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1 Introduction

For risk managers, investors, and regulators alike, forecasting financial risk and asset re-

turns is central to their market activities. When forecasting asset returns and the risk of a

financial portfolio, point forecasts rarely suffice, and the entire density is often required. A

predictive density allows for one to capture all of its characteristics, including its tails. For

example, measures of downside risk for investments, such as Value-at-Risk (VaR), require

information on the left tail of the distribution of asset returns. This requirement implies

that when modeling the entire density, preserving characteristics such as the degree of

asymmetry and the thickness of the tails measured by higher moments, such skewness

and kurtosis, respectively, is crucial.

A multitude of financial density forecasts exists that can easily be produced using

a variety of models, leaving the forecaster to choose a predictive density. Rather than

restricting the choice to one density, a popular strategy is to combine the forecasts into

a consensus forecast. Empirical applications of forecast combination often produce sig-

nificant improvements in forecast accuracy. Concerning the recent M4 competition that

included 100,000 series, Makridakis et al. (2018) found that out of the 17 most accurate

methods, 12 were combinations. Since the introduction forecast combination by Bates

and Granger (1969), the literature on combination has grown substantially. Timmermann

(2006) provides an extensive overview. Until recently, most of the literature focused on

point forecasts, and the treatment of predictive density combinations was sparse.

One of the earliest contributions addressing the problem of combining predictive den-

sities is discussed in Genest and Zidek (1986), DeGroot and Mortera (1991), Wallis (2005)

and Hall and Mitchell (2007). Hall and Mitchell (2007) proposed a practical way to select

optimal weights by maximizing the average logarithmic score of the combined density

forecast to minimize the “distance” between the forecasted and true (unknown) density,

as measured by the Kullback–Leibler information criterion (KLIC). Geweke and Amisano

(2011) used Bayesian methods and provided some theoretical justification for using opti-

mal weighting schemes in pooling linear models. The linear pool approach has recently

been generalised to nonlinear transformations of linear pools, with beta transformations

in Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013), beta-mixtures for cal-

ibration and combination in Bassetti et al. (2018), and nonlinear pools and generalised

weights in Kapetanios et al. (2015). Furthermore, Billio et al. (2013) and Del Negro et al.

(2016) allow the weights of the combination to account for time instabilities and estimation

uncertainty. Some theoretical advances have been provided by Elliott (2011) and Chan

and Pauwels (2018) for forecast point combinations. For forecast density combinations,

Kapetanios et al. (2015) establishes asymptotic normality for the proposed generalised
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weights, however, this result also covers the case of fixed weights considered in Hall and

Mitchell (2007) and Geweke and Amisano (2011). Diks et al. (2011) proposes a censored

likelihood scoring rule, which is demonstrated by Opschoor et al. (2017) to outperform

other methods if the tail of the distribution is the main feature of interest. Smith and

Vahey (2016) investigates methodologies to forecast densities by using a copula model

with asymmetric margins. These asymmetric margins are produced from empirical and

skew-t distributions.

Despite these recent contributions on the optimal combination of predictive densities,

little is known about the statistical properties of such combinations. In particular, what

happens to the moments of the combination when the densities are combined? Specifi-

cally, what are the implications for higher moments such as the skewness and kurtosis of

the combination? These questions have remained unanswered in the literature. However,

the question is very important because the majority of financial returns on assets exhibits

asymmetry and heavy tails. This phenomenon is illustrated by the sample moments of

some of the main stock market indices shown in Table 1 (a similar table is reported in

Jondeau and Rockinger, 2009). These higher moments are also crucial for VaR and Ex-

pected Shortfall forecasting (Polanski and Stoja, 2010).

Table 1: Sample skewness and kurtosis in market returns

S&P 500 DJIA 30 Nikkei 225 FTSE 100

Skewness -0.249 -0.121 -0.232 -0.357
Kurtosis 11.358 11.500 7.901 4.424

Notes: The values reported are the daily returns of the market
indices from January 3, 2000, until July 20, 2018. The data
are from Yahoo! Finance.

We answer the question by empirically analyzing the impact of combining densities on

higher moments, and then, we provide an asymptotic theory as justification for the ob-

served results. We find that combinations with equal weights or optimal log score weights

significantly reduce the skewness and kurtosis of the combination when the individual

densities are skewed and/or fat-tailed.

We overcome this issue by restricting higher-order moments when maximizing the

average log score. We provide a general method for combining predictive densities by

maximizing the average logarithmic score subject to constraints that allow one to focus

on specific characteristics of the combined density, such as the thickness of the tails or the

asymmetry. In other words, we propose computing the optimal weights under additional

higher moments restrictions. We name these optimal weights derived under high moment
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constraints HMC weights. The benefit of this approach is that the resulting combined

density is suitable not only for the tails but also for the entire support of the distribution.

We show the validity of this approach both theoretically and numerically. First, we

derive the statistical properties of the HMC weights, namely, consistency and the asymp-

totic distribution. These results are also applicable to the weights proposed by Hall and

Mitchell (2007) and Geweke and Amisano (2011). Second, we run a series of simulations to

compare the performance of the HMC weights with that of the optimal log score weights

without such constraints and the commonly used equal weighting approach. Third, we

provide an empirical illustration in forecasting the densities of the conditional returns of

the S&P 500 index. The conditional returns are forecasted using several GARCH and

EGARCH models, which are regularly employed in the financial econometrics literature.

This illustration is especially relevant as the S&P 500 exhibits heavy tails (see Table 1).

In both numerical studies, we evaluate the combined predictive densities on its overall

performance in terms log score and its performance in the tails by forecasting Value-at-

Risk. The simulations and empirical results strongly support the proposed methodology.

The remainder of this paper is organized as follows. Section 2 investigates the impact

of combining densities on the moments of the combination. Section 3 proposes optimal

weights under higher-order moment constraints and studies their statistical properties.

Section 4 provides an empirical application for the S&P 500 index. Section 5 concludes.

2 Moments of the combination

2.1 Behavior of the moments

We start by describing the behavior of the moments of the density combination. A priori,

the impact that combining k densities (or models) would have on the higher moments of

the resulting combined density is not obvious. A simple way to combine k densities is to

aggregate them linearly into one density as follows:

pc(·;ω,θ) =
k∑
j=1

ωjpj(·;θj), (1)

where ω = (ω1, . . . , ωk)
> ∈ Rk is the vector of weights, θ = (θ>1 , . . . ,θ

>
k )> is the combined

vector of all parameters, and θj is a vector of parameters of the jth density, pj(·;θj). For

pc(·;ω,θ) to be a density, the weights need to be nonnegative, ωj ≥ 0, and sum up to

one,
∑k

j=1 ωj = 1. The restrictions on weights are necessary when combining densities

but for point forecasts the restrictions can be relaxed, see Vasnev and Wang (2019) that
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investigates negative weights and Granger and Ramanathan (1984) that does not require

summation to one.

Whereas the first moment of the combination, µc, is simply a linear combination of k in-

dividual density means, other moments are more complicated and depend on higher-order

polynomials of the weights ωj. Suppose that the j-th density has mean µj, variance σ2
j ,

skewness γj, kurtosis κj, and s-th centered moment mj,s. The following proposition uses

the definition of the moments and provides formulas for the moments of the aggregate

density.

Proposition 2.1. The moments of the combined density pc(·;ω,θ) are

(a) the mean: µc =
∑k

j=1 ωj µj,

(b) the variance: σ2
c =

∑k
j=1 ωj (σ2

j + (µj − µc)2),

(c) the skewness:

γc =
k∑
j=1

ωj

[
γj σ

3
j + 3(µj − µc) σ2

j + (µj − µc)3

σ3
c

]
, (2)

(d) the kurtosis:

κc =
k∑
j=1

ωj

[
κj σ

4
j + 4(µj − µc) γj + 6 (µj − µc)2 σ2

j + (µj − µc)4

σ4
c

]
, (3)

(e) the s-th centered moment:

mc,s =
k∑
j=1

ωj

s∑
l=0

(
s

l

)
(µj − µc)l mj,s−l, (4)

where
(
s
l

)
= s!

l!(s−l)! is the binomial coefficient.

A simple numerical illustration shows that higher moments of the density combina-

tion that are relevant in empirical finance, such as skewness and kurtosis, can change

considerably even when combining models with the same skewness and kurtosis. Figure 1

demonstrates the behavior of skewness, γc in equation (2), for different values of the weight

ω1 when combining two similar distributions, such as a skewed normal. In Figure 1, the

individual density parameters are set to σ1 = σ2 = 1, γ1 = γ2 = 1, and κ1 = κ2 = 3,

but feature different means, µ1 and µ2. If µ1 = 0.1 and µ2 = 1, then for ω1 = 0.35, the

skewness of the combination is approximately 0.75. If µ1 = −1 and µ2 = 1, γc is lower
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than 0.5 for ω1 between 0.10 and 0.65.
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Figure 1: γc as a function of ω1 if σ1 = σ2 = 1, γ1 = γ2 = 1, and κ1 = κ2 = 3.

Similarly, Figure 2 displays the behavior of the kurtosis, κc, in equation (3) for dif-

ferent values of the weight ω1 when combining two t5 distributions. The parameters of

the individual t5 are set to σ1 = σ2 =
√

5/3, γ1 = γ2 = 0, and κ1 = κ2 = 9, and the

means, µ1 and µ2, differ. In Figure 2 (a), the means are µ1 = −1 and µ2 = 1; moreover,

when ω1 = 0.5, the kurtosis of the combination reduces to approximately 5. Additionally,

in Figure 2 (b), when µ1 = −5, µ2 = 1 and the same weight, ω1 = 0.5, removes heavy

tails altogether. Obviously, when ω1 is close to the boundary (0 or 1), only one density

is selected, and the skewness and kurtosis of the combination are essentially those of the

individual density.
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(b) µ1 = −5, µ2 = 1

Figure 2: κc as a function of ω1 if σ1 = σ2 =
√

5/3, γ1 = γ2 = 0, and κ1 = κ2 = 9.

2.2 Simulation

We illustrate the aforementioned effect of a significant change in the skewness and kurtosis

when densities are combined in a systematic simulation experiment. Consider the data
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generating process given by the linear regression

yt = x>t β + εt, (5)

with xt = (x1t, . . . , xkt)
> and β = (1, . . . , 1)>. The regressors are standard normal ran-

dom variables, xjt ∼ N(0, 1), that are independent from each other. The error term is

heavy-tailed, εt ∼ t5, and is generated independently of the regressors.

We observe the data for t = 1, . . . , T − 1 and produce k forecasts for the conditional

mean of yT :

θ̂j = β̂jxjT , j = 1, . . . , k, (6)

where β̂j is the estimate of the slope coefficient in the simple linear regression model that

only uses the j-th predictor. The distribution of εt is known to belong to the t-distribution

family, but the degrees of freedom are unknown. To predict yT , we use a combination

of densities, pj(·; θ̂j), where the densities are t5 for j ≤
⌊
k
2

⌋
and are t6 for j >

⌊
k
2

⌋
, with

mean θ̂j.

The density combination is given by

pc(·; θ̂) =
k∑
j=1

ωjpj(·; θ̂j) (7)

with weights ωj satisfying the restrictions
∑k

j=1 ωj = 1 and ωj ≥ 0. We consider 6 differ-

ent sets of ad hoc weights. The first set starts with weight 1 on the first model and 0 on

all others. In the second set, the first weight decremented to 0.75 when weighting the rest

of the models equally. More weight is distributed gradually to the remaining models at a

step of 0.25 until the equal weight set is achieved. The last set of weights is subsequently

described.

We consider the optimal weights of Hall and Mitchell (2007) and Geweke and Amisano

(2011), which are based on the idea that, in practice, the combination being close to the

true but unknown density f(·) of the predicted outcome yT is desirable. The Kullback–

Leibler information criterion (KLIC) can be employed to measure the distance of the

combined density to the true density:

KLIC(ω,θ) = E

[
log

[
f(yT )

pc(yT ;ω,θ)

]]
, (8)
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and can be estimated with its sample analogue:

KLIC(ω,θ) =
1

T

T∑
t=1

log

[
f(yt)

pc(yt;ω,θ)

]
, (9)

using the actual realizations yt. Because the true density f(·) does not depend on ω, the

weight that minimizes KLIC can be found by solving the following optimization problem

maximize
T∑
t=1

log

[
k∑
j=1

ωjpj(yt;θj)

]

subject to
k∑
j=1

ωj = 1,

ωj ≥ 0, j = 1, . . . , k

(10)

For convenience, the optimal weights that solve equation (10) are named log score (opti-

mal) weights.

Table 2 presents the numerical results based on 5000 replications. Panel A shows the

impact of increasing the number of models (k) on the skewness of the combination (γc),

whereas Panel B shows the corresponding effect on the kurtosis of the combination (κc).

The skewness of the t5 error density is set to 1, and the kurtosis of the t5 error density

is 9. Both the skewness and the kurtosis of the combination decrease with the increasing

number of models combined. This phenomenon is also evident in Figures 3 and 4, which

depict histograms of the skewness and the kurtosis of the combination based on the op-

timal weights obtained by solving (10). Figure 3 shows the shift of the kurtosis toward 3

when the number of models used in combination increases, whereas Figure 4 illustrates

the corresponding shift of the skewness of the combination toward 0.

2.3 Asymptotic results

The previous section demonstrated the undesirable effect that combining densities can

have on the skewness and kurtosis. Here, we examine a setting in which the densities are

combined with the simple equal weights, and the number of models grows toward infinity.

Consider the general simulation setup in Section 2.2. We again focus on the linear

regression model (5) but let β = (β, . . . , β)>. The regressors xt are i.i.d. zero mean

random vectors independent from the errors εt, which are also i.i.d. with a zero mean.

We observe the data for t = 1, . . . , T −1 and produce k forecasts for the conditional mean

of yT using the same approach as in (6). For each fixed y and j, we let pj(y;θ) = p(y−θ),
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Table 2: Skewness (γc) and kurtosis (κc) of the combination

Panel A: γc
Weights & # of densities k = 2 k = 5 k = 10 k = 20 k = 30

{1, . . . , 0} 1.000 1.000 1.000 1.000 1.000{
0.75, 1−0.75k−1 , . . . , 1−0.75k−1

}
0.792 0.746 0.717 0.705 0.684{

0.50, 1−0.50k−1 , . . . , 1−0.50k−1

}
0.749 0.639 0.597 0.573 0.547{

0.25, 1−0.25k−1 , . . . , 1−0.25k−1

}
0.786 0.594 0.539 0.503 0.474{

1
k , . . . ,

1
k

}
0.749 0.592 0.527 0.481 0.449

Log score weights 0.758 0.621 0.541 0.452 0.386

Panel B: κc
Weights & # of densities k = 2 k = 5 k = 10 k = 20 k = 30

{1, . . . , 0} 9.000 9.000 9.000 9.000 9.000{
0.75, 1−0.75k−1 , . . . , 1−0.75k−1

}
6.981 6.861 6.890 6.876 6.870{

0.50, 1−0.50k−1 , . . . , 1−0.50k−1

}
6.158 5.759 5.771 5.727 5.714{

0.25, 1−0.25k−1 , . . . , 1−0.25k−1

}
5.894 5.177 5.168 5.097 5.080{

1
k , . . . ,

1
k

}
6.158 5.107 4.989 4.865 4.840

Log score weights 6.187 5.385 5.274 4.848 4.466

Notes: The optimal weights are obtained by solving (10). The combined k
densities are described in equation (7). The individual densities are con-
structed using the estimated parameters of the linear regression in (5). In
Panel A, the skewness of the t5 error distribution is set to 1. In Panel B,
the kurtosis of the t5 error distribution is 9.
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Figure 3: Distribution of the kurtosis of the density combinations (κc) for optimal log
score weights that result from solving (10).
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Figure 4: Distribution of the skewness of the density combinations (γc) for optimal log
score weights that result from solving (10).

where p is a known density. For example, p could be the density of the errors in model (5).

We focus on the equally weighted combination of these k densities and let γc and κc

denote its skewness and kurtosis, respectively. Denote the standard deviation, skewness,

and kurtosis of density p by σp, γp, and κp, respectively. Suppose that the predictors are

independent and can be split into finitely many (asymptotically) equally sized groups,

such that the predictors within each group are identically distributed. Assume that the

number of predictor groups, G, stays constant as the number of predictors tends to in-

finity. We write σ2
X,g for the variance of each predictor in group g ∈ {1, ..., G} and let

σ2
X denote the average variance across the predictor groups: σ2

X =
∑G

g=1 σ
2
X,g/G. We de-

fine γX and κX by analogy, as the average predictor skewness and kurtosis, respectively.

Note that if G = 1, then σ2
X , γX , and κX are simply the variance, skewness, and kurtosis

of each individual predictor. Let R = σ2
X/σ

2
p, and assume that all of the quantities defined

in this paragraph are finite. The following result is proven in the Appendix.

Theorem 2.2. Suppose that T →∞, k →∞ and k/
√
T → 0. Then:

γc
P→ γp

[
1 + βR

]−3/2
+ γX

[
1 + (βR)−1

]−3/2
κc

P→ κp

[
1 + βR

]−2
+ κX

[
1 + (βR)−1

]−2
+ 6
[
2 + βR + (βR)−1

]−1
.

In addition, if we also let β → 0 as T →∞, then γc
P→ γp and κc

P→ κp. Alternatively, if
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β →∞, then γc
P→ γX and κc

P→ κX .

Table 3 further illustrates Theorem 2.2 in the cases β → 0 and β → ∞. It uses

the same simulation framework as in Section 2.2, but with different values of β. When

β = (1/
√
k, . . . , 1/

√
k)>, the amount of the signal in the model is small relative to the vari-

ance of the error term; consequently, the kurtosis of the combination approaches the av-

erage kurtosis of the individual predictive densities. Alternatively, when β = (3, . . . , 3)>,

the amount of signal increases in relation to the noise, and hence, the kurtosis of the

combination approaches the kurtosis of the individual predictors, that is, 3, because the

predictors are normally distributed.

Table 3: Combined kurtosis (κc) for different values of β

β = (1/
√
k, . . . , 1/

√
k)> β = (3, . . . , 3)>

Weights & # of densities k = 2 k = 10 k = 2 k = 10

Equal weights 6.674 7.370 3.929 2.972
Log score weights 6.680 7.009 4.013 2.899

Notes: Section 2.2 provide the detailed setup of this simulation.

3 Higher moments constraints

3.1 Optimization problem

Because the optimal weights do not preserve characteristics of the combined densities, such

as the thickness of tails, additional restrictions on weights are required if the combination

is to keep those properties. The higher moments constrained optimization is given by

maximize
T∑
t=1

log

[
k∑
j=1

ωjpj(yt;θj)

]

subject to
k∑
j=1

ωj = 1,

ωj ≥ 0, j = 1, . . . , k

κc ≥ κ and/or γc ≥ γ,

(11)

where the kurtosis of the combination, κc, is given by equation (2) and the skewness of the

combination, γc, is given by equation (3). Without loss of generality, the constraints can

be modified to suit the problem. The additional constraints are nonlinear, and bounds

κ and γ must be selected carefully to avoid empty feasible sets. The optimal weights

obtained by solving the log score objective function (11) under high moment constraints
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are named HMC weights for brevity.

3.2 Simulation

Whereas optimizing (10) yields the best possible log score among density combinations,

optimizing (11) results in kurtosis and skewness of the combination that cannot be lower

than the lower bounds imposed by the corresponding constraints. Hence, log score optimal

weights and HMC optimal weights will generally yield different density combinations. We

can compare the two combinations by considering both the overall performance captured

by log scoring together with the performance in the tails, which we evaluate by examining

the Value-at-Risk (VaR) predictions.

As in Section 2, we continue using the simple regression framework given by (5) with

a heavy-tailed error term now set to εt ∼ t6 and compute the combined predictive density

pc(·; θ). Two sets of models (densities) are considered for combining. The first set features

k = 2 densities, t6 and t30. The second combination features two t6 and three t30. The

individual densities differ in means as previously because they are estimated from the

regression model (5).

We compute 99% and 95% VaR forecasts for the combined predictive densities. The av-

erage of the VaR forecasts from individual predictive densities does not necessarily equate

to the VaR forecast of the combined predictive densities. Hence, individual densities need

to be simulated. The simulations draw from t6 and t30 random variables proportionally

to the optimal weights of the combination and amounting to 10,000 realizations in total.

We construct 3000 VaR forecasts that are compared with the 1% and 5% left tailed

quantiles from the simulated distribution of the combination. We compute the number

of times that yT is to the left of the corresponding VaR forecasts. We experiment with

several constraints on the kurtosis, κc ≥ 5, 5.5 and 6, effectively treating the kurtosis con-

straint as a tuning parameter. Furthermore, we also present the log score optimal weights

as defined in (10) and equal weight density combining for comparison. In addition to VaR,

we also report the log score for the overall performance of the different combinations and

their corresponding average kurtosis (κ̄c).

The results of the experiments can be found in Table 4. The optimal combination with

a constraint on the kurtosis (HMC weights) performs best in predicting the 95% and 99%

VaR over the other combinations. The average kurtosis of the combinations, κ̄c, shows

that the constraint is met. Furthermore, with every increase in κ, the percentage violation
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at both the 1% and the 5% levels moves closer to the intended target, whether combining

2 or 5 models. Meanwhile, the kurtosis of both the log score weights and equal weights

combination is effectively close to the average of the kurtosis of the individual densities.

The log score performance of the HMC weights combination also tends to deteriorate with

the increasing κ.

Table 4: VaR experiment

Panel A: Combination of models (k=2)
Combination Log score κ̄c % viol. at 1% % viol. at 5%

HMC weights (κ = 5) 0.989 5.016 1.358 7.536
HMC weights (κ = 5.5) 0.977 5.501 1.076 6.355
HMC weights (κ = 6) 0.951 6.000 1.005 6.095
Log score weights 1.000 4.493 1.665 7.468
Equal weights 0.998 4.630 1.461 7.162

Panel B: Combination of models (k=5)
Combination Log score κ̄c % viol. at 1% % viol. at 5%

HMC weights (κ = 5) 0.997 5.008 1.300 6.967
HMC weights (κ = 5.5) 0.989 5.500 1.000 6.969
HMC weights (κ = 6) 0.965 6.000 0.536 4.523
Log score weights 1.000 4.471 1.567 7.500
Equal weights 0.997 4.542 1.433 6.900

Notes: The table reports the proportion of times the VaR forecast exceeds the 1%
and 5% quantiles. The considered simulations have T = 3000 VaR forecasts. κ̄c is
the average kurtosis of the combinations. The log score is relative to the log score
optimal weights. The log score optimal weights are obtained by solving (10) and
the HMC optimal weights by solving (11).

3.3 Asymptotic Properties of HMC Weights

In this section, we establish novel results on consistency, rate of convergence, and the

limiting distribution of the solution to the optimization problem (11). Our results cover

the asymptotics of the corresponding unconstrained estimator as a special case. We do

not require that the true predictive density is represented as a linear combination of the

densities under consideration. All the proofs are provided in the Appendix.

We impose the following mild continuity and regularity assumptions. We note that

if the constraint in optimization problem (11) involves only the skewness of the density

combination, then assumption A3 can be relaxed to only concern the first three moments.

In what follows, B(θ∗) is a closed ball around θ∗, whose radius we are allowed to have

as arbitrarily small but positive. The vector θ∗ is defined in assumption A2 and can be

thought of as the “population” vector of the model parameters.
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A1: {yt}∞t=1 is a stationary ergodic sequence.

A2: The estimates of the model parameters converge in probability as T tends to infinity:

θ̂
P→ θ∗, for some fixed finite vector θ∗.

A3: For θ ∈ B(θ∗) and all j ≤ k, the first four moments of densities pj(·;θj) are well-

defined continuous functions of θj, and the corresponding variances are nonzero.

A4: For θ ∈ B(θ∗), j ≤ k and each fixed y, functions pj(y;θj) are continuous in θj.

A5:

E sup
θ∈B(θ∗)

∣∣ log pj(y1;θ)
∣∣ < ∞ for j = 1, . . . , k.

A6:

E sup
θ∈B(θ∗)

pj(y1;θ) < ∞ for j = 1, . . . , k.

We define C(θ) as the constraint set for the weights ω in the optimization problem (11).

We denote by ω̂ the HMC optimal weights, that is, the solution to the optimization

problem (11) but with θ replaced by θ̂. The corresponding population solution is:

ω∗ = arg min
ω∈C(θ∗)

KLIC(ω,θ∗), (12)

where KLIC(ω,θ) is defined in (8). Theorem 3.1 establishes the consistency of ω̂.

Theorem 3.1. Suppose that ω∗ is the unique solution to the population problem (12). If

assumptions A1–A6 are satisfied, then ω̂
P→ ω∗ as T →∞.

From the proof, it follows that if the convergence of θ̂ to θ∗ is almost sure rather than

in probability, then the result of Theorem 3.1 can be strengthened to the almost sure

convergence as well.

We now establish a result of the limiting distribution of ω̂. For the simplicity of

the exposition, we focus on the case θ̂ = θ∗, which allows us to avoid imposing specific

assumptions on the form of θ̂ as a function of the data. Consequently, we change assump-

tion A2 by setting θ̂ = θ∗ and relax assumptions A3–A6 by setting B(θ∗) = {θ∗}. We

denote the modified assumptions by A2′–A6′. We also impose additional dependence and

regularity conditions. In what follows, the “unconstrained” minimizer of KLIC is defined

under the restriction that the weights are nonnegative and sum to one.

A7: {yt}∞t=1 is an m-dependent sequence for some finite m.

A8: All of the elements of the vector ω∗ are positive.

A9: The unconstrained minimizer of KLIC(·,θ∗) lies in C(θ∗).
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Let `∗(y) =
(
p2(y;θ∗)− p1(y;θ∗), ..., pk(y;θ∗)− p1(y;θ∗)

)>
/p(y;ω∗,θ∗), and define

Σ∗ = E`∗(y1)`
∗(y1)

> + 2
m+1∑
i=2

E`∗(y1)`
∗(yi)

> and V∗ = E`∗(y1)`
∗(y1)

>.

Because the weights in all ω that we consider are required to sum to one, we can

write ω1 = 1−
∑k

j=2 ωj, and thus, every function of ω can be expressed as a function of

ω−1 = (ω2, ..., ωk)
>.

Treating the constraint set C(θ∗) as a set in the space of reduced vectors ω−1, we let

S∗ denote the tangent cone of C(θ∗) at the point ω∗−1. More specifically, a vector v lies

in S∗ if and only if there exists a sequence τn decreasing to 0 and a sequence ωn ∈ C(θ∗)

converging to ω∗, such that [(ωn)−1−ω∗−1]/τn → v. For a given convex set A and point x,

we write ProjAx for the projection of x onto A.

Theorem 3.2. Suppose that ω∗ is the unique solution to the population problem (12) and

assumptions A1, A2′–A6′, and A7–A9 are satisfied. If ω∗ lies in the interior of C(θ∗),

then √
T (ω̂−1 − ω∗−1)

d→ N
(
0, V −1∗ Σ∗V −1∗

)
.

If ω∗ lies on the boundary of C(θ∗) and Z̃ ∼ N
(

0, V
−1/2
∗ Σ∗V

−1/2
∗

)
, then

√
T (ω̂−1 − ω∗−1)

d→ V −1/2∗ Proj
V

1/2
∗ S∗Z̃. (13)

4 Empirical illustration

In this section, we illustrate the benefits of using the HMC optimal weights when combin-

ing density forecasts based on real data. Density forecast combination methods are often

applied to financial data. Example include Geweke and Amisano (2010), Geweke and

Amisano (2011), Kapetanios et al. (2015), Crisóstomo and Couso (2017), and Bassetti

et al. (2018). In our application, we use the daily percent log returns of the Standard

and Poors 500 index (S&P 500). The sample covers the S&P 500 returns from January

3, 2000, until July 20, 2018.

The returns at time t can be expressed as

yt = µ+
√
htηt, ηt|Ft−1 ∼ F (0, 1), (14)
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where F (·) is a distribution with mean 0 and variance 1, and Ft−1 is a filtration up to t−1.

We use two main volatility models to forecast the returns and the conditional volatility

of the S&P 500 returns. The first set of models are the workhorse of volatility models,

the GARCH model introduced by Bollerslev (1986):

ht = ω + α(yt−1 − µ)2 + β log ht−1. (15)

The statistical properties relevant to GARCH models are discussed in Ling and McAleer

(2003). We also used the EGARCH model of Nelson (1991):

log ht = ω + γεt−1 + α(|ηt−1| − E |ηt−1|) + β log ht−1 (16)

One of the main problems with EGARCH models is that they have no established

analytical asymptotic properties that are independent of the error distributions consid-

ered. Specifically, the statistical properties of the (quasi-) maximum likelihood estimator

of the EGARCH parameters are not available under general conditions. This issue is dis-

cussed in McAleer and Hafner (2014) and also in Chang and McAleer (2017). Typically

the properties of EGARCH models have to be investigated empirically, as, for example,

in Anyfantaki and Demos (2016). Some of the recent theoretical advances are made in

Martinet and McAleer (2018), who show that the EGARCH(p, q) model can be derived

from a stochastic process, and sufficient invertibility conditions can be stated in simple

form.

Despite these known problems, EGARCH models have remained popular in empirical

finance. In our empirical analysis, we include the EGARCH approach whilst acknowledg-

ing its pitfalls. Furthermore, we note that in the context of the current application, the

predictive performance of the density forecasts based on the estimated EGARCH param-

eters is adequate in simulations (results are available upon request), on par with that of

GARCH, and the same is found in the empirical results reported in Table 5.

We consider several distributions, F (·), for the GARCH and EGARCH conditional re-

turns. We use not only a Gaussian distribution but also fat-tailed distributions, including

the Student-t, Laplace, and Hansen (1994) skewed-t.

We use rolling samples of 1250 trading days, which correspond to 5 years of trading

data, to estimate all of the parameters and produce a one-step-ahead forecast of the con-

ditional returns and conditional volatility models (14)–(16). Furthermore, we construct

one-step-ahead predictive densities for each model over the remaining sample. We com-

bine these predictive densities by solving optimization problems in (10) and (11) for 750

observations (3 years of trading data), which yields a one-step-ahead combined density
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forecast. This last step is repeated using a rolling window of 750 observations. We then

evaluate these one-step-ahead combined predictive densities. The first combined predic-

tive densities correspond to December 13, 2007, and the last one corresponds to July 20,

2018, which means that a total of 2667 predictive densities are evaluated over the sample.

The constraint in (11) is imposed on the kurtosis of the combined density forecasts and

takes the values of κ = 5, 5.5 and 6, respectively.

Recently, Diks et al. (2011) and Opschoor et al. (2017) proposed a censored likelihood

(CSL) scoring rule that focuses on the left tail of the distribution of asset returns. Optimal

weights can be derived by maximizing the following censored likelihood function over the

data history:

SCSL =
T∑
t=1

log

[
k∑
j=1

ωj

(
I[yt ∈ Bt]pj(yt;θj) + I[yt ∈ Bc

t ]

∫
Bct

pj(yt;θj)dy

)]
, (17)

where Bt is a specific region of the distribution, Bc
t is its complement, and I[·] is an

indicator function equal to 1 whenever the data yt are outside the support region Bt.

Following the practical recommendation of Opschoor et al. (2017), we set the region to

0.15. Several alternative scoring functions exist that have been proposed in the litera-

ture, including from Gneiting and Ranjan (2011) and Jore et al. (2010). In this empirical

illustration, both equal weights and the CSL score-based weights are used to construct a

predictive density combination for comparison with the HMC optimal weights.

The accuracy and performance of combining density forecasts are assessed in two

primary ways. First, we evaluate the entire density using the log score function. Second,

we focus on evaluating the performance of the forecast combination in the left tail of the

distribution by considering both the 99% and 95% 1-day Value-at-Risk (VaR) estimates:

V̂aR
1−q
t = µ̂t +

√
ĥt ηq, (18)

where ηq is the qth quantile of the assumed conditional distribution. Moreover, µ̂t is the

forecasted conditional mean return as expressed in (14), and ĥt is the forecasted condi-

tional variance as expressed in equations (15) and (16) for the GARCH and EGARCH

models, respectively. When combining models, the VaR of the combination needs to be

evaluated with simulations as discussed in Section 3. The daily returns are simulated

from the individual distributions in proportions corresponding to the estimated weights

of the combination. The 99% VaR is computed from the 1% quantile of distribution of

the simulated returns, and the 95% VaR, from the 5% quantile.

In turn, VaR forecasts are evaluated using two methods. First, we evaluate the VaR
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violation whenever the actual return is smaller than the 1% or 5% quantile of distribution

of the simulated returns. Second, we report the Christoffersen (1998) conditional coverage

test, which assesses whether violations are happening in clusters.

Figure 5 shows the distribution of the implied combined kurtosis according to the

HMC and the log score optimal combination methods. The constraint implies trivially

that most of the combined kurtosis is at its boundary of κ = 5.5 and higher. In contrast, a

log score optimal combination produces a combined kurtosis between 3.59 and 8.06, with

an average of 4.46 (see Table 5). The log score optimal combination produces a combined

kurtosis above 5.5 (the minimum guaranteed by the HMC combination method) only

9.4% of the time. This number is remarkable as it means that the log score combination

method is not able to produce a density that matches the kurtosis observed in the actual

data (see Table 1).

(a) HMC (κ = 5.5) (b) Log score

Figure 5: Implied kurtosis of the optimal combinations

Tables 5 and 6 are summarized as follows. The HMC optimal weights produce VaR

performance with lower 1% violation numbers compared with the log score combination

and the CSL combination. The latter, however, returns the lowest 5% violation numbers.

Whereas, expectedly, the log score optimal combination has the best average log score

performance, it is followed very narrowly by the HMC optimal weights combination, un-

like the CSL and Equal Weights combinations. The HMC optimal weights combination

also outperform individual models in both overall log score performance and number of

violations at the 1% level. The results at the 5% level, however, are mixed relative to the

CSL and equal weights but clearly superior to the log score optimal weights.

As observed in the simulations, adjusting the constraint κ upward results in a stronger

focus on the tails. Specifically, the number of violations declines; however, conversely, the

log scoring performance also decreases. The performance of the HMC weights at κ = 6
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deteriorates relative to the two other constraints. This deterioration can be easily ex-

plained as follows. First, setting the constraint affects the entire distribution, not just the

tails, which impacts performance. Second, κc = 6 is the highest constraint level in the

current set of models. Both the Laplace GARCH and EGARCH models have a kurtosis

of 6. Occasionally, the t-GARCH and t-EGARCH models produce an estimated kurtosis

higher than 6. Higher than κ = 6, no guarantee exists that the optimization will converge.

This computational limitation can be remedied by including fatter tailed models than the

ones included in this illustration.

The optimal log score weights tend to favor Gaussian models, whereas the equal-

weighted combination gives relatively more weight to fat-tail models since 6 out of 8 mod-

els of the combination are heavy-tailed. Therefore, not surprisingly, the equal-weighted

combination performs well in terms of VaR forecasting and, hence, produces a low number

of violations but performs poorly in its average log score performance. The VaR accuracy

and performance can be improved empirically by modifying all of the optimal weights

according to Jore et al. (2010). These techniques help outperform equal weight combina-

tions, as shown in Opschoor et al. (2017)

Table 5: Evaluation of 1-day forecast for S&P 500 index

Combination Log score min(κc) κ̄c max(κc)

HMC weights (κ = 5) 0.998 5.00 5.18 10.33
HMC weights (κ = 5.5) 0.995 5.50 5.62 10.33
HMC weights (κ = 6) 0.990 6.00 6.11 10.26
Log score weights 1.000 3.59 4.46 8.06
CSL weights 0.962 3.66 5.51 10.65
Equal weights 0.983 4.15 5.27 9.37

Individual models Log score min(κc) κ̄c max(κc)

GARCH (Gaussian) 0.962 3.00 3.00 3.00
GARCH (t) 0.961 4.12 4.74 9.78
GARCH (Laplace) 0.929 6.00 6.00 6.00
GARCH (Skew-t) 0.865 3.17 4.69 7.64
EGARCH (Gaussian) 0.973 3.00 3.00 3.00
EGARCH (t) 0.978 3.89 4.14 8.09
EGARCH (Laplace) 0.935 6.00 6.00 6.00
EGARCH (Skew-t) 0.859 3.25 4.10 8.35

Notes: κ̄c is the average kurtosis of the combinations and minκc and
maxκc are the minimum and maximum kurtosis produced by the
combinations. The log scores are relative to the log score optimal
weights. The log score optimal weights are obtained by solving (10),
the HMC optimal weights by solving (11), and the CSL weights from
optimizing (17).
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Table 6: 1-day forecast 95% and 99% VaR estimates for S&P 500 index

Combination # viol. at 1% CC test # viol. at 5% CC test

HMC weights (κ = 5) 45 (1.69%) 0.363 187 (6.45%) 0.248
HMC weights (κ = 5.5) 44 (1.65%) 0.363 164 (6.15%) 0.270
HMC weights (κ = 6) 47 (1.76%) 0.363 171 (6.37%) 0.318
Log score weights 58 (2.17%) 0.363 189 (7.09%) 0.275
CSL weights 53 (1.99%) 0.358 136 (5.17%) 0.358
Equal weights 32 (1.20%) 0.358 146 (5.47%) 0.358

Individual models # viol. at 1% CC test # viol. at 5% CC test

GARCH (Gaussian) 64 (2.40%) 0.358 153 (5.74%) 0.294
GARCH (t) 45 (1.69%) 0.358 123 (4.61%) 0.358
GARCH (Laplace) 109 (4.09%) 0.294 309 (11.59%) 0.271
GARCH (Skew-t) 68 (2.55%) 0.358 161 (6.04%) 0.358
EGARCH (Gaussian) 58 (2.17%) 0.363 159 (5.96%) 0.187
EGARCH (t) 50 (1.87%) 0.358 126 (4.72%) 0.358
EGARCH (Laplace) 99 (3.71%) 0.274 304 (11.40%) 0.120
EGARCH (Skew-t) 65 (2.44%) 0.358 156 (5.85%) 0.358

Notes: The table reports both the number and the proportion of times that the VaR
forecast exceeds the 1% and 5% quantiles. The percentage violations are in brackets.
The considered sample has T = 2667 VaR forecasts. The CC tests are the p-value
for the Christoffersen (1998) conditional coverage test. The log score optimal weights
are obtained by solving (10), the HMC optimal weights by solving (11), and the CSL
weights from optimizing (17).

5 Concluding remarks

In this paper, we show that combining many density forecasts tends to have a signifi-

cant impact on higher moments of the combination, namely, skewness and kurtosis, even

when the individual densities are skewed and/or heavy-tailed. We propose a solution

that preserves the characteristics of the distribution, such as fat tails or asymmetry, by

constraining the weights of the combination to achieve a minimum level of kurtosis or a

certain level of skewness.

We provide a general methodology to combine multiple density forecasts based on op-

timizing the average sample Kullback–Leibler information criterion subject to a constraint

on the skewness and/or kurtosis of the combination. The high moment constraint (HMC)

optimal weights deliver a solution that is accurate in forecasting the overall distribution,

including characteristics such as heavy tails. Moreover, we derive the statistical prop-

erties of the proposed HMC optimal weights, including consistency and the asymptotic

distribution.

We conduct a simulation to evaluate the HMC optimal weights on both the overall per-

formance of the forecasted density and the performance in the tails. We also evaluate the
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weights through an empirical illustration in forecasting the conditional returns of the S&P

500 index. Not surprisingly, the HMC optimal weights outperform the log score optimal

weights counterpart in the tails, as measured by the 99% VaR forecasts. Naturally, the

overall performance of HMC weights, as measured by log scoring, is somewhat worse than

that of the optimal weights without high moments constraints. However, HMC weights

attain better log scoring performance than the equally weighted density combinations.
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Appendix: Proofs

Proof of Theorem 2.2

Proof. For brevity of the exposition, we focus on the skewness and derive the result for

G = 1 and θ fixed at a positive value. The remaining cases and the derivations for the

kurtosis follow by analogous arguments with only minor modifications. Define

µ̄ = (1/k)
k∑
j=1

µ̂jT , σ2
µ = (1/k)

k∑
j=1

(
µ̂jT − µ̄

)2
, γµ = (1/k)

k∑
j=1

(
µ̂jT − µ̄

)3
σ3
µ

and R̃ = σ2
µ/σ

2. Note that µ̄ = op(1) by the law of large numbers. It follows from (2)

that

γc = γp

[
1 + R̃

]−3/2
+ γµ

[
1 + (R̃)−1

]−3/2
. (19)

Define x̄j =
∑T−1

t=1 xjt/[T − 1] and ηjT = [T − 1](
∑T−1

t=1 (xjt − x̄j)2)−1. Write µ̂jT in the

form µ̂jT = θXjT + ηjT ξjT and note that maxj≤k Eξ
2
jT = O(k/T ). The last bound implies

(for example, by Lemma 2.2.2 in van der Vaart and Wellner, 1996) that maxj≤k |ξjT | is

Op(kT
−1/2), which simplifies to op(1) by the assumptions on k and T . A similar argument,

together with the law of large numbers, gives maxj≤k |ηjT | = Op(1). It follows that

σ2
µ = θ2(1/k)

k∑
j=1

X2
jT + op(1).

Another application of the law of large numbers gives σ2
µ = θ2σ2

X + op(1), which implies

R̃ = θR + op(1). Similarly,

γµ = (1/k)
k∑
j=1

(θXjT

σµ

)3
+ op(1) = (1/k)

k∑
j=1

(XjT

σX

)3
+ op(1) = γX + op(1).

We conclude the proof by combining the expressions for R̃ and γµ with (19).
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Proof of Theorem 3.1

Proof. For simplicity of the exposition, we use the notation from the empirical process

theory: PTh = (1/T )
∑T

t=1 h(yt) for every function h. Similarly, we write Ph for Eh(y1).

Also, for the remainder of the proof, all of the ω are assumed to lie in the set W = {ω :∑
j≤k ωj = 1, ωj ≥ 0, j = 1, ..., k}.
Let pω,θ denote the function pc(·;ω,θ) and define

G(ω,θ) = P log

[
pω,θ
pω∗,θ∗

]
, GT (ω,θ) = PT log

[
pω,θ
pω∗,θ∗

]
.

Note that ω∗ maximizes the function G(·,θ∗) over the constraint set C(θ∗), while ω̂

maximizes GT (·, θ̂) over C(θ̂). Let ωθ denote a projection of ω∗ onto the constraint

set C(θ). Note that θ̂ ∈ B(θ∗) with probability tending to one and define

∆T = sup
ω∈W,θ∈B(θ∗)

|GT (ω,θ)−G(ω,θ)|.

It follows from parts (i) and (ii) of Lemma 5.1 that, with probability tending to one,

G(ω̂, θ̂) ≥ GT (ω̂, θ̂)−∆T ≥ GT (ωθ̂, θ̂)−∆T = op(1). (20)

We now argue that the above stochastic bound implies convergence of ω̂ to ω∗, which

is a zero of the function G(·,θ∗), as well as its maximum over the constraint set C(θ∗).

Fix an arbitrary positive δ and let Bδ(ω
∗) denote an open ball of radius δ around ω∗. It

follows from part (iii) of Lemma 5.1 that there exists a positive constant cδ, such that

maxω∈C(θ̂)\Bδ(ω∗)G(ω, θ̂) < −cδ with probability tending to one. However, stochastic

bound (20) implies G(ω̂, θ̂) > −cδ with probability tending to one. Hence, with proba-

bility tending to one, ω̂ ∈ Bδ(ω
∗). As this argument holds for every positive δ, we have

established that ω̂ converges to ω∗ in probability.

The next result is used in the proof of Theorem 3.1.

Lemma 5.1. The following holds under the assumptions and notation in the statement

and the proof of Theorem 3.1:

(i) ∆T = op(1)

(ii) GT (ωθ̂, θ̂) = op(1)

(iii) Given a positive δ, there exists a positive constant rδ, such that

max
ω∈C(θ)\Bδ(ω∗),θ∈Brδ (θ∗)

G(ω,θ) < 0.

25



Proof. We start with part (i). For convenience, we denote functions log[pω,θ/p
∗
ω,θ] by mω,θ

and functions pj(·;θ) by pj,θ. We first show that the class of functions mω,θ is pointwise

compact in the sense of Example 19.8 in van der Vaart (2000). Specifically, (a) the map

(ω,θ) 7→ mω,θ(y) is continuous for each fixed y; (b) (ω,θ) belong to a compact set; (c)

this class has an integrable envelope. Parts (a) and (b) hold by the imposed assumptions.

Using the fact that the largest element in ω lies in [1/k, 1] and taking into account the

general inequality log x ≤ x − 1, we derive the following pointwise bound for function

mω,θ:

sup
θ∈B(θ∗)

∣∣mω,θ

∣∣ ≤ max
j≤k

sup
θ∈B(θ∗)

2
∣∣ log[pj,θ/k]

∣∣+ max
j≤k

sup
θ∈B(θ∗)

2kpj,θ.

As expected value of the function on the right-hand side is finite by assumptions A5 and

A6, we have established part (c). Thus, as shown in the aforementioned Example 19.8,

the L1-bracketing numbers of the class of functions mω,θ are finite. Also note that for

each fixed (ω,θ), convergence in probability of GT (ω,θ) to G(ω,θ) follows from the law

of large numbers. This “pointwise” convergence, together with the finiteness of the L1-

bracketing numbers, yields uniform convergence (as it is shown, for example, in the proof

of Theorem 2.4.1 in van der Vaart and Wellner, 1996).

To establish part (ii), we first note that the imposed continuity assumptions imply

that C(θ) converges to C(θ∗), with respect to the Hausdorff distance, as θ → θ∗. Con-

sequently, ωθ → ω∗ as θ → θ∗. For convenience, we define WT (θ) = GT (ωθ,θ) and

W (θ) = G(ωθ,θ). By part (i), established in the previous paragraph, WT converges to

W uniformly over θ ∈ B(θ∗). Moreover, an application of the dominated convergence

theorem establishes that function W is continuous at θ∗, due to the pointwise continuity

of the functions mωθ ,θ and the existence of an integrable envelope, which was established

in the previous paragraph. As W (θ∗) = 0, an application of the continuous mapping

theorem yields W (θ̂)→ 0, and thus, WT (θ̂)→ 0 as T goes to infinity.

We now move to part (iii). Arguments similar to the ones in the previous paragraph,

involving the dominated convergence theorem, establish that function G(·,θ∗) is contin-

uous, and, thus, uniformly continuous on the compact set W . As G(ω∗,θ∗) = 0 and ω∗

is the unique maximum of G(·,θ∗) over the closed set C(θ∗), the maximum of G(·,θ∗)
over the closed set ω ∈ C(θ∗) \Bδ(ω

∗) is negative. By uniform continuity of G(·,θ∗),
we can slightly increase the constraint set while keeping the negativity of the maximum.

Recall that C(θ) converges to C(θ∗) with respect to the Hausdorff distance as θ → θ∗.

Consequently, for a sufficiently small rδ,

max
ω∈C(θ)\Bδ(ω∗),θ∈Brδ (θ∗)

G(ω,θ∗) < 0.
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Taking advantage of the dominated convergence theorem once again, we establish that, as

θ → θ∗, function G(ω,θ) converges to G(ω,θ∗) uniformly over ω. Thus, we can replace

G(ω,θ∗) with G(ω,θ) in the above display (reducing the rδ if needed) and still maintain

the strict inequality.

Proof of Theorem 3.2

Proof. We continue to borrow notation from the empirical process theory, and denote

T 1/2(PTh − Ph) by νTh for every function h. Given expressions E1 and E2, we write

E1 . E2 to mean that there exists a finite universal constant c, such that E1 ≤ cE2. For

simplicity of the notation, we denote densities pj(·;θ∗) by pj(·). We restrict our attention

to a closed ball around ω∗, denoted by B(ω∗), whose radius is chosen to be positive, but

sufficiently small to ensure ωj > 0 for every j and every ω ∈ B(ω∗).

We write ḣω(y), ḧω(y) and
...

hω(y) for the first, second and third derivative, respectively,

of the function ω−1 7→ hω(y), evaluated at ω−1. As a consequence of the definition

of B(ω∗),

sup
ω∈B(ω∗)

‖ḣω‖∞ = sup
ω∈B(ω∗)

max2≤j≤k |pj − p1|
pω∗,θ∗

. 1.

A similar calculation shows supω∈B(ω∗) ‖ḧω‖∞ . 1 and supω∈B(ω∗) ‖
...

hω‖∞ . 1. We also

have Pḧω∗ = −V∗. Note that V∗ is nonsingular, because otherwise one of the densities

pj could be expressed as a linear combination of the rest of the densities, which, in view

of assumption A8, would contradict the uniqueness ω∗ as the solution to the population

problem (12). Consequently, function Phω has the following two term Taylor expansion

around ω∗:

Phω = Phω∗ − 1

2
(ω−1 − ω∗−1)>V∗(ω−1 − ω∗−1) + o(‖ω−1 − ω∗−1‖2). (21)

The linear term in the above expansion disappears, because, by assumptions A8 and A9,

vector ω∗ is a local maximum of Phω.

We now establish the T−1/2 rate of convergence for ω̂. Define hω = log[pω,θ∗/pω∗,θ∗ ].

According to Theorem 5.52 in van der Vaart (2000), in view of the consistency of ω̂,

Taylor expansion (21) and non-singularity of V∗, we only need to derive

E sup
‖ω−1−ω∗

−1‖≤δ

∣∣νT (hω − hω∗)
∣∣ . δ. (22)

By the m-dependence of {yt}, we can write the empirical process νT as a sum of m +

1 empirical processes, where each one is based on i.i.d. random variables, such as
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{y1+s(m+1), s = 0, 1, ...}. It is sufficient to establish the above bound (and similar bounds

that follow) for each such process. Taking advantage of the bound established for supω∈B(ω∗) ‖ḣω‖∞,

we derive that, for every ω1 ∈ B(ω∗) and ω2 ∈ B(ω∗),

‖hω1 − hω2‖∞ . ‖(ω1)−1 − (ω2)−1‖ .

Corollary 5.53 in van der Vaart (2000) then gives bound (22) as a consequence of the

inequality above (the specific bound is established in the proof of Corollary 5.53). Thus,

we have proved that ω̂ = ω∗ +Op(T
−1/2).

We establish the limiting distribution by the standard approach of applying a uniform

limit theorem to the appropriately rescaled and reparametrized criterion function (van der

Vaart, 2000; Knight and Fu, 2000; Radchenko, 2005). Lemma 19.31 in van der Vaart

(2000) yields νT [T 1/2(hω∗+vTT−1/2−hω∗)−v>T ḣω∗ ] = op(1) for every stochastically bounded

random sequence of (k − 1)-dimensional vectors vT . Consequently, taking advantage of

the Taylor expansion of Phω at ω∗, we conclude that

nPn(hω∗+vTT−1/2 − hω∗) = −1

2
v>T V∗vT + v>T νT ḣω∗ + op(1). (23)

We derive the limiting distribution for T 1/2(ω̂−1−ω∗−1) by applying Theorem 4.4 in Geyer

(1994). An analysis of the proof shows that for the conclusion of the aforementioned the-

orem to hold, the only required assumptions are: (i) stochastic bound (23) holds for

every Op(1) random sequence vT ; (ii) ω̂−1 = ω∗−1 + Op(1); (iii) the constraint set C(θ∗)

is Chernoff regular at ω∗−1. We have already established (i) and (ii). Condition (iii) is

only needed to rule out pathological cases. It is satisfied in our setting, because the con-

straint set is determined by finitely many fourth-order polynomial inequalities. Note that

V
−1/2
∗ νT ḣω∗ converges in distribution to Z̃ by the central limit for m-dependent sequences.

We apply the aforementioned result in Geyer (1994) to conclude that T 1/2(ω̂−1 − ω∗−1)
converges in distribution to the minimizer of 1

2
v>V∗v − v>V 1/2

∗ Z̃ over v ∈ S∗. The result

of Theorem 3.2 follows after completing the square.
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