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Abstract

This paper investigates the return and volatility spillovers between the upstream electric
vehicles (EV) battery raw materials market and the individual downstream EV producers. The
study uses the daily stock returns of two lithium producers and a new model in the GARCH
family to capture the jump component of volatility in the EV battery raw materials market.
Return and volatility spillovers are studied using an EGARCH(1,1) model including the excess
stock returns of lithium producers in the mean equation and their jump component intensity in
the variance equation. The results indicate that jumps exist in the EV battery raw materials
market and that there exist significant return spillovers between lithium and EV producers.
However, this paper didn’t find any strong evidence of the existence of volatility spillovers
between these two markets through lithium unexpected news.
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1 Introduction

The electric vehicle (EV) industry has grown rapidly in recent years. By the end of 2024, the sales
of electric vehicles in the United States are projected to increase nearly fourteen times from 2012
(Block et al., 2015). Although the efficiency of batteries used in EV production has also grown
significantly, contributing to energy sustainability on a global scale (Zubi et al., 2018), our intuition
suggests that EV producers are vulnerable to price changes occurring in the upstream battery raw
materials market.

First, identifying return spillovers is used in modern portfolio theory to include diversified assets
that can help reduce the overall risk of a portfolio. In this light, it is worth studying how the price
movements in the relevant commodity market affect the stock returns of individual EV producers.
Second, understanding volatility spillovers between different stock markets is one piece of the puzzle
for informed hedging decisions and it allows financial market participants to correctly estimate
the volatility transmission mechanism across these markets (Malik, 2021). Therefore, this paper
also investigates the relationship between the volatilities in the battery raw materials and the EV
manufacturers’ markets.

Based on previous research for oil and stock returns (Li et al., 2022; Chen et al., 2019; Xiao and
Zhao, 2021; John and Li, 2021), we hypothesize that there is a jump component in the EV battery raw
materials market volatility. Traditional GARCH models aim to capture smooth volatility, whereas
other specifications should be used to capture the jump component (Janda and Kourilek, 2020).
Specifically, we construct the EGARCH - Exponential AutoRegressive conditional Jump Intensity
model, abbreviated EGARCH-EARJI, which uses mixture distribution to model the number of
jumps occurring between two periods. Jump intensity is not assumed to be constant but rather have
time-varying specification. Also, we devote substantial care to the model estimation since many
parameters and restrictions on them can cause the process to explode.

Our estimates of parameters related to jump intensity is used to explain the daily stock returns
of individual EV manufacturers. Our results provide sufficient evidence that there exists a relation-
ship between the excess returns of the two largest lithium producers’ stock and those of the EV
manufacturers’ stocks and fail to find strong evidence that there exist volatility spillovers between
lithium and EV stock returns when unexpected lithium news occur.

We expand the work of Maheu and McCurdy (2004) by applying a new specification with no
restrictions on parameter coefficients to estimate a version of the GARCH-ARJI model with daily
data on the EV battery raw materials market. The obtained estimates of jumps in that returns are
used in the models of individual stock returns of EV manufacturers to study both return and volatility
spillovers. The contribution of this paper is twofold. Firstly, to the best of the authors’ knowledge,
there is no existing literature on investigating the existence of jumps in the EV battery raw materials
market. Secondly, the current literature on return and volatility spillovers from the lithium market
to the EV market is scarce without consensus on the significance of these relationships.

The rest of this paper is structured as follows. In the second section, a brief review of the
car manufacturing industry and relevant commodity markets is provided. In the third section, the
methodology and data sources are described. In the fourth section, the results are presented. The
last section concludes.
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2 The EV market and its relationship with the lithium mar-
ket

2.1 The EV market

Sun et al. (2022) presents the evolution of EV sales in China from 2012 to 2022 in which the reader
can perceive the rapid growth of EV sales from nearly zero to half a million sold units in that
period. The authors also provide projected EV growth scenarios ranging from Non-battery uses to
fast EV growth. The authors argue that, although lithium price spikes are currently observed, the
EV market is expected to maintain steady growth in the short-term and lithium prices should come
back to 2020 price levels. Similar, recent general detailed overviews of EV and EV batteries markets
are provided by Mohammadi and Saif (2023) and by Rapson and Muehlegger (2023). Such a growth
necessarily involve an increasing demand for EVs. Mo and Jeon (2018) examined the dynamics
of Lithium-Ion Batteries (LIBs) with EV demand using a Vector Error Correction Model. Among
other findings, their results indicate that EV demand is important in short-run dynamics of lithium
prices from which the authors advocate that the recent increase in lithum prices has been caused by
the increase in EV demand. Lastly, empirical results suggest that the EV demand shock to lithium
prices is small.

Incentives may support EV market growth. Münzel et al. (2019) applied a panel data regression
on 32 European countries from 2010 to 2017 to study the effect of policies on EV sales. The authors’
findings indicate that financial incentives have an impact on EV sales. However, an EV market
steady growth would imply growing retired batteries. Wu et al. (2020) investigate under which
circumstances the re-use of retired batteries can be profitable using an operational optimization
model. Results suggest that the share of EVs on the roads could be increased with a successful
establishment of a second life market.

Studies recently emerged investigating the relationship between the EV market and other markets
such as, but not limited to, energy metals. Zhang et al. (2023) examined return and volatility
spillovers effects among the clean energy which includes EV, electricity, and energy metals such as
nickel or copper using a quantile VAR model. Results suggest that clean energy markets are always
transmitters and that both return and volatility spillovers among all three markets have time-varying
structure and they increase drastically when extreme events occur.

2.2 Return spillovers from lithium markets to EV markets

The price of lithium has undergone a significant increase of 265% between 2014 and 2018. The Covid-
19 pandemic brought significant changes in the structure and time-varying patterns of volatility
connectedness among precious metals, energy, and stocks (Farid et al., 2021; Shahzad et al., 2021).
During the economic recovery after the Covid-19 pandemic, lithium prices achieved new record highs
(Trading Economics, 2024).

Sun et al. (2022) shed lights on the drivers of the lithium price spike observed in 2022. The authors
argue that optimistic expectations on EV sales initiated a supply-chain-wide race in production
capacity growth. Global production capacity of lithium-ion batteries scheduled by 2025 is five times
higher than 2021 level. Then, suppliers of basic chemicals overproduced attempting to increase
inventory levels, which in turn implied overproduction in the downstream of the supply chain until
lithium producers.

Burney and Killins (2023) provide an overview of the EV and battery metals supply chain and
shed light on how prices of battery materials may affect automobile manufacturer’s equity prices
using a panel estimation technique and data from January 2, 2017 to December 31, 2021. Their em-
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pirical don’t provide robust evidence for either a ”production-cost effect” or an ”EV-demand effect”.
Similarly, Baur and Gan (2018) investigate the relationship between automobile manufacturers and
lithium prices and the authors find significant corresponding regression coefficients for six Chinese
manufacturers and one German producer. Interpreting these empirical results, the authors argue
that there exist an ”EV-demand effect” for Chinese manufacturers and a ”production-cost effect”
for the German manufacturer.

Other studies use different assumptions on the model specification. Plante (2023) decomposed
EV and battery supply chain stock returns into systematic and idiosyncratic components using
latent factors extracted from a large panel of stock returns. The author found that there are three
main drivers of co-movement among EV stocks, namely, the market factor, the tech factor including
technology stocks such as Apple (AAPL) or Microsoft (MSFT), and a risk factor given by a set
of latent factors extracted from stocks on the S&P 500 and the Nasdaq 100 using high-frequency
principal components.

2.3 Volatility spillovers from lithium markets to EV markets

The price volatility of precious metals and its relationship with returns, economic drivers, and other
commodities have been widely studied (Arouri et al., 2012; Dinh et al., 2022; Balli et al., 2019; Kang
et al., 2023).

Cagli (2023) examined the volatility connectedness between battery raw materials prices, in-
cluding base metals such as copper or nickel and minor metals such as lithium or cobalt, and the
Solactive Electric Vehicles and Future Mobility Index using a frequency connectedness framework
(Baruńık and Křehĺık, 2018). The author found that future mobility equity market is a net volatility
recipient, and copper and lithium are the main net volatility transmitters. On the other hand, Shi
et al. (2023) used VAR and DCC-GARCH models to analyse the risk spillover effect, specifically
the volatility spillover effect, of New Energy Vehicles (NEV) Chinese firms’ stock markets, lithium
battery suppliers’ stock markets, and the raw materials’ spot markets. Among other findings, the
authors didn’t find sufficient evidence of the significance of raw material price of lithium battery on
NEV stock price.

3 Hypotheses, Methodology and Estimation Procedure

3.1 Hypotheses and Methodology

We assert that abrupt price changes in the EV battery raw materials market can be modeled with
a class of jump models, which have already been applied in the literature for oil and stock returns.
A promising alternative non-parametric approach consists of calculating the jump component from
the realized volatility in the return of the raw materials’ stocks using high-frequency data (Andersen
et al., 2007; Giot et al., 2010; Busch et al., 2011). The authors follow the EGARCH-EARJI modelling
approach and compare it with the realized volatility non-parametric approach.

Chan and Maheu (2002) and Maheu and McCurdy (2004) significantly contributed to the liter-
ature on jumps in financial time series. They argued that news about anticipated cash flows and
the appropriate discount rate is particularly relevant for stock prices. Then, instead of relating the
volatility of stock returns to the flow of information to the market directly, they proposed models of
the conditional variance of returns implied by the impact of different types of news.

Maheu and McCurdy (2004) viewed the latent news process to consist of two distinct components:
normal news and unusual news events. They assumed that these components have different effects on
returns and the expected volatility of individual stocks. They assumed that normal news innovations
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cause gradual changes in the conditional variance of returns, while the second component of the latent
news process leads to infrequent moves in returns, which they referred to as jumps. Therefore, the
news process induces two components in the equation for returns, which are identified by their
volatility dynamics and higher-order moments.

This framework can be utilized to study jumps in the EV battery raw materials markets, and
the estimates can be used in the models of individual stock returns of EV producers.

We investigate three main hypotheses:

1. Jumps in the EV battery raw materials market have varying intensity and size and explain
part of the volatility in the time series of returns.

2. There exists a relationship between the excess returns in the battery raw materials market and
those of EV manufacturers.

3. The above mentioned jump intensity is significant in explaining the volatility of EV manufac-
turers’ stock returns.

Since the traditional GARCH and EGARCH models cannot describe jumps, such as extreme
news or abnormal information, in financial time series (Dutta et al., 2017), we include both smooth
movements and jumps in the model in this paper. Further, we use the log link function to model
jump intensity, which relaxes the positivity constraint on the model parameters. We call the resulting
model the EGARCH - Exponential AutoRegressive conditional Jump Intensity (EGARCH-EARJI)
model.

For the second hypothesis, stock intrinsic value have been historically determined by discounted
future cash flows (Rutterford, 2004). Therefore, economic intuition suggests that there is a link
between the price level of raw materials and EV stock returns.

For the third hypothesis, in addition, this paper tests the existence of volatility spillovers between
the battery raw materials market returns and EV manufacturers’ stock returns, specifically through
jump intensity in the battery raw materials market. The authors expect a positive relationship.

The detailed setting of the EGARCH-EARJI model is as follows.

rt = µ + ζrt−1 + at (1)

at = ϵ1,t + ϵ2,t (2)

where rt represents the returns of the EV battery raw materials market in period t. The disturbance
term at is divided into two parts. The first component, ϵ1,t, is intended to capture the normal time-
variation of volatility associated with the predictable decay of the impact from past news innovations
to returns. The second component, ϵ2,t, captures events when significant news occurs that can cause
an unusual change in returns. The former is assumed to be a standard EGARCH component:

ϵ1,t =
√
htZt; Zt ∼ NID(0, 1) (3)

log ht = ω0 + α1|zt−1| + α2zt−1 + β log ht−1 (4)

where zt−1 is a standardized residual at time t − 1 and ω0, α1, α2, and β are parameters to be
estimated.

Specifying ϵ2,t refers to the works of Chan and Maheu (2002) and Maheu and McCurdy (2004).
Firstly, information set at time t − 1 consists of the history of returns Φt−1 = {rt−1, ..., r1}. Also,
let Yj,t be jump size where j indicates a jump’s number. Then, the sum of jump size from one to
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Nt and its conditional expectation given the information of the previous period define ϵ2,t:

ϵ2,t = Jt − E[Jt|Φt−1] (5)

Jt =

Nt∑
j=1

Yj,t; Yj,t ∼ NID(θ, δ) (6)

Thus, the conditional expectation of ϵ2,t is zero and the first moment of the jump size distribution
is constant.

Meanwhile, Nt, is a random variable and has a Poisson distribution:

P [Nt|Φt−1] =
e−λtλj

t

j!
, j ∈ N (7)

log λt = λ0 + ρ log λt−1 + γξt−1 (8)

In words, log λt is a logarithm of jump intensity and follows an autoregressive process. The jump
intensity is always positive by construction, so we do not have any restrictions on parameters. ξt−1

is defined as the change in the conditional forecast of Nt−1 as the information set is updated:

ξt−1 = E[Nt−1|Φt−1] − E[Nt−2|Φt−1] =

∞∑
j=0

jP [Nt−1 = j|Φt−1] − λt−1 (9)

That means that for each time t − 1 one has to update its expectations based on new arrived
information in order to use this to estimate λt. P [Nt−1|Φt−1] is often called filter or posterior
probability of the current jump frequency j. Bayes rule is applied to get a formula:

P [Nt|Φt] =
f(rt|Nt = j,Φt−1)P [Nt = j|Φt−1]

P [rt|Φt−1]
(10)

Using the conditional density of returns given that a number of jumps occurs, the denominator
of (10) is obtained through the summation of the numerator term for j ∈ N. In practice, one cannot
sum up till infinity, so the summation has to be constrained at some reasonable j assuming that the
probability of more jumps than that is zero. Following the work of Maheu and McCurdy (2004),
where they used 20 jumps, the same bound is chosen.

The conditional density of returns given that a number of jumps occur requires the calculation of
the mean and variance of returns given the same condition. For this, we need to take the expectation
of ϵ2,t. In order to do that, the first two moments of its left-hand side should be calculated. Standard
calculations show that:

E[J i
t |Φt−1] =

∞∑
j=0

E[J i
t |Nt = j,Φt−1] × P [Nt = j|Φt−1], i > 0 (11)

E[ϵ2,t|Nt = j,Φt−1] = E[Jt|Nt = j,Φt−1] − θtλt = θt(j − λt) (12)

V ar(ϵ2,t|Nt = j,Φt−1) = V ar(Jt|Nt = j,Φt−1) = jδ2 (13)

With these calculations at hand, one can integrate out the discrete-valued variable Nt, governing
the number of jumps to get the denominator of (10):

P [rt|Φt−1] =

∞∑
j=0

f(rt|Nt = j,Φt−1)P [Nt = j|Φt−1] (14)

f(rt|Nt = j,Φt−1) =
1√

2π(ht + jδ2)
exp

(
− (rt − u + λtθt − jθt)

2

2(ht + jδ2)

)
(15)
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Then, the log-likelihood function is:

L(Ψ) =

T∑
t=1

log(P [rt|Φt−1,Ψ]) (16)

where Ψ is a set of parameters to be estimated. This study adopts the MLE and emphasizes the
model specification adopted, which relaxes restrictions on parameters compared with other studies
(Zhang et al., 2018; Dutta et al., 2021, 2022; Hu and Jiang, 2023).

For the second hypothesis, the excess returns and the estimated jump intensity in the EV battery
raw materials market are introduced into EV producers’ stock returns mean and variance equation,
respectively, of an EGARCH(1,1) model. A potential dependence is investigated by introducing the
Fama-French three factors (the market risk premium, RM - Rf , a capitalization factor of small to
big firms, SMB, and a stock valuation factor of high to low book value stocks, HML), the EV
stock’s Price-to-Book (P/B) ratio, PtBt, and the excess return of a given EV battery raw material
producer, Rraw,t, into the mean equation. Lastly, jump intensity and its lag, namely λt and λt−1,
are introduced into the variance equation. The following EGARCH(1,1) model is estimated for the
excess returns REV,t of each automobile company:

REV,t = δ0 + δ1(RM,t −Rf,t) + δ2SMBt + δ3HMLt + δ4PtBt + β1Rraw,t + σtzt,

where ln(σ2
t ) = γ0+γ1zt−1+γ2ln(σ2

t−1)+γ3(|zt−1|−E[|zt−1|])+γ4λt+γ5λt−1 and zt ∼ GED(0, 1, ν).

3.2 Jump component: Estimation Procedure

Maheu and McCurdy (2004) asserted that they used Maximum Likelihood (ML) method for the
model estimation. Zhang and Shang (2023) also referred to ML after they specified the likelihood
function. However, their attached code shows that when estimating parameters for volatility in the
oil market, the authors applied two optimization procedures, working with two likelihood functions
instead of the one discussed in the text. Firstly, they used the ”rugarch” R package to estimate
the EGARCH model for the smooth volatility component. Then, they obtained residuals from this
model, which they used in another model to estimate parameters for the jump component. Conse-
quently, parameters estimated for smooth and jump parts were obtained under different likelihood
functions and could be different if estimated simultaneously.

In practice, with the ML method, the negative likelihood function is minimized by using an
optimizer and specifying the starting values of parameters. However, the optimizer might fail to
find a reasonable solution, as discussed by Danielsson (2011). The algorithm may not be successful
in finding the global minimum, especially in cases where there are restrictions on parameters to
estimate or the likelihood function is not well-behaved. The two-step approach applied by Zhang
and Shang (2023) might point out estimation problems encountered by the authors. In the model
specification used, jump intensity is assumed to follow somewhat like an autoregressive process
with restrictions on parameters ensuring that jump intensity is positive. However, these restrictions
forbid the parameters to take negative values, which might cause estimation problems if the negative
likelihood has its global minimum there. Hence, it makes sense to perform the sensitivity analysis
on how the results change when changing starting values of the parameters or to adjust the model
specification to relax restrictions. In our study, we follow the latter path.
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4 Data and Empirical Results

4.1 Data description

4.1.1 Electric Vehicles and lithium

Baur and Todorova (2018) mentioned that the price of lithium-ion battery packs for EVs experienced
a 65% decline from 2010 until 2016. More recent data shows battery costs dropped 90% from 2010
to 2020 (Neil, 2021). A battery pack is the single most expensive component in EVs and the primary
reason they typically cost more than traditional vehicles. According to a recent analysis, the cost of a
battery pack for an electric vehicle increased by 6.9% in 2022 compared to the previous year (Mollica
and Hiller, 2023). The increase was mainly attributed to the rising costs of essential components
used in the batteries of most EVs, such as lithium, nickel, and cobalt.

Technological advances affect the production of battery packs. Iron-based batteries, known as
LFP, do not use nickel and cobalt, which are increasingly supply-constrained and expensive. Experts
estimate that iron-based batteries now represent nearly a third of all batteries in electric vehicles
worldwide, and that this share may continue to grow (Mollica and Hiller, 2023). Specifically, such
batteries now power the majority of EVs in China and are an option on some Tesla Model 3s in the
U.S.

We conclude that the key metal for the EV battery raw materials market is lithium. Lithium
prices alone may not be enough to investigate the relationship between EV manufacturers and lithium
producers which are located in different parts of the world and can have special commitments to
particular EV manufacturers.

We define the EV battery raw materials market more broadly than merely lithium prices. The
largest lithium producers are Albemarle (NYSE: ALB), Sociedad Quimica y Minera de Chile (NYSE:
SQM), and Ganfeng Lithium (OTC: GNENF). Since GNENF is traded over the counter and does not
have a sufficiently long price history, we apply the EGARCH-EARJI model on ALB and SQM. Their
adjusted stock prices and daily returns are shown in Figure 1 and 2, respectively. Descriptive statis-
tics of daily returns in Table 1 don’t give any indication of the presence of unit root in the two time
series and although they seem leptokurtic, fat-tailed and not normally distributed, the EGARCH
representation allows to capture such characteristics (Carnero et al., 2004). We hypothesize that
jumps in their stock returns can affect the stock returns of EV producers.
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Figure 1: ALB and SQM adjusted prices. Data are downloaded from the Yahoo Finance database.

Figure 2: ALB and SQM daily returns.
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ALB SQM

Mean 0.039 0.050
Median 0.143 0.040

Maximum 12.873 18.800
Minimum −22.203 −20.546
Std.dev 2.745 2.881

Skewness −0.756 −0.457
Kurtosis 9.070 7.844

Jarque-Bera 3788.689∗∗∗ 2352.487∗∗∗

Shapiro-Wilk 0.937∗∗∗ 0.954∗∗∗

ADF −12.733∗∗∗ −13.035∗∗∗

PP −47.371∗∗∗ −47.140∗∗∗

KPSS 0.087 0.069
Observations 2324 2324

Table 1: The descriptive statistics of ALB and SQM returns with unit root and stationary tests.
Note: ***, **, * indicate statistical significance at 1%, 5% and 10%.

Lastly, high-frequency prices are required to apply the realized volatility approach. The authors
have access to 5-minute time interval prices from May 8, 2023 to May 9, 2024, which covers a small
portion of the studied period 2015-2024, from Reuters Thomson through the eikon python API.

4.1.2 Electric Vehicles Producers

Until the mid of 2010s, the industry was in its infancy, with less than 2 million newly sold electric
vehicles in 2015. According to the International Energy Agency (IEA), almost 14 million new
electric cars were registered globally in 2023, bringing their total number on the roads to 40 million.
Compared to 2022, electric car sales in 2023 were 3.5 million higher which represents a 35% year-
on-year increase. This is more than six times higher than in 2018 (IEA, 2024). This growth in units
sold is distributed in the sense that more EV producers have appeared since 2015. However, many
of them do not leave the traditional car manufacturing business.

We do not restrict our analysis to stocks of those EV manufacturers which sell only electric
vehicles and do not produce traditional ones. The transition from fuel-consuming cars is happening
gradually, and we hypothesize that jumps in the EV battery raw materials market can affect the
stock returns of those companies that produce non-EVs as well. Moreover, it will be beneficial
to compare the strength of the effects between the two kinds of companies. The complete list of
companies is presented in Table 2.
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Full name Ticker Geography Production

Tesla Inc NASDAQ: TSLA US EVs
Toyota Motor Corp NYSE: TM Japan Mix
Ford Motor Co NYSE: F US Mix
General Motors Co NYSE: GM US Mix
BYD Co. Ltd. OTCMKTS: BYDDF Chinese EVs
Li Auto Inc. NASDAQ: LI Chinese EVs
Rivian Automotive Inc NASDAQ: RIVN US EVs
Lucid Group Inc NASDAQ: LCID US EVs
Nio Inc NYSE: NIO Chinese EVs
Xpeng Inc NYSE: XPEV Chinese EVs
Niu Technologies NASDAQ: NIU Chinese EVs

Table 2: List of EV stocks analyzed in the paper with corresponding names,
tickers, main country of business, and production type.

The time range of the sample for the daily stock prices is every business day from January 1,
2015, to March 31, 2024 (i.e., 2324 observations). Data on stocks come from the Yahoo Finance
database. Descriptive statistics and standard test results are provided in Table 3. Similar to the
two lithium stock returns, the eleven EV stock returns seem leptokurtic, fat-tailed and non-normally
distributed with no indication of the presence of unit root. All the data on risk factors used to study
stock returns come from the Kenneth French database. Lastly, the EV stocks’ P/B ratios comes
from Reuters Thomson. The formula for stock returns is as follows:

rt = 100 × ln

(
pt

pt−1

)
,

where pt is the stock price.
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4.2 Empirical Results

4.2.1 Volatility in the EV Battery Raw Materials Market

Table 4 shows the results of the EGARCH-EARJI model fitting. EGARCH-EARJI exhibits flexibil-
ity by extending jump intensity sensitivity to the set of real numbers, resulting in the possibility of
a better fit to the data compared to other studies (Maheu and McCurdy, 2004; Zhang and Shang,
2023) which used model specifications that require restrictions forbidding negative sensitivities. Re-
sults show that both ALB and SQM have positive ρ and γ coefficients, which means that they
have positive sensitivities of jump intensity to the previous period components. This findings are
consistent with the sign restrictions used in previous studies.

As a price jump reflects an abrupt price change over a very short time that cannot be part of a
Gaussian distribution (Lahaye et al., 2011; Lee, 2011), the estimates of the jump intensity, λt, shown
in Figure A.1a in Appendix A, and the estimate for the jump size, θ, in Table 4 indicate that on
average about 0.2 abrupt price change occur daily and that a single jump tend to be negative with
magnitude of about 0.73% for ALB, respectively. Furthermore, Figure A.1a would indicate that
most of the jumps happened in the post-COVID period and that there was on (daily) average more
than one jump some day in about February 2022 and in about March 2024. Therefore, a sudden,
unexpected, and infrequent news shock to the Albemarle company would likely create one or more
abrupt price declines of a magnitude of 0.73% during a given trading day. The same interpretation
can be applied to SQM.

We conclude that jumps exist in the EV battery raw materials market. All estimated parameters
have the same signs when comparing estimation results for ALB and SQM, which imply that market
participants react in the same manner to news. For SQM, jump intensity is generally lower than
for ALB because it has a more negative value of λ0. Furthermore, for both ALB and SQM, jump
intensity reacts positively to the unexpected component, ξt. It means that when news affects these
stocks in the previous period, it translates into higher volatility in the current one. Although ρ is
not significant for ALB, jump intensity tends to stay higher for longer for ALB, whereas it exhibits a
lower autocorrelation for SQM. The jump size, θ, also differs among stocks, generally being negative
for ALB and around zero for SQM.

(a) ALB (b) SQM

Figure 3: The estimated volatility of ALB and SQM with jump component included and excluded.

Figure 3 shows the volatility of the two lithium stock returns with and without the jump com-
ponent, ϵ2,t, alongside their 14-days rolling standard deviation. Assuming the rolling volatility is
representative of the true volatility, the estimated volatility with jump component, at, seems to
overestimate the true volatility compared to the first component capturing only the normal time-
variation of volatility. However, when a jump occur, at better approximates the true volatility. For
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ALB SQM
ω0 −0.098∗∗∗ −0.112∗∗∗

(0.025) (0.028)
α1 0.106∗∗∗ 0.171∗∗∗

(0.025) (0.024)
α2 −0.022∗∗ −0.016

(0.011) (0.015)
β 0.996∗∗∗ 0.967∗∗∗

(0.004) (0.013)
λ0 −0.944 −1.075∗∗∗

(0.921) (0.000)
ρ 0.442 0.369∗∗∗

(0.527) (0.000)
γ 1.166∗∗∗ 0.266∗∗∗

(0.297) (0.000)
θ −0.733∗∗∗ −0.108

(0.263) (0.314)
δ 3.695∗∗∗ 3.916∗∗∗

(0.345) (0.551)
µ 0.035 0.036

(0.044) (0.055)
ζ 0.018 0.029

(0.020) (0.021)

Table 4: The results of the EGARCH-EARJI model fitting on returns of ALB and SQM. This table
presents the estimated parameter coefficients with corresponding standard errors in parentheses.
Note: ***, **, * indicate statistical significance at 1%, 5% and 10%.
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completeness, the estimated variance explained by the jump component is shown in the Appendix
B in Figure B.2 for both ALB and SQM.

Given the uncertainty of the results from the estimation of the jump component due to the
difficulty of estimating GARCH model parameters, the authors repeated the estimation using fixed
initial parameter values and didn’t find any difference in the jump intensity (λt) estimates. These
findings advocate that the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm, al-
ways converges to the same set of jump intensity parameters. For completeness, statistics of repeated
jump intensity estimations using varying initial parameter values are provided in the Appendix A.

Lastly, the authors used a promising alternative non-parametric approach as a benchmark which
consist of calculating the jump component from the realized volatility in the returns of the lithium’s
stocks using high frequency data (Andersen et al., 2007; Giot et al., 2010; Busch et al., 2011). The
resulting realized volatility, realized bi-power variation, and estimated jump components for both
ALB and SQM are provided in Figure C.3 in the Appendix C. Figure 4 is intended to compare both
jump estimation approaches. For ALB, the realized volatility seems to be the closest to the 14-days
rolling standard deviation. For SQM, it is difficult to judge which of the two approaches is superior.
Overall, the realized volatility approach seems promising but it requires access to high-frequency
prices and only one year history of 5-minute time intervals is at the author’s disposal. Therefore,
the EGARCH-EARJI estimated jump component is preferred.

(a) ALB (b) SQM

Figure 4: Comparison between the realized volatility and the estimated volatility from the EGARCH-
EARJI model for both ALB and SQM. For visualization purposes and limited access to high-
frequency data, the estimates range from May 2023 to May 2024. The 14-days rolling standard
deviation of ALB and SQM stock returns is also provided.

In the next section, jump intensity estimates, λt, are used to analyze their effect on the EV
manufacturer’ stock returns.

4.2.2 Expectation and Volatility of Electric Vehicles Producers’ Stock Returns

Table 5 presents the contemporaneous correlations between the two lithium stock returns and the
eleven EV manufacturers’ stock returns. First, we observe that for any pair of lithium/EV stock
returns, the contemporaneous correlation is positive which gives indications that the stock return
of lithium producers and EV manufacturers tend to move in the same direction. Such results may
indicate that the expected discounted future cash flows of lithium and EV producers increase or
decrease together. Second, correlations of EV manufacturers’ stock returns with ALB are greater
than those for SQM, except for BYDDF and LI. Such differences can be attributed to differences in
partnership between lithium and EV producers.
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ALB SQM

TSLA 0.450 0.380
GM 0.473 0.367
TM 0.306 0.228

BYDDF 0.332 0.340
F 0.453 0.350

RIVN 0.423 0.355
NIO 0.394 0.367
LI 0.269 0.301

LCID 0.404 0.305
XPEV 0.308 0.302
NIU 0.322 0.235

Table 5: Correlation matrix between returns of the two largest lithium producers and those of the
eleven EV manufacturers.

Tables 6 and 7 show the results of the EGARCH(1,1) model estimation. First, obtaining posi-
tive estimates of β1 for most of the lithium/EV manufacturers pairs is consistent with the simple
contemporaneous correlations shown in Table 5. Intuitively, an increase of lithium prices would
increase costs of production reflecting an even greater demand for EVs, named as an ”EV demand
effect” (Baur and Todorova, 2018). Second, the excess returns of ALB and SQM are all significant
in explaining those of EV producers and mostly insignificant for traditional car manufacturers at
1%, providing no evidence to reject the hypothesis of the existence of a relationship between excess
returns of lithium and those of EV producers, at the 5% significance level.
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However, the hypothesis of the existence of volatility spillovers between the lithium and EV
stock returns through the jump component is fairly rejected at any conventional level. As can be
seen from Tables 6 and 7, the lithium jump intensity as well as its 1-day lagged value is mostly
insignificant across EV companies for both ALB and SQM. Such a result suggests that the volatility
of EV stock returns is not affected by unexpected news about lithium producers. The authors tested
the robustness of the results obtained in Tables 6 and 7 by repeating the jump component and the
second step estimations many times. Table 8 provides sample mean of the γ4 and γ5 estimates as
well as 95% confidence interval for their mean. Results for both ALB and SQM are consistent with
the conclusions drawn earlier about the existence of volatility spillovers through unexpected news
about lithium producers.
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5 Conclusion

We examined the volatility in the EV battery raw materials market and specifically for the largest
lithium producers, namely Albemarle (ALB) and Sociedad Quimica y Minera de Chile (SQM) via
the EGARCH-EARJI model and used jump intensity estimated from the model to explain the daily
returns of EV producers through the adjusted Fama-French model. The EV battery raw materials
market was defined through the stock returns of the largest lithium producers in the world. We
choose several EV producers to explain returns: 5 from China, 5 from the US, and 1 from Japan.
Data regarding the daily prices of all companies were collected from January 1, 2015, to March 31,
2024.

The hypothesis of jumps’ existence in the EV battery raw materials market was not rejected at
conventional significance levels. In order to investigate the hypothesis, we presented a new model
specification, which relaxes restrictions on parameters and might prevent the estimation process
explosion. We called the resulting model the EGARCH-EARJI model. We concluded that jumps
exist in the EV battery raw materials market and have different structures depending on underlying
stocks and time-varying nature.

There is no evidence that the hypothesis of the existence of a relationship between the ALB
and SQM excess returns and those of the EV manufacturers can be rejected. Both using simple
contemporaneous correlation and the EGARCH(1,1) model, the authors find that excess returns of
lithium producers and EV manufacturers go in the same direction. This findings have implications
for portfolio managers who seek qualitative portfolio diversification.

The hypothesis of a significant effect of jumps on the volatility of individual EV producers’ stock
returns was mostly rejected for both ALB and SQM at conventional significance levels.

Overall, our results show that the EGARCH-EARJI model can be used to model volatility in
stock returns of lithium producing companies, and one can utilize the proposed two-step approach
to examine the co-movements between lithium and EV manufacturers excess stock returns and
the impact of unexpected extreme news concerning lithium manufacturers on EV producers’ stock
returns.

The authors leave three suggestions for future research. First, applying the realized volatility
approach on a larger time range should be considered for future improvement to reduce uncertainty
in the estimation of the jump component. Second, the use of the Fama-French five factor asset
pricing model by Fama and French (2015) instead of the three factor model would be an additional
robustness check. Third, the inclusion of other fundamental factors specific for each automobile
manufacturer, such as earnings yield, size or cash flow yield (Chan et al., 1991; Muhammad and
Scrimgeour, 2014), into the model specification of EV stock returns may reduce the bias in the
estimated coefficients.
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Appendix A Jump intensity robustness check

GARCH model is hard to estimate. As a robustness check, the authors repeated the estimation of
the jump component using the EGARCH-EARJI model and varying initial values. Initial values
were generated as follows:

ω0, α1, α2 ∼ U [0.01, 0.10];

β ∼ U [0.6, 1];

λ0 ∼ U [−0.7,−0.3];

ρ, γ, θ, µ, ζ ∼ U [−0.2, 0.2];

δ ∼ U [2, 3].

Figure A.1 depicts the uncertainty of jump intensity estimates over time.

(a) ALB (b) SQM

Figure A.1: The jump intensity estimation procedure from the first step was repeated 100 times.
Despite the low number of repeated estimations, the authors invoke the Central Limit Theorem to
construct the confidence intervals. For both ALB and SQM, the black line is the jump intensity
sample mean, the green and red lines are the lower and higher bound of the 95% confidence interval,
respectively, from the 100 repeated estimations.

Appendix B Jump component

Figure B.2 shows the estimated variance explained by the jump component for both ALB and SQM.
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(a) ALB (b) SQM

Figure B.2: The estimated variance explained by the jump component of ALB and SQM. The initial
jump component spike is due to the starting values arbitrarily set to zero.

Appendix C Realized Volatility approach

(a) ALB (b) SQM

Figure C.3: The volatility estimates from the realized volatility approach for both ALB and SQM.
Estimates range from May 2023 to May 2024 due to limited access to high-frequency data.
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