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1 Introduction

At least since Leontief (1936), economists have recognized the importance of sys-
tematically quantifying interrelationships between the producers of an economy.1

More recently, studies have shown that these input-output linkages play a crucial
role in amplifying microeconomic shocks into aggregate fluctuations (Acemoglu
et al., 2012; Atalay, 2017, and Baqaee and Farhi, 2019). In addition to an indus-
try’s share of value added to GDP, its macroeconomic importance depends on how
other sectors rely on it, directly or indirectly, for intermediate inputs. Moreover, ex-
isting measures of industries’ systemic importance quantify the impact of an iso-
lated idiosyncratic shock to a given sector on aggregate output (see, for example,
Hulten, 1978, Liu, 2019, Baqaee and Farhi, 2020, and Bigio and La’O, 2020).2 How-
ever, in reality, shocks rarely occur in isolation. An economy with millions of firms
experiences multiple (idiosyncratic or common) disturbances simultaneously. As
a result, the systemic importance of an industry extends beyond the isolated im-
pact of a shock to itself. It also encompasses the industry’s sensitivity to shocks
originating from other sectors of the economy.

This paper presents a new measure of a sector’s macroeconomic importance,
which we refer to as removal centrality, that captures how an industry impacts real
GDP by i) directly affecting the final consumption of its output, ii) indirectly af-
fecting the production of firms that are directly or indirectly connected to it, and
iii) transmitting simultaneous disruptions from other sectors of the economy to
downstream producers and final demand. To demonstrate the intuition behind
our measure, consider the mining and transportation industries in the US. Both
industries account for about 1% of GDP and supply similar amounts of intermedi-
ate goods, valued at approximately USD 640 billion, to domestic producers. The
results of Hulten (1978) imply that the systemic importance of these industries can
be approximated by their gross sales as a share of GDP, or Domar weights, which
are roughly equivalent for both sectors.

1We use the terms producers, sectors, industries, and firms interchangeably in this paper.
2While these papers employ different frameworks: efficient vs. inefficient economies (with

taxes, markups or financial frictions) and differences in production technologies (Cobb-Douglas
vs. CES), they share the common aim of characterizing the change in aggregate output due to an
idiosyncratic disturbance to a microeconomic producer.
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Our measure, however, offers a new perspective to sectoral importance. The
transportation sector purchases nearly three times more intermediate inputs than
the mining industry and is particularly dependent on goods and services from
industries such as manufacturing and professional services. This higher reliance
on intermediates makes the transportation industry more susceptible to upstream
shocks, which it then transmits to downstream sectors and final consumers. On
the other hand, the mining industry’s lower dependence on intermediates makes
it relatively more insulated against such shocks. Notably, removal centrality en-
capsulates sectors’ Domar weight, and all the information contained in it, but also
incorporates the greater systemic significance of the transportation industry in in-
fluencing aggregate volatility, given its position in the production network and its
dependence on other sectors.

We measure a sector’s removal centrality by first defining a counterfactual pro-
duction network that omits the input-output linkages between the industry and
its immediate customers, primary suppliers, and final users of its output.3 Since
productivity shocks propagate downstream through supply chains, severing these
links prevents shocks from transmitting to sectors that directly or indirectly pur-
chase inputs from the focal industry. We then compare the impact of simultaneous
microeconomic TFP shocks on real GDP in the actual economy, which includes
all input-output connections, with that of the hypothetical economy. The differ-
ence between the counterfactual and observed change in GDP yields the removal
centrality of the sector in question.

A challenge in implementing our approach lies in characterizing the macroe-
conomic impact of shocks in the hypothetical economy. Severing input-output
linkages leads to endogenous changes in the prices and quantities of traded in-
puts, which are not observable in the counterfactual scenario. A key contribution
of this paper is to provide a nonparametric formula that allows us to quantify each
sector’s importance without having to characterize changes in prices and quan-
tities in the counterfactual. Notably, only observable data on intermediate input

3Node and edge removal are standard techniques in graph theory for measuring the connectiv-
ity of vertices of a network (for a detailed overview of connectivity measures in the field of complex
networks, see Estrada, 2012). Furthermore, node removal is also widely used for quantifying the
overall stability of a network (see Albert et al. (2000) for an example of this approach).

3



purchases, nominal gross output, tax payments, and nominal GDP is necessary to
estimate an industry’s removal centrality. Since this information is available for
most countries, our measure is readily computable.

Removal centrality can be decomposed into three distinct components, which
we refer to as direct, indirect, and supplier effects. The direct effect captures the im-
pact of a shock to the focal industry on real GDP via households’ direct consump-
tion of its output. The indirect effect, on the other hand, captures the spillover
effect of the shock (to the focal industry) on final demand as it spreads to other
industries. Lastly, the supplier effect quantifies how shocks to other industries in
the economy transmit through the focal industry, affecting real GDP by influenc-
ing its downstream customers. Notably, the sum of a sector’s direct and indirect
effects corresponds to its Domar weight, a well-established measure of systemic
significance (as in Hulten, 1978; Baqaee and Farhi, 2020).4 The third component,
the supplier effect, represents a sector’s ability to transmit shocks originating else-
where in the economy and distinguishes a sector’s Domar weight from its removal
centrality.5

Our measure of removal centrality is derived within the framework of a macroe-
conomic production network model in the spirit of Atalay (2017), Bernard and
Moxnes (2018), Baqaee and Farhi (2019), and Carvalho et al. (2021). In the model,
each sector produces output using a combination of labor and intermediate inputs
and is subject to Hicks-neutral productivity shocks, which affect its own output
and that of industries that purchase its intermediate goods. We capture relation-
ships between industries via constant-elasticity-of-substitution (CES) aggregators
of intermediate products. While goods may either be complements or substitutes

4In inefficient economies with one factor of production, distortion-adjusted Domar weights are
sufficient to characterize the macroeconomic impact of isolated microeconomic TFP shocks (Baqaee
and Farhi, 2020). Since our model includes taxes on sales and input purchases, we use the term “Do-
mar weights” to refer to tax-adjusted sales shares. However, regardless of whether the economy is
efficient or inefficient, removal centrality encapsulates the first-order macroeconomic impact of an
idiosyncratic microeconomic TFP shock to the focal industry.

5Notably, a portion of the indirect effect of a supplier sector is included in the supplier effect
of its customer as well. Thus, when aggregating across all industries, the sum of indirect effects is
roughly equal to the sum of supplier effects. However, when analyzing the systemic importance
of an industry in isolation, both indirect and supplier effects are relevant. In the aggregate, the two
effects are approximately equivalent. See Section 2.3 for a detailed discussion on the relationship
between indirect and supplier effects.
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in our model, a sector’s removal centrality does not depend on the value of the
elasticity of substitution across intermediate or final goods. In this respect, our for-
mulas align with the nonparametric results of much of the production networks
literature, including Hulten (1978), Liu (2019), Baqaee and Farhi (2020), and Bigio
and La’O (2020).

In an empirical application, we first estimate removal centrality for 393 sectors
in the US in 2012 using the detailed input-output accounts provided by the Bureau
of Economic Analysis (BEA). We show that Domar weights underestimate the sys-
temic importance of an industry by 50%, on average, implying that supplier effects
are quantitatively significant for most industries. We further demonstrate that the
extent of underestimation increases with the Domar weight of a sector. This result
is not immediately obvious as a sector’s removal centrality and its Domar weight
can coincide, even for industries with large Domar weights (say, for an upstream
sector that uses no intermediate inputs for production).

We then compare the relationship between industries’ removal centrality and
their corresponding Domar weights between the years 1982 and 2012, using input-
output data from the BEA. We find the relationship between sectors’ Domar weights
and removal centrality to be remarkably constant over time. That is, sectors with
larger Domar weights have substantially greater supplier effects as well. Thus,
as industries grow larger in size (as measured by their Domar weight), they also
become increasingly reliant on inputs from other sectors in the economy, which
increases their susceptibility to shocks originating elsewhere. Our findings reveal
that industries such as petroleum refineries, oil & gas extraction, and electric power
generation play a crucial role in transmitting and amplifying shocks from other
sectors. As a result, these industries have a substantial capacity to drive aggregate
fluctuations in the US.

Further, changes in a sectors’ removal centrality need not coincide with changes
in its Domar weight. Our analysis shows that key sectors of the US economy, such
as motor vehicle production, electronic computer manufacturing, and retail trade
experienced significant changes in their removal centrality over time, despite hav-
ing relatively stable Domar weights. Take, for instance, the retail trade sector. Be-
tween 1982 and 1987, retail trade experienced a substantial decrease in its reliance

5



on intermediates from other sectors, with its supplier effect declining from around
3.5% of GDP to less than 3% of GDP during this period. Surprisingly, however,
the Domar weight of retail trade remained constant. Therefore, when assessing re-
tail trade’s systemic importance using our measure of removal centrality, we note
a significant decline in its macroeconomic significance, which is not captured by
its Domar weight. This discrepancy highlights the limitation of relying solely on
the Domar weight of a sector to assess its overall importance and underscores the
relevance of removal centrality.

Next, using data from the World Input-Output Database between 2000 and
2014, we identify the industries with the greatest removal centrality for six major
economies: the United States, Great Britain, Japan, China, Germany, and Australia.
For each economy, construction, real estate, public administration, and food & bev-
erages are always among the top five sectors with the largest removal centrality.
Notably, the magnitude of direct, indirect, and supplier effects vary significantly
across countries and industries. Labor-intensive sectors, such as education and
health services, have significant direct effects. This is because they rely less on in-
termediate inputs and provide services directly to end-consumers, limiting their
ability to amplify shocks via indirect and supplier effects. Conversely, sectors like
wholesale trade and electricity & gas supply derive most of their aggregate im-
portance from the indirect effect, reflecting their critical role as input suppliers to
other producers. Construction and food & beverages, on the other hand, have rel-
atively large direct and supplier effects, which highlights their central role as both
producers of final goods and consumers of intermediate goods.

Related literature. Our article relates to the literature on growth accounting and
production networks. Hulten (1978) provided the economic rationale for using
Domar aggregation to measure changes in aggregate TFP. Hulten’s result was in
contrast to Solow (1957), who used an aggregate production function and mea-
sured TFP growth as the residual change in output after accounting for the growth
of factor inputs. Hulten’s theorem has become a benchmark in the macroeconomic
literature on production networks, demonstrating that in the presence of interme-
diate inputs, sales (rather than value-added) shares are the appropriate weights for
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aggregating microeconomic productivity changes.6 Specifically, the theorem states
that a producer’s sales as a share of GDP (also called its Domar weight) is sufficient
to capture the first-order macroeconomic impact of a microeconomic productivity
shock to that producer. Relatedly, Acemoglu et al. (2012) demonstrate that Domar
weights are linked to the economy’s input-output network through the Leontief
inverse, capturing each industry’s direct and indirect dependencies on intermedi-
ate inputs from other sectors.7 Our measure of systemic importance differs from
that of Hulten (1978) and Acemoglu et al. (2012) as it captures a sector’s ability to
transmit and amplify a set of simultaneous shocks to all producers in the economy
and impact final demand.

Since our key measure is derived in the context of an inefficient network model,
we contribute to the growing literature on the propagation of shocks through input-
output linkages in the presence of market imperfections. Some papers in this lit-
erature include Jones (2011, 2013); Bartelme and Gorodnichenko (2015); Caliendo
et al. (2018); Liu (2019); Boehm and Oberfield (2020), and Boehm (2022). Bigio
and La’O (2020) study the properties of inefficient (Cobb-Douglas) production net-
works with financial frictions, while Baqaee and Farhi (2020) study the impact of
microeconomic productivity and factor supply shocks on aggregate output in a
model with markups. We contribute to this literature by demonstrating analyti-
cally that taxes on intermediate input purchases and gross sales increase sectors’
removal centrality relative to frictionless economies without such distortions.8 We
also show how to use our framework to quantify the importance of these distor-
tions on sectors’ removal centrality. Empirically, however, we find that sectoral
taxes had a relatively limited impact on the amplification of microeconomic shocks
in the United States between 1982 and 2012.

Our paper also relates to the recent macroeconomics literature that investigates

6See Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019) for a detailed overview of the
production networks literature.

7Baqaee and Farhi (2019) build on the work of Hulten (1978) and Acemoglu et al. (2012), show-
ing that nonlinearities in production have a significant impact on macroeconomic outcomes. While
the first-order macroeconomic effect of a microeconomic shock to a sector is given by the sector’s
Domar weight, the second-order effect requires additional information, such as microeconomic
elasticities of substitution and the degree of return to scale.

8Taxes on factor payments only affect aggregate volatility when there are factor supply shocks
or factor-augmenting productivity shocks.
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the role of input-output linkages in generating aggregate volatility, including Fo-
erster et al. (2011), Acemoglu et al. (2012), di Giovanni et al. (2014), Acemoglu et al.
(2017), Atalay (2017), Grassi (2017), Baqaee (2018), and Altinoglu (2021).9 A com-
mon theme in this literature is that the interdependence of production through
input-output linkages significantly amplifies aggregate volatility: small shocks
cascade through supply chains resulting in larger fluctuations in output.10 We con-
tribute to this literature in three ways. First, we identify the key sectors that have
the greatest impact on aggregate volatility using our measure of removal centrality
and demonstrate that these are not necessarily the industries with the largest Do-
mar weights. Second, to gain a deeper understanding of the key determinants of
aggregate volatility, we decompose sectors’ removal centrality into direct, indirect,
and supplier effects. Our analysis underscores the critical role that supplier effects
play in shaping aggregate fluctuations. For example, sectors such as construction
and food & beverages have a great capacity to absorb shocks from other industries
and propagate them to final demand. Lastly, we provide evidence that larger sec-
tors tend to exhibit a higher level of dependence on intermediate inputs from other
industries. This finding suggests that as sectors grow in size, they not only con-
tribute more to aggregate fluctuations due to their increased share of GDP, but also
because their ability to transmit shocks originating from other sectors increases.

The rest of the paper is structured as follows. In Section 2, we present the model
and derive our measure of removal centrality. In Section 3, we use our framework
to identify the industries that have a significant impact on the propagation of mi-
croeconomic shocks. Section 4 concludes. Proofs, a description of the data, and
supplementary results appear in the Appendix.

9These papers build on earlier work in macroeconomics that studies aggregate volatility in
multi-sector models, such as Long and Plosser (1983); Horvath (1998, 2000); Dupor (1999); Shea
(2002). Other papers that model microeconomic behavior to shed light on macroeconomic phe-
nomena include Durlauf (1993) and Jovanovic (1987). Studies such as Gabaix (2011) and Amiti and
Weinstein (2018) focus on the role of the firm size distribution in shaping aggregate fluctuations.
Finally, Elliott et al. (2022) and Carvalho et al. (2022) examine how supply chain complexity and
bottlenecks contribute to macroeconomic fragility.

10The empirical networks literature examines the transmission of microeconomic shocks
through input-output linkages using quasi-experiments. For instance, studies such as Barrot and
Sauvagnat (2016), Boehm et al. (2019), and Carvalho et al. (2021) estimate the impact of natural
disasters on output losses along firm-level supply chains, emphasizing the significance of indirect
propagation.
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2 Theoretical Framework

In this section, we set up a general equilibrium model in the spirit of Bernard and
Moxnes (2018) and Baqaee and Farhi (2020) to derive our measure of removal cen-
trality. We begin with a discussion of the intuition behind the measure.

Measuring a sector’s removal centrality. Our measure of removal centrality µi

quantifies industry i’s capacity to amplify the effects of simultaneous microeco-
nomic TFP shocks, including those affecting the sector itself and its direct or indi-
rect suppliers. Given the interconnectedness of producers in the production net-
work, an idiosyncratic TFP shock to a sector can have consequential effects on GDP
not only through direct impacts on final consumption but also by disrupting other
downstream sectors that rely on its goods for production. Furthermore, a sector
can be influenced by shocks to its direct or indirect suppliers, which it can subse-
quently transmit down the supply chain. The measure µi captures all three aspects
of shock propagation to measure sector i’s macroeconomic importance.

In our model, productivity shocks propagate from upstream suppliers to down-
stream customers.11 Industries that supply many intermediate goods to other pro-
ducers have a greater impact on aggregate output than those that supply fewer
inputs. Likewise, sectors that use a large volume of intermediates from a wide
array of suppliers are susceptible to output disturbances originating in the sup-
pliers’ industries. To measure an industry’s removal centrality µi, we compare
the impact of a vector of idiosyncratic microeconomic TFP shocks on real GDP in
two economies: the actual economy and a counterfactual economy. In the actual
economy, all input-output linkages between the focal industry, its direct suppliers,
immediate customers, and the household sector are intact, as illustrated in Panel
A of Figure 1. In the counterfactual economy, depicted in Panel B of Figure 1, the
links between the focal industry and all other economic agents are severed (shown
using feint dotted arrows), preventing shocks to the focal industry from affecting
final demand.

11Microeconomic shocks transmit downstream through price changes. For example, a decrease
in productivity in an industry leads to an increase in the price of its output, causing a decline in
demand from its direct and indirect customers. As a result, prices in the downstream sectors also
rise, eventually reducing final demand.
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A. Actual Economy B. Counterfactual Economy

Suppliers

Focal Industry

Customers

Households

Figure 1: Illustration of Removal Centrality
Note: Red nodes represent households, green nodes represent suppliers, yellow nodes depict cus-
tomer sectors, and the central blue node is the focal industry. Panel A shows the actual economy
in which all input-output linkages are intact. Panel B depicts the counterfactual economy in which
the focal sector’s connections with its suppliers, customers, and the household sector are severed.
In the counterfactual economy, feint dotted arrows represent the severed linkages. Black arrows
capture the flow of goods.

Note that shocks to suppliers (green nodes) can still affect GDP in the counterfac-
tual, but without affecting the focal industry, as long as these sectors supply goods
to other industries or households. The difference between the change in GDP in
the two economies, in response to the same vector of shocks, yields the removal
centrality of the focal industry.

2.1 Model setup and equilibrium

We consider a static economy with N sectors that each produce one distinct product
using some combination of labor and intermediate goods. The output of these
sectors can either be consumed directly by households as final goods or used as an
intermediate input by other sectors.

Aggregate output. Real GDP is the maximizer of a constant-elasticity-of substi-
tution (CES) aggregator of final consumption:

Y = max
{ci}N

i=1

(
N

∑
i=1

(
ωD,ici

)σ−1
σ

) σ

σ−1

subject to
N

∑
i=1

pici = wL,
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where Y is aggregate output, ci is the final consumption of good i, ωD,i is a sector-
specific final demand shifter, σ is the elasticity of substitution, pi is the price of i’s
output, w is the wage rate, and L is aggregate labor supply.

Producers. Sectors produce output using Cobb-Douglas technologies that com-
bine labor and intermediate goods

yi = Ail
αi
i M1−αi

i ,

where yi is sector i’s output, Ai is a Hicks-neutral productivity shifter, li is labor
use, Mi is a bundle of intermediate goods used by i and αi ∈ [0,1] is the impor-
tance of labor in i’s production. Notably, we allow for heterogeneity in the initial
level of productivity Ai across sectors.12 Furthermore, Mi is a CES aggregator of
intermediate goods from other sectors, defined as

Mi ≡

(
N

∑
j=1

(
ωi jxi j

) θ−1
θ

) θ

θ−1

,

where xi j is the quantity of good j used by sector i and θ is the elasticity of sub-
stitution between inputs. As in Bernard and Moxnes (2018), ωi j is a sector-specific
taste shifter that accounts for differences in production technologies between sec-
tors at the initial equilibrium. We define an N + 1×N matrix ωωω ≡

[
ωi j
]
, where an

element ωi j ≥ 0 captures the importance of good j in the production of good i at
the initial equilibrium. If ωi j = 0, then sector i does not require the output of sector
j to produce. The N +1th row of ωωω contains the final demand shifters ωD,i, which
capture households’ reliance on final goods from each industry. Throughout the
paper, we model the counterfactual economy by changing the parameters ωi j and
ωD,i.

Similar to Baqaee and Farhi (2020), Bigio and La’O (2020), and Liu (2019), we
model distortions as taxes on sectors’ sales and input use. Industry i’s profits are
therefore given by

12Additionally, our approach can accommodate factor-augmenting productivity shocks and
shocks to factor supplies.

11



πi = (1− τy,i)piyi − (1+ τL,i)wli −
N

∑
j=1

(1+ τx,i j)p jxi j,

where τy,i, τL,i, and τx,i j denote taxes imposed on sector i’s sales, labor use, and in-
termediate good purchases, respectively. The market-clearing conditions for goods
1 ≤ i ≤ N and labor are given by

yi = ci +
N

∑
j=1

x ji and L =
N

∑
i=1

li = 1.

General equilibrium. Given taxes {τy,i,τL,i,τx,i j}, productivities Ai, technology
parameters ωi j, and final demand shifters ωD,i, a general equilibrium is a set of
prices {pi,w}, input choices {li,xi j}, outputs yi and final demands ci, such that: final
demand maximizes the consumption aggregator subject to the budget constraint,
producers maximize profits taking prices as given and the markets for labor and
goods clear.

Input-output definitions. We now introduce some input-output notation that is
central to our analysis. First, we define the N ×N tax-adjusted equilibrium input-
output matrix ΩΩΩ ≡

[
Ωi j
]
, where

Ωi j =
(1+ τx,i j)p jxi j

(1− τy,i)piyi
. (1)

For brevity, we will refer to the matrix ΩΩΩ as the input-output matrix throughout the
rest of the paper. Notably, Ωi j captures the direct exposure of sector i to sector
j, after accounting for the taxes τy,i and τx,i j that separate prices from marginal
costs.13 The first-order condition with respect to intermediate inputs from sector j

(xi j), implies

Ωi j = (1−αi)(1+ τx,i j)
1−θ p1−θ

j Pθ−1
M,i ω

θ−1
i j , (2)

13The input-output matrix ΩΩΩ is similar to the cost-based input-output matrix of Baqaee and
Farhi (2020).
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where PM,i is the price index associated with the intermediate goods bundle Mi.14

The input-output parameter Ωi j is therefore a function of the price of j’s output
relative to i’s intermediate goods price index, p j/PM,i, sector i’s productivity level
Ai, the tax wedge (1+ τx,i j), the elasticity of substitution θ , the importance of labor
in i’s production αi, and the technology parameter ωi j.

As discussed above, to measure a sector’s removal centrality, we construct a
counterfactual economy by severing relationships between sectors. This is achieved
by setting parameters of the matrix ωωω to zero. For instance, setting ωi j = 0 breaks
the connection between sectors i and j. Thus, to measure the removal centrality of
industry i, we set the ith row and column of ωωω (including the final demand parame-
ter ωD,i) to zero. In other words, industry i ceases to exist under the counterfactual.
Equation (2) implies that when ωi j = 0, the corresponding entry in the input-output
matrix, Ωi j, is also equal to zero. However, it is important to note that severing the
relationship between sectors i and j will have a ripple effect on other elements in
the input-output matrix ΩΩΩ, as it will alter the prices of all sectors’ outputs. Since
intermediate inputs can be either complements or substitutes, changes in the pa-
rameters ωi j will prompt producers to adjust the mix of inputs they use, leading to
price changes across all sectors. As a result, these relative price adjustments affect
real GDP under the counterfactual network structure.15

Associated with the input-output matrix is the economy’s Leontief inverse ΨΨΨ ≡[
ψi j
]
, where

ΨΨΨ ≡ (I −ΩΩΩ)−1 = I +ΩΩΩ+ΩΩΩ
2 + ...

Intuitively, a typical element of the Leontief inverse ψi j captures all direct and indi-
rect ways that sector i uses sector j’s output.16 In this respect, the Leontief inverse

14Formally, PM,i ≡
(

∑
N
j=1 ω

θ−1
i j [(1+ τx,i j)p j]

1−θ
) 1

1−θ .
15In the special case that all intermediate goods aggregators (Mi) are Cobb-Douglas (θ = 1),

the input-output parameter Ωi j is given by Ωi j = (1−αi)ωi j for all i, j. This implies that shutting
down links between producers will not impact other parameters in the input-output matrix ΩΩΩ

when Mi is Cobb-Douglas for all i. However, when θ ̸= 1, the input-output matrix ΩΩΩ will respond
endogenously to changes in the technology parameters ωi j.

16See Carvalho and Tahbaz-Salehi (2019) for a more detailed discussion of the Leontief inverse
matrix.
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summarizes all production chains of any length. To see this, note that (ΩΩΩn)i j mea-
sures the weighted sum of all paths of length n linking sector j to sector i through
the production network.

Related to the matrix ΩΩΩ is the economy’s off-diagonal input output matrix Ω̃ΩΩ, de-
fined

Ω̃ΩΩ ≡ ΩΩΩ−diag(ΩΩΩ) .

The diagonal of Ω̃ΩΩ contains zeros, whereas all off-diagonal elements are identical
to those of the input-output matrix ΩΩΩ. Thus, the matrix Ω̃ΩΩ captures all dependen-
cies between sectors and omits producers’ reliance on their own products. As we
show in Section 2.2.1, the off-diagonal input-output matrix is required to measure
industries’ removal centrality.

Next, we denote the N ×1 vector of final expenditure shares by ϒϒϒ ≡ [ϒi], where

ϒi =
pici

∑
N
j=1 p jc j

=
p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) . (3)

The denominator ∑
N
j=1 p jc j corresponds to nominal GDP.17 Notably, ϒi measures

the direct exposure of the household to sector i. We highlight in Section 2.2.1 that
the final expenditure share of an industry i sufficiently summarizes the direct effect
of a shock to sector i on real GDP. Notably, equation (3) shows that shutting down
the household’s dependence on i’s product (by setting ωD,i = 0) implies i’s final
expenditure share is equal to zero as well, ϒi = 0.

We also define an N ×1 vector of tax-adjusted Domar weights, λλλ ≡ [λi], where

λi =
N

∑
k=1

ϒkψki. (4)

Throughout the rest of the paper we refer to λi as the Domar weight of sector i. Since
λi implicitly embodies taxes on sales and intermediate goods, our Domar weights
differ from those of Hulten (1978), which are defined for efficient economies. No-
tably, λi captures all direct and indirect ways the household uses goods from sector

17See Appendix A for the proof of equation (3).
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i after accounting for taxes.18

The aggregate impact of sectoral shocks. Before defining the key measure of the
paper, we must first characterize how real GDP responds to TFP shocks in the
observed economy (which contains all linkages between sectors). For this, we use
the central theorem of Baqaee and Farhi (2020), which characterizes the first-order
macroeconomic impact of a microeconomic shock in the presence of distortions:

d logY
d logAi

= λi. (5)

Crucially, tax-adjusted Domar weights {λi}N
i=1 are the correct statistics for deter-

mining the aggregate effect of productivity shocks d logAi to each sector i= 1,2, ...,N.
The above equation is a variant of Hulten’s (1978) theorem for economies with in-
efficient equilibria.19 Equation (5) highlights why Domar weights are a measure
of the aggregate importance of industries: in response to an infinitesimal change
in sector i’s productivity, real GDP will change by λi%. Since the Domar weight
λi implicitly encompasses all direct and indirect paths from sector i to final de-
mand (equation 4), it captures how a shock to i impacts real GDP by propagating
to other producers in the production network and eventually to final consumers.
However, while the effect of a shock to sector i on real GDP is given by its Domar
weight, sector i’s removal centrality µi captures how simultaneous shocks to all
producers (including i) are amplified as they pass through i. Therefore, removal
centrality encapsulates sectors’ Domar weights and all the information included
in these statistics, and serves as a complementary measure of systemic significance
that is distinct from industries’ Domar weights.

18Our Domar weights, defined in equation (4), are similar to the cost-based Domar weights of
Baqaee and Farhi (2020).

19As is well-known in the production networks literature, in efficient economies, the first-order
change in real GDP in response to a microeconomic productivity shock to sector i is given by Hul-
ten’s (1978) theorem, d logY

d logAi
= piyi

GDP . Notably, in our model, the Domar weights λi do not coincide
with piyi

GDP due to the presence of tax wedges. See Baqaee and Farhi (2020) for a more detailed
discussion on aggregation in inefficient economies.
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2.2 Theoretical results

Having characterized the first-order change in real GDP in response to microe-
conomic productivity shocks, we now formally define our measure of removal
centrality.

2.2.1 Deriving Sectors’ Removal Centrality

We begin by defining the removal centrality of sector i, denoted by µi, which mea-
sures i’s capacity to influence aggregate fluctuations by transmitting simultaneous
idiosyncratic TFP shocks to final demand. To this end, we first construct a coun-
terfactual production network ωωω i that omits the linkages between sector i and its
direct suppliers and customers (including final consumers). Specifically, the ith col-
umn and row of ωωω i contains zeros, while all other entries remain the same as in the
observed network ωωω .20

We denote the first-order (relative) change in real GDP in response to a vector of
productivity shocks under this counterfactual network structure by ∆Ỹi

Ỹi
. Removal

centrality µi is then calculated as the difference between the aggregate effect of
shocks in the observed and counterfactual economies.

Definition 1 (Removal Centrality). The extent to which sector i propagates a vector
of productivity shocks to final demand is given by

µi ≡
∆Y
Y

− ∆Ỹi

Ỹi
,

where ∆Y
Y is the first-order change in real GDP in the actual economy, and ∆Ỹi

Ỹi
is the first-

order change in real GDP in the counterfactual economy defined by ωωω i.

The significance of sector i in transmitting simultaneous shocks to other produc-
ers and final consumers increases with the magnitude of µi. A higher value of µi

indicates that removing sector i from the network would substantially impact real
GDP, as numerous other producers and final consumers rely on its output. Con-

20This results in a change in network structure given by ∆ωωω = ωωω i −ωωω .
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versely, a lower value of µi suggests that sector i is relatively less important as a
producer and consumer of goods from a macroeconomic perspective.

A key challenge in estimating µi lies in characterizing the change in real GDP
under the counterfactual scenario where sector i does not supply or use interme-
diate goods and does not sell final goods to households (∆Ỹi

Ỹi
). In Proposition 1, we

characterize µi for a vector of productivity shocks to all sectors of the economy.
The resulting formula is the central object of our study.

Proposition 1. The first-order macroeconomic importance of sector i in propagating a
vector of idiosyncratic TFP shocks to final demand is given by

µi =

Domar weight λi︷ ︸︸ ︷
ϒi︸︷︷︸

Direct effect

+ λλλ
′
ΩΩΩ(i)︸ ︷︷ ︸

Indirect effect

+ λiΩ̃ΩΩ
(i)
1︸ ︷︷ ︸

Supplier effect

, (6)

where ΩΩΩ(i) is the ith column of the equilibrium input-output matrix, Ω̃ΩΩ
(i) is the ith row of

the matrix Ω̃ΩΩ, 1 is an N ×1 vector of ones, and ϒi is the final expenditure share of sector i.

Proof. See Appendix A.

Equation (6) highlights that sector i’s removal centrality can be decomposed into
three distinct effects. The first term, the direct effect ϒi, measures how a shock to
sector i directly affects real GDP through households’ consumption of final goods
from i. The larger the value of ϒi, the more significant sector i is as a producer of
final goods and services. Next, the indirect effect measures the impact of a shock to
sector i on real GDP by tracing how it spreads to other industries, influencing final
demand indirectly. This effect, represented by λλλ

′
ΩΩΩ(i), is computed as the Domar-

weighted sum of sector i’s intermediate goods sales to the rest of the economy, with
the vector ΩΩΩ(i) containing elements from the ith column of the input-output matrix
ΩΩΩ. By multiplying each element of ΩΩΩ(i) with the corresponding customer sector’s
Domar weight, the indirect effect comprises all possible transmission paths from
sector i to final demand, regardless of length. This can be seen in the alternate ex-
pression for the indirect effect: ϒϒϒ

′
ΩΩΩ(i)+ϒϒϒ

′
ΩΩΩΩΩΩ(i)+ϒϒϒ

′
ΩΩΩ

2
ΩΩΩ(i)+ ..., where ϒϒϒ

′
ΩΩΩ(i) rep-
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resents all transmission paths of length one, ϒϒϒ
′
ΩΩΩΩΩΩ(i) denotes paths of length two,

ϒϒϒ
′
ΩΩΩ

2
ΩΩΩ(i) captures paths of length three, and so on.

Before discussing the supplier effect of equation (6), we introduce Corollary 1,
which shows how sector i’s direct and indirect effects together constitute the first-
order macroeconomic impact of a shock to sector i, which is given by i’s Domar
weight λi, as shown in equation (5).

Corollary 1. The Domar weight of sector i is equivalent to the sum of i’s direct and indirect
effect

λi = ϒi︸︷︷︸
Direct effect

+ λλλ
′
ΩΩΩ(i)︸ ︷︷ ︸

Indirect effect

.

Proof. First note that the sum of i’s direct and indirect effect can be written as ϒi +

∑
N
k=1 λkΩki. By equation (4), λk can be equivalently expressed as λk = ∑

N
m=1 ϒmψmk.

Therefore, we can rewrite i’s direct and indirect effect as ϒi +∑
N
k=1 ∑

N
m=1 ϒmψmkΩki,

which, in matrix form is ϒϒϒ
′+ϒϒϒ

′
ΨΨΨΩΩΩ. Rewriting this expression as ϒϒϒ

′ (I +ΨΨΨΩΩΩ) and
noting that ΨΨΨ = I+ΩΩΩ+ΩΩΩ

2+ ..., we get ϒϒϒ
′
(

I +ΩΩΩ+ΩΩΩ
2 +ΩΩΩ

3 + ...
)

. Once again using

the result ΨΨΨ = I+ΩΩΩ+ΩΩΩ
2+ ..., we can write ϒϒϒ

′
(

I +ΩΩΩ+ΩΩΩ
2 +ΩΩΩ

3 + ...
)
= ϒϒϒ

′
ΨΨΨ, which

is nothing but the Domar weight vector λλλ
′ = ϒϒϒ

′
ΨΨΨ. ■

Corollary 1 provides an important insight into the direct and indirect effects of a
sector’s removal centrality µi. These effects (which are captured in the first two
terms on the right-hand side of equation 6) sum to i’s Domar weight, which is an
alternative measure of a sector’s systemic importance that has been widely studied
in the literature (see, for example, Hulten, 1978, Acemoglu et al., 2012, Liu, 2019,
Baqaee and Farhi, 2020, Bigio and La’O, 2020). Therefore, not only does Propo-
sition 1 allow us to quantify the direct and indirect effect of an idiosyncratic TFP
shock to sector i, but also provides a decomposition of i’s Domar weight.

The final term on the right-hand side of equation (6), which we refer to as the
supplier effect, distinguishes a sector’s removal centrality µi from its Domar weight
λi. The supplier effect quantifies how shocks to all other industries impact real
GDP because sector i transmits these shocks to its direct and indirect customers
and eventually to final demand. For example, negative shocks to i’s primary, sec-
ondary, and higher-order suppliers reduce i’s output because i relies either directly
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or indirectly on the products of the upstream sectors. Sector i, in turn, transmits
these shocks to the household and also to its direct and indirect customers, affect-
ing final consumption by reducing the output of all producers downstream of i.
Importantly, shocks to sectors downstream of i may also affect direct or indirect
suppliers of i, and hence pass through i. The supplier effect λiΩ̃ΩΩ

(i)
1 is calculated

by interacting i’s Domar weight with the elements of the ith row of the matrix Ω̃ΩΩ,
which captures the intensity with which i uses inputs from other industries. Specif-
ically, if an industry j supplies inputs to i (i.e., Ω̃i j ̸= 0), then sector i will transmit
shocks that affect sector j and j’s suppliers, suppliers’ suppliers, and so on. As a
result, i’s supplier effect captures all possible ways through which i can transmit
shocks to other sectors of the economy.

Finally, measuring removal centrality only requires observed data on sector-level
intermediate input purchases, nominal gross output, final sales, and tax payments.
This is because final expenditure shares ϒi, Domar weights {λk}N

k=1, and parame-
ters of the input-output matrix ΩΩΩ (measured at the initial equilibrium) are sufficient
to characterize the first-order change in real GDP in the actual

(
∆Y
Y

)
and counter-

factual economies
(

∆Ỹi
Ỹi

)
. While severing linkages between sector i and its cus-

tomers, suppliers, and the household induce changes in prices and quantities of
inputs traded at the microeconomic level, these endogenous changes are macroe-
conomically irrelevant to a first-order approximation, and only matter beyond the
first-order. In Appendix D, we characterize i’s removal centrality to a second-order
approximation. Sector i’s second-order removal centrality requires knowledge of
changes in i’s final expenditure share (d logϒi), the Domar weights of all industries
(d logλk), and the input-output parameters of i’s suppliers (d logΩik) and customers
(d logΩki). Since changes in these objects are unobservable under the counterfac-
tual, we characterize them in terms of the elasticities of substitution in production
θ and consumption σ , as well as the parameters of the production network at the
initial equilibrium.
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2.2.2 Illustrative Examples

In this section, we provide a deeper understanding of Proposition 1 by exploring
the properties of three network structures. This exercise allows us to make empir-
ical predictions about the relationship between sectors’ removal centrality µi and
their Domar weights λi.

A. Star Economy I

S

3

N

S

1

2 3

N

B.  Star Economy II

2

1 S

1

2 3

N

C.  Star Economy III

3

M

2

1

Figure 2: Example Network Structures
Note: This figure depicts three different network structures. Colored nodes represent different in-
dustries, whereas directed arrows depict the flow of intermediate goods between sectors. Orange
nodes represent the “star” sector S. In Panel A, the star sector only uses labor to produce inter-
mediate inputs and final goods. In Panel B, sector S uses labor and inputs from all other sectors
to produce only final goods. In Panel C, the star sector S uses labor and intermediate inputs from
the set of N purely upstream sectors (blue nodes) 1,2, ...,N to produce final goods and intermediate
inputs for the set of M purely downstream sectors 1,2, ...,M.

Consider the three “Star Economies” shown in Figure 2. In the figure, colored
nodes represent different industries, and directed arrows depict the flow of inter-
mediate goods between producers. In each panel, the orange node corresponds
to the “star” sector denoted by S. In Panel A, the star sector uses only labor to
produce intermediate inputs that are, in turn, used by all other industries 1,2, ...,N
(blue nodes), as well as final goods consumed by households. In Panel B, sector S

uses labor and intermediates from all other industries to produce only final goods.
Finally, in Panel C, sector S uses both labor and intermediate inputs from the set
of N purely upstream sectors (blue nodes, denoted by 1,2, ...,N) to produce final
goods and intermediate inputs for the set of M purely downstream sectors.21

21In symmetric networks, where all industries have equal interdependence for intermediate in-
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Throughout our analysis of the network structures in Figure 2, we initially as-
sume that all sectors are equally important in final demand, which implies a con-
stant value of ωD,i across all i. Moreover, we also assume that αi is constant across
all sectors that use intermediates in addition to labor, and that the importance of
labor and intermediates for these sectors is the same. Finally, we impose a uni-
tary elasticity of substitution in consumption and production, σ = 1 and θ = 1,
to simplify the expressions comparing the parameters µ and λ . We make these
simplifying assumptions to isolate how the structure of each network generates
differences in removal centralities and Domar weights across industries.

Star economy I. In the economy depicted in Figure 2, Panel A, the removal cen-
trality of the star sector S is exactly equal to its Domar weight, or µS = λS. However,
for all other sectors 1,2, ...,N, their removal centrality exceeds their Domar weight.
This is clear from the expressions for µ and λ :

µS = λS = ϒS

(
1+

N

∑
j ̸=S

Ω jS

)
and µi = ϒS (1+ΩiS)> λi for sectors i ̸= S.

Furthermore, under the production structure of Figure 2, Panel A, the removal
centrality of the star sector S is always greater than that of all other industries. In
other words, the star sector has the greatest ability to shape aggregate fluctuations,
as it serves as the sole producer of intermediate inputs for all other sectors.

Figure 3 illustrates the relationship between µ and λ under the “Star Economy
I” network structure. The red line is the 45-degree line, where µ = λ . The orange
point represents the star sector S, while the blue point represents all other sectors
i ̸= S. Finally, the faint dotted line visually approximates the trend between µ and
λ .

The figure reveals two key insights: i) the relationship between µ and λ is pos-
itive since λS > λi and µS > µi, and ii) the trend line has a slope less than one, since

puts, Domar weights and removal centralities are identical across sectors. However, in asymmetric
networks like those in Figure 2, there are differences in Domar weights and removal centralities
across industries. As our focus is on understanding the network properties that lead to variations
in both λ and µ , we only discuss the asymmetric networks depicted in Figure 2.
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µi

λi λS

µS

µ

λ

Star Economy I: ωD,S = ωD,i

Figure 3: Removal Centrality and Domar Weights (Star Economy I)

Note: This figure plots sectors’ removal centrality µ against their Domar weight λ under the Star
Economy I network structure shown in Figure 2. The orange point represents the star sector S,
whereas the blue point represents all other industries i ̸= S. Households’ dependence on each
industry’s output is constant across all sectors, ωD,S = ωD,i for all i ̸= S. The solid red line represents
the 45-degree line, and the faint dotted line is a visual approximation of the trend in the relationship
between µ and λ .

µS−µi
λS−λi

< 1. In Section 3, we present empirical evidence that the degree to which Do-
mar weights underestimate the systemic importance of an industry (as measured
by µ) increases as the Domar weight of the sector increases. In other words, the
slope of the trend line is estimated to be greater than one. Thus, the star econ-
omy depicted in Figure 2, Panel A, cannot account for this observed relationship.
Our results suggest that the most important industries, as measured by removal
centrality, are generally not upstream sectors that supply large quantities of inter-
mediate inputs to other industries.
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Star economy II. Next, consider the network in Panel B of Figure 2. In this econ-
omy, the star sector S uses, but does not supply, intermediate inputs to any other
industry. Thus, the removal centrality of S is strictly greater than its Domar weight
µS > λS, while the removal centrality of all other sectors exactly equal their Domar
weights µi = λi for all i ̸= S. Proposition 1 implies

µS = ϒS

(
1+

N

∑
j ̸=S

ΩS j

)
> λS and µi = λi = ϒS (1+ΩSi) for sectors i ̸= S.

The above expressions highlight that the removal centrality of the star sector S is
greater than that of any other industry i ̸= S. However, assuming households are
equally reliant on the final products produced by each sector (ωD,S = ωD,i for all
i), the Domar weight of S is strictly less than that of sectors i ̸= S.22 This is visually
represented in Panel A of Figure 4, where again the orange point depicts the star
sector, and the blue point represents a representative upstream sector. Thus, the
network structure in Figure 2, Panel B, implies a negative relationship between
sectors’ removal centrality and Domar weights.

Panel B of Figure 4 depicts the condition under which a positive relationship
between µ and λ exists in this network: the star sector S must not only use in-
termediate inputs but also be a more important producer of final goods than the
other sectors, or ωD,S >> ωD,i.23 When this condition is met, the Domar weight of
S exceeds that of other industries, resulting in a positive relationship between λ

and µ . Moreover, since µS−µi
λS−λi

> 1, the trend line has a slope greater than one. Thus,
in light of our empirical results of Section 3, Figure 4 suggests that industries with
large removal centralities not only consume more intermediate goods relative to
less influential sectors but may also play a critical role in supplying final goods.

22Formally, the Domar weight of S is λS = ϒS, whereas the Domar weight of an industry i ̸= S is
λi = ϒS (1+ΩSi).

23This is because ϒk is increasing in ωD,k for all k. Thus, for a large value of ωD,S, where ωD,S >>
ωD,i, the Domar weight of S is larger than the Domar weight of i, i.e., λS = ϒS > ϒi (1+ΩSi) = λi.
In this case, the direct effect of sector S is the largest of all industries, which implies that its Domar
weight is also larger than that of other sectors.
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Panel A. Star Economy II: ωD,S = ωD,i

µi

λi λS

µS

µ

λ

Panel B. Star Economy II: ωD,S >> ωD,i

Figure 4: Removal Centrality and Domar Weights (Star Economy II)

Note: This figure plots sectors’ removal centrality µ against their Domar weight λ under the Star
Economy II network structure shown in Figure 2. The orange point represents the star sector S,
whereas the blue point represents all other industries i ̸= S. In Panel A, households depend equally
on the output produced by each industry ωD,S = ωD,i for all i ̸= S, whereas in Panel B, the star sector
is a more critical producer of final goods ωD,S >>ωD,i. In both panels, the faint dotted line provides
a visual approximation of the trend in the relationship between µ and λ , whereas the solid red line
is the 45-degree line.

Star economy III. We now turn to the economy shown in Panel C of Figure 2. The
blue nodes (denoted by 1,2, ...,N) in the figure represent purely upstream sectors
that supply intermediate inputs to the star sector S (represented by the orange
node), while the green nodes (1,2, ...,M) depict purely downstream sectors that
use inputs from S. In this economy, sector S always records a value of µ greater
than every downstream and upstream sector. Specifically, proposition 1 implies
that the removal centrality of S is given by

µS = ϒS +ϒS

M

∑
j=1

Ω jS +ϒS

N

∑
j ̸=S

ΩS j +ϒS

(
M

∑
j=1

Ω jS

)
N

∑
j ̸=S

ΩS j, (7)

24



whereas the removal centrality of a representative upstream sector U and down-
stream sector D is, respectively,

µU = ϒS +ϒSΩSU +ϒSΩSU

M

∑
j=1

Ω jS, (8)

and

µD = ϒS +ϒSΩDS. (9)

Thus, by comparing equations (7), (8), and (9), it is evident that i) µS > µD and
µS > µU , and ii) the removal centrality of upstream sectors U may be greater or less
than that of downstream sectors D, depending on the relative number of upstream
and downstream sectors.24 Finally, the star sector S has the greatest Domar weight,
where λS > λU > λD.25

Figure 5 shows the relationship between µ and λ as the star sector becomes
increasingly important as a producer and consumer of intermediate goods. In each
panel, the green point represents a downstream sector, the blue point is an up-
stream industry, and the orange point again represents the star sector. Panel A
depicts a possible trend between µ and λ when there are few upstream and down-
stream sectors, where µU > µD. Crucially, the slope of the trend line in Panel A
may not be greater than one since, i) upstream sectors always lie on the 45-degree
line, ii) λD is less than λU , and iii) µU may be less or greater than µD. However,
as the number of upstream and downstream industries increases (N → ∞, M → ∞),
removal centralities and Domar weights of the upstream and downstream sectors
approach zero, while both µ and λ remain greater than zero for the star sector, as
shown in Panel B.26

24Specifically, µU > µD if M(1−αS)> N −1.
25The Domar weight of S is given by λS = ϒS +ϒS ∑

M
j=1 Ω jS, while the Domar weights of D and

U are, respectively, λD = ϒS and λU = ϒS +ϒSΩSU +ϒS

(
∑

M
j=1 Ω jS

)
ΩSU . Although it is evident that

λS > λD, it is not immediately clear that λS > λU . For λS to be strictly greater than λU , the con-
dition ∑

M
j=1 Ω jS > ΩSU (1−ΩSU )

−1 must hold. Since the star sector and all downstream sectors
are equally dependent on intermediates, (1 −α j) = (1 −αS), this condition can be expressed as
∑

M
j=1(1−αS)ω jS > (1−αS)ωSU (1− (1−αS)ωSU )

−1. Simplifying this expression yields M > 1
N−(1−αS)

,
which is true whenever the number of upstream sectors is greater than one, N > 1.

26Formally, as N,M → ∞, µS → (1−αS)(1+(1−αS))
2 > 0 and λS → 1−αS

2 > 0.
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Panel A. Star Economy III: µU > µD

µU = µD

λU = λD λS

µS
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Panel B. Star Economy III: N,M → ∞

Figure 5: Removal Centrality and Domar Weights (Star Economy III)

Note: Panel A plots sectors’ removal centrality µ against their Domar weight λ under the Star Econ-
omy III network structure shown in Figure 2. The orange point represents the star sector S, the blue
point represents a purely upstream industry U , and the green point depicts a purely downstream
industry D. The household sector depends equally on the final goods produced by the sectors
(ωD,S = ωD,i for all i). The faint dotted line visually approximates the trend in the relationship be-
tween µ and λ , whereas the solid red line represents the 45-degree line. Panel B shows the trend as
the number of upstream and downstream sectors increases.

In other words, the significance of sector S as both a user and producer of inter-
mediate inputs determines whether the slope of the trend line is greater than one:
the more important is S, the greater the slope. This point is significant in light of
our empirical findings, where we observe the relationship between µ and λ to be
similar to that of Figure 5, Panel B.

Anticipating our empirical results in Section 3, our analysis of the three network
structures in Figure 2 indicates that sectors with high removal centralities i) exhibit
a greater reliance on intermediates relative to sectors with lower values of µ , and
ii) are also significantly more important producers of final or intermediate goods
compared to other industries.
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2.3 The Relationship Between Supplier Effects and Indirect Ef-

fects

We now highlight an important caveat of our measure of sectoral importance µi.
Specifically, only while establishing (in isolation) the systemic importance of an
industry to simultaneous disruptions in the economy do both indirect and supplier
effects matter. In the aggregate, the two effects are (approximately) equivalent. In
other words, what is classified as a supplier effect for one industry is also counted
as part of the indirect effect of another industry. Equation (10) below shows that
the sum of supplier effects across all industries approximately equals the sum of
indirect effects (of sectors’ removal centrality):

1′Ω̃ΩΩ
′
λλλ︸ ︷︷ ︸

∑Supplier effect

+ tr(λλλ ◦ΩΩΩ)︸ ︷︷ ︸
∑Own effect

= λλλ
′
ΩΩΩ1.︸ ︷︷ ︸

∑ Indirect effect

(10)

The term tr(λλλ ◦ΩΩΩ) (ΣOwn effect) reflects the impact of shocks to each sector on real
GDP, which are attributed to the use of the sector’s own intermediate inputs. This
effect is therefore classified as an indirect effect. Importantly, the sum of supplier
effects 1′Ω̃ΩΩ′

λλλ and these “own effects” tr(λλλ ◦ΩΩΩ) is equal to the sum of indirect ef-
fects λλλ

′
ΩΩΩ1. Equation (10) thus shows that when aggregating across industries,

supplier effects and indirect effects are (nearly) one and the same.

2.4 How Do Taxes Affect Sectors’ Macroeconomic Importance?

Since we derive sectors’ removal centrality within the framework of an inefficient
production networks model, a natural question arises: what is the effect of dis-
tortions on the removal centrality of sectors? In our model, taxes increase sectors’
macroeconomic importance µi relative to an economy without distortions. This
result is formalized in Proposition 2 below.
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Proposition 2. Sector-level taxes on sales τy,i and intermediate purchases {τx,ik}N
k=1 con-

tribute to the macroeconomic importance of a sector i via

ζi = µi −µ
F
i ≥ 0, (11)

where ζi is the contribution of taxes to µi and µF
i is the removal centrality of i in a friction-

less economy without taxes.

Proof. See Appendix A.

Taxes on sales τy,i and intermediate inputs τx,i j have a compounding effect along
supply chains, reducing the allocative efficiency of producers and amplifying the
impact of microeconomic shocks on aggregate fluctuations. In equation (11), we
demonstrate that distortions increase sectors’ removal centrality compared to a
frictionless economy without taxes.27 The statistic ζi measures the contribution of
taxes to the macroeconomic importance of sector i where µF

i represents i’s removal
centrality in a frictionless economy. In the Proof of Proposition 2 in Appendix A,
we characterize ζi in terms of the parameters of the production network ΩΩΩ, final
expenditure shares ϒϒϒ, and taxes on sales {τy,i} and intermediates {τx,i j} and show
that ζi is always greater than or equal to zero.28

3 Taking the Model to the Data

In this section, we use the framework presented in Section 2 to estimate the re-
moval centrality µ and Domar weight λ of approximately 450 sectors (on average)
in the United States between 1982 and 2012. We then document the relationship
between µ and λ and establish a connection between our empirical findings and

27Notably, taxes on factor payments τL,i only affect real GDP in the presence of labor supply
shocks and play no role when there are TFP shocks.

28In Appendix C, we estimate the contribution of taxes to sectors’ supplier effects using US
input-output data from 1982 to 2012. Our analysis shows that taxes at the sector level have a
minimal impact on the estimated values of supplier effects and removal centralities. While other
distortions such as nominal rigidities, financial frictions, and market power may also affect the sys-
temic importance of industries, we abstract from these distortions in our calculation of industries’
removal centrality.
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the discussion of the network structures presented in Section 2.2.2. Next, we iden-
tify sectors that have experienced substantial fluctuations in removal centrality,
despite having relatively stable Domar weights. Finally, we study industries’ re-
moval centralities across six major economies: the United States, United Kingdom,
Japan, China, Germany, and Australia, and decompose µ into direct, indirect, and
supplier effects.

3.1 Comparing removal centrality with Domar weights

We begin by estimating removal centrality µi (as defined in equation 6) for 393
sectors in the US in 2012.29 We use the detailed 2012 input-output table provided
by the BEA to estimate ΩΩΩ, which further yields ΩΩΩ(i) and Ω̃ΩΩ

(i). We use final demand
data in the 2012 BEA Use table to estimate the final expenditure shares ϒϒϒ. We then
use ΩΩΩ and ϒϒϒ to estimate the Domar weights via λλλ

′ = ϒϒϒ
′ (I −ΩΩΩ)−1. Figure 6 presents

a comparison between sectors’ removal centrality and Domar weights in 2012. The
left figure (Panel A) compares these two measures of systemic influence for all 393
sectors in 2012. On the other hand, the right figure (Panel B) focuses specifically
on the top 20 sectors (which accounted for 37% of GDP in 2012).

Panel A of Figure 6 yields three notable observations. Firstly, a positive rela-
tionship exists between sectors’ removal centrality and Domar weights. This sug-
gests that sectors with higher removal centrality typically also have larger Domar
weights, signifying their greater systemic influence and highlighting significant
asymmetries within the US production structure. Secondly, the removal centrality
of a sector is generally distinct from its Domar weight, implying that these two
measures capture different aspects of a sector’s influence within the network. Fi-
nally, the removal centrality of a sector is typically greater than its Domar weight.
This finding is expected, as removal centrality encompasses producers’ Domar
weight, providing a more comprehensive assessment of a sector’s significance.

Interestingly, the figure highlights that the Domar weight of a sector tends to
underestimate its systemic importance, and this underestimation becomes more
pronounced as the Domar weight of the sector increases, as evidenced by the de-
viation from the 45-degree line. This finding is not immediately obvious since

29See Appendix B for a detailed discussion of the BEA input-output data.
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Figure 6: Removal Centrality and Domar Weights in the US (2012)

Note: This figure shows the relationship between sectors’ removal centrality and Domar weights
for 393 sectors in the US in 2012. Panel A displays data for all sectors in the detailed BEA input-
output accounts, excluding government sectors. Panel B focuses on the top 20 sectors by removal
centrality, which accounted for 37% of GDP in 2012.

removal centrality and Domar weights can coincide, even for sectors with a large
Domar weight. This can occur when upstream sectors do not rely on intermediate
inputs for production, as shown in Panel A of Figure 2 and Figure 3. However, the
magnitude of this underestimation is significant and consequential. On average,
Domar weights underestimate the systemic influence of a sector (under simultane-
ous shocks) by approximately 50% (with the median figure being similar).

As discussed in Section 2.2.2, our findings in Figure 6 reflect significant asym-
metries in the US network structure (emphasized in Acemoglu et al., 2012). Panel
B of Figure 6 uncovers two important observations. Firstly, highly influential sec-
tors exhibit substantial supplier effects, indicating their greater reliance on inputs
from other producers compared to less influential sectors. Consequently, they are
positioned considerably above the 45-degree line.30 Secondly, the most influen-

30These sectors include petroleum refineries, oil & gas extraction, and electric power generation,
among others.
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tial sectors typically fall into one of two categories: a) they are disproportionately
significant producers of final goods (like food and beverage industries), or b) they
serve as essential suppliers of intermediate inputs (like oil and gas), resulting in
larger Domar weights. These findings suggest that the US network structure re-
sembles the asymmetric star networks depicted in Panels B and C of Figure 2. In
such networks, sectors with significant influence are typically located downstream
in the supply chain and serve as critical suppliers of intermediates or final goods.

3.2 Removal centrality across time

Figure 7 compares US sectors’ removal centrality and Domar weight between 1982
and 2012. Panel A plots all sectors (excluding government sectors) appearing in the
detailed BEA input-output accounts from 1982 to 2012, along with a line-of-best-fit
through the data for each year. The solid red line again represents the 45-degree
line, or the point at which a sector’s removal centrality coincides with its Domar
weight.

The figure highlights the remarkable similarity in the relationship between re-
moval centrality and Domar weights, as illustrated in Figure 6, over time. This
is evidenced by the similar slope of the trend line for each year, suggesting that
it is an empirical regularity that sectors with larger Domar weights also have sig-
nificantly greater supplier effects. Moreover, the extent to which Domar weights
(on average) underestimate the systemic significance of a sector ranges between
approximately 40-50% over the years shown in Figure 7.

In Panel B of Figure 7, only the top 10 sectors with the largest removal centrality
are plotted for the seven periods spanning from 1982 to 2012. The line of best fit in
Panel B is based solely on the top 10 sectors with the greatest influence in each year.
Despite some variation in the slope of the trend line, there is no systemic difference
across the years. Our findings suggest that the relationship between removal cen-
trality and Domar weights, as observed in Panel A of Figure 7, holds even when
focusing exclusively on the most influential sectors. This suggests that as sectors
grow larger in size, they become more prone to output disruptions originating in
other industries.
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Figure 7: Removal Centrality and Domar Weights in the US (1982 - 2012)

Note: This figure shows the relationship between removal centrality and Domar weights in the US
from 1982-2012. On average, there are approximately 450 sectors per year. Panel A displays data
for all sectors in the detailed BEA input-output accounts, excluding government sectors. Panel B
focuses on the top 10 sectors by removal centrality for each year displayed. The solid red line is the
45-degree line, representing the equality of Domar weights and removal centrality.

3.3 Tracking changes in supplier effects and Domar weights for

specific sectors over time

While Figures 6 and 7 demonstrate a positive relationship between Domar weights
and removal centrality, it is important to note that there is significant variation
in how removal centralities and Domar weights of sectors change over time. To
highlight this, Figure 8 compares supplier effects and Domar weights for select
industries across time.31 To ensure comparability of the BEA input-output codes,
we divide the sample period into two intervals: 1982-1992 (Panel A) and 1997-2012
(Panel B).32 The figure shows the four largest sectors (based on gross sales) where

31Here, we track supplier effects instead of removal centrality as the supplier effect distinguishes
removal centrality from the Domar weight of a sector.

32The input-output industry codes between 1992 and 1997 are not consistent with each other, as
the BEA revised its input-output classification system in 1997. Further details on the comparison of
the 1992 and 1997 benchmark IO accounts of the BEA can be found at https://apps.bea.gov/
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Figure 8: Tracking Changes in Supplier Effects and Domar Weights for Key Indus-
tries Over Time

Note: This figure illustrates the relationship between sectors’ supplier effects and Domar weights
at five-year intervals from 1982 to 1992 (Panel A) and from 1997 to 2012 (Panel B). For each sample
period, the growth rate of supplier effects for each sector is at least twice as large (in absolute
value) as the growth rates of their corresponding Domar weights. Supplier effects are calculated
as in equation (6), and Domar weights are computed as in equation (4), both using the detailed
input-output accounts of the BEA.

the absolute value of the ratio between the percentage change in supplier effects
and the percentage change in Domar weights exceeded two during the respective
period covered in each panel. For example, this ratio is approximately 27 for the
“eating and drinking places” sector, reflecting the large change in its supplier effect
relative to its Domar weight between 1982 and 1992.33 The gross sales of the sectors
depicted in Figure 8 equate to approximately 11% of GDP, on average, across all
years.

The figure highlights that removal centrality can vary significantly across sec-

scb/pdf/2002/08August/0802_I-O_Benchmark.pdf.
33The aggregate sales of all sectors for which this ratio is greater than two amount to approxi-

mately 40% of GDP, on average, from 1982 to 2012.
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tors over time, even when Domar weights remain relatively stable. For example,
consider the case of motor vehicle production (represented by the red ellipse) in
Panel A. Between 1982 and 1992, the industry experienced a 30% increase in its
supplier effect (or an increase of around 0.5% of GDP), while its Domar weight
remained almost unchanged. This finding may reflect the increase in the complex-
ity of motor vehicle production over time. The number of electrical components
and engine parts in motor vehicles grew substantially throughout the 1980s and
1990s (Fine et al., 1996), a trend that has continued to accelerate in the 21st century.
By 2010, the average motor vehicle contained approximately 2,000 components,
30,000 parts, and 10 million lines of software code (MacDuffie and Fujimoto, 2010).
Crucially, the increase in supplier effects implies that motor vehicle production
became more susceptible to supply chain disruptions over time, which is not cap-
tured in the Domar weight of the industry.

In contrast, in Panel B, computer manufacturing (represented by the grey el-
lipse) experienced a 68% decline in its supplier effect, while its Domar weight
slightly increased by 0.4% between 1997 and 2012. This finding reflects the rapid
reduction in production costs in the computer manufacturing sector during the late
20th century, resulting from technological improvements in IT industries (Jorgen-
son, 2001). While input costs continued to fall throughout the mid-2000s, growth
in final computer sales slowed substantially, leading to stability in the computer
manufacturing sector’s Domar weight between 1997 and 2012. The evolution of
supplier effects in the computer manufacturing industry may also be explained by
changes in market structure and increases in international competition during the
1990s. For example, in the mid-1990s, a growing portion of computer parts and
components were imported from Asian markets, where production costs were sig-
nificantly lower than in the US (Warnke, 1996). Taken together, the findings pre-
sented in Figure 8 suggest that relying solely on Domar weights provides only
partial information about changes in sectors’ systemic importance over time. This
highlights the relevance of removal centrality as a complementary measure of the
macroeconomic significance of industries.
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3.4 Analyzing removal centrality for key sectors across countries

Next, using data from the World Input-Output Database (WIOD) from 2000 to
2014, we identify the industries with the greatest capacity to amplify microeco-
nomic shocks for six major economies: the US, Great Britain, Japan, China, Ger-
many, and Australia.34 Figure 9 shows the top ten sectors (by removal centrality)
for each of the countries. In the figure, each sector’s removal centrality is captured
by the total of the direct effect (orange bars), indirect effect (yellow bars), and sup-
plier effect (blue bars). Overall, for each economy shown, construction, real estate,
public administration, and food & beverages are always among the top five sectors
in terms of their ability to influence aggregate output.35

Notably, there are significant differences in the size of each effect across coun-
tries and industries. Labor-intensive sectors like education and health services
have substantial direct effects (accounting for ≈ 75% of removal centrality, on av-
erage) due to their low dependency on intermediate inputs and direct provision of
services to end-consumers. These attributes reduce their ability to amplify shocks,
resulting in lower indirect and supplier effects compared to other sectors. On the
other hand, the influence of sectors like wholesale trade and electricity & gas sup-
ply comes mostly from the indirect effect (≈ 50% of removal centrality for both in-
dustries), reflecting the importance of these sectors in providing key intermediate
inputs for production for many other sectors in the economy. Finally, construction
and food & beverages have proportionately large direct (≈ 50% for construction
and ≈ 40% for food & beverages) and supplier effects (≈ 30% for construction and

34See Appendix B for a detailed description of the WIOD data. These economies accounted for
≈ 57% of nominal world GDP in 2021 (World Bank, 2023).

35We abstract from international trade when computing each sector’s removal centrality. Baqaee
and Farhi (2021) characterize how microeconomic shocks propagate through international input-
output linkages and generalize Hulten’s theorem to open economies. Other papers in the trade
literature highlight the importance of input-output linkages as a mechanism for amplifying shocks
and generating co-movements in business cycles across countries (see, for example, Caliendo and
Parro, 2014, Chaney, 2014, di Giovanni et al., 2014, Redding and Rossi-Hansberg, 2017, di Giovanni
et al., 2018, Auer et al., 2019, Antràs and de Gortari, 2020, and Kikkawa et al., forthcoming). A re-
lated literature emphasizes that diversified global value chains insulate economies against shocks,
limiting aggregate volatility (Caselli et al., 2020; D’Aguanno et al., 2021, and Antràs, 2021). See Bald-
win and Freeman (2022) for a detailed overview of the global supply chain literature and Bernard
and Moxnes (2018) for a survey of the literature on production networks and international trade.

35



0

0.1

0.2

0.3

0.4

Edu
ca

tio
n

Elec
tric

ity
 an

d g
as

 su
pp

ly

Acc
om

mod
ati

on

Who
les

ale
 tra

de

Reta
il t

rad
e

Foo
d a

nd
 be

ve
rag

es

Hea
lth

 se
rvi

ce
s

Pub
lic 

ad
mini

str
ati

on

Rea
l e

sta
te

Con
str

uc
tio

n

United States

0

0.1

0.2

0.3

0.4

La
nd

 tra
ns

po
rt

Acc
om

mod
ati

on

Fina
nc

ial
 se

rvi
ce

s

Hea
lth

 se
rvi

ce
s

Reta
il t

rad
e

Who
les

ale
 tra

de

Pub
lic 

ad
mini

str
ati

on

Foo
d a

nd
 be

ve
rag

es

Rea
l e

sta
te

Con
str

uc
tio

n

Great Britain

0

0.1

0.2

0.3

0.4

Elec
tric

ity
 an

d g
as

 su
pp

ly

Edu
ca

tio
n

Acc
om

mod
ati

on

Reta
il t

rad
e

Hea
lth

 se
rvi

ce
s

Who
les

ale
 tra

de

Foo
d a

nd
 be

ve
rag

es

Pub
lic 

ad
mini

str
ati

on

Rea
l e

sta
te

Con
str

uc
tio

n

Japan

0

0.1

0.2

0.3

0.4

Fina
nc

ial
 se

rvi
ce

s

Hea
lth

 se
rvi

ce
s

Acc
om

mod
ati

on

Crop
 pr

od
uc

tio
n

Reta
il t

rad
e

Who
les

ale
 tra

de

Rea
l e

sta
te

Pub
lic 

ad
mini

str
ati

on

Foo
d a

nd
 be

ve
rag

es

Con
str

uc
tio

n

China

0

0.1

0.2

0.3

0.4

Fina
nc

ial
 se

rvi
ce

s

Acc
om

mod
ati

on

Crop
 pr

od
uc

tio
n

Hea
lth

 se
rvi

ce
s

Reta
il t

rad
e

Who
les

ale
 tra

de

Pub
lic 

ad
mini

str
ati

on

Rea
l e

sta
te

Foo
d a

nd
 be

ve
rag

es

Con
str

uc
tio

n

Germany

0

0.1

0.2

0.3

0.4

Edu
ca

tio
n

Crop
 pr

od
uc

tio
n

Acc
om

mod
ati

on

Reta
il t

rad
e

Hea
lth

 se
rvi

ce
s

Who
les

ale
 tra

de

Foo
d a

nd
 be

ve
rag

es

Pub
lic 

ad
mini

str
ati

on

Rea
l e

sta
te

Con
str

uc
tio

n

Australia

Direct effect Indirect effect Supplier effect

Figure 9: Removal Centrality by Country

Note: This figure presents estimates of removal centrality µ for six major economies. For each
sector, removal centrality is measured as in equation (6), averaged over the years 2000 to 2014. The
top 10 industries with the greatest removal centrality are shown for each economy. Orange bars
capture the direct effects, whereas the yellow and blue bars represent the indirect and supplier
effects, respectively. The data is from the World Input-Output Database (2016 Release).
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≈ 35% for food & beverages), attesting to their central role as both producers of
final goods and consumers of intermediate goods. Hence, each effect represents
a distinct mechanism with which a sector can influence aggregate outcomes, and
each subcomponent explains a consequential proportion of removal centrality. For
the countries and industries shown in Figure 9, direct effects account for about
50% of sectors’ overall influence, on average, whereas indirect and supplier effects
account for approximately 20% and 30%, respectively.

Our results demonstrate significant differences in the ability of industries to af-
fect aggregate volatility through direct, indirect, and supplier effects. Moreover,
our decomposition exercise indicates that the impact of a producer on the broader
economy is heavily influenced by its location within the production network. The
intensity with which producers use and supply intermediate inputs is a key deter-
minant of their systemic importance.

4 Conclusion

We propose a novel measure of sectors’ capacity to transmit simultaneous idiosyn-
cratic microeconomic TFP shocks to all producers in the economy, thereby influ-
encing both their immediate and indirect customers and, ultimately, final demand.
Our measure, which we refer to as removal centrality, captures the industry’s im-
pact on real GDP through three key channels: i) directly affecting the final con-
sumption of its output, ii) indirectly influencing the production of firms directly or
indirectly connected to it, and iii) transmitting disruptions originating elsewhere
in the economy.

Our approach is nonparametric, only requiring observable information on an
industry’s intermediate goods purchases, nominal gross sales, and tax payments.
Notably, removal centrality encompasses and extends an existing notion of sys-
temic importance in production networks: producers’ Domar weights (or sales
shares). In an empirical application for the US, we show that Domar weights un-
derestimate the systemic importance of an industry by ≈ 40-50%, between 1982-
2012. We find that the extent of underestimation increases with the Domar weight
of a sector; a non-trivial result given that removal centrality and Domar weights
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can perfectly coincide, even for large sectors.
Additionally, we provide evidence of significant changes in the removal cen-

trality of crucial sectors within the US economy over time, such as motor vehi-
cle production and computer manufacturing, despite the relative stability of their
Domar weights. Furthermore, we compare sectors’ removal centrality across coun-
tries and identify industries such as construction, food & beverages, and real estate
as powerful amplifiers of shocks between 2000 and 2014.

Our empirical findings are interpreted through the lens of an inefficient produc-
tion network model. Though our model only includes one type of friction (taxes),
it can be easily extended to incorporate other distortions such as financial frictions,
market power, and nominal rigidities, as in Liu (2019); Baqaee and Farhi (2020); Bi-
gio and La’O (2020) and Baqaee and Farhi (2022), highlighting the flexibility of our
framework.

References

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, “Microeco-
nomic Origins of Macroeconomic Tail Risks,” American Economic Review, 2017,
107 (1), 54–108.

, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, “The Net-
work Origins of Aggregate Fluctuations,” Econometrica, 2012, 80 (5), 1977–2016.

Albert, Reka, Hawoong Jeong, and Albert-Laszlo Barabasi, “Error and attack
tolerance of complex networks,” Nature, July 2000, 406 (6794), 378–382.

Altinoglu, Levent, “The Origins of Aggregate Fluctuations in a Credit Network
Economy,” Journal of Monetary Economics, 2021, 117, 316–334.

Amiti, Mary and David E. Weinstein, “How Much Do Idiosyncratic Bank Shocks
Affect Investment? Evidence from Matched Bank-Firm Loan Data,” Journal of
Political Economy, 2018, 126 (2), 525–587.

Antràs, Pol, “De-Globalisation? Global Value Chains in the Post-COVID-19 Age,”
2021.

38



Antràs, Pol and Alonso de Gortari, “On the Geography of Global Value Chains,”
Econometrica, 2020, 88 (4), 1553–1598.

Atalay, Enghin, “How Important Are Sectoral Shocks?,” American Economic Jour-
nal: Macroeconomics, 2017, 9 (4).

Auer, Raphael A., Andrei A. Levchenko, and Philip Sauré, “International Infla-
tion Spillovers through Input Linkages,” The Review of Economics and Statistics,
2019, 101 (3), 507–521.

Baldwin, Richard and Rebecca Freeman, “Risks and Global Supply Chains: What
We Know and What We Need to Know,” Annual Review of Economics, 2022, 14
(1), 153–180.

Baqaee, David and Emmanuel Farhi, “Networks, Barriers, and Trade,” Working
Paper 26108, National Bureau of Economic Research July 2021.

Baqaee, David Rezza, “Cascading Failures in Production Networks,” Economet-
rica, 2018, 86 (5), 1819–1838.

and Emmanuel Farhi, “The Macroeconomic Impact of Microeconomic Shocks:
Beyond Hulten’s Theorem,” Econometrica, 2019, 87 (4), 1155–1203.

and , “Productivity and Misallocation in General Equilibrium,” The Quarterly
Journal of Economics, 2020, 135 (1), 105–163.

and , “Supply and Demand in Disaggregated Keynesian Economies with an
Application to the Covid-19 Crisis,” American Economic Review, 2022.

Barrot, Jean-Noël and Julien Sauvagnat, “ Input Specificity and the Propagation
of Idiosyncratic Shocks in Production Networks,” The Quarterly Journal of Eco-
nomics, 2016, 131 (3), 1543–1592.

Bartelme, Dominick and Yuriy Gorodnichenko, “Linkages and Economic Devel-
opment,” Working Paper 21251, National Bureau of Economic Research June
2015.

39

https://doi.org/10.3982/ECTA15362
https://doi.org/10.1162/rest_a_00781
https://doi.org/10.1162/rest_a_00781
http://www.nber.org/papers/w21251
http://www.nber.org/papers/w21251


Bernard, Andrew B. and Andreas Moxnes, “Networks and Trade,” Annual Review
of Economics, 2018, 10 (1), 65–85.

Bigio, Saki and Jennifer La’O, “Distortions in Production Networks,” The Quar-
terly Journal of Economics, 2020, 135 (4), 2187–2253.

Boehm, Christoph E., Aaron Flaaen, and Nitya Pandalai-Nayar, “Input Linkages
and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tohoku
Earthquake,” The Review of Economics and Statistics, 2019, 101 (1), 60–75.

Boehm, Johannes, “The Impact of Contract Enforcement Costs on Value Chains
and Aggregate Productivity,” The Review of Economics and Statistics, 2022, 104
(1), 34–50.

and Ezra Oberfield, “Misallocation in the Market for Inputs: Enforcement and
the Organization of Production,” The Quarterly Journal of Economics, 2020, 135 (4),
2007–2058.

Caliendo, Lorenzo and Fernando Parro, “Estimates of the Trade and Welfare Ef-
fects of NAFTA,” The Review of Economic Studies, 2014, 82 (1), 1–44.

, , Esteban Rossi-Hansberg, and Pierre-Daniel Sarte, “The Impact of Regional
and Sectoral Productivity Changes on the U.S. Economy,” The Review of Economic
Studies, 2018, 85 (4), 2042–2096.

Carvalho, Vasco M., “From Micro to Macro via Production Networks,” Journal of
Economic Perspectives, 2014, 28 (4), 23–48.

and Alireza Tahbaz-Salehi, “Production Networks: A Primer,” Annual Review
of Economics, 2019, 11 (1), 635–663.

Carvalho, Vasco M, Makoto Nirei, Yukiko U Saito, and Alireza Tahbaz-Salehi,
“Supply Chain Disruptions: Evidence from the Great East Japan Earthquake,”
The Quarterly Journal of Economics, 2021, 136 (2), 1255–1321.

Carvalho, Vasco, Matthew Elliott, and John Spray, “Network Bottlenecks and
Market Power,” Working Paper 2022.

40

https://doi.org/10.1162/rest_a_00940
https://doi.org/10.1162/rest_a_00940
https://doi.org/10.1093/qje/qjaa020
https://doi.org/10.1093/qje/qjaa020
https://doi.org/10.1093/restud/rdu035
https://doi.org/10.1093/restud/rdu035


Caselli, Francesco, Miklós Koren, Milan Lisicky, and Silvana Tenreyro, “Diver-
sification Through Trade*,” The Quarterly Journal of Economics, 2020, 135 (1), 449–
502.

Chaney, Thomas, “The Network Structure of International Trade,” American Eco-
nomic Review, 2014, 104 (11), 3600–3634.

D’Aguanno, Lucio, Oliver Davies, Aydan Dogan, Rebecca Freeman, Simon
Lloyd, Dennis Reinhardt, Rana Sajedi, and Robert Zymek, “Global Value
Chains, Volatility and Safe Openness: Is Trade a Double-Edged Sword?,” Bank
of England Financial Stability Paper No. 46 2021.

di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean, “Firms, Desti-
nations, and Aggregate Fluctuations,” Econometrica, 2014, 82 (4), 1303–1340.

, , and , “The Micro Origins of International Business-Cycle Comovement,”
American Economic Review, 2018, 108 (1), 82–108.

Dupor, Bill, “Aggregation and Irrelevance in Multi-Sector Models,” Journal of
Monetary Economics, 1999, 43 (2), 391–409.

Durlauf, Steven N., “Nonergodic Economic Growth,” Review of Economic Studies,
1993, 60 (2), 349–366.

Elliott, Matthew, Benjamin Golub, and Matthew V. Leduc, “Supply Network
Formation and Fragility,” American Economic Review, August 2022, 112 (8), 2701–
47.

Estrada, E., The Structure of Complex Networks: Theory and Applications, OUP Oxford,
2012.

Fine, Charles H., Richard St. Clair, John C. Lafrance, and Don Hillebrand, “The
U.S. Automobile Manufacturing Industry,” Policy Report, U.S. Department of
Commerce Office of Technology Policy 1996.

Foerster, Andrew, Pierre Daniel Sarte, and Mark Watson, “Sectoral versus Ag-
gregate Shocks: A Structural Factor Analysis of Industrial Production,” Journal
of Political Economy, 2011, 119 (1), 1–38.

41

https://www.aeaweb.org/articles?id=10.1257/aer.104.11.3600
https://www.aeaweb.org/articles?id=10.1257/aer.20210220
https://www.aeaweb.org/articles?id=10.1257/aer.20210220


Gabaix, Xavier, “The Granular Origins of Aggregate Fluctuations,” Econometrica,
2011, 79 (3), 733–772.

Grassi, Basile, “IO in I-O: Size, Industrial Organization, and the Input-Output
Network Make a Firm Structurally Important,” Working Paper 2017.

Horvath, Michael, “Cyclicality and Sectoral Linkages: Aggregate Fluctuations
from Independent Sectoral Shocks,” Review of Economic Dynamics, 1998, 1 (4),
781–808.

, “Sectoral Shocks and Aggregate Fluctuations,” Journal of Monetary Economics,
2000, 45 (1), 69–106.

Hulten, Charles R., “Growth Accounting with Intermediate Inputs,” The Review of
Economic Studies, 1978, 45 (3), 511–518.

Jones, Charles I., “Intermediate Goods and Weak Links in the Theory of Economic
Development,” American Economic Journal: Macroeconomics, 2011, 3 (2).

, “Misallocation, Economic Growth, and Input-Output Economics,” in
Manuel Arellano Daron Acemoglu and Eddie Dekel, eds., Advances in Economics
and Econometrics: Tenth World Congress, Cambridge: Cambridge University Press,
2013, chapter 10, pp. 419–456.

Jorgenson, Dale W., “Information Technology and the U.S. Economy,” American
Economic Review, March 2001, 91 (1), 1–32.

Jovanovic, Boyan, “Micro Shocks and Aggregate Risk,” The Quarterly Journal of
Economics, 1987, 102 (2), 395–409.

Kikkawa, Ayumu, Glenn Magerman, and Emmanuel Dhyne, “Imperfect Compe-
tition in Firm-to-Firm Trade,” Journal of the European Economic Association, forth-
coming.

Leontief, Wassily W., “Quantitative Input and Output Relations in the Economic
Systems of the United States,” The Review of Economics and Statistics, 1936, 18 (3),
105–125.

42

http://dx.doi.org/10.2139/ssrn.3389836
http://dx.doi.org/10.2139/ssrn.3389836


Liu, Ernest, “Industrial Policies in Production Networks,” The Quarterly Journal of
Economics, 2019, 134 (4), 1883–1948.

Long, John B. and Charles I. Plosser, “Real Business Cycles,” Journal of Political
Economy, 1983, 91 (1), 39–69.

MacDuffie, John Paul and Takahiro Fujimoto, “Why Dinosaurs Will Keep Ruling
the Auto Industry,” Harvard Business Review, 2010, June.

Redding, Stephen J. and Esteban Rossi-Hansberg, “Quantitative Spatial Eco-
nomics,” Annual Review of Economics, 2017, 9 (1), 21–58.

Shea, John S, “Complementarities and Comovements,” Journal of Money, Credit
and Banking, 2002, 34 (2), 412–33.

Solow, Robert M., “Technical Change and the Aggregate Production Function,”
The Review of Economics and Statistics, 1957, 39 (3), 312–320.

Timmer, Marcel P., Erik Dietzenbacher, Bart Los, Robert Stehrer, and Gaaitzen J.
de Vries, “An Illustrated User Guide to the World Input-Output Database: the
Case of Global Automotive Production,” Review of International Economics, 2015,
23 (3), 575–605.

Warnke, Jacqueline, “Computer manufacturing: change and competition,” BLS
Monthly Labor Review, 1996, (August).

World Bank, “GDP (current US$) - Data,” https://data.worldbank.org/

indicator/NY.GDP.MKTP.CD 2023. Accessed: 2023-02-02.

43

https://doi.org/10.1146/annurev-economics-063016-103713
https://doi.org/10.1146/annurev-economics-063016-103713
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD


Online Appendix A. Proofs

Proof of Proposition 1. The Lagrangean for the aggregator problem is

L=

(
N

∑
j=1

(
ωD, jc j

)σ−1
σ

) σ

σ−1

+η

(
wL−

N

∑
j=1

p jc j

)
,

where η is the Lagrange multiplier. Optimization with respect to ci yields

ci = wLp−σ

i ω
σ−1
D,i

(
N

∑
j=1

p1−σ

j ω
σ−1
D, j

)−1

, (12)

from which we derive an expression for ϒi:

ϒi =
pici

wL
=

p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) . (13)

Substituting equation (12) into the consumption aggregator, yields

Y = wL

(
N

∑
j=1

ω
σ−1
D, j pσ−1

i

) 1
σ−1

. (14)

Furthermore, total (log) differentiation of the consumption aggregator gives

d logY =
N

∑
i=1

Y
1−σ

σ

(
ωD,ici

)σ−1
σ
(
d logci +d logωD,i

)
. (15)

Substituting (12) and (14) into equation (15), yields

d logY =
N

∑
i=1

p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) (d logci +d logωD,i
)
,

which can be rewritten using equation (13) as

d logY =
N

∑
i=1

ϒid logci +
N

∑
i=1

ϒid logωD,i. (16)

Total (log) differentiation of equation (12) implies that (16) can be written as
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d logY =
N

∑
i=1
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d logw+d logL−σd log pi +(σ −1)d logωD,i −d log
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Noting that d log
(

∑
N
j=1 p1−σ

j ω
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)
simplifies to

d log
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,

equation (17) can be rewritten as

d logY = d logw−
N

∑
i=1

ϒi
(
d log pi −d logωD,i

)
. (18)

We now turn to producers’ optimization problem to derive an expression for d log pi.
The first-order conditions for labor and intermediate inputs imply

li = αi(1− τy,i)piyiw−1(1+ τL,i)
−1, (19)

and

xi j = (1−αi)
θ pθ

i yθ
i ω

θ−1
i j p−θ

j (1− τy,i)
θ (1+ τx,i j)

−θ M1−θ

i . (20)

From (19) and (20), we derive expressions for the labor expenditure shares Λi and
input-output parameters Ωi j,

Λi =
(1+ τL,i)wli
(1− τy,i)piyi

= αi, (21)

and,

Ωi j = (1−αi)
θ pθ−1
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i ω
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i j p1−θ
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θ−1(1+ τx,i j)

1−θ M1−θ

i . (22)

Substituting (19) and (20) into sector i’s production function, we derive the follow-
ing expression for the price of good i,
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i (1− τy,i)

−1(1+ τL,i)
αiwαiα

−αi
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where PM,i ≡
(

∑
N
j=1 ω

θ−1
i j

[
(1+ τx,i j)p j

]1−θ
) 1

1−θ . Total differentiation of equation
(23), yields

d log pi = Λid logw−d logAi − (αi −1)d logPM,i,

where d logPM,i is given by
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Therefore, we can write
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From the identity, ΩΩΩ1+ΛΛΛ = 1, it follows that ΨΨΨ
′
ΛΛΛ = 1. Therefore, the above equa-

tion can be rewritten as

d log pi = d logw−
N

∑
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ψikd logAk −
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Substituting equation (24) into (18) yields
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which simplifies to
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Using the fact that λk = ∑
N
i=1 ϒiψik, we can re-write the above equation as
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Noting that, to a first-order approximation,
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from equation (25), it follows that µi =
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is given by
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Therefore, since shutting down linkages implies ∆ωki
ωki

= −1 for all k, ∆ωik
ωik

= −1 for

all k ̸= i, and ∆ωD,i
ωD,i

=−1, we get

µi = ϒi +λλλ
′
ΩΩΩ(i)+λiΩ̃ΩΩ

(i)
1.

■

Proof of Proposition 2. Denote by ΩΩΩ
F the frictionless input-output matrix, with

the i jth element given by ΩF
i j =

p jxi j
piyi

. The frictionless input-output matrix relates to
the tax-adjusted input-output matrix ΩΩΩ via the identity
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ΩΩΩ = ΓΓΓ◦ΩΩΩ
F ,

where ΓΓΓ is an N ×N matrix with i jth element given by

Γi j =
1+ τx,i j

1− τy,i
.

Noting that Γi j ≥ 1 for all i, j since 0 ≤ τx,i j < 1 and 0 ≤ τy,i < 1, it implies that

Ωi j ≥ Ω
F
i j,

for all i, j. Furthermore, the i jth element of the Leontief inverse ΨΨΨ =
(
I −ΓΓΓ◦ΩΩΩ

F)−1

can be written as

ψi j = 1+
(

1+ τx,i j
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Ω

F
i j +

N
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(
1+ τx,ik
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)(
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Ω

F
ikΩ

F
k j + ...

Noting that

ψi j ≥ 1+Ω
F
i j +

N

∑
k=1

Ω
F
ikΩ

F
k j + ...,

where the right-hand side of the above inequality is the i jth element of the friction-
less Leontief inverse, defined as

(
I −ΩΩΩ

F)−1
i j .

Defining by µF
i sector i’s removal centrality in the frictionless economy, it fol-

lows that

ζi = µi −µ
F
i ≥ 0,

for all i, where
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ζi = ϒϒϒ
′
((

I −ΓΓΓ◦ΩΩΩ
F)−1 (

ΓΓΓ◦ΩΩΩ
F)

(i)−
(
I −ΩΩΩ

F)−1
ΩΩΩ

F
(i)

)
︸ ︷︷ ︸

Impact of taxes on i’s indirect effect

+
N

∑
k=1

ϒk

((
I −ΓΓΓ◦ΩΩΩ

F)−1
ki

(
ΓΓΓ◦ Ω̃ΩΩ

F
)(i)

1−
(
I −ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
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1

)
︸ ︷︷ ︸

Impact of taxes on i’s supplier effect

,

and where (X)(i) and (X)(i) denotes the ith column and row of a matrix X, respec-
tively.

■

Online Appendix B. Data

BEA Input-Output Data

We use the detailed benchmark input-output accounts provided by the Bureau of
Economic Analysis (BEA) from 1982 to 2012. These accounts, which are compiled
every five years, offer comprehensive information on inter-industry relationships
and the flow of goods and services in the economy. For our analysis, we use the
commodity-by-industry Use table, assuming that each industry produces only one
commodity (as in Baqaee and Farhi, 2020). We exclude the government, scrap, non-
comparable imports, and used and secondhand goods sectors from our analysis.
The number of industries included in the tables varies each year, ranging from 534
sectors in 1982 to 393 sectors in 2012.

To compute each entry of the US input-output table for each year, we divide
the expenditure of industry i on commodity j by i’s gross sales (net of sector-level
taxes). We also calculate the final expenditure share of each sector i by summing
all components of final demand in the detailed Use tables, excluding changes in
private inventories, and dividing by nominal GDP. If any final demand share is
negative, we set it equal to zero. Similarly, if any value in the equilibrium input-
output matrix is negative, we set it to zero as well.
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WIOD Input-Output Data

We use the 2016 release of the World Input-Output Database (WIOD) (see Tim-
mer et al., 2015 for an overview of the WIOD data) for our cross-country analysis.
The dataset contains information on gross output, value-added, factor compensa-
tion, tax payments, final expenditures, and intermediate input flows for 43 coun-
tries from 2000 to 2014. The WIOD data is disaggregated into 56 sectors based on
the International Standard Industrial Classification Revision 4 (ISIC Rev. 4). The
block-diagonal of each input-output table captures domestic intermediate input
transactions for each country. In contrast, the off-diagonal relates to the flow of
intermediates between countries. For our purposes, we focus solely on domes-
tic transactions and abstract from international trade. We compute each entry of
country c’s input-output matrix ΩΩΩct ≡

[
Ωi jct

]
at time t by dividing sector i’s nom-

inal expenditure on sector j’s product by sector i’s total domestic nominal sales
(net of taxes). Notably, we exclude each sector’s spending on imported inputs,
which ensures that factor compensation plus domestic intermediate input expen-
diture equals nominal gross output for each sector. We calculate tax rates τict at the
country-sector-year level as

τict =
Tict

∑
N
k=1 pkctykct

,

where Tict is the nominal value of taxes (less subsidies) paid by sector i in coun-
try c at year t, and ∑

N
k=1 pkctykct is aggregate nominal gross output for country c.

Therefore, a typical entry of country c’s input-output matrix is computed as36

Ωi jct =
p jctxi jct

(1− τict)pictyict
.

Finally, we calculate industries’ final expenditure shares ϒict as the sum of house-
hold and government final consumption expenditure plus gross fixed capital for-
mation, all as a fraction of nominal GDP.

36Given that we do not have information on input-specific tax wedges τx,i j, we do not include
these when computing the input-output matrices.
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Online Appendix C. The Effect of Taxes on Sectors’ Im-

portance

In the Proof of Proposition 2, we derived the following expression for the contri-
bution of taxes to sector i’s removal centrality, ζi:

ζi = ϒϒϒ
′
((

I −ΓΓΓ◦ΩΩΩ
F)−1 (

ΓΓΓ◦ΩΩΩ
F)

(i)−
(
I −ΩΩΩ

F)−1
ΩΩΩ

F
(i)

)
︸ ︷︷ ︸

Impact of taxes on i’s indirect effect

+
N

∑
k=1

ϒk

((
I −ΓΓΓ◦ΩΩΩ
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ki

(
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F
)(i)

1−
(
I −ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1

)
︸ ︷︷ ︸

Impact of taxes on i’s supplier effect

, (26)

where (X)(i) and (X)(i) denotes the ith column and row of a matrix X, respectively.
In equation (26), the first term on the right-hand side quantifies the impact of

sector-level sales and intermediates taxes on the indirect effect of sector i, while
the second term measures the significance of these taxes for the supplier effect of
sector i. Thus, in the absence of these frictions, the supplier effect of i is given by

N

∑
k=1

ϒk
(
I −ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1 (27)

and the importance of taxes for supplier effects is given by

N

∑
k=1

ϒk

((
I −ΓΓΓ◦ΩΩΩ

F)−1
ki

(
ΓΓΓ◦ Ω̃ΩΩ

F
)(i)

1−
(
I −ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1

)
. (28)

Figure 10 compares the impact of taxes on industries’ supplier effects (equation 28),
represented by yellow bars, for the top 10 sectors ranked by supplier effects. The
analysis covers the years from 1982 to 2012, using the detailed BEA input-output
accounts. In the figure, the orange bars represent the frictionless supplier effects
of each industry, calculated using equation (27). The combined sum of the orange
and yellow bars for each sector represents the total supplier effect, which includes
the impact of taxes, for the sector listed on the horizontal axis.
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Figure 10: Contribution of Taxes to Sectors’ Supplier Effects
Note: This figure presents estimates of the contribution of taxes to sectors’ supplier effects from
1982 to 2012 using the detailed input-output accounts of the BEA. The top 10 sectors, ranked by
supplier effects, are displayed for each year. The orange bars represent each sector’s supplier effect
in the absence of taxes, calculated using equation (27). The yellow bars capture the contribution of
taxes to each sector’s supplier effect, computed as in equation (28).
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The figure shows that taxes only account for a small portion of the overall sup-
plier effects of industries across all years. However, a few notable exceptions stand
out. In 2002, taxes on retail and wholesale trade accounted for approximately 15%
and 18%, respectively, of these industries’ total supplier effects. Additionally, in
1982, taxes accounted for 23% of the supplier effect of crude petroleum produc-
tion. Nonetheless, on average, taxes only account for around 4% of supplier effects
across all industries and years in the BEA IO tables.

Online Appendix D. Second-Order Removal Centrality

We compute sectors’ second-order removal centrality by characterizing the deriva-
tives of Domar weights and input-output parameters. We begin by noting that
changes in real GDP in the actual economy, to a second-order approximation, are
given by

∆Y
Y

≈
N

∑
i=1

λi

(
∆Ai

Ai

)
+

1
2

N

∑
i=1

N

∑
j=1

dλi

d logA j

(
∆Ai

Ai

)(
∆A j

A j

)
, (29)

where the first set of summands capture the first-order change in real GDP in re-
sponse to the technology shocks (∆A1

A1
, ..., ∆AN

AN
) and the second set of summands

capture the second-order change in GDP. Next, note that the second-order change
in real GDP in the counterfactual economy is given by
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∆Ỹi

Ỹi
≈

N

∑
i=1

λi

(
∆Ai

Ai

)
︸ ︷︷ ︸

First-order technology effect

+
1
2

N

∑
i=1

N

∑
j=1

dλi

d logA j

(
∆Ai

Ai

)(
∆A j

A j

)
︸ ︷︷ ︸

Second-order technology effect

+ ϒi

(
∆ωD,i

ωD,i

)
︸ ︷︷ ︸

First-order direct effect

+
N

∑
k=1

λkΩki

(
∆ωki

ωki

)
︸ ︷︷ ︸

First-order indirect effect

+
N

∑
k ̸=i

λiΩik

(
∆ωik

ωik

)
︸ ︷︷ ︸

First-order supplier effect

+
1
2

N

∑
k=1

N

∑
m=1

d(λkΩki)

d logωmi

(
∆ωki

ωki

)(
∆ωmi

ωmi

)
︸ ︷︷ ︸

Second-order indirect effect

+
1
2

dϒi

d logωD,i

(
∆ωD,i

ωD,i

)2

︸ ︷︷ ︸
Second-order direct effect

+
1
2

N

∑
k ̸=i

N

∑
m ̸=i

d(λiΩik)

d logωim

(
∆ωik

ωik

)(
∆ωim

ωim

)
︸ ︷︷ ︸

Second-order supplier effect

. (30)

Noting that second-order removal centrality is defined as

µ
2nd-order
i =

∆Y
Y

− ∆Ỹi

Ỹi

we get

µ
2nd-order
i = µ

First-order
i − 1

2
dϒi

d logωD,i

(
∆ωD,i

ωD,i

)2

︸ ︷︷ ︸
Second-order direct effect

− 1
2

N

∑
k=1

N

∑
m=1

d(λkΩki)

d logωmi

(
∆ωki

ωki

)(
∆ωmi

ωmi

)
︸ ︷︷ ︸

Second-order indirect effect

− 1
2

N

∑
k ̸=i

N

∑
m ̸=i

d(λiΩik)

d logωim

(
∆ωik

ωik

)(
∆ωim

ωim

)
︸ ︷︷ ︸

Second-order supplier effect

. (31)

Therefore, to characterize equation (31), we must compute dϒi
dωD,i

, d(λkΩki)
d logωmi

and d(λiΩik)
d logωim

.
We begin by noting that

dϒi

d logωD,i
=

d logϒi

d logωD,i
ϒi (32)
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where

d logϒi

d logωD,i
= (σ −1)(1−ϒi). (33)

Next, to characterize the second-order indirect effect, we need to compute

d(λkΩki)

d logωmi
=

d logλk

d logωmi
λkΩki +

d logΩki

d logωmi
λkΩki. (34)

Firstly, the change in the input-output parameter Ωki in response to the change in
ωmi is given by

d logΩki

d logωmi
= (θ −1)

(
ψimΩmi −

1
1−Λk

N

∑
j=1

Ωk jψ jmΩmi +
d logωki

d logωmi

)
. (35)

Secondly, the change in sector k’s Domar weight is given by

d logλk

d logωmi
=

1
λk

N

∑
l=1

ϒlψlk
d logϒl

d logωmi
+

1
λk

N

∑
l=1

N

∑
s=1

Ωlsλlψsk
d logΩls

d logωmi
, (36)

where,

d logϒl

d logωmi
= (σ −1)(ψlmΩmi −λmΩmi) . (37)

and

d logΩls

d logωmi
= (θ −1)

(
ψsmΩmi −

1
1−Λl

N

∑
j=1

Ωl jψ jmΩmi +
d logωls

d logωmi

)
. (38)

Together, equations (35), (36), (37) and (38) are sufficient to characterize the second-
order indirect effect in equation (31).

Our last step is to characterize the second-order supplier effect. To this end, we
must compute

d(λiωik)

d logωim
=

dλi

d logωim
Ωik +

dΩik

d logωim
λi.

The change in the input-output parameter Ωik in response to a change in ωim is
given by
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dΩik

d logωim
= (θ −1)Ωik

(
ψkiΩim − 1

1−Λi

N

∑
j=1

Ωi jψ jiΩim +
d logωik

d logωim

)
, (39)

Next, we compute dλi
d logωim

dλi

d logωim
=

N

∑
l=1

ψli
dϒl

d logωmi
+

N

∑
l=1

N

∑
s=1

λlψsi
dΩls

d logωim
, (40)

where

dϒl

d logωim
= (σ −1)ϒl (ψliΩim −λiΩim) . (41)

and

dΩls

d logωim
= (θ −1)Ωls

(
ψsiΩmi −

1
1−Λl

N

∑
j=1

Ωl jψ jiΩim +
d logωls

d logωim

)
. (42)

Together equations (32)–(42) characterize second-order removal centrality.
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