock, including a divergence in forecasted

values away from zero given projected values of future output growth at a constant level.

In addition to being the most reliable in real time, including with the Covid-era data, our

fourth main finding is that the BN filter correctly forecasts trend and cycle movements in the

projected data with a Covid-like shock. Given all of the results, we argue for the use of the

refined BN filter in particular when seeking both intuitive and reliable estimates of the output

gap in the presence of large shocks and also when considering data augmented with long-term

projections, as is often done in policy settings.

The rest of this paper is organised as follows: First, we recap the details of the BN filter

and introduce some refinements. Second, we consider the real-time reliability of the original

and refined BN filters when faced with Covid-era data and compare revision properties to those

of the HP filter and the original and modified Hamilton filters. Third, we look at what the

different methods imply about forecasts of the output gap given a projection of future real

GDP that reflects a plausible assumption about the long-run growth rate of the economy and

also allows for a Covid-like shock. We end with some brief conclusions.
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2 The BN filter with refinements

We begin with a summary of the original BN filter developed in Kamber, Morley, and Wong

(2018) to motivate our proposed refinements.

2.1 The Kamber, Morley, and Wong (2018) BN Filter

In Kamber, Morley, and Wong (2018), we employed the definition of trend from Beveridge and

Nelson (1981) as the long-horizon conditional expectation of a time series minus any a priori

known (i.e., deterministic) future movements in the time series. Denoting {yt} as a time series

with a trend component that follows a random walk with deterministic drift, the BN trend at

time t, τBN
t , is

τBN
t = lim

j→∞
Et [yt+j − j · E [∆yt]] . (1)

The basic intuition behind the BN decomposition is that the long-horizon conditional expectation

of a time series is the same as the long-horizon conditional expectation of the trend component

under the assumption that the conditional expectation of the remaining cyclical component

goes to zero at long horizons. By removing the deterministic drift, E [∆yt], the conditional

expectation in (1) remains finite and becomes an optimal (minimum mean squared error)

estimate of the current trend component (see Watson, 1986; Morley, Nelson, and Zivot, 2003).

The BN filter in Kamber, Morley, and Wong (2018) implements the BN decomposition by

applying the definition in (1) given a restricted AR(p) forecasting model for {∆yt} to calculate

conditional expectations, where the restriction allows the imposition of a “signal-to-noise” ratio

to imply a smooth trend, similar to the HP filter. More precisely, we specify an AR(p) model:

∆yt = µ+

p∑
j=1

ϕj(∆yt−j − µ) + et, et ∼ N(0, σ2
e), (2)

where µ is equal to E [∆yt] and, therefore, denotes the deterministic drift in {yt}.2 Modelling

a time series as a finite-order AR process in first differences corresponds to a stochastic trend

in the level because a forecast error for the first differences will have an implied permanent

2Our choice of exposition is in terms of the demeaned form of the AR(p) model rather than specifying an
intercept form in order to make it clear where the drift entering into the calculation of the BN decomposition
comes from. If one were to estimate an intercept, denoting c as the intercept, the drift would simply correspond
to c/(1−

∑p
i ϕi).
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effect on the long-horizon conditional expectation of {yt}. Using the state-space approach to

calculating the BN decomposition from Morley (2002), the BN cycle at time t, cBN
t , for this

model is

cBN
t = −[1 0 · · · 0]F (I − F )−1Xt, (3)

where Xt = (∆yt−µ,∆yt−1−µ, ...,∆yt−p+1−µ)′, and F is the companion matrix for the AR(p)

model:

F =



ϕ1 ϕ2 · · · ϕp

1 0 · · · 0

0
. . . . . .

...

...
. . . 1 0


.

Defining the signal-to-noise ratio δ ≡ σ2
∆τ/σ

2
e , where σ

2
∆τ ≡ var(∆τt) is the implied variance

of the change in trend and σ2
e is the forecast error variance from (2), Kamber, Morley, and

Wong (2018) note that δ maps directly to the coefficients of the AR(p) model, so that one

can impose a signal-to-noise ratio for the model in (2) simply by setting a restriction on the

AR coefficients. Specifically, we can transform the AR(p) model in (2) into its Dickey-Fuller

representation:

∆yt = µ+ ρ(∆yt−1 − µ) +

p−1∑
j=1

ϕ∗
j(∆

2yt−j − µ) + et, (4)

where ρ ≡ ϕ1+ϕ2+ . . .+ϕp and ϕ∗
j ≡ −(ϕj+1+ . . .+ϕp). Then, there is a direct mapping from

δ to the sum of the AR coefficients ρ in the Dickey-Fuller representation, with δ = (1 − ρ)−2.

This mapping underpins a key motivation of Kamber, Morley, and Wong (2018) given that

freely estimating an AR(p) model for real GDP growth often yields an implied signal-to-noise

ratio in excess of 1, whereas common methods of removing the trend in macroeconomic time

series like the HP filter explicitly or implicitly impose a much lower signal-to-noise ratio. The

procedure developed in Kamber, Morley, and Wong (2018) thus allows one to impose a low

signal-to-noise ratio by setting δ̄. Specifically, an AR(p) forecasting model can be estimated

imposing a particular signal-to-noise ratio δ̄ by first fixing the value of ρ in (4) as follows:

ρ̄ = 1− 1/
√

δ̄. (5)

The {ϕ∗
j}

p−1
j=1 coefficients in (4) can then be estimated using Bayesian methods with Minnesota-
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like priors to mitigate possible overfitting when specifying a high-order AR(p) model that can

allow for a relatively complicated autocovariance structure for {∆yt}. Finally, given ρ̄ and the

estimates of {ϕ∗
j}

p−1
j=1, the BN cycle for a fixed δ̄ can be calculated by inverting the Dickey-Fuller

transformation to solve for the restricted estimates of {ϕj}pj=1 and then following (3) given the

companion matrix F .

Similar to setting the smoothing parameter for the HP filter to 1600, implementation of the

BN filter procedure could be as straightforward as fixing the signal-to-noise ratio at a particular

value like δ̄ = 0.05, which would correspond to the numerically-specific assumption that only

5% of the quarterly forecast-error variance for output growth is due to trend shocks and was

the approach taken, for example, in Rudd (2024) and Kuang, Mitra, and Tang (2024) However,

because any particular choice for δ̄ might appear somewhat arbitrary in practice, we proposed

an automatic selection of δ̄ in Kamber, Morley, and Wong (2018) based on maximizing the

amplitude-to-noise ratio. The intuition of this approach is that, given practitioners often have

a less numerically-specific, but generally low signal-to-noise ratio (and thus high amplitude

cycle) in mind, this criterion allows for a trade-off between a larger amplitude cycle against the

poorer fit of a corresponding restricted forecasting model.

Time-varying drift While the key innovation with of our original BN filter was to impose

a low signal-to-noise ratio in an AR(p) model when performing the BN decomposition, we also

explicitly allowed for the possibility of time-varying drift. This accommodation was important

because empirical evidence suggests the possibility of breaks in drift for many time series,

including US real GDP, and so allowing for time-varying drift broadens the utility of the BN

filter for practitioners. Generally, the drift term (i.e. µ in (2) and (4)) needs to be estimated.

We originally considered two possibilities for how to deal with time-varying drift in applied

work. For the first approach, we proposed testing for structural breaks in µ using Bai and

Perron (2003) procedures, and, if breaks in µ appear to have occurred, adjusting for these

breaks by demeaning {∆yt} using subsample averages given estimated breakdates and then

proceeding with the BN filter using the demeaned series to estimate the {ϕ∗
j}

p−1
j=1 coefficients.

In an output gap application, this amounts to finding breaks in the mean growth rate of real

GDP and demeaning the growth rate based on the estimated breakdates. However, while

such an approach is useful for ex-post analysis, it is less useful for real-time analysis. This is
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because breaks are, by their nature, two-sided, and one needs to know the future growth rate

before confidently dating the timing of a break ex post, a luxury that practitioners who need

to estimate the output gap in real time do not enjoy. We therefore also proposed a second

approach of using a 40-quarter rolling window to estimate a time-varying drift.3 That is, we

set µ̂t =
1
40

∑40
i=1∆yt−i+1 and thereafter dynamically demean the first differences of the time

series being detrended.

The dynamic demeaning procedure has a few advantages over other real-time approaches.

First, in the case of a structural break in drift, it immediately starts to adjust the estimated

drift following a break and still provide an unbiased estimate for all but the 39 quarters from

the date of the break, while a real-time test for a structural break might not allow a break (e.g.,

if using a 15% of the sample trimming rule, which is more than 11 years for our sample) or find

a significant break for as many or more quarters, thus leading to a comparatively larger bias

until the break is detected. Second, in the case of more gradual structural change, it leads to

less bias in estimating drift than an expanding window or approximating the structural change

with a discrete break that would again be hard to detect in real time. A formal model of gradual

structural change such as based on a random walk with small shocks might lead to more precise

inferences given structural change that follows the assumed pattern, but dynamic demeaning

is easier to implement and is robust to pile-up problems when estimating the variance of an

unobserved random walk with small shocks. Meanwhile, if the drift did not actually change or

was largely unchanged, dynamic demeaning makes little practical difference to the estimated

cyclical component as long as {∆yt} is not very persistent such that the estimated mean will

be relatively precise given 40 observations.

2.2 Refinements

Next, we introduce four refinements of the BN filter. First, we propose a new trend-smoothness

loss function to select the signal-to-noise ratio when detrending. Second, we provide an iterative

3We can allow for different possible windows for estimating a time-varying drift, but we use a 40-quarter
rolling window when considering estimation of the output gap given that the window is long enough such that
temporary effects of business cycles on growth rates should average out and the estimated drift will also be
reasonably precise, while it is short enough such that it allows for substantial low frequency changes in long-run
growth. In principle, one could start with a longer window and shorten it until results for implied time-varying
drift become either relatively unchanged or very imprecise with a further shortening of the window. We find 40
quarters works well in practice for macroeconomic data.
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dynamic demeaning approach to address outliers that can affect the average change in the cycle

over the window used to estimate time-varying drift. Third, we construct error bands that

allow for time-varying volatility. Fourth, we conduct backcasting based on time reversibility,

producing an estimated cycle for the full sample of the variable being detrended. The details

of these refinements are presented in turn.

2.2.1 A trend-smoothness loss function when selecting δ̄

As an alternative to maximizing the amplitude-to-noise ratio considered in Kamber, Morley,

and Wong (2018), we propose setting δ̄ to minimize the variance of the change in trend subject

to a positive signal-to-noise ratio. Specifically, δ̄ is chosen as follows:

δ̄ = arg min
δ>0

σ2
∆τ (δ) (6)

Obviously, imposing the limiting case of δ = 0 would truly minimize the variance of trend

shocks by implying no stochastic trend at all – i.e., σ2
∆τ (0) = 0. However, that limiting case

corresponds to a unit MA root for {∆yt} and is, therefore, incompatible with our use of a

finite-order AR model for which the implied δ is bounded away from zero, as discussed in

Kamber, Morley, and Wong (2018). In applying the BN filter with a finite-order AR model,

we take it as a maintained assumption, possibly motivated by unit root and/or stationarity

tests, that the time series {yt} being detrended has a non-zero stochastic trend component.

Importantly, there is an interior solution and near-zero values of δ > 0 will not be close to the

optimum if the fit of the model deteriorates as δ → 0 (i.e., limδ→0σ
2
e(δ)

′ < 0), which is what

we find in practice. Specifically, noting that the variance of trend shocks σ2
∆τ (δ) = δσ2

e(δ) and,

therefore, σ2
∆τ (δ)

′ = δσ2
e(δ)

′ + σ2
e(δ) and σ2

∆τ (δ)
′′ = δσ2

e(δ)
′′ + 2σ2

e(δ)
′, it is easy to show that

limδ→0σ
2
∆τ (δ)

′ > 0 and limδ→0σ
2
∆τ (δ)

′′ < 0, meaning that, as δ → 0, there will be a trade-off in

determining σ2
∆τ (δ) = δσ2

e(δ) between the direct reduction in the signal-to-noise term δ and an

implied worsening of the fit term σ2
e(δ), with an interior local minimum resulting as it requires

σ2
∆τ (δ̄)

′ = 0 and σ2
∆τ (δ̄)

′′ > 0.4

4If the model fit also deteriorates for large enough δ (i.e., limδ→∞σ2
e(δ)

′ > 0), this implies σ2
e(δ

∗)′ = 0 and
σ2
e(δ

∗)′′ > 0 for some δ∗ > 0, which, in turn, implies σ2
∆τ (δ

∗)′ > 0 and σ2
∆τ (δ

∗)′′ > 0. This further implies
σ2
∆τ (δ)

′′ = 0 for some smaller value of 0 < δ < δ∗ for which σ2
e(δ)

′ < 0 and σ2
e(δ)

′′ > 0. Then solving for
an optimum by finding δ̄ > δ such that σ2

∆τ (δ̄)
′ = 0 will correspond to a local interior minimum because

σ2
∆τ (δ)

′′ > 0 for δ > δ. An exact analytical solution depends on the noise function σ2
e(δ). In practice, we
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We see this trend-smoothness loss function as being in the spirit of trend-cycle decomposition

methods that impose explicit smoothness priors on the trend, such as Harvey, Trimbur, and

Van Dijk (2007), or impose a low signal-to-noise, such as the HP filter. The trend-smoothness

loss function should be well suited to events such as the COVID-19 pandemic that involve

extreme movements in the data without an obvious ex ante notion of whether the trend moves

much as a result. At the same time, smoothing the trend in this way has the potential to alter

the reliability properties of the BN filter given that other methods which smooth the trend,

such as the HP filter, are notably less reliable and can generate spurious cycles (Cogley and

Nason, 1995). We also note that this sort of trend smoothness loss function can also been useful

beyond the univariate setting. In particular, in related work estimating the euro area output

gap using a multivariate BN decomposition, Morley, Rodriguez-Palenzuela, Sun, and Wong

(2023) borrow from the approach proposed here by minimizing the variance of the change in

trend to select the key shrinkage hyperparameter for Bayesian estimation of a large VAR and

find that doing so is particularly important in terms of estimating the depth of the euro area

output gap during the COVID-19 recession.

2.2.2 Iterative dynamic demeaning

To understand our proposed iterative dynamic-demeaning approach, it is helpful to revisit the

basic assumption that the trend of {yt} is a random walk with drift. That is, the non-zero

unconditional expectation E [∆yt] = µ ̸= 0 is associated with the trend, not the cycle. Recall

the basic trend-cycle identity:

yt = τt + ct. (7)

Then, it directly follows that

∆yt = ∆τt +∆ct (8)

and

E [∆yt] = E [∆τt] + E [∆ct] . (9)

consider a numerical grid to find the δ̄ that minimizes the σ2
∆τ (δ). It is straightforward with the grid to confirm

existence and uniqueness of the local minimum in any given setting. We always find a unique interior minimum
in practice.
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The assumption that drift is associated with the trend is equivalent to assuming E [∆τt] = µ and

E [∆ct] = 0, which directly follows from the maintained assumption E [ct] = 0 when applying

the BN decomposition.

When we use the sample mean of {∆yt} to estimate µ, we are implicitly assuming that the

sample mean of {∆ct} is close to zero, consistent with its unconditional expectation. That is,

the trend-cycle identity in (7) also implies

1

T

T∑
t=1

∆yt =
1

T

T∑
i=t

∆τt +
1

T

T∑
t=1

∆ct (10)

and

1

T

T∑
t=1

∆ct ≈ 0 ⇒ 1

T

T∑
i=t

∆τt ≈
1

T

T∑
t=1

∆yt. (11)

Thus, the sample mean of {∆yt} approximates the sample mean of {∆τt}, and thus provides

an easy way to estimate the drift associated with the trend.

However, when we consider dynamic demeaning to account for time-varying drift, the sample

for our rolling-window estimation can become small enough that the average change in the cycle

over the rolling window might not be close to zero. Of course, when estimating the cycle, we

obviously do not observe it a priori, so we cannot simply remove the sample mean of the

change in the cycle to estimate the drift associated with trend growth. But if our estimated

cycle using {∆yt} to estimate time-varying drift implies a non-zero sample mean of the change

in the cycle, then we can consider iterative estimation of trend growth until the estimated

cycle is consistent with the sample mean of the estimated change in the cycle. Specifically,

initially setting c
{0}
t = 0 and j = 1, we repeatedly estimate the cycle using dynamic demeaning

according to µ
{j}
t = 1

40

∑40
i=1 ∆yt−i+1 − 1

40

∑40
i=1∆c

{j−1}
t−i+1 for j iterations until c

{j}
t ≈ c

{j−1}
t up to

some arbitrary level of precision. Note that c
{1}
t is just our original dynamic-demeaning estimate

using {∆yt} to estimate time-varying drift. The iterative approach helps address unusual

movements in a cycle that can result in the average change in the cycle over the rolling window

being significantly different than zero. We are motivated by the extreme outliers associated

with the pandemic to consider this approach, although we find relatively little difference in

estimates during the pandemic using the original or iterative approaches given that the change

in the cycle, while large, was not persistent ex post. We find larger changes in estimates at other
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points of the sample period during more persistent downturns such as the Great Recession or

booms such as in the mid-1980s.

2.2.3 Time-varying error bands

In the appendix of Kamber, Morley, and Wong (2018), we presented a method to assess the

uncertainty associated with the BN filter estimates. In particular, based on equations (3) and

(4), we solved for the variance of the BN cycle, σ2
c , as follows:

σ2
c = [1 0 · · · 0]F (I − F )−1ΣX((I − F )′)−1F ′

[1 0 · · · 0]
′, (12)

where ΣX is the variance of Xt and vec(ΣX) = (I−F ⊗F )−1vec(Q), with Q being the variance-

covariance matrix for the innovation vector of the companion form for the AR(p) model:

Q =


σ2
e 0 · · ·

0 0
. . .

...
. . . . . .

 . (13)

Because the estimated trend provides an unbiased estimator of the true trend, we proposed

constructing a 95% confidence interval for the BN cycle by inverting a simple z-test for different

values of ct as follows:

cBN
t ± 1.96σc. (14)

While useful, error bands based on this approach have constant width. However, if the

conditional volatility of {∆yt} were actually time varying, the originally proposed approach

might incorrectly estimate the degree of estimation uncertainty at different points of the sample,

which seems particularly relevant when faced with events such as the COVID-19 pandemic when

there was unprecedented volatility in real GDP growth.5 Thus, the refinement we propose for

5We note that accounting for changes in volatility is less relevant for the estimated cycle based on (3)
because modelling heteroskedasticity has minimal impact on estimates of the autoregressive coefficients in the
companion matrix F . Morley and Piger (2012) found little effect of accounting for heteroskedasticity when
conducting trend-cycle decomposition based on linear and nonlinear AR models estimated via MLE and it
would be even less so for the AR coefficients in the BN filter given the restriction on their sum implied by δ̄
and the use of Minnesota-like priors to estimate the {ϕ∗

j}
p−1
j=1 coefficients. Thus, it is not such an issue when

conducting the BN decomposition to ignore potential heteroskedasticity. It is only when constructing confidence
intervals that this heteroskedasticity matters more. Related, accounting for parameter uncertainty would have
a relatively small effect on the error bands compared to the sampling uncertainty about ct.
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the construction of error bands is to allow for the possibility of time-varying volatility. In

particular, our simple proposal is to estimate time-varying conditional volatility of {∆yt} using

a rolling window, although one could certainly consider a more complicated approach such as a

formal model of conditional volatility. Specifically, given window size k, we replace the estimate

of conditional volatility σ2
e in (13) based on least squares residuals from (2) with estimates of

σ2
e,t using a rolling window from t− k + 1 to t. We consider k = 40 quarters as the choice for

the rolling window to align with our choice for dynamic demeaning.6

2.2.4 Iterative backcasting to generate trend-cycle estimates for y1

Our last refinement involves iterative backcasting of initial observations for estimation by

utilizing the time reversibility of any linear time series process that can be described in terms

of ARMA dynamics (see, for example, Ramsey and Rothman, 1996). Our motivation for this

refinement is to be comparable to trend-cycle decomposition methods such as the HP filter

that produce estimates of trend and cycle for the first observation of the level of the time

series being decomposed, y1. Given the BN decomposition makes use of a forecasting model

in first differences, the original BN filter produces estimates for the first available observation

of the first differences (i.e., ∆y2 = y2 − y1), corresponding to the second observation in levels,

y2. In order to obtain reasonable trend and cycle estimates from the BN filter for the first

observation in levels, we would need a better estimate of the first difference associated with

the initial observation (i.e., ∆ŷ1) than just the estimated drift, µ̂, which is what we used for

backcasting initial observations when estimating the restricted AR(p) model for the original

BN filter in Kamber, Morley, and Wong (2018). With our proposed iterative backcasting, we

find estimates of initial observations by using the restricted AR(p) model to first forecast p+1

observations in first differences out of sample and then reversing the time series in differences

including these forecasted observations in order to backcast p + 1 initial observations in first

differences. This forecasting, reversing, and backcasting is done iteratively until the estimated

initial observations and out-of-sample forecasts converge to an arbitrarily small tolerance. In

practice, we find this convergence is almost immediate. Then, with p + 1 backcast initial

6As with dynamic demeaning, the estimates for the first 40 quarters are constant and based on the first 40
quarters. The 40-quarter rolling window is again motivated by being long enough to provide relatively precise
variance estimates, although it could overstate the persistence of changes in conditional volatility. Tailoring a
formal model of conditional volatility to a given time series could be worthwhile in settings where there are
concerns about higher-frequency changes in conditional volatility.
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observations, ∆ŷ1,∆ŷ0, ...,∆ŷ−p+1, we can use (3) to calculate the BN cycle (and, therefore,

BN trend) for y1.

Figure 1: Estimates of the US output gap using the refined BN filter
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Notes: Units are 100 times natural log deviation from trend. Sample period is 1947Q1 to 2023Q2. Shaded bands around the
estimate correspond to 95% confidence intervals based on inverting a z -test that the true output gap is equal to a hypothesized
value using the standard deviation of the BN cycle estimated with rolling-window estimates of time-varying conditional volatility
for output growth. Shaded bars correspond to NBER recession dates.

2.3 Estimates of the output gap using the refined BN filter

We first present estimates of the output gap using US real GDP data from 1947Q1 to 2023Q2

when considering the BN filter with all of the refinements. Figure 1 plots these estimates,

along with 95% confidence intervals. Similar to what we found in Kamber, Morley, and Wong

(2018), the refined BN filter produces intuitive estimates of the output gap, with movements

in it being well aligned with the NBER reference cycle. We note there is a larger degree of

estimation uncertainty in the earlier part of the sample than during the Great Moderation,

but a higher level of uncertainty has returned since the pandemic given the inclusion of outlier

growth rates associated with the pandemic in the rolling window when estimating time-varying

conditional volatility of output growth.7 The δ̄ selected given the new loss function is 0.02,

7Shortening the rolling window produces even wider error bands right around the pandemic, but does not
have as much effect on the bands at other points of the sample. Given how short lived the high volatility in
output growth was in 2020, a formal model of time-varying volatility that adapts to persistence of different
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implying that only 2% of the quarterly forecast-error variance for output growth corresponds

to trend shocks. This contrasts with the δ̄ = 0.24 found in Kamber, Morley, and Wong (2018),

which while yielding intuitive and reliable estimates of the output gap, may have been a larger

signal-to-noise ratio than believed by many practitioners seeking to estimate a smooth trend.

Figure 2: Comparison of the original and refined BN filter
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To help understand the role of the refinements, Figure 2 compares the results for the refined

BN filter with those for the updated sample based on the original BN filter proposed in Kamber,

Morley, and Wong (2018). The top panel of Figure 2 plots the estimated output gap for the

refined BN filter together with estimated output gap for the original BN filter, while also

including the output gap based on the HP filter using the typical smoothing parameter of 1600

as a point of reference. In general, the refined BN filter produces an estimated output gap

with fluctuations that are very similar to those for the original BN filter (the correlation is

92%). However, there are some key differences. The refined BN filter estimates display a more

similar amplitude to that of the HP filter estimates than the original BN filter estimates, with

the refined BN filter and HP filter estimates being reasonably similar to each other around the

episodes would presumably imply a quicker return to the tighter bands from before the pandemic than our
rolling window approach.
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pandemic (fully acknowledging that the estimates near the end of the sample could be revised

in the future). The difference in amplitude between the original and refined BN filter estimates

are particularly notable during the 1970s recessions, the mid-1980s, the Great Recession, and

the COVID-19 pandemic.8 Specifically, because the new loss function is explicitly designed to

minimize the change in trend, it mechanically attributes a larger proportion of the fluctuations

in real GDP to the cycle.9 All in all, the comparison with the HP filter suggests that the new

loss function for the refined BN filter comes closer to the implicit loss function of practitioners

who continue to use the HP filter despite repeated warnings not to do so (e.g., Cogley and

Nason, 1995; Hamilton, 2018), perhaps because they believe the two-sided ex-post estimates

from the HP filter approximate the true cycle when defined in terms of an ideal high-pass filter

(see the discussions in Pedersen, 2001; Cogley, 2001).

To provide some sense of how our updated approach deals with the pandemic, the bottom

panels of Figure 2 compare the refined BN filter with the original BN filter, zooming in around

the COVID-19 period in particular. For the comparison, we present both the output gap and

trend output estimates. The refined BN filter attributes more of the fall of real GDP during

2020Q2 to being transitory rather than permanent. The corresponding trend estimates show

that the refined BN filter implies a relatively smooth reversal in trend output, consistent with

the new loss function. The original BN filter, on the other hand, implies a sharp drop in trend

in 2020Q2 followed by a sharp increase in 2020Q3. From an ex-post perspective, the refined BN

filter produces estimates of the output gap and trend output that are arguably more consistent

with the economic narrative of the time, at least if one associates the output gap with transitory

movements in real GDP rather than necessarily making distinctions between sources of these

movements in terms of aggregate demand and supply. In particular, the outlier fall in real

GDP growth in 2020Q2 was clearly associated with temporary and massive restrictions on

economic activity such as lockdowns that were largely reversed in 2020Q3, which suggests an

8In addition to being more similar to the HP filter estimates, the larger amplitude of the output gap for the
refined BN filter can be thought of as being more intuitive because the estimates are generally in line with the
magnitude of the CBO output gap at these times as well. For example, the CBO output gap was also close to
-5% at the troughs of the recessions in 1975 and 2009.

9We note that the original procedure selects a δ̄ of 0.15 for the updated sample, which is lower than the
selected value of 0.24 for the original sample from 1947Q1 to 2016Q2 used in Kamber, Morley, and Wong (2018).
Nonetheless, this is still much higher than the δ̄ of 0.02 selected with the proposed new loss function and would
increase the loss in (6) by 39% compared to the new procedure, with the standard deviation of trend shocks
increasing from 0.45% to 0.53%. The economic significance of this difference is illustrated in the last panel of
Figure 2 when comparing trend estimates during the pandemic, as discussed below.
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economic narrative that most of the decline in activity due to the pandemic was transitory.10

The differences in estimates around the pandemic are largely about the new loss function, with

some differences also reflecting iterative dynamic demeaning given lower estimated trend growth

throughout the 2010s corresponding to a generally higher level of the output gap, especially

just prior to the pandemic.

3 Real-time reliability when including Covid-era data

We now compare the real-time reliability of the BN filter against some widely-used trend-

cycle methods by examining their revision properties when including Covid-era data in the

analysis. This evaluation is motivated by the well-documented general unreliability of output

gap estimates in real time, as most prominently demonstrated by Orphanides and van Norden

(2002). A key attraction of the original BN filter is that it appears to have revision properties

which largely circumvent the Orphanides and van Norden (2002) critique. It is thus of interest to

understand whether both the original and refined BN filters retain such good revision properties

when confronted with Covid-era data and how they compare to each other and other widely-

used methods.

In terms of the other methods, we consider the HP and Hamilton filters detailed in Hodrick

and Prescott (1997) and Hamilton (2018), respectively. The HP filter is a natural choice given

its near ubiquitous use in academia and policy environments, and we consider the standard

implementation of the HP filter using a smoothing parameter of 1600, as in Figure 2.11 The

Hamilton filter is also an obvious choice given its recent emergence due to its ease of use and

also its purported ability to address various shortcoming of the HP filter. Furthermore, since

the publication of Kamber, Morley, and Wong (2018), Quast and Wolters (2022) have shown

that the Hamilton filter possesses similarly good revision properties when comparing to the

BN filter. The Hamilton filter output gap corresponds to the residuals from a least squares

regression of h-step-ahead log real GDP on its contemporaneous value and three lags as well as

10It is possible that the disruption associated with the pandemic also had some more persistent and possibly
permanent negative implications for economic activity, consistent with our finding of a small reduction in trend
when using the refined BN filter or even the HP filter.

11As noted in Kamber, Morley, and Wong (2018), the estimates and revision properties remain very similar
when padding the data with, say, AR(4) forecasts to try to address end-point problems, as done, for example,
in Edge and Rudd (2016).
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a constant. We consider two versions of the Hamilton filter: the original version in Hamilton

(2018), which sets h = 8, and the modified version in Quast and Wolters (2022), which averages

over gaps obtained from h = 4 to h = 12.

Figure 3: Ex-post versus pseudo-real-time output gap estimates
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Figure 3 plots ex-post versus pseudo-real-time estimates of the US output gap for the

different methods. By “ex post”, we are referring to the output gap estimated using the

full 1947Q1-2023Q2 final-vintage sample of data. For the pseudo-real-time estimates, we

sequentially estimate the output gap starting with a shorter sample from 1947Q1 to 1970Q1

and then, adding one observation of real GDP at a time, retain the last estimated value of the

output gap for each pseudo-real-time sample. This is analogous to the filtered estimate of the

output gap if one were estimating the gap in real time using the Kalman filter, albeit using the

final vintage of data.12

Consistent with Orphanides and van Norden (2002) and Kamber, Morley, and Wong (2018),

12We consider just a single vintage of data in order to isolate the role of the methods rather than data revisions
for three reasons. First, Orphanides and van Norden (2002) show that most of the revisions for output gap
estimates are usually due to the method rather than data revisions. Second, none of the methods are explicitly
designed to address data revisions, so using a single vintage of data isolates the analysis to how well the various
methods are able to deal with the so-called “end-point” problem. Third, because none of these methods are
designed to address data revisions, we show in Kamber, Morley, and Wong (2018) that it makes relatively
little difference whether one uses real-time data or a single vintage if one were just seeking to understand the
comparative revision properties of the methods under consideration.
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Figure 3 shows that the output gap based on the HP filter is often heavily revised, with the

pseudo-real-time and ex-post estimates diverging considerably. Notably, despite being relatively

close to the end of the sample, the one-sided real-time HP filter estimates of the output gap

just prior to the pandemic are highly unreliable, with the ex-post estimates revised upwards

substantially for 2018-2019 in particular from being very close to zero to being closer to the

real-time estimates for the refined BN filter and both versions of the Hamilton filters.

Despite the inclusion of Covid-era data, it is clear from Figure 3 that the original BN

filter retains the good revision properties reported in Kamber, Morley, and Wong (2018) and

also confirmed in Quast and Wolters (2022), Barigozzi and Luciani (2023), and Barbarino,

Berge, and Stella (2024). Meanwhile, the refined BN filter displays even slightly better revision

properties than the original BN filter. Note that because we estimate the output gaps in pseudo

real time, we are also allowing δ̄ to change in the real-time setting. While the pandemic did

change the selected δ̄, most prominently for the original BN filter from the originally published

0.24 to 0.15 at the final data point, this makes little difference to the ex-post versus pseudo-

real-time estimates. In fact, it is precisely because of the BN filter’s reliability that δ̄ falls,

although it falls by less than 0.01 for the refined BN filter. Given that the historical and ex-

post estimates do not diverge after the pandemic, the only way that the BN filter can retain its

reliability when considering either the amplitude-to-noise ratio or the variance of the change in

trend in the presence of extreme outliers that boost the sample variance of the forecast errors is

through a corresponding decrease in the signal-to-noise ratio δ given “noise” is being measured

by σ2
e . Meanwhile, the slight downward shift in the ex-post estimates for the original BN filter

is due to slower average output growth in recent years, which the refined BN filter accounts for

with iterated dynamic demeaning.

Turning to the Hamilton filter, estimates for both the original and modified versions are

also little revised in Figure 3, consistent with what was documented by Quast and Wolters

(2022). An interesting finding, though, is that, while the estimated output gaps between the

original and modified versions were very similar before the pandemic, they are quite different

afterwards. In particular, the original Hamilton filter output gap displays a large mechanical

spike in the estimated output gap in 2022Q2, exactly two years after the onset of the pandemic.

The spike is mechanical because it was perfectly predictable prior to 2022Q2 given base effects
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for the 8-quarter-ahead projection of the level of log real GDP for 2022Q2 due to the low value

of log real GDP in 2020Q2 and then for 2022Q3 due to the largely recovered value of log real

GDP in 2020Q3.13 We will return to this issue of how and why the original and modified

versions of the Hamilton filter are so different after the pandemic in Section 4.

Figure 4: Revision properties of output gap estimates
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Standard deviation and root mean square of revisions to the pseudo-real-time estimate of the output gap are normalized by the
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the same sign as the ex post estimate of the output gap. The sample period for calculation of revision statistics is 1970Q1 to
2018Q2.

To round out the real-time reliability analysis, Figure 4 presents the formal revision statistics

for the various methods, albeit dropping the last five years of the sample that include the

pandemic when calculating the statistics because the more recent ex-post estimates near the

end of the sample may end being heavily revised in the future. These statistics were originally

13The predictable base effects may be easiest to think about by considering the simplified version of the
Hamilton filter also discussed in Hamilton (2018) that constructs the output gap as the eight-quarter difference
in log real GDP – i.e., yt − yt−8 = ∆yt + ∆yt−1 + ... + ∆yt−7. From 2020Q3 to 2022Q1, the eight-quarter
difference will include the 2020Q2 and 2020Q3 quarterly growth rates, which were largely offsetting. So, if all
other quarterly growth rates were much closer to the drift µ, the eight-quarter difference from 2020Q3 to 2022Q1
would be close to 6×µ. Then, predictably in 2022Q2, the output gap will jump up by about −∆y2020Q2 +µ as
the very negative quarterly growth for 2020Q2 is dropped from the eight-quarter growth rate and the 2022Q2
growth rate, which is assumed to be closer to the drift µ, is added. Furthermore, predictably in 2022Q3, the
output gap will fall back down by −∆y2020Q3+µ to close to 8×µ as the very positive growth rate for 2020Q3 is
dropped and the 2022Q3 growth rate, which is again assumed to be closer to the drift µ, is added. In this sense,
it is predictable changes in the “base” for the eight-quarter difference (i.e., yt−8) that mechanically explain the
positive spike exactly 8 quarters after a large negative spike.
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proposed by Orphanides and van Norden (2002). The top panel plots the size of the revisions

between the pseudo-real-time and ex-post estimates in terms of standard deviation and root

mean square, both normalized by the standard deviation of the ex-post estimated gap, as

suggested by Orphanides and van Norden (2002). The bottom panel plots the correlation

between the pseudo-real-time and ex-post estimates and proportion of these estimates that

share the same sign. As one might suspect from Figure 3, all variants of the BN filter and the

Hamilton filter have good revision statistics, whereas the HP filter does poorly. On some level,

this is perhaps not entirely surprising. As first pointed out by Kamber, Morley, and Wong

(2018), the BN filter does well because it is a one-sided filter which does not rely on future

information, unlike the HP filter and the various other filters considered by Orphanides and

van Norden (2002). The Hamilton filter also falls in the category of a one-sided filter, so it

naturally also does well on these metrics as long as the estimated regression parameters remain

little changed with the addition of new data. Finally, we note that, even though the original

Hamilton and BN filters do well on these metrics in an absolute sense, their updated versions

seem to do better on at least some of the metrics, especially for the refined BN filter, which

suggest that the updated versions can provide some valuable enhancements without sacrificing

real-time reliability. Again, this is a particularly notable finding for the refined BN filter given

that the trend-smoothing criterion of the HP filter seems to be a source of its unreliability,

while the trend-smoothness loss function for the BN filter perhaps surprisingly does not seem

to lead to any deterioration in its reliability.14

4 Trend-cycle decomposition with projected data

Next, we augment the US real GDP data from 1947Q1 to 2023Q2 with projections of future

output growth from 2023Q3 to 2055Q4 that include a simulated Covid-like shock occurring 15

years in the future in 2038Q3 to see how the different methods would forecast the output gap

and process an outlier shock for which we know by assumption the true impact on trend and

cycle. In particular, we project that real GDP generally grows from the end of our sample

14Similar to how the refined BN filter provides a better prediction of the final-vintage HP filter output gap
for 2018-2019 than the one-sided real-time HP filter, we find that the correlation with the final-vintage HP filter
output gap is actually a bit higher for the real-time refined BN filter than for the one-sided real-time HP filter
at 58% versus 55% over the evaluation sample considered in Figure 4 and 65% versus 60% when extending the
evaluation sample to 2023Q2 to include the pandemic.
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by 0.6% in every quarter, coinciding with a drift of about 2.5% real GDP growth per annum,

close to the historical norm. However, in 2038Q3, we also project a (i) a one-time permanent

2.5% reduction in the level of real GDP and (ii) an additional 7.5% transitory reduction in

the level of real GDP that lasts only one quarter. Our scenario thus assumes an overall 10%

reduction in real GDP in 2038Q3, followed by a partial recovery in 2038Q4. That is, 1/4th of

the overall Covid-like shock corresponds to a reduction in trend and the remaining 3/4ths of the

shock corresponds to a decline in the output gap. We then apply the different methods to the

augmented data to forecast the output gap under this scenario. Note that because only 3/4ths

of the Covid-like shock is transitory, some of the projected reduction in real GDP should be

attributed to the trend, not the cycle.

Figure 5: Estimates with projected data
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The top panel of Figure 5 plots the estimated output gaps using the augmented data for

the refined BN filter, both versions of the Hamilton filter, and the HP filter, with the vertical

dashed black line marking the beginning of the forecasted output gaps based on projected real

GDP. Before the start of the projection, it can be seen that the output gap estimates are

reasonably consistent with the estimated output gaps reported in Figures 2 and 3 even though
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estimation now considers the augmented data up to 2055. Specifically, all of the estimated

output gaps suggest that the COVID-19 recession mostly represented a transitory decline in

output, consistent with the economic narrative that economic activity that was constrained

by mitigation measures in 2020Q2 was largely restored in 2020Q3. Furthermore, as discussed

previously, even though both versions of the Hamilton filter produced output gap estimates that

were very similar prior to the pandemic, this does not appear to be the case after the pandemic.

The differences for the original and modified Hamilton filters are thus entirely driven by the

large shock at the onset of the pandemic. To be sure, in the absence of outliers, the original

and modified Hamilton filter would produce very similar estimates, as also shown by Quast and

Wolters (2022). However, when extreme outliers occur, the two versions of the Hamilton filter

will produce vastly different estimates of the output gap. In particular, because the modified

version of the Hamilton filter averages the gap obtained from h = 4 to h = 12, the base effects

of the outlier quarterly growth rates affect the modified filter starting at four quarters after the

large shock (2021Q2), which is when we can see the estimated output gaps for the original and

modified Hamilton filters start diverging. Of course, because the base effects of the extreme

outliers are averaged in the modified version, the modified version does not produce the same

large spike after eight quarters (2022Q2) as found with the original Hamilton filter, so the

modified Hamilton filter might be seen as somewhat better than the original Hamilton filter in

the presence of large shocks.

Turning to the forecasts in Figure 5, because the output gap estimates are all close to zero

in 2023Q2 and output growth is set to trend growth for the 15 years before the outlier shock in

2038Q3, we would expect the forecasted output gap to converge to zero as the effects of previous

shocks dissipate. This is the case for the BN and HP filters. However, for both versions of

the Hamilton filter, the forecasted output gap diverges slowly away from zero over the forecast

horizon. This is due to the fact that the actual growth in the projection of 0.6% per quarter is

not identical to what would be predicted based on the regression model, which will largely reflect

the average growth rate over the full sample (including the augmented data). In principle, the

longer the projection sample, the closer the predicted growth should get to the assumed growth.

But, in practice, because there is no stochastic variation in projected real GDP for most of the

projection (other than the Covid-like shock in 2038, which we discuss below), the regression
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for the Hamilton filter would become more and more akin to a regression of a linear time trend

on lagged linear time trends and a constant, thus moving towards a singularity in the limit

and not actually identifying coefficients that sum to one with the constant converging to the

underlying drift. It is possible to find a precise growth rate for which the Hamilton filter would

imply a forecasted output gap that is a flat line close to zero. But this is a knife-edge case

and there is no reason the corresponding growth rate would be the same projection of output

growth that a policymaker would want to consider. Meanwhile, consistent with nearly identical

estimates in the absence of outliers, this issue with the drifting forecast is not addressed by the

modified Hamilton filter, which produces an indistinguishable forecast of the output gap that

drifts upwards on the same path as for the original Hamilton filter.15

In terms of the simulated Covid-like shock in 2038, we can see it has very similar effects

on the forecasted output gaps to what happened with the estimated output gaps around the

pandemic. Zooming in on the period just before and after the simulated shock in the bottom

left panel of Figure 5, the original Hamilton filter again implies a big mechanical spike exactly

two years after the shock. The modified Hamilton filter smoothes this effect out to an extent,

but still implies a persistently large positive output gap for a few years before continuing back

on the same upward trajectory as the original Hamilton filter once the effects of the Covid-

like shock on the estimates have died out. Both versions of the Hamilton filter also overstate

the decline in the output gap in 2038Q3, falling by about 10.6 percentage points even though

the actual transitory decrease in output was 7.5% in the simulation. Therefore, given output

growth was -10% in 2038Q3, the Hamilton filter implies a small increase in trend output even

though the true trend actually fell by 2.5%, with the forecasted trend remaining well above the

true trend for a number of quarters afterwards, as can be seen in the bottom right panel of

Figure 5.16 Both the HP and BN filters capture an output gap of -7.5% in 2038Q3, but this

results from very different dynamics because the HP filter gap was at a spuriously positive level

prior to the shock that looks similar to what was found with the final-vintage estimates based

on the HP filter prior to the pandemic. Thus, the HP filter output gap actually falls by close

to 10 percentage points with the simulated shock, similar to the Hamilton filter, and there is

15It is not clear how to further modify the Hamilton filter to address this divergence or to account for structural
change in drift such as we do with iterated dynamic demeaning for the BN filter.

16For the projected data, real GDP follows the true trend, except for in 2038Q3, when it is also affected by
a 7.5% transitory reduction in its level.
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an implied offsetting increase in trend output. Corresponding to the spurious positive output

gap, the implied level of trend for the HP filter is well below the true trend prior to the shock,

as can be seen in the bottom right panel of Figure 5. Both the HP and BN filter output gaps

eventually return to zero in the long run, with the HP filter adjusting somewhat faster than

the BN filter.17 Overall, though, only the BN filter captures the general movements in trend

and cycle around the Covid-like shock correctly, with economically very different implications

about trend output in particular compared to the HP and Hamilton filters.

5 Conclusions

We have introduced some refinements of the BN filter in Kamber, Morley, and Wong (2018) and

investigated whether the resulting output gap estimates remains intuitive and reliable in the face

of large shocks, such as occurred with the COVID-19 pandemic. We find that the BN filter is

still reliable in terms of its revision properties, with the refinements enhancing the intuitiveness

of the resulting output gap estimates. Comparing against other popular methods, the HP filter

also produces intuitive output gap estimates, but its well-known lack of real-time reliability

remains a problem. The Hamilton filter, on the other hand, has good revision properties, but

appears less suited to deal with extreme outliers such as occurred during the pandemic because

it mechanically produces a future spike in the estimated output gap following an outlier shock

exactly in line with the filter horizon. It also produces unintuitive forecasts of the output gap

that diverge away from zero given plausible projected values of future output growth. From this

perspective, especially when considering large shocks such as experienced during the pandemic

and also data augmented with long-term projections as often considered in policy settings, the

BN filter appears to be the only of the three univariate trend-cycle decomposition methods

under consideration that produces both intuitive and reliable estimates of the output gap.
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