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Abstract

Taylor rules and their implications for monetary policy analysis can be misleading
if the inflation target is held fixed while being in fact time-varying. We offer a theoret-
ical analysis showing why assuming a fixed inflation target in place of a time-varying
target can lead to a downward bias in the estimated policy rate response to the infla-
tion gap and wrong statistical inference about indeterminacy. Our analysis suggests the
bias is stronger in periods where inflation target movements are large. This is confirmed
by simulation evidence about the magnitude of the bias obtained from a New Keyne-
sian model featuring positive trend inflation. We further estimate medium-scale NK
models with positive trend inflation and a time-varying inflation target using a novel
population-based MCMC routine known as parallel tempering. The estimation results
confirm our theoretical analysis while favouring a determinacy outcome for both pre
and post-Volcker periods and shedding new light about the type of rule the Fed likely
followed.
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1 Introduction

In March 2021 US inflation began to rise sharply, reaching its highest level in forty years
in June 2022. While inflation is expected to remain above an annual rate of 2.5% until the
mid-2020s, a growing concern among policy makers and policy observers is whether the
Fed should return to the type of rules-based policy many believe helped lowering inflation
between the mid-1980s and mid-2000s (see for example, Taylor, 2022)

With this in mind, our paper raises the following questions: Are previously estimated
monetary policy rules reliable tools to assess how strongly the Fed adjusted the policy rate
in reaction to the inflation gap (i.e., the difference between actual inflation and the infla-
tion target) and to measures of economic activity? Are these rules reliable in determining
whether monetary policy prevented or led to self-fulfilling inflationary expectations during
the post-WWII period? We offer new theoretical analysis and empirical evidence suggesting
the answers to these questions are likely negative depending on the estimation period con-
sidered, and this due to a bias that potentially contaminated previous Taylor rule estimates.

Our main contributions are twofold. First, using a standard three-equation New Keyne-
sian (NK) model, we derive theoretical expressions pertaining to the Ordinary Least Squares
(OLS) estimator of the central bank’s response parameter to the inflation gap and establish
a relation between this estimator and the treatment of the inflation target. Our theoretical
analysis identifies conditions under which the OLS policy response to the inflation gap is
biased downwards if the inflation target is mistakenly held fixed. In turn, this bias may
lead to wrong statistical inference as to whether the US economy experienced self-fulfilling
inflationary expectations and indeterminacy during the post-WWII era.

Second, we report new empirical evidence supporting our theoretical analysis. For this
purpose, we use several NK models with positive trend inflation, imperfectly competitive
goods and labor markets, nominal wage and price rigidities and real adjustment frictions.
Our estimated models allow distinct probabilities of determinacy and indeterminacy using
a novel population-based MCMC sampling technique known as parallel tempering (Brault,
2024).

Historically, the Fed has not disclosed whether it is aiming at a fixed or time-varying in-
flation target when adjusting the policy rate. Following Taylor (1993)’s analysis of rules
versus discretion in monetary policy-making, several monetary models have assumed a
fixed target. This approach has been followed notably by Clarida et al. (2000) and Lubik
and Schorfheide (2004), their evidence suggesting the Fed accommodated inflation during
the 1960s and 1970s, which presumably led to self-fulfilling inflationary expectations and
indeterminacy.

Meanwhile, several theories have been put forth supporting the view that the Fed’s infla-
tion target has been time-varying. One says the Fed chooses its target as it learns about the
structure of the economy, with changing beliefs about the output-inflation trade-off generat-
ing a low-frequency, hump-shaped pattern in inflation (Sargent, 1999; Cogley and Sargent,
2005; Primiceri, 2006; Sargent et al., 2006). Cogley et al. (2010) approximate the outcome of
this learning process by a near-unit root process which is consistent with the evidence they
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provide. Another states the Fed accommodated persistent adverse supply shocks by rais-
ing its target (Bomfim and Rudebusch, 2000; Orphanides and Wilcox, 2002; Ireland, 2007).1

Still another holds that due to differences in the preference distributions of the FOMC mem-
bers, the rotating voting eligibility of members has resulted in a time-varying inflation tar-
get (Kozicki and Tinsley, 2009). Finally, in Bianchi et al. (2023), the inflation target is time-
varying because the Fed accommodates unfunded fiscal expansions.

Notwithstanding what the preferred explanation is, in several empirical NK models the
inflation target has been assumed to be time-varying. For instance, Ireland (2007) estimates
a NK price-setting model to infer variations in the inflation target from 1959 to 2004. Aruoba
and Schorfheide (2011) generate a time-varying inflation target measure from low-frequency
inflation dynamics and inflation expectations, which they use to estimate a DSGE model
with centralized and decentralized markets and analyse policy trade-offs. Del Negro and
Eusepi (2011) estimate a NK model with zero trend inflation, sticky wages, sticky prices
and a time-varying inflation target showing it predicts inflation expectations more in-line
with the data than those of models assuming either a fixed inflation target or imperfect
information.2 In these models, the inflation target is inferred ex-post using historical data
and econometric techniques. We follow a similar approach.

The first part of the paper shows the Ordinary Least Squares (OLS) estimator of the policy
response to the inflation gap can be prone to a bias stemming from two different sources if
the inflation target is fixed. A first source identified by Carvalho et al. (2021) stems from
an endogeneity problem which arises even in the case where a fixed inflation target would
be the correct assumption. That is, if in setting the policy rate the Fed reacts to variables
responding to monetary policy shocks, then the regressors of the policy rule and the policy
error term are correlated. In turn, this can result in an asymptotically biased policy response
to inflation. Nonetheless, their evidence suggests that monetary policy shocks contribute to
a small fraction of the variance of typical Taylor rule regressors, so the bias tends to be small
and the OLS parameter estimates of Taylor rules can be seen as reliable.

We identify a second source of bias in case the inflation target is mistakenly held fixed
in the estimation when the data generating process for the inflation target is time-varying.
Our theoretical analysis focuses on the central bank’s response to the inflation gap which
might be prone to a severe downward bias whose severity quickly increases with the size of
variations in the inflation target.

We offer simulation evidence concerning the potential magnitude of biases from a model
broadly similar to the canonical three-equation New Keynesian model that served for our
theoretical analysis. Using a model with a time-varying inflation target to generate sim-
ulated data, we assume inflation target shocks which are either “small”, “moderate”, or
“large”. We then estimate the model with this simulated data assuming a fixed inflation
target. From small to large shocks, we show the policy response parameter to the inflation
gap varies from nearly equal to the true parameter value to just one half of that value. We

1Eo and Lie (2020) study time-varying target inflation as a stabilization tool in an NK framework, and find
that movements in the target can be welfare improving, particularly in response to supply shocks.

2Other studies where the inflation target is time-varying include Erceg and Levin (2003), Cogley and Sbor-
done (2008), and Del Negro et al. (2015).
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find that other policy rule and model parameter estimates are also affected when ignoring
time-varying inflation target in estimations.

A simple intuition for the bias in the policy response parameter to inflation, supported
by an impulse-response analysis, is the following: A positive shock to the inflation target
triggers a positive response of inflation which is larger than the ensuing positive response
of the nominal interest rate. This shock is thus followed by a negative response of the real
interest rate. With large inflation target movements, one could be misled to conclude from
the observed time series for inflation and the nominal interest rate that the Fed was accom-
modating higher inflation by a passive policy, while in fact it was implementing a policy
relatively responsive to the inflation gap within a time-varying inflation target monetary
policy regime.

The second part of the paper is devoted to evidence that the theoretical intuition offered
in the first part of the paper applies to more general medium-scale NK models. For this
purpose, we turn our attention to NK models with positive trend inflation, nominal wage
and price stickiness, selected real frictions, and a policy reaction to alternative measures of
economic activity.

The models are log-linearized around non-zero steady-state inflation for two reasons.
One is essentially factual since the annual rate of inflation has always been positive during
the post-WWII era, except in 2009. Furthermore, the average rate of inflation has varied
quite significantly over sufficiently long periods. The other is somewhat more fundamental
given the scope of our paper. Based on model simulations, Ascari et al. (2018) and Khan et al.
(2020) show that positive trend inflation can have significant cyclical and long-run implica-
tions, and this even at moderate rates of trend inflation like 2-4%. They show that positive
trend inflation generates steady-state distorting effects mainly through its interaction with
nominal wage stickiness. Therefore, omitting positive trend inflation, sticky wages, or both
could result in biased model and policy rule estimates.

We first report simulation evidence from our medium-scale NK model offering insights
about key factors determining the minimum policy response to the inflation gap consistent
with determinacy. As in Coibion and Gorodnichenko (2011) and Khan et al. (2020), we show
that with a policy rate responding to output gap and output growth rather than to output
growth only, a stronger policy response to inflation is needed to achieve determinacy.

We emphasize another factor, overlooked so far in the literature, which increases the
prospect of indeterminacy when the policy rate adjusts in response to output gap and out-
put growth. We show that if the inverse Frisch elasticity of labor supply is ”high”, as some
of our estimates seem to suggest, the minimum policy response to inflation consistent with
determinacy gets significantly larger even at trend inflation rates like 3% and 4%. Interest-
ingly, the determinacy region is much less affected by the value of this elasticity when the
policy rate responds to output growth only.

We next provide empirical evidence using a Bayesian estimation technique allowing for
distinct probabilities of determinacy and indeterminacy. Standard algorithms like the Metropolis-
Hastings can struggle to accurately characterize the posterior distribution due to disconti-
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nuities in the likelihood function around the boundary between determinacy and indeter-
minacy regions. Hence, we use a novel sampling method known as parallel tempering. The
algorithm is a population-based Markov chain Monte Carlo (MCMC) method that is partic-
ularly well-suited for problems with ill-behaved posterior distributions. Parallel tempering
approximates a target posterior using a family of Markov chains with tempered posteriors
that allow exchanging information between chains. The chains with a high amount of likeli-
hood tempering flatten the posterior surface permitting large moves around the parameter
space. This makes crossing the boundary between determinacy and indeterminacy regions
feasible, while transmitting information to chains in search of a more confined parameter
space via an exchange step.3

Using this Bayesian method, we estimate several model versions in which the infla-
tion target is time-varying. Our models differ by their assumptions about trend inflation,
whether it is positive or zero, and which measure(s) of economic activity the Fed is aim-
ing at when adjusting interest rates, whether it sets the policy rate based on mixed reac-
tions to output gap and output growth (labelled MO-rule model) or output growth only
(labelled OG-rule model). We report model estimates for two periods, namely 1960:I-1979:II
and 1983:I-2007:IV.

Our estimates suggest that movements in the inflation target have been significantly
larger during the pre-Volcker period. Based on estimated marginal data densities, we find
that models with positive trend inflation are strictly preferred to their counterparts with zero
trend inflation, confirming the relevance of accounting for non-zero trend inflation in model
estimation. Also, we find that OG-rule models are marginally preferred to MO-rule models.

Our estimated policy responses to the inflation gap are broadly consistent with the con-
clusions of our theoretical analysis. While the estimated policy response parameters to infla-
tion previously reported in the literature were generally positive and smaller than 1 prior to
1980 (Clarida et al., 2000; Lubik and Schorfheide, 2004; Coibion and Gorodnichenko, 2011;
Hirose et al., 2020), and occasionally after 1982 (Nicoló, 2023), our estimates are larger than
2 both for the pre and post-Volcker periods.4 We also find that the estimated model param-
eters display greater stability with OG-rules than MO-rules. We find that both periods were
characterized by determinacy with estimated probabilities ranging from .87 to 1. We also
discuss how and why our main results differ from others reported in the literature.

The rest of the paper is organized as follows. Section 2 analyzes a basic three-equation
New Keynesian model, which allows us to analytically characterize the bias associated with
incorrectly assuming a fixed inflation target. Section 3 provides simulation evidence on the
quantitative magnitude of the bias. Section 4 outlines a medium-scale DSGE model with
positive trend inflation. Section 5 discusses the determinacy regions of the medium scale
model. Section 6 describes the data and estimation methodology. Section 7 discusses the
estimation results and finally Section 8 concludes.

3The interested reader is referred to Brault (2024) for a detailed description of this method.
4One exception is the estimate from the MOT-rule model with zero inflation for the period 1983-2007.
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2 Omitted Variable Bias in a Basic NK Model

To illustrate theoretically how Taylor rule estimates can be biased when the inflation target
is mistakenly assumed fixed, we work with the standard three-equation NK price-setting
model (e.g, Galı́, 2008, Chapter 3). For expository purposes, the model contains only two
sources of exogenous variation: one shock to the central bank’s inflation target and one to
the policy rule. Since this model is standard apart from the inflation target shock, we only
report the log-linearized equations below:

π̂t = βEtπ̂t+1 + ψx̂t, (1)

x̂t = Et x̂t+1 −
1
τ
(ît − Etπ̂t+1), (2)

ît = ϕπ(π̂t − π̂⋆
t ) + v̂t, (3)

π̂⋆
t = ρππ̂⋆

t−1 + ϵπ
t , (4)

v̂t = ρvv̂t−1 + ϵv
t . (5)

Equations (1) and (2) are respectively the New Keynesian Phillips Curve (NKPC) and IS
equations, β denotes the discount factor, ψ is the slope of the NKPC, and τ is the intertempo-
ral elasticity of substitution. Equation (3) is a simplified Taylor rule wherein the policy rate
adjusts to deviations of inflation from a time-varying target, and ϕπ is the parameter that
governs the policy response to the inflation gap. Equations (4) and (5) describe the stochas-
tic processes for the inflation target and monetary policy shocks, with ϵπ

t ∼ i.i.d. N(0, σ2
π)

and ϵv
t ∼ i.i.d. N(0, σ2

v ). We assume that Cov(ϵπ
t , ϵv

t ) = 0.5

Using the method of undetermined coefficients, equilibrium inflation evolves according
to

π̂t =ψϕπΛππ̂⋆
t − ψΛvv̂t, (6)

where

Λπ =
1

τ(1 − ρπ)(1 − βρπ) + ψ(ϕπ − ρπ)
, (7)

Λv =
1

τ(1 − ρv)(1 − βρv) + ψ(ϕπ − ρv)
. (8)

Assumptions The parameters here satisfy:

5In this model, determinacy requires the Fed’s policy response to inflation to strictly comply with the Taylor
principle (ϕπ > 1).
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(i) ϕπ > 1,

(ii) 1 − ϕπψΛv > 0,

(iii) ϕπψΛπ − 1 > 0.

A(i) implies that the policy rate response parameter to the inflation gap satisfies the Taylor
principle, such that the equilibrium is unique. A(ii) means that the sign of the policy rate
response is always the same as the monetary policy shock, effectively ruling out cases with
very persistent monetary policy shocks. A(iii) ensures the response to the inflation gap,
and consequently the policy rate response to an inflation target shock is positive.6 Under
Assumptions A(i)-A(iii), Λπ, Λv, and ψ are all positive and equilibrium inflation responds
positively to movements in the inflation target and negatively to monetary policy shocks.

2.1 OLS Estimate of ϕπ

Consider an econometrician estimating ϕπ with OLS, but mistakenly assuming that the in-
flation target is fixed. In this case, an estimate of ϕπ can be obtained by regressing the interest
rate on inflation

ϕ̂π =
Cov(ît, π̂t)

Var(π̂t)
. (9)

Substituting the true monetary policy rule into (9) gives

ϕ̂π =
Cov(ϕπ(π̂t − π̂⋆

t ) + v̂t, π̂t)

Var(π̂t)
. (10)

From (10) it is clear there is a bias in the estimator of ϕπ, as both π⋆
t and vt contribute to

movements in inflation. Substituting in (6), the probability limit of ϕπ is given by

plim
T→∞

ϕ̂π = ϕπ − ϕ2
πψΛπ

Var(π̂⋆
t )

Var(π̂t)
π̂⋆

t − ψΛv
Var(v̂t)

Var(π̂t)
, (11)

where the first negative term on the right-hand side of equation (11) represents the bias
in the OLS estimator of ϕπ arising from the time-varying inflation target while the second
negative term is the bias from monetary policy shocks, with Var(πt) given by

Var(π̂t) = (ψϕπΛπ)
2Var(π̂⋆

t ) + (ψΛv)
2Var(v̂t). (12)

6Assumptions A(ii) and A(iii) can be relaxed, but this would change the interpretation for why the bias
occurs. Further, these assumptions are consistent with the empirically relevant cases.
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Equation (11) highlights that both inflation target and monetary policy shocks bias the OLS
estimator of ϕπ downwards, as ϕπ, ψ, Λπ, and Λv are all positive. However, from an intuitive
standpoint, the reasons for this downward bias are different for the two shocks. To illustrate
this, we generate impulse response functions of inflation, the nominal interest rate, and ex-
ante real interest rate to a positive monetary policy shock as well as a positive inflation
target shock. Figure 1 plots the impulse response functions for a standard calibration of
model parameters.

A positive (contractionary) monetary policy shock raises the nominal interest rate, and
due to sticky prices, the real interest rate, reducing both output and inflation, and hence
generates a negative comovement between the central bank’s policy rate and inflation. If
unaccounted for, these shocks make the observed time series between the policy rate and
inflation appear less procyclical, and thus bias the estimate of the policy rate’s response to
inflation downwards.

In contrast, a shock to the inflation target induces a positive comovement between in-
flation and the policy rate. On impact a positive inflation target shock implies that current
inflation is below target, and the central bank responds by lowering the policy rate to stim-
ulate output and inflation. But agents also understand that a positive inflation target shock
signals that the central bank will tolerate higher inflation in the future, raising inflation ex-
pectations. The second effect dominates the first, and inflation rises above the new target
on impact, and in equilibrium, leads the central bank to raise its policy rate. In this case a
downward bias occurs because the central bank is raising the policy rate in response to the
inflation gap and the increase in policy rate is less than the increase in inflation. An econome-
trician observing interest rates and inflation under the assumption of a fixed inflation target
would mistakenly conclude the central bank was raising its policy rate less than one-for-one
with increases in inflation and not satisfying the Taylor principle. This is pictured in the bot-
tom row of Figure 1. The left panel shows the responses of both inflation and the inflation
target. Comparing the left and middle sub-figures in the bottom row, it is clear that the peak
response in inflation is greater than the peak response in the policy rate.

While this is a highly stylized example comprising only two sources of exogenous varia-
tion, the intuition extends to larger models (both in structure and number of shocks) where
the variance of inflation is simply driven by a larger number of shocks.

Carvalho et al. (2021) identify a bias in OLS estimates of Taylor rules emanating from
monetary policy shocks under a fixed inflation target. They argue that since monetary pol-
icy shocks contribute to a small fraction of output fluctuations and inflation variability, the
endogeneity bias in OLS estimates from this particular source tends to be small. Their con-
clusion is based on the empirical fact that monetary policy shocks are not very persistent
and relatively small in size.

Relative to their work, our findings suggest the bias associated with OLS estimates of Tay-
lor rule parameters can be significantly stronger when the inflation target is time-varying.
The reason is that empirically inflation target shocks are highly persistent and subsequently
even moderate movements in the inflation target can generate substantial inflation variation,
leading to a large bias. For instance, Ireland (2007) finds that inflation target shocks domi-
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nate the low frequency movements in inflation during the 1959-2004 period, accounting for
roughly 56% and 84% of variation in inflation at horizons of 8 and 40 quarters.

The bias resulting from the omission of a time-varying inflation target can be dealt with by
defining the policy relevant inflation gap measure as the difference of inflation from a time-
varying inflation target. To illustrate this, suppose the econometrician estimates the policy
rate response to the inflation gap (ϕπ) under the correct assumption that target inflation is
time-varying. Further, for expository purposes, assume the time-varying target is observed
perfectly.7 In this case the estimate of ϕπ is obtained by regressing interest rates on the
inflation gap

ϕ̂π =
Cov(ît, π̂t − π̂⋆

t )

Var(π̂t − π̂⋆
t )

. (13)

As before, it is straightforward to show that the asymptotic OLS estimator of ϕπ in this case
is given by

plim
T→∞

ϕ̂π = ϕπ − ψΛv
Var(v̂t)

Var(π̂t − π̂⋆
t )

, (14)

where

Var(π̂t − π̂⋆
t ) = (ψϕπΛπ − 1)2Var(π̂⋆

t ) + (ψΛv)
2Var(v̂t). (15)

According to (14), there is no bias in the estimation of ϕπ from inflation target shocks, and
the only remaining source of bias is related to the endogeneity bias introduced by monetary
policy shocks.

Proposition 1. Assume σπ > 0. Then for plausible shock sizes, the OLS estimate of ϕπ from (11) is
strictly smaller (i.e., more biased) than the estimate of ϕπ from (14).

See Appendix B for proof.

Proposition 1 establishes that if the inflation target is time-varying, the OLS estimator of
the inflation response parameter ϕπ will be smaller when the target is taken to be fixed com-
pared to the estimator that accounts for time-variation in the target.

7In practice, the target has to be estimated from an econometric model, as we do in the following sections.
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3 Simulation Evidence

In this section we offer simulation evidence about the quantitative magnitude of the bias
in Taylor rule parameters if the inflation target is mistakenly assumed fixed when the true
data-generating process has a time-varying inflation target. While the previous section illus-
trated the bias in the policy response to inflation using ordinary least squares, the simulation
evidence in this section is based on a Bayesian estimated DSGE model.

We favour this approach for the following reasons. First, the model accounts for the
simultaneity bias emanating from monetary policy shocks, meaning that any remaining bias
in parameter estimates results entirely from the omission of the time-varying target. Second,
this approach permits evaluating how the omission of a time-varying inflation target could
possibly impact other model parameter estimates, and not only those of the Taylor rule.
Third, in practice the target is unobserved and needs to be estimated. Using an estimated
DSGE approach, we can simultaneously estimate model parameters and the inflation target
series.8

To remain consistent with the theoretical analysis presented in the previous section, we
assess the magnitude of the bias using a NK model similar to that of Ascari and Sbordone
(2014). In this respect, the model has a structure which is nearly identical to the basic NK
model used to illustrate the bias analytically, but adds some empirically relevant ingredients
like positive trend inflation, stochastic trend output growth and external habit formation.9

There are four sources of exogenous variation: a neutral technology shock, a preference
shock, a monetary policy shock, and an inflation target shock.

Following the evidence in Coibion and Gorodnichenko (2012) and Brault and Phaneuf
(2022) showing that policy inertia is better captured by second-order interest rate smoothing,
the policy rule used for our model includes two smoothing lags.10 The log-linearized Taylor
rule is

ît = ρ1 ît−1 + ρ2 ît−2 + (1 − ρ1 − ρ2){ϕπ(π̂t − π̂⋆
t ) + ϕgy(Ŷt − Ŷt−1 + ĝA,t)}+ v̂t, (16)

where hatted variables denote log-deviations from the steady state, ît is the nominal interest
rate, π̂t is the inflation rate, π̂⋆

t is the monetary authority’s time-varying inflation target, Ŷt is
output, ĝA,t is the growth rate of neutral technology, and v̂t is a monetary policy shock. The
time-varying inflation target and monetary policy shock follow exogenous processes given
by

8In contrast, simulation evidence from least squares regressions would require us to either assume the target
is known, or estimate it separately. This leads to other challenges, such as dealing with the fact that the target
series is a generated regressor.

9The log-linearized model can be found in the Appendix.
10The evidence in Brault and Phaneuf (2022) also shows NK models with interest rate rules featuring second-

order smoothing fit the data better in terms of marginal data densities relative to first-order smoothing.
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log π⋆
t =(1 − ρπ)log π + ρπlog π⋆

t−1 + ϵπ
t , (17)

log vt =(1 − ρv)log v + ρvlog vt−1 + ϵv
t . (18)

Equation (17) implies that in the absence of shocks, the inflation target equals steady state
inflation or trend inflation, π. It is important to note that there is a conceptual difference
between the two. Trend inflation is a general level of inflation around which the model is
log-linearized (see Ascari and Ropele, 2009), while target inflation is a process allowing the
central bank’s target to temporarily deviate from this level of trend inflation.

The simulation proceeds as follows. We calibrate the model’s parameters to standard
values used in the literature. The exact calibration is reported in the column labeled “True
value” in Table 1. We consider three different sizes of inflation target shocks: small (σπ =
0.005), moderate (σπ = 0.02), and large (σπ = 0.04). These shock sizes (along with the other
calibrated parameters) lead to inflation target shocks accounting for roughly 5%, 50%, and
85% of inflation volatility respectively. For each calibration, we generate 5,000 observations
of output growth, inflation, and the nominal interest rate. It is worth noting that we treat the
inflation target as unobserved, as it is in practice. We then estimate the model’s parameters
using Bayesian estimation for two Taylor rules: one assuming the inflation target is positive
and fixed (equal to steady-state inflation) and the other that the inflation target is positive
and time-varying (though unobserved). The prior distributions are standard and described
in Table 2. The posteriors are estimated using the Bayesian estimation technique outlined
in Section 6. Throughout the rest of the paper we calibrate the persistence in the inflation
target process to ρπ = 0.995 following the evidence in Cogley et al. (2010).11

Table 1 reports posterior parameter estimates for the six scenarios. Since our simulated
samples are very large, we omit reporting posterior density intervals because they are ex-
tremely small. Our simulation results are consistent with the intuition provided in Section
2.

The true value of the policy response parameter to the inflation gap is 2.25. With small
inflation target shocks (σπ = 0.005), the difference between the estimated response to infla-
tion (ϕπ) under a fixed and a time-varying inflation target is small (2.11 vs 2.26), implying
the bias is negligible. With moderate inflation target shocks (σπ = 0.02), the posterior mean
for the policy response parameter to inflation is 1.52 with a fixed inflation target and 2.26
with a time-varying inflation target, resulting in a significant bias. With large inflation target
shocks (σπ = 0.04), the corresponding posterior mean is 1.18 with a fixed inflation target
and 2.31 with a time-varying target, resulting in a larger downward bias.

As the inflation target shock gets larger, there is also a noticeable change in some other
parameter estimates. First, the model with a fixed inflation target overestimates the magni-
tude of price stickiness (ξp). While the true value of this parameter is 0.60, under moderate
inflation target shocks (σπ = 0.02), the mean estimate for the Calvo parameter is 0.70 while
under large target shocks (σπ = 0.04) the estimate is 0.75. So, the larger is the inflation target

11We provide a discussion of this chosen calibration in Section 6.3.
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shock, the stronger is the upward bias in the price stickiness parameter when assuming a
fixed inflation target.

As we have shown, assuming a fixed inflation target when target movements are large
leads to a strongly downward biased estimate of the policy response parameter to the infla-
tion gap and a strongly upward biased estimate of price stickiness. The estimated probabil-
ity of indeterminacy is then likely to be biased upwards as both biases tend to favour the
indeterminacy outcome.

Second, with larger inflation target shocks, the mean estimates of the AR(1) parameters of
the monetary policy (ρv) and preference (ρb) shocks rise when incorrectly assuming a fixed
inflation target. Under a moderate target shock the degree of persistence in monetary policy
shocks is 0.41 while under a large shock it rises to 0.47, and this compared to a true value of
0.20. For preference shocks, the most noticeable change is with a large inflation target shock
for which the estimated persistence is 0.96 compared to a true value of 0.90.

Lastly, estimates of first- and second-order interest smoothing (ρ1 & ρ2) and the policy rate
response to output growth (ϕgy) are found to be lower than their true values when assuming
a fixed inflation target. Overall, these findings suggest that assuming a fixed inflation target
when in fact the target is time-varying leads to a number of distortions in the estimated
Taylor rule coefficients and other model parameters.

4 A Medium-scale NK Model with Positive Trend Inflation

This Section describes the NK model that will serve for the simulation of determinacy re-
gions (Section 5) and model estimation (Sections 6 and 7). In view of our previous argu-
ments, we allow the inflation target to be potentially time-varying. For the sake of generality
and to circumvent the possible criticism that NK price-setting models omit key propagation
mechanisms and structural shocks that can lead to misinterpreting the evidence about inde-
terminacy (Nicoló, 2023), we use a framework commonly referred to as a medium-scale NK
model.

Its basic structure is similar to the model in Ascari et al. (2018) used to analyze the welfare
costs of long-run or positive trend inflation. Common to other medium-scale NK models
(Erceg et al., 2000; Christiano et al., 2005), our model features imperfectly competitive goods
and labor markets, Calvo staggered wage and price setting, habit formation in consumption,
investment adjustment costs and variable capital utilization. However, the main difference
with most existing medium-scale models is that we allow for positive trend inflation to have
cyclical and long-run implications.

The model is driven by seven structural shocks, namely shocks to the discount rate, labor
hours, government spending, neutral technology, marginal efficiency of investment (MEI),
policy rate and inflation target.

Neutral productivity obeys a process embedding both a trending and stationary compo-
nent. Investment specific technology (IST) follows a deterministic trend with no stochastic
component. The deterministic trend captures the downward trend in the relative price of
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investment goods observed in the data. The shock to the marginal efficiency of investment
follows a stationary AR(1) process.

Justiniano et al. (2011) distinguish between IST and MEI shocks, as they show IST shocks
map one-to-one into the relative price of investment goods, while MEI shocks do not affect
the relative price of investment. They find that MEI shocks are significant drivers of busi-
ness cycle fluctuations, while IST shocks contribute almost nothing to fluctuations in output,
consumption, investment and hours.12 These considerations form the basis for modeling the
MEI component as stochastic and the IST term as deterministic.

4.1 Aggregate Output and Intermediate Goods Producers

Aggregate output, Yt, is produced by a perfectly competitive firm using a continuum of
intermediate goods, Yjt, j ∈ (0, 1), and follows a constant elasticity of substitution (CES)
production technology:

Yt =

(∫ 1

0
Y

θ−1
θ

jt dj
) θ

θ−1

, (19)

where θ > 1 is the elasticity of substitution between differentiated goods.

Profit maximization and a zero-profit condition leads to a downward sloping demand for
intermediate good Yjt:

Yjt =

(
Pjt

Pt

)−θ

Yt, (20)

where Pjt is the price of intermediate good Yjt, and Pt is the aggregate price index with the
two being related by:

Pt =

(∫ 1

0
P1−θ

jt dj
) 1

1−θ

. (21)

A monopolist produces intermediate good Yjt according to the production function:

Yjt = AtKα
jtL

1−α
jt − γtF, (22)

where F is the fixed cost, α is the capital share of income, γt is the growth factor (see below)
and production is required to be non-negative. Given γt, F is chosen to keep zero prof-
its along a balanced growth path. Kjt represents capital services defined as the product of
physical capital and the rate of capital utilization. Ljt is the labor input.

12See Table 3 in Justiniano et al. (2011).

13



Neutral productivity (At) comprises both a trending component (Aτ
t ) and a stationary

component (Ãt). The trending component Aτ
t follows a deterministic process, Aτ

t = gA Aτ
t−1,

with gross growth rate gA. The stationary component follows an AR(1) process

Ãt = ρa Ãt−1 + ϵa
t 0 ≤ ρa < 1 (23)

where ϵa
t is an i.i.d N

(
0, σ2

a
)

technology shock.

The trend growth factor γt is given by the composite technological progress

γt = (Aτ
t )

1
1−α
(
ϵτ

I,t
) α

1−α (24)

where ϵτ
I,t denotes investment-specific technological progress, which follows a deterministic

process, ϵτ
I,t = gIϵ

τ
I,t−1, where gI is the gross growth rate of IST.

4.1.1 Cost minimization

An intermediate goods firm chooses its price and quantities of capital services and labor
input. In choosing its inputs, a firm minimizes total cost subject to the constraint of meeting
demand. The cost minimization problem is then given by:

min
Kjt,Ljt

(
Rk

t Kjt + WtLjt

)
subject to:

AtKα
jtL

1−α
jt − γtF ≥

(
Pjt

Pt

)−θ

Yt (25)

where Rk
t denotes the nominal rental price of capital services and Wt the nominal wage

index. Solving the cost minimization problem yields the following real marginal cost

mct = α−α (1 − α)α−1 A−1
t

(
rk

t

)α
w1−α

t (26)

and demand functions for factor inputs

Kjt = α
mct

rk
t

(
Yjt + γtF

)
(27)

Ljt = (1 − α)
mct

wt

(
Yjt + γtF

)
(28)

where mct =
MCt

Pt
is the real marginal cost, rk

t =
Rk

t
Pt

is the real rental price of capital services,
and wt =

Wt
Pt

is the real wage, which are common to all firms.
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4.1.2 Price Setting

Each period an intermediate good firm is allowed to re-optimize its price with probability(
1 − ξp

)
. Firms allowed to re-optimize their price choose the same price P∗

jt, while non-
price-setting firms keep their prices the same as in the previous period. Our price-setting
formulation implies that there is no automatic indexation of non-reset prices.13

When re-optimizing its price, an intermediate good firm j chooses a price so as to maxi-
mize the present discounted value of future profits subject to the demand for its good from
the final good firm and to cost minimization

max
P∗

jt

Et

∞

∑
s=0

ξs
pDt,t+s

[
P∗

jt

Pt+s
Yj,t+s − mct+sYj,t+s

]
(29)

where Dt,t+s is the stochastic discount factor, and mct+s is the real marginal cost in period

t + s as defined above. Letting p∗jt =
P∗

jt
Pt

denote the relative price of the optimizing firm at t,
the first-order condition of this problem can be written as

p∗jt =
θ

θ − 1
Et ∑∞

s=0 ξs
pDt,t+sYj,t+sΠθ

t,t+smct+s

Et ∑∞
s=0 ξs

pDt,t+sYj,t+sΠθ−1
t,t+s

(30)

where Πt,t+s denotes the cumulative gross inflation rate over s periods:

Πt,t+s =

{
1 for s = 0(

Pt+1
Pt

)
× · · · ×

(
Pt+s

Pt+s−1

)
for s = 1, 2, · · · (31)

4.2 Households

Households supply differentiated labor input and face a downward-sloping demand for
their labor type. In each period a household i is allowed to re-optimize its nominal wage
with probability (1 − ξw). As in Erceg, Henderson and Levin (2000), we assume that utility
is separable in consumption and labor. State-contingent securities insure households against
idiosyncratic wage risk arising from staggered wage-setting. Households are therefore iden-
tical along all dimensions other than labor supply and wages.

The problem of a typical household (omitting dependence on i except for labor and wage)
is

max
Ct,Lit,K

p
t+1,Bt+1,It,Zt

E0

∞

∑
t=0

βtbt

(
ln (Ct − hCt−1)− ηt

L1+χ
it

1 + χ

)
(32)

13In NK models with Calvo wage and price setting, the indexation assumption implies that all wages and
prices change once every three months. Ascari, Phaneuf and Sims (2018) offer survey evidence suggesting this
is simply at odd with the literature on wage and price changes from micro data.
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subject to the following budget constraint

Pt

[
Ct + It +

(
γ1 (Zt − 1) +

γ2

2
(Zt − 1)2

) Kp
t

ετ
I,t

]
+

Bt+1

it
≤ WitLit + Rk

t ZtK
p
t + Πt + Bt, (33)

the physical capital accumulation process

Kp
t+1 = mtϵ

τ
I,t

(
1 − κ

2

(
It

It−1
− gI

)2
)

It + (1 − δ)Kp
t , (34)

and a downward sloping demand for labor. Here bt denotes a shock to the discount factor,
ηt a shock to the disutility of labor, and mt a shock to the marginal efficiency of investment
(MEI). Ct is consumption, It is investment measured in units of consumption, Kp

t is the phys-
ical capital stock, Zt is the level of capital utilization, Wit is the nominal wage paid to labor
of type i, Rk

t is the common rental price of capital services, Bt is the stock of nominal bonds
the household enters with in period t, it is the one-period risk-free nominal interest rate, and
Πt represents dividends received from firms. β is the discount factor, χ is the inverse Frisch
elasticity of labor supply, h is the degree of (internal) habit formation in consumption, γ1
and γ2 are parameters related to the resource cost of capital utilization (measured in units of
physical capital), κ captures the cost of investment adjustment relative to trend growth gI ,
and δ is the depreciation rate.

Each of the three shocks xt, x ∈ {b, η, m} is assumed to follow a stationary AR(1) process

log xt = (1 − ρx) log x + ρxlog xt−1 + ϵx
t (35)

where ρx ∈ [0, 1) is the autoregressive parameter and ϵx
t ∼ N

(
0, σ2

x
)

is the innovation to
each shock.

4.3 Employment Agencies and Wage Setting

A large number of competitive employment agencies combine differentiated labor types into
one homogeneous labor input which is sold to intermediate goods firms according to

Lt =

(∫ 1

0
L

σ−1
σ

it

) σ
σ−1

(36)

where σ > 1 is the elasticity of substitution between differentiated types of labor.

Profit maximization by perfectly competitive employment agencies implies the following
labor demand function

Lit =

(
Wit

Wt

)−σ

Lt (37)

where Wit is the wage paid to labor of type i and Wt is the aggregate wage index given by

Wt =

(∫ 1

0
W1−σ

it di
) 1

1−σ

. (38)
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Households allowed to re-optimize their wage all choose the same wage W∗
it, while non-

wage setting households keep their wages the same as that in the previous period. When re-
optimizing its wage, households choose a wage for its labor type that maximizes the present
discounted value of lifetime utility subject to the demand for its labor. Letting w∗

it =
W∗

it
Pt

denote the real wage for labor type i at time t, the first-order condition of this problem is
written as

(w∗
it)

1+σχ =
σ

σ − 1
Et ∑∞

s=0 βsξs
wηtπ

σ(1+χ)
t,t+s wσ(1+χ)

t+s L1+χ
t+s

Et ∑∞
s=0 βsξs

wπσ−1
t,t+sw

σ
t+sλ

r
t+sLt+s

(39)

where Πt,t+s denotes the cumulative gross inflation rate over s periods as before and λr
t is

the marginal utility of an additional unit of real income received by the household.

4.4 Monetary and Fiscal Policies

Monetary policy is set according to a Taylor rule wherein the monetary authority follows an
inertial rule and responds to deviations of inflation from target, to output gap and output
growth, or to output growth only. As we mentioned before, the policy rule includes second-
order interest rate smoothing.

We consider two different types of rules when simulating determinacy regions and esti-
mating models. One is the MO-rule where monetary policy reacts to both output gap and
output growth, and the other is the OG-rule where the policy rate responds only to output
growth. The general formulation for the policy rule is

it

i
=

(
it−1

i

)ρ1
(

it−2

i

)ρ2

( πt

π∗
t

)ϕπ
(

YGDP
t

YGDP∗
t

)ϕy (
YGDP

t

YGDP
t−1

g−1
Y

)ϕgy
1−ρ1−ρ2

vt (40)

where πt is the inflation rate, π∗
t is the time-varying inflation target, YGDP

t is real gross do-
mestic product (GDP), YGDP∗

t is the counterfactual level of real GDP assuming flexible prices
and wages, i is the steady state nominal rate, gY is steady-state output growth rate, and ρ1,
ρ2, ϕπ, ϕy and ϕgy are monetary policy parameters. Here, vt is a monetary policy shock that
follows an AR(1) stochastic process as before

log vt = (1 − ρv)log v + ρvlog vt−1 + ϵv
t , (41)

where ϵv
t ∼ N

(
0, σ2

v
)
. The inflation target is also assumed to follow the same stochastic

process as before
log π⋆

t = (1 − ρπ)log π + ρπlog π⋆
t−1 + ϵπ

t , (42)

where π is the steady-state inflation rate and ϵπ
t ∼ N

(
0, σ2

π

)
is a shock to the inflation target.

The MO-rule models assume ϕy and ϕgy are possibly different from zero. The OG-rule
models impose ϕy = 0 while ϕgy is different from zero.

Fiscal policy is fully Ricardian and the government finances its budget deficit by issuing
short-tem bonds. Public spending is assumed to be a time-varying fraction of aggregate
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output Yt:

Gt =

(
1 − 1

gt

)
Yt, (43)

where gt is a government spending shock that follows an AR(1) process given by

log gt =
(
1 − ρg

)
log g + ρglog gt−1 + ϵ

g
t (44)

where g is the steady-state level of government spending and ϵ
g
t ∼ N

(
0, σ2

g

)
is a govern-

ment spending shock.

4.5 Market Clearing and Equilibrium

Market clearing for capital and labor inputs requires
∫ 1

0 Kjtdj = Kt and
∫ 1

0 Ljtdj = Lt, respec-
tively.

Aggregate output can be written as:

Yt = AtKα
t L1−α

t − γtF. (45)

The resource constraint in the economy is given by

Yt = Ct + It + Gt +
(

γ1 (Zt − 1) +
γ2

2
(Zt − 1)2

) Kp
t

ετ
I,t

(46)

Finally, real GDP is defined as
YGDP

t = Ct + It + Gt. (47)

4.6 Detrending and Log-linearization

Most variables in the model inherit trend growth, defined by the growth factor γt, from
the deterministic trends in neutral and investment-specific technological progress. In par-
ticular, output, consumption, investment, intermediate inputs, and the real wage all grow
at the rate of this trend factor on a balanced growth path. The capital stock grows faster
due to growth in IST with K̃t =

Kt
γtε

τ
I,t

being stationary. Solving the model requires detrend-
ing the variables and log-linearizing the resulting stationary equilibrium conditions around
the non-stochastic steady state. The full set of log-linearized equilibrium conditions can be
found in the Appendix.

5 Determinacy Regions

In this Section we offer simulation evidence about the minimum policy response to the infla-
tion gap consistent with determinacy. For this, we simulate determinacy regions using the
medium-scale model described in the previous section.
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Our simulation analysis focuses on determinacy regions conditioned on three factors: i) a
level of trend inflation ranging from an annual rate of 0% to 8%, ii) MO and OG policy rules,
and iii) a high and low inverse Frisch elasticity of labor supply.14 The remaining parameters
are calibrated at the prior mean (see discussion on priors in the next Section for more details).

Figure 2 displays determinacy regions for the MO-rule model, with Panel A conveying
information about the minimum policy rate response to the inflation gap consistent with
determinacy for different levels of trend inflation and a high inverse Frisch elasticity of labor
supply (χ = 1.75). With zero trend inflation the minimum policy response parameter to the
inflation gap consistent with determinacy is about 1.15. With 2.0% trend inflation, it rises to
1.5, with 3% trend to 1.75, and with 4% to 2.25. An inflation trend of 6.5% would require a
minimum policy response to inflation of 5.0.

Panel B of Figure 2 displays determinacy regions with a low inverse Frisch elasticity of
labor supply (χ = 0.55). A higher labor supply elasticity lowers the minimum response
parameter to inflation consistent with determinacy. With zero trend inflation, a response
parameter of 1.1 achieves determinacy. With 4% trend inflation rate, it needs to be 1.35 or
more. With 8% trend inflation, determinacy obtains with a parameter of 2 or more.

Panel A of Figure 3 displays determinacy regions for the OG-rule model and a high in-
verse Frisch elasticity of labor supply. For trend inflation from 0% to 8%, the minimum
policy response parameter to inflation consistent with determinacy ranges from 1.0 to 1.23.

Panel B of Figure 3 displays determinacy regions implied by the OG-rule model and a
low inverse Frisch elasticity. In this case, determinacy is guaranteed with a minimum policy
response parameter of 1.0 for up to 8% trend inflation.

The minimum policy response to inflation consistent with determinacy is thus much
higher when assuming a MO-rule than an OG-rule. This is broadly consistent with the
analysis of Coibion and Gorodnichenko (2011) based on a NK model with positive trend
inflation, flexible nominal wages and sticky prices, and that of Khan et al. (2020) which is
based on a NK model with sticky wages and sticky prices, suggesting that targeting the
output gap can be destabilizing relative to a policy targeting output growth.

Our evidence also suggests that labor supply elasticity is a critical factor affecting de-
terminacy regions when monetary policy is described by a MO-rule. This is because the
inverse Frisch elasticity of labor supply is a key parameter governing the strength of the
interaction between nominal wage rigidity and positive trend inflation. A higher elasticity
alleviates the effects of positive trend inflation on steady-state monopolistic distortions. The
reason is that positive trend inflation distorts the relative allocation of labor across house-
holds through an effect on wage dispersion. A stronger curvature in preferences over labor
(χ = 1.75) leads to a stronger wage dispersion and labor misallocation. When this curvature
is relatively unimportant (χ = 0.55), misallocation of labor arising from wage dispersion has
much weaker steady-state effects on the determinacy outcome. A MO-rule magnifies these
distortion effects relative to an OG-rule.

14The high and low values of χ corresponds to the lowest and highest estimates we later report.
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6 Estimation Strategy

The posterior distributions of the structural parameters are estimated using Bayesian meth-
ods. This section describes the data used in the estimation, the construction of the linear
rational expectations (LRE) solution when the equilibrium is indeterminate, the prior distri-
butions, and the posterior sampling method.

6.1 Data

The model is estimated using seven observables: real output growth, consumption growth,
investment growth, wage growth, hours worked, inflation, and the central bank’s policy
rate. The raw data were obtained from the Federal Reserve Bank of St. Louis (FRED) database
and mnemonics are reported in brackets. Nominal output is Gross Domestic Product (GDP)
and nominal consumption is the sum of personal consumption expenditures on non-durable
goods (PCND) and services (PCESV). Nominal investment is the sum of gross private do-
mestic investment (GPDI) and personal consumption expenditures on durable goods (PCDG).
Wages are the hourly compensation for all workers in the nonfarm business sector (COMP-
NFB) and hours worked is the hours worked for all workers in the nonfarm business sector
(HOANBS). Inflation is the growth rate of the GDP deflator (GDPDEF) and the federal funds
rate is used as the measure of the central bank’s policy rate (FEDFUNDS).

All nominal quantities are converted to real values using the GDP deflator and expressed
in per capita terms. Our population measure is a smoothed trend obtained from fitting the
Civilian Non-institution Population (CNP16OV) series with a Hodrick-Prescott filter (with
a smoothing parameter equal to 10,000). The rationale for this, as noted by Pfeifer (2020), is
that population levels are periodically updated due to censuses or benchmarking in the Cur-
rent Population Survey. These updates cause spikes in population growth rates not related
to changes in the actual population.

6.2 LRE Solution

A number of findings reported in the previous literature suggest that prior to 1980 the Fed
did not respond strongly enough to inflation to achieve equilibrium determinacy. To permit
equilibrium indeterminacy, we use the approach outlined in Bianchi and Nicoló (2021) and
append the following autoregressive equation to our model:

ωt =
1

αBN
ωt−1 + ϵs

t − (πt − Et−1πt), (48)

where ϵs
t is a sunspot shock with ϵs

t ∼ N
(
0, σ2

s
)
. The added equation works to ensure there

exists an appropriate number of explosive roots such that there is a unique Linear Ratio-
nal Expectations (LRE) solution to the model in both the determinacy and indeterminacy
regions of the parameter space. The solution to the model in the determinacy region fea-
tures structural parameters consistent with equilibrium determinacy and a value for αBN
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higher than one. In this case equation (48) is not explosive and the sunspot shock plays no
role in the model dynamics. The solution to the model in the indeterminacy region features
structural parameters leading to indeterminacy and a value for αBN smaller than one. In
this case equation (48) is explosive, providing the missing explosive root, so that endoge-
nous variables are impacted by the sunspot shock which is linked to the expectation errors
of inflation. We allow the sunspot shock introduced under indeterminacy to be arbitrarily
correlated with other fundamental shocks in the model.15

6.3 Priors

Prior to estimation we calibrate a small number of parameters to values commonly used in
the literature. The quarterly depreciation rate of capital is set to 0.025, the discount factor
at 0.994, the steady state government spending to GDP ratio at 0.22, the trend growth rate
of investment-specific technological change at 0.37% per quarter, and the parameters that
capture the elasticity of substitution between goods and labour to 6.

The remaining parameters are estimated and their prior distributions are summarized in
Table 3. The prior densities, means, and standard deviations are almost identical to those of
Justiniano et al. (2011) for the capital share, consumption habit, inverse Frisch labor supply
elasticity, Calvo probabilities of wage and price non-reoptimization, capital utilization elas-
ticity, investment adjustment cost and the Taylor rule parameter responses to output gap
and output growth. Based on evidence in Coibion and Gorodnichenko (2011) and Brault
and Phaneuf (2022), we use a Normal distribution with mean of 0.8 and standard deviation
of 0.2 for the AR(1) smoothing parameter, and a mean prior of -0.1 and standard deviation
of 0.2 for the AR(2) smoothing parameter.

Since we allow the possibility of equilibrium indeterminacy, we use a Normal distribution
centered at 1.1 with a standard deviation of 0.5 for the response parameter to the inflation
gap. Given other parameter priors, this implies a prior probability of determinacy of .5
conditioned on the OG-rule model and .25 on the MO-rule model. These different prior
probabilities can be explained in light of our simulation analysis of determinacy regions.
We saw when trend inflation is positive that determinacy generally requires a much higher
response to the inflation gap conditioned on the MO-rule model than on the OG-rule model,
explaining these differing prior probabilities.

Targeting a prior probability of determinacy of 0.5 for the MO-rule model and for the OG-
rule model would mean assigning different prior values to model parameters. We choose
instead to keep the same prior means and standard deviations for both model parameters,
except for the policy response parameter to the output gap which is centered at 0.13 with a
standard deviation of 0.05 when using the MO-rule model, while it is set to 0 when using the
OG-rule model. While the prior probability of determinacy implied by the MO-rule model
is significantly lower than 0.5, our evidence will later suggest that the MO-rule model with
positive trend inflation and a time-varying inflation target is nonetheless consistent with
determinacy with a high estimated probability.

15Bianchi and Nicoló (2021) show that when the covariance matrix of the shocks is left unrestricted, changing
which expectations errors are included in equation (48) will not alter the fit to the data.
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Following Cogley et al. (2010), we calibrate the persistence parameter of the inflation
target process to 0.995. This calibration restricts target movements so they capture the low-
frequency movements in inflation, but also implies that long-run changes in the level of
inflation cannot occur without a corresponding change in the central bank’s inflation target
(Ireland, 2007). Assuming a highly persistent target process, either through calibration or a
prior distribution, is common in the literature. Both Cogley et al. (2010) and Justiniano et al.
(2013) calibrate the persistence to 0.995, as does Del Negro et al. (2022) for the New York
Fed’s DSGE model. In Christiano et al. (2014) the persistence is calibrated to 0.975 for the
post-1985 period. In Ireland (2007) and Aruoba and Schorfheide (2011), the target is treated
as a random walk process (ρπ = 1). Lastly, Haque (2022) estimates target persistence with a
prior centered at 0.95.

For the additional parameters under indeterminacy we use the following priors. The
parameter αBN has a uniform prior over the interval [0.5, 1.5]. The correlations between the
sunspot shock and fundamental shocks have uniform priors over the interval [−1, 1].

6.4 Estimation Methodology

We employ Bayesian methods to estimate the models using techniques that allow the joint
estimation of determinacy and indeterminacy regions of the parameter space. Standard
algorithms like Metropolis-Hastings can struggle to accurately characterize the posterior
distribution because the likelihood function features discontinuities around the boundary
between indeterminacy and determinacy.

For this reason, we adopt a parallel tempering algorithm (Brault, 2024). This algorithm
is a population-based MCMC method which is particularly well-suited for problems with
ill-behaved posteriors, such as those with discontinuities in the likelihood or multi-modal
distributions. Further, the algorithm does not require finding the posterior mode or Hessian
prior to initializing the MCMC routine.

Parallel tempering approximates a target distribution using a family of Markov chains
arranged according to a temperature ladder. Each Markov chain has a specified temperature
used to temper the likelihood in the posterior, and each posterior is approximated by

Pm(θ|Y) ∝ (P(Y|θ))ξm P(θ), (49)

where ξm is the (inverse) temperature parameter. Temperatures can range from zero to one.
Chains with lower values of ξm afford relatively more weight to the prior distribution in
the posterior. These chains have flatter posterior surfaces and are therefore able to make
relatively larger moves around the parameter space, while chains with higher values of ξm
search in a more confined space. The target posterior distribution is a single chain in the
ladder which is characterized by ξm = 1.

The algorithm iterates over two types of updates: exchange and mutation. Exchange in-
volves randomly selecting two chains in the family and proposing a swap between their
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parameter vectors, which is accepted according to a Metropolis criterion. Mutation involves
a pre-specified number of random walk Metropolis-Hastings steps for each chain. The aux-
iliary chains store information on the target distribution, but also allow the target chain to
easily cross between the indeterminacy and determinacy regions of the parameter space.

To tune the parallel tempering algorithm, we use a family of 10 Markov chains with a uni-
formly spaced temperature ladder ranging from zero to one. Each chain is initialized with
draws from the prior distribution and a covariance matrix for the proposal density equal to
the prior covariance matrix. We use 10 thinning iterations, implying that exchange steps are
only proposed every 10 mutation steps. We run the algorithm for 2,000,000 iterations, using
the first 500,000 iterations as a warm-up and to tune the scaling parameters for each chain to
ensure a reasonable mutation acceptance rate.

7 Estimation Results

This Section presents and discusses the estimation results for the OG-rule and MO-rule mod-
els including a time-varying inflation target, and this assuming either positive or zero trend
inflation for the periods 1960:I-1979:II and 1983:I-2007:IV.16

We first present estimates of the inflation target obtained from our estimated OG-rule
model prior to 1980 and after 1982 on the left panel of Figure 4 and compare them to those es-
timated by Ireland (2007), Aruoba and Schorfheide (2011), and Coibion and Gorodnichenko
(2011) on the right panel of the Figure.17

Figure 4 shows that the Fed’s inflation target was rising throughout the 1960s and 1970s,
exhibiting a peak of over 8% around 1974. The rise in the inflation target could be inter-
preted as a systematic tendency for Fed policy to avoid some of the contractionary impact
of adverse supply shocks on real economic activity (Ireland, 2007) or the Fed’s changing be-
liefs about the output-inflation trade-off (Cogley and Sargent, 2005). By the mid-1980s, the
Fed’s target had fallen to roughly 4% and continued to decline to around 2% by 2000. There-
after, the target rose in the early-to-mid 2000s, which was an extended period of low interest
rates.18 Overall, one sees that movements in the inflation target implied by our OG-rule
model are broadly similar and consistent with those obtained by others despite a variety of
approaches, samples and data.

Tables 4 and 5 present the estimated parameters for the OG-rule and MO-rule models
with positive trend inflation for the two sub-samples, respectively. Table 6 presents param-
eter estimates for similar models when assuming zero trend inflation.

16The period between the latter half of 1979 and 1982 is commonly excluded since it is generally accepted
that the Fed was targeting non-borrowed reserves and not the Federal Funds rate during this period (Bernanke
and Mihov, 1998). However, our findings are very similar if we include these years, so we do not explicitly
report them for the sake of brevity.

17The estimated inflation target from the MO-rule and OG-rule models are very similar and so we show just
the latter to conserve space.

18Eggertsson et al. (2003) note that keeping interest rates low for an extended period of time is equivalent to
a rise in the inflation target, as we find. For alternative interpretations of monetary policy during the 2000s, see
Groshenny (2013); Belongia and Ireland (2016); Doko Tchatoka et al. (2017).
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Conditioned on estimated marginal data densities, we find that OG-rule and MO-rule
models with positive trend inflation are relatively similar in a statistical sense for both peri-
ods, although OG-rule models are marginally preferred to MO-rule models. Moreover, esti-
mated model data densities indicate that models with positive trend inflation are quite de-
cisively preferred statistically to models with zero trend inflation. When comparing model
data densities for the first period, we get for the OG-rule model -518.0 > -522.1 in favour
of positive over zero trend inflation, while for MO-rule models we obtain -518.7 > -524.2
favouring positive trend inflation. For second period models, we report for OG-rule models
-428.5 > -437.9 and for MO-rule models -429.6 > -444.8, both favouring models with positive
trend inflation.

Of the eight models we have estimated, we find that seven have policy response param-
eters to the inflation gap of 2.0 or more in terms of the posterior mean estimates. The one
exception is the MO-rule model with zero trend inflation estimated for the period 1983-2007
for which the posterior mean of the policy parameter to inflation is 1.35, a point to which we
return below.

OG-rule models with positive trend inflation rate predict determinacy with probability 1
for both periods, while MO-rule models imply determinacy with probability .93 for the first
period and .90 for the second period. When assuming zero trend inflation, OG-rule models
predict determinacy with probability 1 for the first period and .87 for the second period,
while MO-rule models imply determinacy with probability 1 and .51, respectively.

Now, previous studies have often reported response parameters to the inflation gap be-
tween 0.4 and 1 for the pre-Volcker period, suggesting the Fed did not increase the nominal
interest rate strongly enough in response to inflation, which possibly led to indeterminacy.
These studies also report evidence showing that this policy response was much stronger
after 1982, which possibly prevented self-fulfilling inflationary expectations and indetermi-
nacy from prevailing.

Several of these studies assumed a fixed inflation target. The intuition described previ-
ously about the conditions potentially leading to a significant downward bias in the policy
response parameter to the inflation gap helps understand the reasons for differing estimates
with pre-1980 and post-1982 data. Based on a simpler model, we argued that inflation target
shocks generate a positive comovement between inflation and the policy rate, and a positive
impulse-response of inflation which is larger than the response of the policy rate (see Figure
1).

Figure 5 shows there are similar effects of a positive inflation target shock at work in
our estimated medium-scale NK model. The figure plots the mean impulse-response func-
tions to a positive inflation target shock of inflation, the policy rate, and the ex-ante real
interest rate along with their 90% HPD intervals based on our estimated OG-rule model
for the two periods. The added nominal wage stickiness and real frictions help generate
hump-shaped responses relative to the standard three-equation NK model. A positive infla-
tion target shock generates a procyclical comovement of inflation and the policy rate. The
increase in the policy rate is smaller than the increase in inflation, so the real interest rate
declines. The impulse-responses to a positive target shock are consistent with our stylized
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model in Section 2, and similar to those implied by other small scale NK models (see for
example Figure 3 in Ireland (2007)).

This being said, there are a few exceptions to the evidence that the US economy moved
from a state of indeterminacy prior to 1980 to determinacy after 1982. For instance, Haque
(2022) and Brault and Phaneuf (2022) report evidence suggesting the US economy did not
experience indeterminacy prior to 1980 and after. Their evidence is based on estimated NK
models including positive trend inflation, a time-varying inflation target, sticky prices and
flexible nominal wages. However, no formal theoretical explanation is offered for the rela-
tion between the treatment of the inflation target, whether fixed or time-varying, and po-
tential biases in Taylor rule estimates. Furthermore, as mentioned earlier, the interaction of
positive trend inflation with sticky wages is known to be the one having the most significant
impact on the cyclical and long-run properties of medium-scale NK models, and this even at
moderate levels of trend inflation (Ascari et al., 2018; Khan et al., 2020). Therefore, omitting
sticky wages can significantly alter model parameter estimates.

One exception is Haque et al. (2021) who estimate a sticky-price model with positive trend
inflation, commodity price shocks and sticky wages and document that the Fed responded
aggressively to inflation but negligibly to the output gap in the pre-Volcker period such that
monetary policy-induced indeterminacy and sunspots were not causes of macroeconomic
instability during the Great Inflation. However, they assume a fixed inflation target equal
to the trend inflation rate in the economy and so their parameter estimates are prone to the
bias we identify in this paper.

Another exception is Nicoló (2023), who estimates the Smets and Wouters (2007) (here-
after SW) model with a Bayesian method allowing for the possibility of determinacy and
indeterminacy within a single estimation. His evidence suggests the US economy experi-
enced indeterminacy in 1955:IV-1979:II and 1982:IV-2007:IV.19 Obviously our findings differ.
This can be explained by some key modeling assumptions and estimation methods.

A major difference between our models is that the SW model is counterfactually log-
linearized around zero steady-state inflation, while our model is realistically log-linearized
around non-zero steady-state inflation. As mentioned earlier, modeling developments that
took place since SW wrote their paper has established that positive trend inflation signif-
icantly affects the cyclical and long-run properties of medium-scale NK models. Our evi-
dence which allows comparing models with positive and zero trend inflation indicates that
models with positive trend inflation are preferred in a statistical sense to models with zero
trend inflation.

A second difference is that the SW model is estimated solely with a MO-rule. This type
of rule has been adopted almost systematically in the NK literature afterwards. Instead, we
contrast estimation results from OG-rule and MO-rule models. When estimating a MO-rule
model with zero trend inflation for the period 1983:I-2007:IV, we find that the probability of
determinacy drops down to .5 and hence closer to Nicolò’s estimate. Our simulation evi-
dence based on the MO-rule model with zero trend inflation suggests that with an inverse

19Using data for the period 1979:III to 2007:IV, Nicolò also reports evidence of determinacy assuming a fixed
inflation target and indeterminacy with time-varying inflation target.
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Frisch elasticity of labor supply of 1.75, and Calvo wage and price probabilities of .66, the
minimum policy response parameter to the inflation gap required for determinacy is 1.2.
Nicolò reports several estimates for the inverse Frisch elasticity which are nearly 2 or higher.
Our own estimated elasticity based on the estimated MO-rule model with zero trend infla-
tion is 2.37. In this particular case, the estimated posterior mean policy response to inflation
is 1.35, and is thus much lower than the estimated policy responses for our other models.

A third difference is when we estimate the OG-rule model with zero trend inflation over
the period 1983:I-2007:IV. Here we obtain two main results. One is that the OG-rule model
with zero trend inflation is decisively preferred to the MO-rule model based on estimated
model data densities (-437.9 > -444.8). The other is that the OG-rule model with zero trend
inflation implies an estimated probability of determinacy of .87, which is significantly higher
than .5 estimated with the MO-rule model.

A final difference concerns the determinacy results based on our differing Bayesian meth-
ods. Nicolò contrasts the solution method ensuring an appropriate parametrization under
indeterminacy proposed by Lubik and Schorfheide (2004) with the method of Bianchi and
Nicoló (2021), concluding from simulated data of an indeterminate version of the SW model
that estimation of the model with the former method points to evidence of determinacy
while that with the later method recovers the indeterminacy result. He goes on estimating
the SW model with the later method.

We also use the solution method of Bianchi and Nicoló (2021), which we combine with
a parallel tempering, population-based MCMC routine. Our intent is also to allow simulta-
neous estimation of determinacy and indeterminacy regions of the parameter space. Of the
eight model versions we estimate, we find four cases where the estimated probabilities of
determinacy and indeterminacy lie between 0 and 1. Paradoxically, of the 26 different model
versions estimated by Nicolò, there is not a single case where the estimated probability of
indeterminacy is not either 1 or 0.

8 Conclusion

In this paper we have questioned the reliability of estimated Taylor rules for monetary pol-
icy analysis. Our paper has uncovered a potential source of bias in Taylor rule estimates
when the Fed is assumed to be targeting a constant long-run inflation rate in setting nomi-
nal interest rates while its target is actually time-varying.

According to our analysis, the bias in policy rule estimates is stronger in periods when in-
flation target shocks are ”large”. This, in turn, could lead to wrong statistical inference about
the determinacy outcome. The problem is that the adjustment of inflation and the nominal
interest rate following a positive target shock in a time-varying inflation target policy regime
can be confounded with those of passive policy in a fixed inflation target policy regime. In
periods where inflation target shocks are ”small”, this bias should be negligible.

We have offered evidence that inflation target shocks have been large during the period
1960-1979 but much smaller in the period 1983-2007. Consistent with our analysis, a sub-
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stantial strand of the literature has reported evidence of policy response parameters to the
inflation gap somewhat smaller than 1 prior to 1980 and significantly higher than 1 after
1982. Unsurprisingly, a number of studies have concluded that a change in the Fed’s pol-
icy stance against inflation has initiated a transition from a state of indeterminacy to one of
determinacy after 1982.

While in this paper the focus of our empirical application has been retrospective, we
believe our findings have important implications for contemporary research due to the shift
in the stance of monetary policy by many central banks around the world. Specifically,
the emphasis on the medium-term inflation outcomes suggests a moving target for central
banks depending on a variety of factors. Our findings suggest that if the movements are
modest, assuming a fixed target is likely to be harmless for model estimation. However, if
target movements are substantial, obtaining unbiased estimates will require modeling and
estimating variation in the inflation target.
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Figure 1: Impulse response functions to a monetary policy and inflation target shock in the
basic NK model
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Notes: The impulse response functions were generated using a standard calibration given by β = 0.99, τ = 1,
ϕπ = 1.5, ρv = 0.25, ρπ = 0.9, χ = 1, and ξp = 2/3. χ is the Frisch elasticity of labour supply and ξp is the
Calvo price probability. The shock sizes are σv = 0.30 and σπ = 0.10.
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Figure 2: Determinacy region for MO-rule models
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Figure 3: Determinacy region for OG-rule models
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Figure 4: Federal Reserve’s inflation target

Note: The left panel reports our estimated target process from the two subsamples, 1960I:1979II and
1983I:2007IV. The right panel reports estimated target series from Ireland (2007), Aruoba and Schorfheide
(2011), and Coibion and Gorodnichenko (2011). These estimates are obtained using a variety of different ap-
proaches. Ireland estimates a fully-specified DSGE model, backing out the target series using the Kalman
smoother, as we do. Aruoba and Schorfheide estimate a small state space model containing inflation and
inflation expectations (one and ten year), treating the common time-varying intercept as the inflation target.
Coibion and Gorodnichenko estimate a generalized Taylor rule, backing out the time-varying target by ap-
proximating the equilibrium real rate.
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Figure 5: Impulse response functions to an inflation target shock in the medium-scale model

(A) 1960-1979

(B) 1983-2007

Note: The dark blue line and bands are the associated mean response and 90% HPD intervals over 1,000
random draws from the posterior estimates. Posterior estimates are those from the OG-rule models.
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Table 1: Simulation results

σπ = 0.005 σπ = 0.02 σπ = 0.04

Fixed Time-varying Fixed Time-varying Fixed Time-varying
Name Description True value Mean Mean Mean Mean Mean Mean
σa Technology shock std deviation 1.2 1.2 1.19 1.25 1.19 1.27 1.18
σb Preference shock std deviation 1.4 1.32 1.34 1.21 1.32 0.96 1.3
σv Monetary policy shock std deviation 0.2 0.2 0.2 0.21 0.2 0.2 0.21
σπ Inflation target shock std deviation 0.005/0.02/0.04 - 0.01 - 0.02 - 0.04
h Habits 0.5 0.5 0.49 0.52 0.49 0.52 0.49
ξp Calvo price stickiness 0.6 0.62 0.6 0.7 0.6 0.75 0.6
ρ1 TR interest smoothing, 1st lag 0.8 0.76 0.8 0.58 0.79 0.53 0.78
ρ2 TR interest smoothing, 2nd lag -0.2 -0.18 -0.21 -0.12 -0.2 -0.11 -0.2
ϕπ TR response to inflation 2.25 2.11 2.26 1.52 2.26 1.18 2.31
ϕgy TR response to output growth 0.2 0.2 0.2 0.17 0.2 0.16 0.21
ρa Technology shock persistence 0.25 0.25 0.25 0.28 0.25 0.3 0.25
ρb Preference shock persistence 0.9 0.9 0.9 0.93 0.89 0.96 0.89
ρv Monetary policy shock persistence 0.2 0.23 0.18 0.41 0.19 0.47 0.2
π̄ Steady state inflation 0.9 0.88 0.88 0.9 0.88 0.84 0.88
ī Steady state nominal rate 1.4 1.36 1.36 1.37 1.36 1.3 1.35
ḡA Steady state growth 0.4 0.41 0.41 0.41 0.41 0.42 0.41

Notes: The table reports the posterior mean estimates. We do not report HPD intervals because the sample
size is sufficiently large that the upper and lower bounds are very close to the posterior mean.
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Table 2: Prior distributions for simulation

Name Domain Density Para(1) Para(2)
σa R+ InvGamma 0.5 1
σb R+ InvGamma 0.5 1
σv R+ InvGamma 0.5 1
σπ R+ InvGamma 0.1 1
h [0,1) Beta 0.7 0.15
ξp [0,1) Beta 0.66 0.05
ρ1 [0,2] Normal 0.80 0.20
ρ2 [-1,1] Normal -0.1 0.2
ϕπ R+ Normal 1.5 0.5
ϕgy R+ Normal 0.125 0.05
ρa [0,1) Beta 0.5 0.2
ρb [0,1) Beta 0.5 0.2
ρv [0,1) Beta 0.5 0.2
π̄ R+ Normal 0.75 0.25
ī R+ Normal 1.50 0.25
ḡA R+ Normal 0.40 0.10

Notes: For the Beta and Normal distributions, Para(1) and Para(2) refer to the means and standard devia-
tions of the prior. For the Uniform distribution, Para(1) and Para(2) refer to the lower and upper bounds.
For the Inverse Gamma distribution, Para(1) and Para(2) refer to s and v where pIG(σ|v, s) ∝ σ−v−1e−vs2/2σ2

.
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Table 3: Prior distributions for estimation

Parameter Description Prior(Mean, Std)
σv Monetary policy shock IG(0.1,1)
σπ Inflation target shock IG(0.1,1)
σa Technology shock IG(0.5,1)
σg Government spending shock IG(0.5,1)
ση Labour supply shock IG(0.5,1)
σb Discount factor shock IG(0.5,1)
σm Investment shock IG(0.5,1)
σs Sunspot shock IG(0.1,1)
ρv Persistence monetary policy shock B(0.5,0.2)
ρa Persistence technology shock B(0.5,0.2)
ρg Persistence government spending shock B(0.5,0.2)
ρη Persistence labour supply shock B(0.5,0.2)
ρb Persistence discount factor shock B(0.5,0.2)
ρm Persistence investment shock B(0.5,0.2)
ρv,s Sunspot shock correlation U(-1,1)
ρπ,s Sunspot shock correlation U(-1,1)
ρa,s Sunspot shock correlation U(-1,1)
ρg,s Sunspot shock correlation U(-1,1)
ρη,s Sunspot shock correlation U(-1,1)
ρb,s Sunspot shock correlation U(-1,1)
ρm,s Sunspot shock correlation U(-1,1)
α Share of capital N(0.3,0.05)
gγ̄ Trend growth N(0.5,0.1)
h Consumption habit B(0.5,0.1)
L̄ Steady state hours worked N(0,0.5)
π̄ Steady state inflation N(0.75,0.25)
χ Frisch elasticity of labour supply G(2,0.75)
ξp Calvo price probability B(0.66,0.05)
ξw Calvo wage probability B(0.66,0.05)
σz Capacity utilization cost G(5,1)
κ Investment adjustment cost G(4,1)
ϕy Taylor rule output gap feedback N(0.13,0.05)
ϕgy Taylor rule output growth feedback N(0.13,0.05)
ρ1 Taylor rule interest smoothing, 1st lag N(0.8,0.2)
ρ2 Taylor rule interest smoothing, 2nd lag N(-0.1,0.2)
ϕπ Taylor rule inflation feedback N(1.1,0.5)
αBN Determinacy parameter U(0.5,1.5)

Notes: In the column labelled ‘Prior’, N represents the Normal distribution, B the Beta distribution, G the
Gamma distribution, IG the Inverse Gamma distribution, and U the Uniform distribution. For the Uniform
distributions, the numbers inside the brackets represent the lower and upper bounds.
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Table 4: Posterior estimates for the medium-scale model, 1960-1979

OG MOT
Parameter Prior Mean 90% HPD Mean 90% HPD
σv IG(0.1,1) 0.23 [ 0.18 , 0.27 ] 0.23 [ 0.19 , 0.27 ]
σπ IG(0.1,1) 0.16 [ 0.11 , 0.21 ] 0.13 [ 0.06 , 0.19 ]
σa IG(0.5,1) 1.01 [ 0.87 , 1.16 ] 1.01 [ 0.85 , 1.15 ]
σg IG(0.5,1) 0.39 [ 0.34 , 0.45 ] 0.39 [ 0.34 , 0.45 ]
ση IG(0.5,1) 5.28 [ 2.83 , 7.67 ] 5.43 [ 2.95 , 7.84 ]
σb IG(0.5,1) 0.14 [ 0.11 , 0.17 ] 0.14 [ 0.11 , 0.17 ]
σm IG(0.5,1) 8.39 [ 4.85 , 11.7 ] 9.36 [ 5.72 , 13.0 ]
σs IG(0.1,1) 0.09 [ 0.02 , 0.18 ] 0.12 [ 0.02 , 0.33 ]
ρv B(0.5,0.2) 0.39 [ 0.15 , 0.63 ] 0.43 [ 0.22 , 0.64 ]
ρa B(0.5,0.2) 0.97 [ 0.96 , 0.99 ] 0.97 [ 0.95 , 0.98 ]
ρg B(0.5,0.2) 0.93 [ 0.90 , 0.97 ] 0.93 [ 0.90 , 0.97 ]
ρη B(0.5,0.2) 0.18 [ 0.05 , 0.29 ] 0.25 [ 0.08 , 0.42 ]
ρb B(0.5,0.2) 0.18 [ 0.07 , 0.30 ] 0.17 [ 0.06 , 0.28 ]
ρm B(0.5,0.2) 0.32 [ 0.18 , 0.46 ] 0.30 [ 0.16 , 0.44 ]
ρv,s U(-1,1) 0.01 [-0.55 , 0.56 ] -0.03 [-0.58 , 0.51 ]
ρπ,s U(-1,1) 0.01 [-0.54 , 0.56 ] -0.06 [-0.62 , 0.50 ]
ρa,s U(-1,1) 0.00 [-0.56 , 0.55 ] -0.02 [-0.56 , 0.55 ]
ρg,s U(-1,1) 0.00 [-0.54 , 0.54 ] 0.01 [-0.53 , 0.52 ]
ρη,s U(-1,1) 0.00 [-0.55 , 0.55 ] 0.01 [-0.51 , 0.56 ]
ρb,s U(-1,1) 0.01 [-0.54 , 0.55 ] 0.00 [-0.55 , 0.53 ]
ρm,s U(-1,1) 0.00 [-0.55 , 0.55 ] 0.01 [-0.53 , 0.54 ]
α N(0.3,0.05) 0.20 [ 0.18 , 0.22 ] 0.20 [ 0.18 , 0.22 ]
gγ̄ N(0.5,0.1) 0.27 [ 0.20 , 0.34 ] 0.28 [ 0.20 , 0.35 ]
h B(0.5,0.1) 0.83 [ 0.77 , 0.88 ] 0.84 [ 0.79 , 0.89 ]
L̄ N(0,0.5) 0.05 [-0.73 , 0.83 ] -0.07 [-0.84 , 0.70 ]
π̄ N(0.75,0.25) 1.02 [ 0.66 , 1.39 ] 0.96 [ 0.59 , 1.33 ]
χ G(2,0.75) 0.54 [ 0.28 , 0.79 ] 0.66 [ 0.30 , 1.01 ]
ξp B(0.66,0.05) 0.73 [ 0.70 , 0.77 ] 0.73 [ 0.69 , 0.77 ]
ξw B(0.66,0.05) 0.66 [ 0.60 , 0.74 ] 0.65 [ 0.58 , 0.71 ]
σz G(5,1) 4.99 [ 3.36 , 6.64 ] 4.92 [ 3.21 , 6.50 ]
κ G(4,1) 3.09 [ 1.90 , 4.27 ] 3.41 [ 2.13 , 4.63 ]
ϕy N(0.13,0.05) — — 0.09 [ 0.02 , 0.14 ]
ϕgy N(0.13,0.05) 0.12 [ 0.05 , 0.19 ] 0.13 [ 0.05 , 0.20 ]
ρ1 N(0.8,0.2) 0.91 [ 0.72 , 1.09 ] 0.93 [ 0.74 , 1.12 ]
ρ2 N(-0.1,0.2) -0.21 [-0.37 ,-0.06 ] -0.20 [-0.36 ,-0.05 ]
ϕπ N(1.1,0.5) 2.24 [ 1.68 , 2.82 ] 2.09 [ 1.43 , 2.89 ]
αBN U(0.5,1.5) 1.25 [ 1.04 , 1.49 ] 1.22 [ 1.01 , 1.50 ]
log p(XT) -518.0394 -518.7378
Prob(det) 1.0000 0.9250

39



Table 5: Posterior estimates for the medium-scale model, 1983-2007

OG MO
Parameter Prior Mean 90% HPD Mean 90% HPD
σv IG(0.1,1) 0.12 [ 0.10 , 0.13 ] 0.12 [ 0.10 , 0.14 ]
σπ IG(0.1,1) 0.08 [ 0.07 , 0.10 ] 0.05 [ 0.03 , 0.07 ]
σa IG(0.5,1) 0.54 [ 0.48 , 0.61 ] 0.54 [ 0.47 , 0.60 ]
σg IG(0.5,1) 0.29 [ 0.25 , 0.32 ] 0.29 [ 0.25 , 0.32 ]
ση IG(0.5,1) 17.5 [ 11.4 , 23.6 ] 8.86 [ 3.93 , 13.8 ]
σb IG(0.5,1) 0.11 [ 0.09 , 0.13 ] 0.11 [ 0.09 , 0.13 ]
σm IG(0.5,1) 3.88 [ 2.46 , 5.28 ] 5.39 [ 3.49 , 7.21 ]
σs IG(0.1,1) 0.11 [ 0.02 , 0.20 ] 0.10 [ 0.03 , 0.19 ]
ρv B(0.5,0.2) 0.54 [ 0.39 , 0.69 ] 0.58 [ 0.44 , 0.71 ]
ρa B(0.5,0.2) 0.96 [ 0.93 , 0.99 ] 0.94 [ 0.91 , 0.98 ]
ρg B(0.5,0.2) 0.99 [ 0.98 , 1.00 ] 0.99 [ 0.98 , 1.00 ]
ρη B(0.5,0.2) 0.27 [ 0.14 , 0.40 ] 0.66 [ 0.42 , 0.88 ]
ρb B(0.5,0.2) 0.14 [ 0.05 , 0.23 ] 0.14 [ 0.04 , 0.22 ]
ρm B(0.5,0.2) 0.63 [ 0.52 , 0.74 ] 0.57 [ 0.46 , 0.69 ]
ρv,s U(-1,1) 0.00 [ -0.53 , 0.58 ] 0.00 [ -0.52 , 0.53 ]
ρπ,s U(-1,1) -0.01 [ -0.55 , 0.55 ] -0.05 [ -0.61 , 0.51 ]
ρa,s U(-1,1) -0.02 [ -0.54 , 0.54 ] -0.01 [ -0.51 , 0.51 ]
ρg,s U(-1,1) 0.01 [ -0.54 , 0.58 ] 0.00 [ -0.55 , 0.53 ]
ρη,s U(-1,1) 0.00 [ -0.55 , 0.55 ] 0.00 [ -0.53 , 0.54 ]
ρb,s U(-1,1) 0.00 [ -0.57 , 0.53 ] 0.01 [ -0.57 , 0.53 ]
ρm,s U(-1,1) 0.00 [ -0.53 , 0.56 ] 0.00 [ -0.56 , 0.54 ]
α N(0.3,0.05) 0.20 [ 0.18 , 0.22 ] 0.20 [ 0.18 , 0.22 ]
gγ̄ N(0.5,0.1) 0.37 [ 0.32 , 0.42 ] 0.40 [ 0.36 , 0.44 ]
h B(0.5,0.1) 0.92 [ 0.89 , 0.95 ] 0.91 [ 0.88 , 0.95 ]
L̄ N(0,0.5) -0.02 [ -0.82 , 0.81 ] -0.12 [ -0.90 , 0.70 ]
π̄ N(0.75,0.25) 0.86 [ 0.59 , 1.14 ] 0.96 [ 0.65 , 1.27 ]
χ G(2,0.75) 1.34 [ 0.74 , 1.92 ] 1.73 [ 0.86 , 2.55 ]
ξp B(0.66,0.05) 0.84 [ 0.82 , 0.86 ] 0.83 [ 0.80 , 0.86 ]
ξw B(0.66,0.05) 0.68 [ 0.62 , 0.74 ] 0.56 [ 0.47 , 0.66 ]
σz G(5,1) 5.20 [ 3.59 , 6.73 ] 5.22 [ 3.54 , 6.79 ]
κ G(4,1) 4.19 [ 2.77 , 5.70 ] 5.48 [ 3.81 , 7.05 ]
ϕy N(0.13,0.05) — — 0.07 [ 0.01 , 0.12 ]
ϕgy N(0.13,0.05) 0.17 [ 0.10 , 0.24 ] 0.16 [ 0.08 , 0.23 ]
ρ1 N(0.8,0.2) 0.94 [ 0.77 , 1.11 ] 0.94 [ 0.77 , 1.11 ]
ρ2 N(-0.1,0.2) -0.19 [ -0.34 , -0.06 ] -0.18 [ -0.31 , -0.04 ]
ϕπ N(1.1,0.5) 2.42 [ 1.94 , 2.92 ] 2.03 [ 1.46 , 3.11 ]
αBN U(0.5,1.5) 1.25 [ 1.05 , 1.50 ] 1.21 [ 1.00 , 1.50 ]
log p(XT) -428.518 -429.635
Prob(det) 1.0000 0.9013
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Table 6: Posterior estimates under zero trend inflation

1960-1979 1983-2007

OG MO OG MO
Parameter Mean 90% HPD Mean 90% HPD Mean 90% HPD Mean 90% HPD
σv 0.22 [ 0.18 , 0.26 ] 0.23 [ 0.19 , 0.27 ] 0.12 [ 0.10 , 0.13 ] 0.12 [ 0.10 , 0.13 ]
σπ 0.18 [ 0.13 , 0.23 ] 0.16 [ 0.10 , 0.22 ] 0.09 [ 0.06 , 0.12 ] 0.06 [ 0.03 , 0.09 ]
σa 1.01 [ 0.87 , 1.15 ] 1.02 [ 0.87 , 1.15 ] 0.53 [ 0.47 , 0.60 ] 0.53 [ 0.46 , 0.59 ]
σg 0.39 [ 0.34 , 0.44 ] 0.39 [ 0.33 , 0.44 ] 0.29 [ 0.25 , 0.32 ] 0.29 [ 0.25 , 0.33 ]
ση 10.41 [ 4.06 , 16.8 ] 9.68 [ 3.31 , 16.1 ] 35.9 [ 22.0 , 48.7 ] 21.29 [ 11.37 , 31.34 ]
σb 0.14 [ 0.11 , 0.18 ] 0.15 [ 0.11 , 0.18 ] 0.11 [ 0.09 , 0.13 ] 0.11 [ 0.09 , 0.13 ]
σm 8.49 [ 5.13 , 11.66 ] 9.52 [ 6.02 , 12.88 ] 4.45 [ 2.89 , 5.92 ] 5.71 [ 3.46 , 7.77 ]
σs 0.11 [ 0.02 , 0.20 ] 0.10 [ 0.02 , 0.18 ] 0.10 [ 0.03 , 0.20 ] 0.14 [ 0.03 , 0.22 ]
ρv 0.41 [ 0.18 , 0.64 ] 0.45 [ 0.23 , 0.65 ] 0.56 [ 0.40 , 0.72 ] 0.57 [ 0.40 , 0.74 ]
ρa 0.97 [ 0.96 , 0.99 ] 0.97 [ 0.95 , 0.98 ] 0.94 [ 0.90 , 0.98 ] 0.94 [ 0.90 , 0.98 ]
ρg 0.94 [ 0.90 , 0.97 ] 0.94 [ 0.90 , 0.97 ] 0.99 [ 0.98 , 1.00 ] 0.99 [ 0.98 , 1.00 ]
ρη 0.17 [ 0.05 , 0.29 ] 0.21 [ 0.06 , 0.33 ] 0.28 [ 0.11 , 0.43 ] 0.47 [ 0.26 , 0.69 ]
ρb 0.19 [ 0.08 , 0.30 ] 0.18 [ 0.07 , 0.29 ] 0.14 [ 0.05 , 0.24 ] 0.14 [ 0.04 , 0.24 ]
ρm 0.30 [ 0.17 , 0.44 ] 0.30 [ 0.16 , 0.43 ] 0.59 [ 0.48 , 0.71 ] 0.55 [ 0.41 , 0.71 ]
ρv,s 0.02 [ -0.52 , 0.57 ] 0.02 [ -0.49 , 0.58 ] -0.03 [ -0.61 , 0.48 ] -0.15 [ -0.58 , 0.32 ]
ρπ,s 0.00 [ -0.57 , 0.54 ] 0.00 [ -0.53 , 0.55 ] -0.02 [ -0.59 , 0.51 ] -0.16 [ -0.70 , 0.40 ]
ρa,s -0.01 [ -0.58 , 0.51 ] -0.01 [ -0.57 , 0.54 ] 0.01 [ -0.54 , 0.52 ] -0.11 [ -0.61 , 0.30 ]
ρg,s -0.01 [ -0.55 , 0.52 ] -0.02 [ -0.57 , 0.54 ] -0.02 [ -0.54 , 0.54 ] 0.02 [ -0.38 , 0.49 ]
ρη,s 0.00 [ -0.55 , 0.54 ] -0.03 [ -0.60 , 0.51 ] 0.01 [ -0.51 , 0.53 ] -0.07 [ -0.52 , 0.38 ]
ρb,s -0.01 [ -0.58 , 0.54 ] 0.00 [ -0.56 , 0.53 ] -0.01 [ -0.51 , 0.54 ] 0.11 [ -0.37 , 0.51 ]
ρm,s 0.00 [ -0.56 , 0.54 ] 0.02 [ -0.53 , 0.56 ] -0.03 [ -0.52 , 0.52 ] 0.05 [ -0.49 , 0.44 ]
α 0.20 [ 0.18 , 0.22 ] 0.20 [ 0.19 , 0.23 ] 0.20 [ 0.17 , 0.22 ] 0.20 [ 0.18 , 0.22 ]
gγ̄ 0.26 [ 0.20 , 0.32 ] 0.27 [ 0.21 , 0.33 ] 0.41 [ 0.38 , 0.45 ] 0.42 [ 0.38 , 0.46 ]
h 0.84 [ 0.79 , 0.89 ] 0.85 [ 0.80 , 0.90 ] 0.89 [ 0.85 , 0.95 ] 0.89 [ 0.85 , 0.94 ]
L̄ 0.08 [ -0.67 , 0.82 ] -0.03 [ -0.77 , 0.72 ] -0.08 [ -0.92 , 0.74 ] -0.21 [ -1.07 , 0.65 ]
π̄ 0.73 [ 0.32 , 1.16 ] 0.71 [ 0.30 , 1.11 ] 0.67 [ 0.34 , 1.01 ] 0.60 [ 0.25 , 1.01 ]
χ 1.36 [ 0.56 , 2.15 ] 1.36 [ 0.55 , 2.17 ] 2.56 [ 1.50 , 3.53 ] 2.37 [ 1.16 , 3.30 ]
ξp 0.75 [ 0.72 , 0.78 ] 0.75 [ 0.72 , 0.78 ] 0.88 [ 0.85 , 0.90 ] 0.86 [ 0.83 , 0.89 ]
ξw 0.68 [ 0.60 , 0.75 ] 0.66 [ 0.59 , 0.73 ] 0.74 [ 0.69 , 0.79 ] 0.69 [ 0.61 , 0.75 ]
σz 4.99 [ 3.30 , 6.59 ] 5.02 [ 3.43 , 6.59 ] 5.13 [ 3.58 , 6.83 ] 5.18 [ 3.78 , 6.63 ]
κ 3.07 [ 1.86 , 4.22 ] 3.41 [ 2.22 , 4.57 ] 4.60 [ 3.28 , 6.09 ] 5.60 [ 3.76 , 7.32 ]
ϕy — — 0.07 [ 0.01 , 0.13 ] — — 0.02 [ 0.01 , 0.04 ]
ϕgy 0.13 [ 0.06 , 0.20 ] 0.13 [ 0.06 , 0.20 ] 0.16 [ 0.09 , 0.23 ] 0.17 [ 0.09 , 0.26 ]
ρ1 0.88 [ 0.70 , 1.07 ] 0.91 [ 0.71 , 1.10 ] 0.95 [ 0.78 , 1.12 ] 0.94 [ 0.74 , 1.18 ]
ρ2 -0.18 [ -0.33 , -0.03 ] -0.18 [ -0.33 , -0.03 ] -0.21 [ -0.36 , -0.07 ] -0.19 [ -0.35 , -0.05 ]
ϕπ 2.19 [ 1.64 , 2.75 ] 2.02 [ 1.44 , 2.59 ] 2.02 [ 0.82 , 2.77 ] 1.35 [ 0.86 , 1.98 ]
αBN 1.25 [ 1.00 , 1.45 ] 1.25 [ 1.05 , 1.49 ] 1.18 [ 0.87 , 1.50 ] 1.01 [ 0.59 , 1.50 ]
log p(XT) -522.078 -524.240 -437.926 -444.766
Prob(det) 1.0000 1.000 0.8746 0.5061
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Appendix

A Solving for Equilibrium Inflation using the Method of Un-
determined Coefficients

To solve for the dynamics of equilibrium inflation for the model in Section 2, start by guess-
ing that the solution is linear in the state variables π̂⋆

t and v̂t

π̂t = ψπππ̂⋆
t + ψπvv̂t,

x̂t = ψxππ̂⋆
t + ψxvv̂t,

Etπ̂t+1 = ψππρππ̂⋆
t + ψπvρvv̂t,

Et x̂t+1 = ψxπρππ̂⋆
t + ψxvρvv̂t,

where we have used the fact that Etπ̂
⋆
t+1 = ρππ̂⋆

t and Etv̂t+1 = ρvv̂t. Substituting these
equations into the NKPC gives

π̂t =

{
βψππρπ + ψψxπ

}
π̂⋆

t +

{
βψπvρv + ψψxv

}
v̂t.

Next, substituting the monetary policy rule and solution guesses into the consumption Euler
equation gives

x̂t =

{
ψxπρπ − 1

τ
ϕπ(ψππ − 1) +

1
τ

ψππρπ

}
π̂⋆

t +

{
ψxvρv −

1
τ
(ϕπψπv + 1) +

1
τ

ψπvρv

}
v̂t.

Now set coefficients equal to each term in the above equation. This gives

ψππ = βψππρπ + ψψxπ,
ψπv = βψπvρv + ψψxv,

or more simply

42



ψππ =
ψψxπ

1 − βρπ
,

ψπv =
ψψxv

1 − βρv
.

Finally substituting these into the consumption Euler equation gives

ψxπ =
ϕπ(1 − βρπ)

τ(1 − ρπ)(1 − βρπ) + ψ(ϕπ − ρπ)
,

and

ψxv =
−(1 − βρv)

τ(1 − ρv)(1 − βρv) + ψ(ϕπ − ρv)
.

Then the coefficients in the NKPC become

ψππ =
ψϕπ

τ(1 − ρπ)(1 − βρπ) + ψ(ϕπ − ρπ)
,

ψπv =
−ψ

τ(1 − ρv)(1 − βρv) + ψ(ϕπ − ρv)
.

Next define Λπ and Λv as

Λπ =
1

τ(1 − ρπ)(1 − βρπ) + ψ(ϕπ − ρπ)
,

Λv =
1

τ(1 − ρv)(1 − βρv) + ψ(ϕπ − ρv)
.

Using these defintions, the dynamics of equilibrium inflation can be expressed as

π̂t = ψϕπΛππ̂⋆
t − ψΛvv̂t.
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B Proof of Proposition 1

This amounts to showing that the downward bias associated with (11) is greater than the
downward bias associated with (14)

−ϕ2
πψΛπ

Var(π̂⋆
t )

Var(π̂t)
− ψΛv

Var(v̂t)

Var(π̂t)
< −ψΛv

Var(v̂t)

Var(π̂t − π̂⋆
t )

.

Which is equivalent to proving

ϕ2
π

Λπ

Λv

Var(π̂⋆
t )

Var(v̂t)
+ 1 >

Var(π̂t)

Var(π̂t − π̂⋆
t )

.

Using (12) and (15), it can be shown that

Var(π̂t)

Var(π̂t − π̂⋆
t )

=1 +
Var(π̂⋆

t )
(
2ϕπψΛπ − 1

)
Var(π̂t − π̂⋆

t )
.

Substituting this in gives

ϕ2
π

Λπ

Λv

Var(π̂⋆
t )

Var(v̂t)
+ 1 > 1 +

Var(π̂⋆
t )
(
2ϕπψΛπ − 1

)
Var(π̂t − π̂⋆

t )
.

which simplifies to require that

Var(π̂t − π̂⋆
t )

Var(v̂t)
>

(2ϕπψΛπ − 1)
ϕ2

π

Λv

Λπ
.

This inequality is satisfied for plausible ranges of shock sizes and parameter values. By
assumptions A1(i)-A1(iii) ϕ2

π > 1, Λv
Λπ

< 1, and 2ϕπψΛπ − 1 > 0. However, the above condi-
tion can be violated if the variance of monetary policy shocks is significantly larger than the
variance of inflation target shocks. This is because the relative variance of the inflation gap to
monetary policy shocks is declining in the variance of monetary policy shocks. Specifically,
as the size of monetary policy shocks grows infinitely large we have
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lim
Var(v̂t)→∞

Var(π̂t − π̂⋆
t )

Var(v̂t)
= (ψΛv)

2 < 1.

Using the calibration described in Section 2, for the inequality to be violated would require
monetary policy shocks to be over 8 times larger than inflation target shocks. If ρπ = 0.995,
as it is in our empirical sections of the paper, it would require monetary policy shocks to be
about 15 times larger than inflation target shocks, which we view as implausible.
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C Log-linearized model for simulation

The following describes the log-linearized equations for the New Keynesian model used in
the simulation part of the paper. The model is a small-scale New Keynesian model with
positive trend inflation similar to Ascari and Sbordone (2014). The model contains added
elements in the form of habit formation and additional shocks. For each variable Xt, we
define X̂t = logX̃t − logX, where X̃t represents the corresponding stationary variable and X
its steady state.

Ŷt =
h

h + gA

(
Ŷt−1 − ĝA,t

)
+

gA

h + gA
Et

(
Ŷt+1 + ĝA,t+1

)
− gA − h

h + gA

(
ît − Etπ̂t+1 − b̂t + Etb̂t+1

) (C.1)

π̂t =β[1 + θ(1 − ξpπθ−1)(π − 1)]Etπ̂t+1 + β(1 − ξpπθ−1)(π − 1)EtX̂1,t+1

+

(
(1 − ξpπθ−1)(1 − βξpπθ)

ξpπθ−1

)
((1 + χ)Ŷt + χŝt) + β(1 − π)(1 − ξpπθ−1)b̂t

+

(
(1 − βξpπθ−1)(1 − ξpπθ−1)

ξpπθ−1

)(
h

gA − h

)(
Ŷt − Ŷt−1 + ĝA,t

) (C.2)

X̂1,t = (1 − βξpπθ)(b̂t + (1 + χ)Ŷt + χŝt) + βξpπθEt[X̂1,t+1 + θπ̂t+1] (C.3)

ŝt =
θξpπθ−1(π − 1)

1 − ξpπθ−1 π̂t + πθξp ŝt−1 (C.4)

ît = ρ1 ît−1 + ρ2 ît−2 + (1 − ρ1 − ρ2)(ϕπ(π̂t − π̂⋆
t ) + ϕgy(Ŷt − Ŷt−1 + ĝA,t)) + vt (C.5)

ĝA,t = ρa ĝA,t−1 + ϵa
t (C.6)

b̂t = ρbb̂t−1 + ϵb
t (C.7)

v̂t = ρvv̂t−1 + ϵv
t (C.8)

π̂⋆
t = ρππ̂⋆

t−1 + ϵπ
t (C.9)
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D Log-linearized model for estimation

This section lists the full set of log-linearized equations for the medium-scale NK model.
For each variable Xt, we define X̂t = logX̃t − logX, where X̃t represents the corresponding
stationary variable and X its steady state.

λ̂r
t =

βhgγ

(gγ − βh) (gγ − h)
Ĉt+1 −

g2
γ + βh2

(gγ − βh) (gγ − h)
Ĉt +

gγh
(gγ − βh) (gγ − h)

Ĉt−1 +
gγ − βhρb

gγ − βh
b̂t

20

(D.1)

r̂k
t = σzẑt

21 (D.2)

λ̂r
t = µ̂t + m̂t − κg2

γ

(
Ît − Ît−1

)
+ βκg2

γ

(
Ît+1 − Ît

)
(D.3)

µ̂t =
[
1 − β (1 − δ) g−1

I g−1
γ

] (
λ̂r

t+1 + r̂k
t+1

)
+ β (1 − δ) g−1

I g−1
γ µ̂t+1 (D.4)

λ̂r
t = ît − π̂t+1 + λ̂r

t+1 (D.5)

ŵ∗
t = f̂1t − f̂2t (D.6)

f̂1t =
[
1 − βξwπσ(1+χ)gσ(1+χ)

γ

] {
σ (1 + χ) (ŵt − ŵ∗

t ) + (1 + χ) L̂t + η̂t

}
+ βξwπσ(1+χ)gσ(1+χ)

γ

{
σ (1 + χ)

(
π̂t+1 + ŵ∗

t+1 − ŵ∗
t
)
+ f̂1t+1

}
(D.7)

f̂2t =
[
1 − βξwπσ−1gσ−1

γ

] ( w
w∗

)σ−1 {
λ̂r

t + σ (ŵt − ŵ∗
t ) + L̂t

}
+ βξwπσ−1gσ−1

γ

{
(σ − 1) π̂t+1 + σ

(
ŵ∗

t+1 − ŵ∗
t
)
+ f̂2t+1

}
(D.8)

20gγ is the gross growth rate of the deterministic trend factor in the steady state.
21σz =

γ2
γ1

.
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K̂t = m̂ct − r̂k
t +

sY
sY + F

(
ŝt + Ŷt

) 22 (D.9)

L̂t = m̂ct − ŵt +
sY

sY + F
(
ŝt + Ŷt

)
(D.10)

p̂∗t = ĝ1t − ĝ2t (D.11)

ĝ1t =
[
1 − ξpβπθ

] {
λ̂r

t + m̂ct + Ŷt

}
+ξpβπθ

{
θπ̂t+1 + ĝ1t+1

}
(D.12)

ĝ2t =
[
1 − ξpβπθ−1

] {
λ̂r

t + Ŷt

}
+ξpβπθ−1

{
(θ − 1) π̂t+1 + ĝ2t+1

}
(D.13)

ξpπθ−1 (θ − 1) π̂t +
(
1 − ξp

)
p∗1−θ (1 − θ) p̂∗t = 0 (D.14)

(1 − σ) ŵt = ξwgσ−1
γ πσ−1

{
(1 − σ) ŵt−1 + (σ − 1) π̂t

}
+ (1 − ξw)

(
w∗

w

)1−σ

(1 − σ) ŵ∗
t

(D.15)

ŝt + Ŷt =
sY + F

sY

{
ât + αK̂t + (1 − α) L̂t

}
(D.16)

1
g

Ŷt =
1
g

ĝt +
C
Y

Ĉt +
I
Y

Ît + rk K
Y

g−1
γ g−1

I ẑt (D.17)

ŶGDP
t = Ŷt − rk K

Y
g−1

γ g−1
I ẑt (D.18)

K̂p
t+1 =

[
1 − (1 − δ) g−1

γ g−1
I

] {
m̂t + Ît

}
+ (1 − δ) g−1

γ g−1
I K̂p

t (D.19)

K̂t = ẑt + K̂p
t (D.20)

sŝt = −
(
1 − ξp

)
p∗−θθ p̂∗t + ξpπθs

{
θπ̂t + ŝt−1

}
(D.21)

22st =
∫ 1

0

( Pjt
Pt

)−θ
dj denotes the measure of price dispersion in the model.

48



MOT-rule : ît = ρ1 ît−1 + ρ2 ît−2 + (1 − ρ1 − ρ2)
{

ϕπ (π̂t − π̂∗
t )

+ ϕy

(
ŶGDP

t − ŶGDP∗
t

)
+ ϕgy

(
ŶGDP

t − ŶGDP
t−1

) }
+v̂t (D.22)

OGT-rule : ît = ρ1 ît−1 + ρ2 ît−2 + (1 − ρ1 − ρ2)
{

ϕπ (π̂t − π̂∗
t ) + ϕy

(
ŶGDP

t − ŶGDP∗
t

) }
+v̂t

(D.23)

ât = ρa ât−1 + ϵa
t (D.24)

b̂t = ρbb̂t−1 + ϵb
t (D.25)

η̂t = ρη η̂t−1 + ϵ
η
t (D.26)

m̂t = ρmm̂t−1 + ϵm
t (D.27)

v̂t = ρvv̂t−1 + ϵv
t (D.28)

ĝt = ρg ĝt−1 + ϵ
g
t (D.29)

π̂∗
t = ρππ̂∗

t−1 + ϵπ
t (D.30)
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