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1 Introduction

At least since Leontief (1936), economists have recognized the importance of system-
atically quantifying interrelationships between the producers of an economy.1 More
recently, studies have shown that these input-output linkages play a crucial role in
amplifying microeconomic shocks into aggregate fluctuations (Acemoglu et al., 2012;
Atalay, 2017, Baqaee and Farhi, 2019, Huo et al., 2024 and Kinnan et al., 2024). In ad-
dition to a producer’s share of value added to GDP, its macroeconomic importance
depends on how other agents rely on it, directly or indirectly, for intermediate inputs.
Moreover, existing measures of systemic importance quantify the impact of an isolated
idiosyncratic supply shock to a given producer on aggregate output (see, for example,
Hulten, 1978, Liu, 2019, Baqaee and Farhi, 2020b, and Bigio and La’O, 2020).2 However,
in reality, supply shocks rarely occur in isolation and often coincide with reductions in
demand for intermediate inputs from upstream suppliers. As a result, the systemic
importance of a producer extends beyond the direct and indirect impact of a supply
shock to itself and also encompasses the simultaneous effect of changes in its demand
for intermediate goods.

This paper presents a new measure of a producer’s macroeconomic importance,
which we refer to as scale centrality, that captures how a shock to a producer impacts
real GDP by i) directly affecting the final consumption of its output, ii) indirectly af-
fecting the production of firms that are directly or indirectly connected to it, and iii)
affecting direct and indirect suppliers due to changes in its demand for intermediate
inputs. To highlight the relevance of our measure, consider the recent Boeing 737 Max
groundings that occurred between 2019 and 2020, following the fatal crashes of Lion
Air Flight 610 and Ethiopian Airlines Flight 302. In 2019, Boeing temporarily halted
the production of the 737 Max aircraft following the Federal Aviation Administration’s
decision to ground the plane due to a software flaw. The decision had major financial
ramifications for Boeing, costing more than USD 18 billion in customer compensation
and sales losses (Forbes, 2020). Expectedly, the shock impacted Boeing’s customers.
Unable to use their 737 Maxes, domestic and international airlines were forced to re-
duce the number of flights on offer. American Airlines canceled 115 flights per day,
affecting more than 20,000 passengers daily. For Southwest Airlines, the grounding

1We use the terms producers, sectors, industries, and firms interchangeably in this paper.
2While these papers employ different frameworks: efficient vs. inefficient economies (with taxes,

markups or financial frictions) and differences in production technologies (Cobb-Douglas vs. CES),
they share the common aim of characterizing the change in aggregate output due to an idiosyncratic
disturbance to a microeconomic producer.
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reduced its second-quarter profit by USD 175 million in 2019 (NPR, 2019).
Perhaps equally importantly, the groundings also placed significant financial pres-

sure on Boeing’s suppliers. Spirit AeroSystems, the company that supplied Boeing
with the fuselage for its 737 Max jet, announced in early 2020 that it would lay off
around 2,800 employees at a facility in Kansas as a result of Boeing’s decision to sus-
pend production of the 737 Max (The Washington Post, 2020).3 Another supplier, Ger-
man seat maker Recaro Aircraft Seating, which supplied seats for the Max, also scaled
its operations as Boeing decreased its monthly production of 737s from 52 to 42. (The
Wall Street Journal, 2019). Clearly, the shock to Boeing was felt by its suppliers: in 2020,
Spirit AeroSystems made a loss of USD 870 million (Flight Global, 2021), and Recaro’s
revenues declined by 60% (Recaro, 2020) as a consequence of the disruption to Boeing.
The Max groundings highlight that shocks affecting a specific producer can impact not
only its customers, who rely directly or indirectly on its output, but also its suppliers
by reducing demand for intermediate inputs.

What was the macroeconomic impact of the shock to Boeing? The results of Hul-
ten (1978) imply that the systemic importance of a producer can be approximated by
its gross sales as a share of GDP, or Domar weight. While Domar weights sufficiently
summarize the change in real GDP in response to idiosyncratic microeconomic produc-
tivity shocks, we show that scale centrality is a more appropriate measure of systemic
importance in an environment where disruptions to producers entail idiosyncratic de-
mand and supply shocks (such as the Boeing groundings). The Domar weight of a pro-
ducer represents the aggregate impact of a supply shock to itself as it travels through
direct and indirect customers. Scale centrality, in addition, encases the general equilib-
rium impact of changes in the producer’s demand for intermediate goods following a
shock. Notably, scale centrality encapsulates producers’ Domar weight, and all the in-
formation contained in it, but also incorporates the systemic importance of a producer
due to changes in its demand for intermediate inputs.

While the 737 groundings serve as a motivating example, Figure 1 presents direct
empirical evidence that major firm-level shocks simultaneously impact the supply and
use of products. As in Barrot and Sauvagnat (2016) and Bahal et al. (2023), we identify
exogenous firm-level disruptions with the occurrence of major natural disasters in the
US over the period 1978 to 2017. Using Compustat data, we estimate the effect of
these shocks on the year-on-year real sales growth of 1) directly affected firms (black

3Spirit was heavily reliant on Boeing, with the Max alone accounting for more than 50 percent of the
company’s annual revenue (The New York Times, 2020).
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Figure 1: The Effect of Simultaneous Supply and Demand Shocks on Firms’ Sales
Note: The figure shows the average impact of natural disasters on the real year-on-year sales growth of
i) directly affected firms (black line), ii) affected firms’ suppliers (red line, left panel), and iii) affected
firms’ customers (orange line, right panel). The effect on sales growth is estimated up to nine quarters
following a shock. For further details on the data used and our estimation strategy, see Appendix A.
Standard errors are clustered at the firm level. *10%; **5%; ***1% significance levels.

line), 2) their immediate suppliers (left panel, red line), and 3) their direct customers
(right panel, orange line) up to nine quarters following a shock. See Appendix A for a
detailed discussion of the data and identification strategy used in Figure 1.

The figure reveals that directly affected firms and their upstream suppliers expe-
rience an immediate and simultaneous decline in output following a major natural
disaster.4 Canonical production network models that employ Cobb-Douglas produc-
tion technologies (such as Acemoglu et al., 2012) cannot comprehensively explain this
finding with negative microeconomic TFP shocks alone. In the benchmark model, TFP
shocks propagate downstream, with their effects diminishing as they transmit along
the supply chain. Therefore, these shocks can only influence upstream producers
through feedback effects, that is, when upstream firms indirectly rely on inputs from
affected producers.5 However, the right panel reveals that the shocks propagate to
customers with a significant lag. While upstream suppliers are affected immediately,
downstream firms experience reductions in sales growth approximately four quarters

4To avoid confounding the effects of reduced input demand with the direct impact of shocks on
upstream suppliers, we: i) exclude supplier-customer relationships within a 300km radius and ii) control
for whether natural disasters strike suppliers themselves.

5In a recent paper, Carvalho et al. (2024) show that most of the production economy can be repre-
sented as an upstream-to-downstream flow of intermediate goods.
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later.6 Thus, the timing and magnitude of the effect on suppliers is unlikely to be solely
explained by the downstream propagation of supply shocks.7

Our measure of scale centrality is derived within the framework of a macroeco-
nomic production network model in the spirit of Atalay (2017), Bernard and Moxnes
(2018), and Baqaee and Farhi (2019). In the model, each sector produces output using a
combination of labor and intermediate inputs and is subject to shocks to its use of mate-
rials from upstream suppliers, as well as its supply of intermediate and final goods. We
capture relationships between industries via constant-elasticity-of-substitution (CES)
aggregators of intermediate products. While goods may either be complements or
substitutes in our model, a sector’s scale centrality does not depend on the value of the
elasticity of substitution across intermediate or final goods (to a first-order approxima-
tion). In this respect, our formulas align with the nonparametric results of much of the
production networks literature, including Hulten (1978), Liu (2019), Baqaee and Farhi
(2020b), and Bigio and La’O (2020).

Shocks to producers’ supply and demand for goods lead to endogenous changes
in the prices and quantities of traded inputs. However, these endogenous changes are
macroeconomically irrelevant to a first-order approximation and only matter at higher
orders. A key contribution of this paper is to provide a formula that allows us to
quantify each sector’s scale centrality without having to characterize changes in prices
and quantities in response to a shock. Notably, only observable data on intermediate
input purchases, nominal gross output, tax payments, and nominal GDP is necessary
to estimate an industry’s scale centrality. Since this information is available for most
countries, our measure is readily computable.

Scale centrality can be decomposed into three distinct components, which we refer
to as direct, indirect, and supplier effects. The direct effect captures the impact of a sup-
ply shock to the focal industry on real GDP via households’ direct consumption of its
output. The indirect effect, on the other hand, captures the spillover effect of the supply

6The delayed response of customers’ sales growth is documented in Barrot and Sauvagnat (2016)
and Bahal et al. (2023).

7Constant-elasticity-of-substitution (CES) production network models, such as those studied in
Baqaee and Farhi (2019) and Baqaee and Rubbo (2023), can generate reductions in output of upstream
producers when customers substitute away from the affected suppliers in response to negative TFP
shocks (i.e., inputs are gross substitutes for downstream firms). Since customers are impacted two quar-
ters after shocked firms’ suppliers, the immediate decline in suppliers’ sales growth (left panel of Figure
1) is likely a result of a more direct decrease in demand for intermediate inputs from the shocked firm
itself. The general equilibrium price effects of Baqaee and Farhi (2019) and Baqaee and Rubbo (2023)
may as well be operating and may explain why suppliers’ sales growth continues to decline after four
quarters.
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shock (to the focal industry) on final demand as it spreads to other industries. Lastly,
the supplier effect quantifies how changes in the focal producer’s demand for interme-
diate inputs, in response to the shock, impacts real GDP. Supplier effects also spillover
to other producers who depend, either directly or indirectly, on products from the focal
sector’s upstream suppliers. Notably, the sum of a sector’s direct and indirect effects
corresponds to its Domar weight, a well-established measure of systemic significance
(as in Hulten, 1978; Baqaee and Farhi, 2020b).8 The third component, the supplier ef-
fect, represents a sector’s ability to shape aggregate fluctuations via changes in demand
for inputs and distinguishes a sector’s Domar weight from its scale centrality.

In an empirical application, we first estimate scale centrality for approximately 450
sectors in the US between 1982 and 2012 using the detailed input-output accounts pro-
vided by the Bureau of Economic Analysis (BEA). We show that Domar weights under-
estimate the systemic importance of an industry by 40-50%, on average, implying that
supplier effects are quantitatively significant for most industries. We further demon-
strate that the extent of underestimation increases with the Domar weight of a sector.
This result is not immediately obvious as a sector’s scale centrality and Domar weight
can coincide, even for industries with large Domar weights (say, for an upstream sector
that uses no intermediate inputs for production).

We also find the relationship between sectors’ Domar weights and scale centrality
to be remarkably constant over time. That is, sectors with larger Domar weights have
substantially greater supplier effects as well. Thus, as industries grow larger in size
(as measured by their Domar weight), they also become increasingly reliant on inputs
from other sectors in the economy. This implies that shocks to the input demand of
large producers have significant aggregate effects. Our findings reveal that industries
such as petroleum refineries, oil & gas extraction, and pharmaceutical manufacturing
have a substantial capacity to drive aggregate fluctuations in the US.

Further, changes in a sector’s scale centrality need not coincide with changes in its
Domar weight. Our analysis shows that key sectors of the US economy, such as motor
vehicle production, electronic computer manufacturing, and retail trade, experienced
significant changes in their scale centrality over time despite having relatively stable
Domar weights. Take, for instance, the retail trade sector. Between 1982 and 1987, re-

8In inefficient economies with one factor of production, distortion-adjusted Domar weights are suf-
ficient to characterize the macroeconomic impact of isolated microeconomic TFP shocks (Baqaee and
Farhi, 2020b). Since our model includes taxes on sales and input purchases, we use the term “Domar
weights” to refer to tax-adjusted sales shares. However, regardless of whether the economy is efficient
or inefficient, scale centrality encapsulates the first-order macroeconomic impact of an idiosyncratic mi-
croeconomic supply shock to the focal industry.
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tail trade experienced a substantial decrease in its reliance on intermediates from other
sectors, with its supplier effect declining from around 3.5% of GDP to less than 3%
of GDP during this period. Surprisingly, however, the Domar weight of retail trade
remained constant. Therefore, when assessing retail trade’s systemic importance us-
ing our measure of scale centrality, we note a significant decline in its macroeconomic
significance, which is not captured by its Domar weight. This finding highlights the
relevance of scale centrality in assessing the systemic importance of a sector, in addi-
tion to a sector’s Domar weight.

Next, using data from the World Input-Output Database between 2000 and 2014,
we identify the industries with the greatest scale centrality for six major economies:
the United States, Great Britain, Japan, China, Germany, and Australia. For each econ-
omy, construction, real estate, public administration, and food & beverages are always
among the top five sectors with the largest scale centrality. Notably, the magnitude
of direct, indirect, and supplier effects vary significantly across countries and indus-
tries. Labor-intensive sectors, such as education and health services, have significant
direct effects. This is because they rely less on intermediate inputs and provide services
directly to end-consumers, limiting their ability to amplify shocks via indirect and sup-
plier effects. Conversely, sectors like wholesale trade and electricity & gas derive most
of their aggregate importance from the indirect effect, reflecting their critical role as
input suppliers to other producers. Construction and food & beverages, on the other
hand, have relatively large direct and supplier effects, which highlights their central
role as both producers of final goods and consumers of intermediate goods.

Related literature. Our article relates to the literature on growth accounting and pro-
duction networks. Hulten (1978) provided the economic rationale for using Domar
aggregation to measure changes in aggregate TFP. Hulten’s result was in contrast to
Solow (1957), who used an aggregate production function and measured TFP growth
as the residual change in output after accounting for the growth of factor inputs. Hul-
ten’s theorem has become a benchmark in the macroeconomic literature on production
networks, demonstrating that in the presence of intermediate inputs, sales (rather than
value-added) shares are the appropriate weights for aggregating microeconomic pro-
ductivity changes.9 Specifically, the theorem states that a producer’s sales as a share
of GDP (also called its Domar weight) is sufficient to capture the first-order macroe-

9See Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019) for a detailed overview of the produc-
tion networks literature.
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conomic impact of a microeconomic productivity shock to that producer. Relatedly,
Acemoglu et al. (2012) demonstrate that Domar weights are linked to the economy’s
input-output network through the Leontief inverse, capturing each industry’s direct
and indirect dependencies on intermediate inputs from other sectors.10 Our measure
of systemic importance differs from that of Hulten (1978) and Acemoglu et al. (2012)
as it accounts for sectors’ ability to influence aggregate fluctuations via changes in de-
mand for intermediate inputs.

Since our key measure is derived in the context of an inefficient network model,
we contribute to the growing literature on the propagation of shocks through input-
output linkages in the presence of market imperfections. Some papers in this literature
include Jones (2011, 2013); Bartelme and Gorodnichenko (2015); Caliendo et al. (2018);
Liu (2019); Boehm and Oberfield (2020), and Boehm (2022). Bigio and La’O (2020)
study the properties of inefficient (Cobb-Douglas) production networks with financial
frictions, while Baqaee and Farhi (2020b) study the impact of microeconomic produc-
tivity and factor supply shocks on aggregate output in a model with markups. We
contribute to this literature by demonstrating analytically that taxes on intermediate
input purchases and gross sales increase sectors’ scale centrality relative to frictionless
economies without such distortions.11 We also show how to use our framework to
quantify the importance of these distortions on sectors’ scale centrality. Empirically,
however, we find that sectoral taxes had a relatively limited impact on the amplifica-
tion of microeconomic shocks in the United States between 1982 and 2012.

Our paper also relates to the recent macroeconomics literature that investigates the
role of input-output linkages in generating aggregate volatility, including Foerster et
al. (2011), Acemoglu et al. (2012), di Giovanni et al. (2014), Acemoglu et al. (2017),
Atalay (2017), Grassi (2017), Baqaee (2018), and Altinoglu (2021).12 A common theme

10Baqaee and Farhi (2019) build on the work of Hulten (1978) and Acemoglu et al. (2012), showing
that nonlinearities in production have a significant impact on macroeconomic outcomes. While the first-
order macroeconomic effect of a microeconomic TFP shock to a sector is given by the sector’s Domar
weight, the second-order effect requires additional information, such as microeconomic elasticities of
substitution and the degree of return to scale.

11Taxes on factor payments only affect aggregate volatility when there are factor supply shocks or
factor-augmenting productivity shocks.

12These papers build on earlier work in macroeconomics that studies aggregate volatility in multi-
sector models, such as Long and Plosser (1983); Horvath (1998, 2000); Dupor (1999); Shea (2002).
Other papers that model microeconomic behavior to shed light on macroeconomic phenomena include
Durlauf (1993) and Jovanovic (1987). Studies such as Gabaix (2011) and Amiti and Weinstein (2018)
focus on the role of the firm size distribution in shaping aggregate fluctuations. Finally, Elliott et al.
(2022) and Carvalho et al. (2024) examine how supply chain complexity and bottlenecks contribute to
macroeconomic fragility.
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in this literature is that the interdependence of production through input-output link-
ages significantly amplifies aggregate volatility: small shocks cascade through supply
chains, resulting in larger fluctuations in output.13 We contribute to this literature in
three ways. First, we identify the key sectors that have the greatest impact on aggre-
gate volatility using our measure of scale centrality and demonstrate that these are not
necessarily the industries with the largest Domar weights. Second, to gain a deeper
understanding of the key determinants of aggregate volatility, we decompose sectors’
scale centrality into direct, indirect, and supplier effects. Our analysis underscores
the critical role that supplier effects play in shaping aggregate fluctuations. For ex-
ample, sectors like construction and food & beverages can drive output fluctuations
because they are disproportionate consumers of material goods relative to other in-
dustries. Lastly, we provide evidence that larger sectors tend to exhibit a higher level
of dependence on intermediate inputs from other industries. This finding suggests that
as sectors grow in size, they not only contribute more to aggregate fluctuations due to
their increased share of GDP but also because they account for a larger proportion of
their suppliers’ revenues.

The rest of the paper is structured as follows. In Section 2, we present the model
and derive our measure of scale centrality. In Section 3, we use our framework to iden-
tify the industries that have a significant impact on the propagation of microeconomic
shocks. Section 4 concludes. Proofs, a description of the data, and supplementary
results appear in the Appendix.

2 Model setup and equilibrium

We consider a static economy with N sectors that each produce one distinct product us-
ing some combination of labor and intermediate goods. The output of these sectors can
either be consumed directly by households as final goods or used as an intermediate
input by other sectors.

Aggregate output. Real GDP is the maximizer of a constant-elasticity-of-substitution
(CES) aggregator of final consumption:

13The empirical networks literature examines the transmission of microeconomic shocks through
input-output linkages using quasi-experiments. For instance, studies such as Barrot and Sauvagnat
(2016), Boehm et al. (2019), and Carvalho et al. (2021) estimate the impact of natural disasters on output
losses along firm-level supply chains, emphasizing the significance of indirect propagation.
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Y = max
{ci}N

i=1

(
N

∑
i=1

(
ωD,ici

)σ−1
σ

) σ

σ−1

subject to
N

∑
i=1

pici = wL,

where Y is aggregate output, ci is the final consumption of good i, ωD,i is a sector-
specific final demand shifter, σ is the elasticity of substitution, pi is the price of i’s
output, w is the wage rate, and L is aggregate labor supply (which is inelastically sup-
plied).

Producers. Sectors produce output using Cobb-Douglas technologies that combine
labor and intermediate goods

yi = Ail
αi
i M1−αi

i ,

where yi is sector i’s output, Ai is a Hicks-neutral productivity shifter, li is labor use, Mi

is a bundle of intermediate goods used by i and αi ∈ [0,1] is the importance of labor in
i’s production. Furthermore, Mi is a CES aggregator of intermediate goods from other
sectors, defined as

Mi ≡

(
N

∑
j=1

(
ωi jxi j

) θ−1
θ

) θ

θ−1

,

where xi j is the quantity of good j used by sector i and θ is the elasticity of substitution
between inputs. As in Bernard and Moxnes (2018) and Acemoglu and Azar (2020),
ωi j is a relationship-specific shock to i’s use of inputs from j. We model shocks to
sectors’ input use/supply via changes in the parameters ωi j. We define an N + 1×N

matrix Xi that captures all dependencies between sector i and its direct customers,
suppliers, and final consumers at the initial equilibrium. Specifically, the ith column of
Xi contains the coefficients (ω1i, ...,ωNi,ωD,i)

′, representing other sectors’ reliance on
intermediates from i, and households’ dependence on final products from i. These
parameters capture i’s importance as a supplier of intermediates and final goods. The
ith row of Xi contains the coefficients (ωi1, ...,ωiN), that summarize sector i’s demand
for intermediate inputs from other sectors. All other elements in Xi are zeros. There
are N matrices of this kind, one for each sector. In what follows, we measure sector
i’s scale centrality by characterizing the change in aggregate output Y in response to a
uniform change in the elements of matrix Xi,

d logY
d logXi

.14 We term this effect scale centrality

14Both Xi and X j contain a common element, ωi j and shocks to both sectors i and j entail changes in
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since, for d logXi < 0, it measures the change in GDP resulting from a reduction in the
operations of industry i.15

Similar to Liu (2019), Baqaee and Farhi (2020b), and Bigio and La’O (2020), we
model distortions as taxes on sectors’ sales and input use. In our model, distortions
leave the economy in the form of deadweight losses. Industry i’s profits are therefore
given by

πi = (1− τy,i)piyi− (1+ τL,i)wli−
N

∑
j=1

(1+ τx,i j)p jxi j,

where τy,i, τL,i, and τx,i j denote taxes imposed on sector i’s sales, labor use, and interme-
diate good purchases, respectively. The market-clearing conditions for goods 1≤ i≤ N

and labor are given by

yi = ci +hi +
N

∑
j=1

x ji and L =
N

∑
i=1

(li +bi) = 1,

where hi = τy,iyi+∑
N
j=1 τx, jix ji is sector i’s output and intermediate inputs that leave the

economy as deadweight losses and bi = τL,ili is the labor input of sector i that exits the
economy. Our treatment of deadweight losses is similar to Liu (2019) and Bigio and
La’O (2020).16

General equilibrium. Given taxes {τy,i,τL,i,τx,i j}, productivities Ai, technology pa-
rameters ωi j, and final demand shifters ωD,i, a general equilibrium is a set of prices
{pi,w}, input choices {li,xi j}, outputs yi and final demands ci, such that: final demand
maximizes the consumption aggregator subject to the budget constraint, producers
maximize profits taking prices as given and the markets for labor and goods clear.

the parameter ωi j. In the case of a shock to sector i, the change in ωi j reflects a shock to sector i’s use of
inputs from j. Conversely, in the case of a shock to j, the change in ωi j captures a change in the supply
of inputs from j to i. However, d logXi should not be interpreted as confounding idiosyncratic shocks
to i and other sectors. Instead, as we motivate in the introduction, d logXi should be understood as an
idiosyncratic production disruption to sector i that entails a supply shock to sector i and a demand (for
intermediate inputs) shock from sector i. We characterize the scale centrality of each sector independently
of other sectors, i.e., d logXi is independent of d logX j.

15In an earlier version of the paper, we referred to our measure as ’removal centrality,’ which quanti-
fied the macroeconomic impact of removing a specific producer from the economy.

16Our key results that (i) scale centrality encompasses direct, indirect, and supplier effects, and (ii)
Domar weights are the sum of direct and indirect effects, hold even when payments from distortions
are rebated lump sum to the household, as in Jones (2011, 2013) and Baqaee and Farhi (2020b).
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Remarks on the model. The above model is a relatively standard multi-sector pro-
duction network model with tax wedges and CRS production functions. Our key con-
tribution is to derive a new network statistic that accounts for the empirical evidence
that an idiosyncratic production disruption to a firm often simultaneously impacts its
supply and demand for intermediate inputs (Figure 1).17 Given the empirical support,
scale centrality summarizes the macroeconomic effect of such production disruptions
to producers. Hulten’s theorem and its generalizations continue to hold if the objective
is to characterize the aggregate impact of changes in the supply of a producer’s output
following a microeconomic technology/productivity shock.

Crucially, our key results are invariant to specific modeling choices. Specifically,
variants of scale centrality can be derived in models with additional distortions such as
nominal rigidities and financing frictions (e.g., Liu, 2019 and Baqaee and Farhi, 2022)
or in economies with heterogeneous households (Baqaee and Farhi, 2018) and inter-
national trade (Baqaee and Farhi, 2024 and Huo et al., 2024). The result that Domar
weights (or variants thereof) are embodied within producers’ scale centrality contin-
ues to hold across these different models.

Input-output definitions. We now introduce some input-output notation that is cen-
tral to our analysis. First, we define the N×N tax-adjusted equilibrium input-output
matrix ΩΩΩ≡

[
Ωi j
]
, where

Ωi j =
(1+ τx,i j)p jxi j

(1− τy,i)piyi
. (1)

For brevity, we will refer to the matrix ΩΩΩ as the input-output matrix throughout the
rest of the paper. Notably, Ωi j captures the direct exposure of sector i to sector j, after
accounting for the taxes τy,i and τx,i j that separate prices from marginal costs.18 The
first-order condition with respect to intermediate inputs from sector j (xi j), implies

Ωi j = (1−αi)(1+ τx,i j)
1−θ p1−θ

j Pθ−1
M,i ω

θ−1
i j , (2)

17The existing literature primarily focuses on the propagation and aggregation of productivity shocks
in multi-sector models with input-output linkages. Baqaee and Farhi (2020a) and Baqaee and Farhi
(2022) are exceptions that study supply and demand shocks simultaneously. However, in their context,
demand shocks correspond to changes in household preferences. To the best of our knowledge, we are
the first to study production disruptions that simultaneously change a producer’s supply of and demand
for intermediate inputs.

18The input-output matrix ΩΩΩ is similar to the cost-based input-output matrix of Baqaee and Farhi
(2020b).
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where PM,i is the price index associated with the intermediate goods bundle Mi.19 The
input-output parameter Ωi j is therefore a function of the price of j’s output relative
to i’s intermediate goods price index p j/PM,i, the tax wedge (1+ τx,i j), the elasticity of
substitution θ , the importance of labor in i’s production αi, and the shock to i’s use of
inputs from j ωi j.

As discussed above, to measure a sector’s scale centrality, we consider negative
shocks to i’s use (d logωi j < 0) and supply (d logω ji & d logωD,i < 0) of goods. For in-
stance, a shock d logωi j < 0 reflects a decrease in i’s use of intermediate inputs from
sector j. Equation (2) implies that in response to the shock d logωi j < 0, the correspond-
ing entry in the input-output matrix, Ωi j, will also decrease. However, it is important
to note that the input-specific shock will have a ripple effect on other elements in the
input-output matrix ΩΩΩ, as it will alter the prices of all sectors’ outputs. Since interme-
diate inputs can be either complements or substitutes, changes in the parameters ωi j

will prompt producers to adjust the mix of inputs they use, leading to price changes
across all sectors. As a result, these relative price adjustments affect final demand.20

Associated with the input-output matrix is the economy’s Leontief inverse ΨΨΨ ≡[
ψi j
]
, where

ΨΨΨ≡ (I−ΩΩΩ)−1 = I +ΩΩΩ+ΩΩΩ
2 + ...

Intuitively, a typical element of the Leontief inverse ψi j captures all direct and indirect
ways that sector i uses sector j’s output.21 In this respect, the Leontief inverse sum-
marizes all production chains of any length. To see this, note that (ΩΩΩn)i j measures the
weighted sum of all paths of length n linking sector j to sector i through the production
network.

Related to the matrix ΩΩΩ is the economy’s off-diagonal input output matrix Ω̃ΩΩ, defined

Ω̃ΩΩ≡ΩΩΩ−diag(ΩΩΩ) .

The diagonal of Ω̃ΩΩ contains zeros, whereas all off-diagonal elements are identical to
those of the input-output matrix ΩΩΩ. Thus, the matrix Ω̃ΩΩ captures all dependencies

19Formally, PM,i ≡
(

∑
N
j=1 ω

θ−1
i j [(1+ τx,i j)p j]

1−θ
) 1

1−θ .
20In the special case that all intermediate goods aggregators (Mi) are Cobb-Douglas (θ = 1), the input-

output parameter Ωi j is given by Ωi j = (1−αi)ωi j for all i, j. This implies that a shock d logωi j < 0 will
not impact other parameters in the input-output matrix ΩΩΩ when Mi is Cobb-Douglas for all i. However,
when θ 6= 1, the input-output matrix ΩΩΩ will respond endogenously to changes in the parameters ωi j.

21See Carvalho and Tahbaz-Salehi (2019) for a more detailed discussion of the Leontief inverse matrix.
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between sectors and omits producers’ reliance on their own products. As we show in
Section 2.1.1, the off-diagonal input-output matrix is required to measure industries’
scale centrality.

Next, we denote the N×1 vector of final expenditure shares by ϒϒϒ≡ [ϒi], where

ϒi =
pici

∑
N
j=1 p jc j

=
p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) . (3)

The denominator ∑
N
j=1 p jc j corresponds to nominal GDP.22 Notably, ϒi measures the

direct exposure of the household to sector i. We highlight in Section 2.1.1 that the final
expenditure share of an industry i sufficiently summarizes the direct effect of a shock to
sector i on real GDP. Notably, equation (3) shows that a shock to the household’s de-
pendence on i’s product (d logωD,i < 0) implies i’s final expenditure share (ϒi) changes
as well.

We also define an N×1 vector of tax-adjusted Domar weights, λλλ ≡ [λi], where

λi =
N

∑
k=1

ϒkψki. (4)

Throughout the rest of the paper we refer to λi as the Domar weight of sector i. Since
λi implicitly embodies taxes on sales and intermediate goods, our Domar weights dif-
fer from those of Hulten (1978), which are defined for efficient economies. Notably,
λi captures all direct and indirect ways the household uses goods from sector i after
accounting for taxes.23

The aggregate impact of microeconomic TFP shocks. Before defining the key mea-
sure of the paper, we must first characterize how real GDP responds to TFP shocks.
For this, we use the central theorem of Baqaee and Farhi (2020b), which characterizes
the first-order macroeconomic impact of a microeconomic TFP shock in the presence
of distortions:

d logY
d logAi

= λi. (5)

Crucially, tax-adjusted Domar weights {λi}N
i=1 are the correct statistics for determin-

22See Appendix B for the proof of equation (3).
23Our Domar weights, defined in equation (4), are similar to the cost-based Domar weights of Baqaee

and Farhi (2020b).
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ing the aggregate effect of productivity shocks d logAi to each sector i = 1,2, ...,N. The
above equation is a variant of Hulten’s (1978) theorem for economies with inefficient
equilibria.24 Equation (5) highlights why Domar weights are a measure of the ag-
gregate importance of industries: in response to an infinitesimal change in sector i’s
productivity, real GDP will change by λi%. Since the Domar weight λi implicitly en-
compasses all direct and indirect paths from sector i to final demand (equation 4), it
captures how a supply shock to i impacts real GDP by propagating to other produc-
ers in the production network and eventually to final consumers. However, while the
effect of a supply shock to sector i on real GDP is given by its Domar weight, sector
i’s scale centrality µi captures how shocks to i’s input use and supply affect real GDP.
Notably, scale centrality encapsulates sectors’ Domar weights and all the information
included in these statistics, and serves as a complementary measure of systemic signif-
icance that is distinct from industries’ Domar weights.

2.1 Theoretical results

Having characterized the first-order change in real GDP in response to microeconomic
productivity shocks, we now formally derive our measure of scale centrality.

2.1.1 Deriving Sectors’ Scale Centrality

We first define the scale centrality of sector i, denoted by µi, which measures the
macroeconomic impact (up to a first-order approximation) of uniform shocks to i’s
use and supply of goods.25

Definition 1. The scale centrality of sector i is defined as

1′C
d logY
d logXi

1R ≡ µi,

where d logXi represents a uniform change in i’s use and supply of goods, and 1C and 1R are,
respectively, N +1×1 and N×1 vectors of ones.

24As is well-known in the production networks literature, in efficient economies, the first-order
change in real GDP in response to a microeconomic productivity shock to sector i is given by Hul-
ten’s (1978) theorem, d logY

d logAi
= piyi

GDP . Notably, in our model, the Domar weights λi do not coincide with
piyi

GDP due to the presence of tax wedges. See Baqaee and Farhi (2020b) for a more detailed discussion on
aggregation in inefficient economies.

25Below, we characterize scale centrality under heterogeneous shocks.

15



The macroeconomic importance of sector i as a user of intermediate inputs and sup-
plier of material and final goods increases with the magnitude of µi. A higher value of
µi implies that a reduction in sector i’s production and consumption of output would
have a substantial impact on real GDP. This is because many other producers and final
consumers in the network depend on sector i. Conversely, a lower value of µi suggests
that sector i is relatively less important as a producer and consumer of goods from a
macroeconomic perspective.

Theorem 1 characterizes µi in terms of observable input-output statistics (as mea-
sured at the initial equilibrium), permitting its computation. The resulting formula is
the central object of our study.

Theorem 1. The (first-order) scale centrality of sector i is given by

µi =

Domar weight λi︷ ︸︸ ︷
ϒi︸︷︷︸

Direct effect

+ λλλ
′
ΩΩΩ(i)︸ ︷︷ ︸

Indirect effect

+ λiΩ̃ΩΩ
(i)
1R︸ ︷︷ ︸

Supplier effect

, (6)

where ΩΩΩ(i) is the ith column of the equilibrium input-output matrix, Ω̃ΩΩ
(i) is the ith row of the

matrix Ω̃ΩΩ, 1R is an N×1 vector of ones, and ϒi is the final expenditure share of sector i.

Proof. See Appendix B.

Equation (6) highlights that sector i’s scale centrality can be decomposed into three dis-
tinct effects. The first term, the direct effect ϒi, measures how a supply shock to sector i

directly affects real GDP through households’ consumption of final goods from i. The
larger the value of ϒi, the more significant sector i is as a producer of final goods and
services. Next, the indirect effect measures the impact of the supply shock to sector i

on real GDP by tracing how it spreads to other industries, influencing final demand
indirectly. This effect, represented by λλλ

′
ΩΩΩ(i), is computed as the Domar-weighted sum

of sector i’s intermediate goods sales to the rest of the economy, with the vector ΩΩΩ(i)

containing elements from the ith column of the input-output matrix ΩΩΩ. By multiply-
ing each element of ΩΩΩ(i) with the corresponding customer sector’s Domar weight, the
indirect effect comprises all possible transmission paths from sector i to final demand,
regardless of length. This can be seen in the alternate expression for the indirect ef-
fect: ϒϒϒ

′
ΩΩΩ(i) +ϒϒϒ

′
ΩΩΩΩΩΩ(i) +ϒϒϒ

′
ΩΩΩ

2
ΩΩΩ(i) + ..., where ϒϒϒ

′
ΩΩΩ(i) represents all transmission paths

of length one, ϒϒϒ
′
ΩΩΩΩΩΩ(i) denotes paths of length two, ϒϒϒ

′
ΩΩΩ

2
ΩΩΩ(i) captures paths of length

three, and so on.
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Before discussing the supplier effect of equation (6), we introduce Corollary 1,
which shows how sector i’s direct and indirect effects together constitute the first-order
macroeconomic impact of a productivity shock to sector i, which is given by i’s Domar
weight λi, as shown in equation (5).26

Corollary 1. The Domar weight of sector i is equivalent to the sum of i’s direct and indirect
effect

λi = ϒi︸︷︷︸
Direct effect

+ λλλ
′
ΩΩΩ(i)︸ ︷︷ ︸

Indirect effect

.

Proof. First note that the sum of i’s direct and indirect effect can be written as ϒi +

∑
N
k=1 λkΩki. By equation (4), λk can be equivalently expressed as λk = ∑

N
m=1 ϒmψmk.

Therefore, we can rewrite i’s direct and indirect effect as ϒi+∑
N
k=1 ∑

N
m=1 ϒmψmkΩki, which,

in matrix form is ϒϒϒ
′+ϒϒϒ

′
ΨΨΨΩΩΩ. Rewriting this expression as ϒϒϒ

′ (I +ΨΨΨΩΩΩ) and noting that
ΨΨΨ = I + ΩΩΩ + ΩΩΩ

2 + ..., we get ϒϒϒ
′
(

I +ΩΩΩ+ΩΩΩ
2 +ΩΩΩ

3 + ...
)

. Once again using the result

ΨΨΨ = I +ΩΩΩ+ΩΩΩ
2 + ..., we can write ϒϒϒ

′
(

I +ΩΩΩ+ΩΩΩ
2 +ΩΩΩ

3 + ...
)
= ϒϒϒ

′
ΨΨΨ, which is nothing

but the Domar weight vector λλλ
′ = ϒϒϒ

′
ΨΨΨ. �

Corollary 1 provides an important insight into the direct and indirect effects of a sec-
tor’s scale centrality µi. These effects (which are captured in the first two terms on the
right-hand side of equation (6) sum to i’s Domar weight, which is an alternative mea-
sure of a sector’s systemic importance that has been widely studied in the literature
(see, for example, Hulten, 1978, Acemoglu et al., 2012, Liu, 2019, Baqaee and Farhi,
2020b, Bigio and La’O, 2020). Therefore, not only does Theorem 1 allow us to quantify
the direct and indirect effect of an idiosyncratic supply shock to sector i, but it also
provides a decomposition of i’s Domar weight.

The final term on the right-hand side of equation (6), which we refer to as the sup-
plier effect, distinguishes a sector’s scale centrality µi from its Domar weight λi. The sup-
plier effect quantifies how idiosyncratic changes in the demand for inputs by producer
i impact real GDP. For instance, a negative shock to i, d logXi < 0, also affects the pro-
duction of i’s suppliers, as i’s demand for intermediates decreases. These demand-side
shocks propagate through the network, further affecting all producers downstream
from i, either directly or indirectly, ultimately reducing aggregate output. As a result,

26Formally, a uniform change in the ith column of Xi has a first-order aggregate impact that is isomor-
phic to a microeconomic productivity shock to i.
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the decline in real GDP resulting from the shock to i exceeds λi, and includes the sup-
plier effect as well. The supplier effect λiΩ̃ΩΩ

(i)
1R is calculated by interacting i’s Domar

weight with the elements of the ith row of the matrix Ω̃ΩΩ, which captures the intensity
with which i uses inputs from other industries. Specifically, if an industry j supplies
inputs to i (i.e., Ω̃i j 6= 0), then i’s supplier effect will be nonzero. In an efficient econ-
omy, the supplier effect intuitively simplifies to the value of total input purchases by
industry i as a share of GDP.

Measuring scale centrality. Computing scale centrality only requires observed data
on sector-level intermediate input purchases, nominal gross output, final sales, and
tax payments. This is because final expenditure shares ϒi, Domar weights {λk}N

k=1,
and parameters of the input-output matrix ΩΩΩ (measured at the initial equilibrium) are
sufficient to characterize the first-order change in real GDP in response to a shock to i’s
supply and use of inputs d logXi. While the shock d logXi induces changes in prices and
quantities of inputs traded at the microeconomic level, these endogenous changes are
macroeconomically irrelevant to a first-order approximation and only matter beyond
the first-order. In Appendix E, we characterize i’s scale centrality up to a second-order
approximation. Sector i’s second-order scale centrality requires knowledge of changes
in i’s final expenditure share (d logϒi), the Domar weights of all industries (d logλk),
and the input-output parameters of i’s suppliers (d logΩik) and customers (d logΩki).
Specifically, we characterize these objects in terms of the elasticities of substitution in
production θ and consumption σ , as well as the parameters of the production network
at the initial equilibrium.

Heterogeneous shocks. Equation (6) assumes that the shock to sector i’s use and sup-
ply of goods is uniform across all sectors. However, sectors may vary their demand for
different inputs or prioritize customers differently in response to supply shocks. Corol-
lary 2 characterizes sector i’s scale centrality in the presence of heterogeneous supply
and use shocks.

Corollary 2. The scale centrality of sector i, in the presence of heterogeneous shocks to i’s
supply and use of goods, µH

i , is given by

µ
H
i = ϒid logωD,i +

N

∑
k=1

λkΩkid logωki +
N

∑
k 6=i

λiΩikd logωik. (7)

Proof. See Appendix B.
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Equation (7) generalizes Theorem 1 to economies with non-uniform shocks. The for-
mula is useful for studying how intermediate input demand shocks propagate through
the production network and influence real GDP: d logY

d logωik
= λiΩik. In efficient economies,

λiΩik is simply i’s expenditure on inputs from sector k, as a share of nominal GDP, or
pkxik
GDP . In economies with inefficiencies, λiΩik implicitly encompasses distortions (such
as sales and intermediate goods taxes as in our model). Throughout the rest of the pa-
per, we focus on scale centrality as defined in equation (6), but note that our framework
can accommodate heterogeneous shocks.

2.1.2 Illustrative Examples

In this section, we provide a deeper understanding of Theorem 1 by exploring the
properties of three network structures. This exercise allows us to make empirical pre-
dictions about the relationship between sectors’ scale centrality µi (as characterized by
equation 6) and their Domar weights λi.

A. Star Economy I

S

3

N

S

1

2 3

N

B.  Star Economy II

2

1 S

1

2 3

N

C.  Star Economy III

3

M

2

1

Figure 2: Example Network Structures
Note: This figure depicts three different network structures. Colored nodes represent different indus-
tries, whereas directed arrows depict the flow of intermediate goods between sectors. Orange nodes
represent the “star” sector S. In Panel A, the star sector only uses labor to produce intermediate inputs
and final goods. In Panel B, sector S uses labor and inputs from all other sectors to produce only final
goods. In Panel C, the star sector S uses labor and intermediate inputs from the set of N purely upstream
sectors (blue nodes) 1,2, ...,N to produce final goods and intermediate inputs for the set of M purely
downstream sectors 1,2, ...,M.

Consider the three “Star Economies” shown in Figure 2. In the figure, colored
nodes represent different industries, and directed arrows depict the flow of intermedi-
ate goods between producers. In each panel, the orange node corresponds to the “star”
sector denoted by S. In Panel A, the star sector uses only labor to produce intermediate
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inputs that are, in turn, used by all other industries 1,2, ...,N (blue nodes), as well as
final goods consumed by households. In Panel B, sector S uses labor and intermediates
from all other industries to produce only final goods. Finally, in Panel C, sector S uses
both labor and intermediate inputs from the set of N purely upstream sectors (blue
nodes, denoted by 1,2, ...,N) to produce final goods and intermediate inputs for the set
of M purely downstream sectors.27

Throughout our analysis of the network structures in Figure 2, we initially assume
that all sectors are equally important in final demand, which implies a constant value
of ωD,i across all i (at the pre-shock equilibrium). Moreover, we also assume that αi

is constant across all sectors that use intermediates in addition to labor, and that the
importance of labor and intermediates for these sectors is the same. Finally, we impose
a unitary elasticity of substitution in consumption and production, σ = 1 and θ = 1, to
simplify the expressions comparing the parameters µ and λ . We make these simplify-
ing assumptions to isolate how the structure of each network generates differences in
scale centralities and Domar weights across industries.

Star economy I. In the economy depicted in Figure 2, Panel A, the scale centrality of
the star sector S is exactly equal to its Domar weight, or µS = λS. However, for all other
sectors 1,2, ...,N, their scale centrality exceeds their Domar weight. This is clear from
the expressions for µ and λ :

µS = λS = ϒS

(
1+

N

∑
j 6=S

Ω jS

)
and µi = ϒS (1+ΩiS)> λi for sectors i 6= S.

Furthermore, under the production structure of Figure 2, Panel A, the scale centrality
of the star sector S is always greater than that of all other industries. In other words,
the star sector has the greatest ability to shape aggregate fluctuations, as it serves as
the sole producer of intermediate inputs for all other sectors.

Figure 3 illustrates the relationship between µ and λ under the “Star Economy I”
network structure. The red line is the 45-degree line, where µ = λ . The orange point
represents the star sector S, while the blue point represents all other sectors i 6= S. Fi-

27In symmetric networks, where all industries have equal interdependence for intermediate inputs,
Domar weights and scale centralities are identical across sectors. However, in asymmetric networks like
those in Figure 2, there are differences in Domar weights and scale centralities across industries. As
our focus is on understanding the network properties that lead to variations in both λ and µ , we only
discuss the asymmetric networks depicted in Figure 2.
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nally, the faint dotted line visually approximates the trend between µ and λ .

µi

λi λS

µS

µ

λ

Star Economy I: ωD,S = ωD,i

Figure 3: Scale Centrality and Domar Weights (Star Economy I)

Note: This figure plots sectors’ scale centrality µ against their Domar weight λ under the Star Economy
I network structure shown in Figure 2. The orange point represents the star sector S, whereas the blue
point represents all other industries i 6= S. Households’ dependence on each industry’s output is the
same across all sectors at the initial equilibrium, ωD,S = ωD,i for all i 6= S. The solid red line represents
the 45-degree line, and the faint dotted line is a visual approximation of the trend in the relationship
between µ and λ .

The figure reveals two key insights: i) the relationship between µ and λ is positive
since λS > λi and µS > µi, and ii) the trend line has a slope less than one since µS−µi

λS−λi
< 1.28

In Section 3, we present empirical evidence that the degree to which Domar weights
underestimate the systemic importance of an industry (as measured by µ) increases as
the Domar weight of the sector increases. In other words, the slope of the trend line is
estimated to be greater than one. Thus, the star economy depicted in Figure 2, Panel
A, cannot account for this observed relationship. Our results suggest that important
industries, with large scale centrality, are generally not upstream sectors that produce
using mostly labor and other factors of production but without intermediate inputs
from other producers.

28These results hold even if S does not produce final goods. That is, even if the downstream sectors
are more important in final demand than S, λS will always be greater than λi.
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Star economy II. Next, consider the network in Panel B of Figure 2. In this economy,
the star sector S uses, but does not supply, intermediate inputs to any other industry.
Therefore, the scale centrality of S is strictly greater than its Domar weight µS > λS,
while the scale centrality of all other sectors exactly equal their Domar weights µi = λi

for all i 6= S. Theorem 1 implies

µi

λiλS

µS

µ

λ

Panel A. Star Economy II: ωD,S = ωD,i

µi

λi λS

µS

µ

λ

Panel B. Star Economy II: ωD,S >> ωD,i

Figure 4: Scale Centrality and Domar Weights (Star Economy II)

Note: This figure plots sectors’ scale centrality µ against their Domar weight λ under the Star Economy
II network structure shown in Figure 2. The orange point represents the star sector S, whereas the
blue point represents all other industries i 6= S. In Panel A, households depend equally on the output
produced by each industry (at the pre-shock equilibrium) ωD,S = ωD,i for all i 6= S, whereas in Panel B,
the star sector is a more critical producer of final goods ωD,S >> ωD,i. In both panels, the faint dotted
line provides a visual approximation of the trend in the relationship between µ and λ , whereas the solid
red line is the 45-degree line.

µS = ϒS

(
1+

N

∑
j 6=S

ΩS j

)
> λS and µi = λi = ϒS (1+ΩSi) for sectors i 6= S.

The above expressions highlight that the scale centrality of the star sector S is greater
than that of any other industry i 6= S. However, assuming households are equally re-
liant on the final products produced by each sector at the initial equilibrium (ωD,S =
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ωD,i for all i), the Domar weight of S is strictly less than that of sectors i 6= S.29 This is
visually represented in Panel A of Figure 4, where again the orange point depicts the
star sector, and the blue point represents a representative upstream sector. Thus, the
network structure in Figure 2, Panel B, implies a negative relationship between sectors’
scale centrality and Domar weights.

Panel B of Figure 4 depicts the condition under which a positive relationship be-
tween µ and λ exists in this network: the star sector S must not only use intermediate
inputs but also be a more important producer of final goods than the other sectors, or
ωD,S >> ωD,i.30 When this condition is met, the Domar weight of S exceeds that of
other industries, resulting in a positive relationship between λ and µ . Moreover, since
µS−µi
λS−λi

> 1, the trend line has a slope greater than one. In light of our empirical results
of Section 3, Figure 4 suggests that industries with large scale centralities not only con-
sume more intermediate goods relative to less influential sectors but may also play a
critical role in supplying final goods.

Star economy III. We now turn to the economy shown in Panel C of Figure 2. The
blue nodes (denoted by 1,2, ...,N) in the figure represent purely upstream sectors that
supply intermediate inputs to the star sector S (represented by the orange node), while
the green nodes (1,2, ...,M) depict purely downstream sectors that use inputs from S. In
this economy, sector S always records a value of µ greater than every downstream and
upstream sector. Specifically, Theorem 1 implies that the scale centrality of S is given
by

µS = ϒS +ϒS

M

∑
j=1

Ω jS +ϒS

N

∑
j 6=S

ΩS j +ϒS

(
M

∑
j=1

Ω jS

)
N

∑
j 6=S

ΩS j, (8)

whereas the scale centrality of a representative upstream sector U and downstream
sector D is, respectively,

µU = ϒS +ϒSΩSU +ϒSΩSU

M

∑
j=1

Ω jS, (9)

29Formally, the Domar weight of S is λS = ϒS, whereas the Domar weight of an industry i 6= S is
λi = ϒS (1+ΩSi).

30This is because ϒk is increasing in ωD,k for all k. For a large value of ωD,S, where ωD,S >> ωD,i, the
Domar weight of S is greater than the Domar weight of i, i.e., λS = ϒS > ϒi (1+ΩSi) = λi. In this case, the
direct effect of sector S is the largest of all industries, which implies that its Domar weight is also larger
than that of other sectors.
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and

µD = ϒS +ϒSΩDS. (10)

Comparing equations (8), (9), and (10), it is evident that µS is always larger than µU

and µD. However, the scale centrality of upstream sectors U may be greater or less
than that of downstream sectors D, depending on the relative number of upstream and
downstream sectors.31 As we show below, this implies that the trend between µ and
λ depends crucially on the in-degree and out-degree (i.e., the number of upstream and
downstream connections) of the star sector. Notably, however, as the number of up-
stream and downstream sectors increases, the slope of the trend line converges unam-
biguously to a value greater than one. Thus, economies populated with producers that
purchase inputs from many upstream suppliers and supply intermediates to numerous
downstream customers are likely to see µ increase more than one-for-one relative to λ .
Indeed, in Section 3.1, we show this relationship exists for the US. Industries such as oil
and gas extraction and petroleum refineries are disproportionate users and suppliers
of intermediate inputs, and are thus positioned well above the 45-degree line.

While the rankings of µ are conditional on the characteristics of the star sector, the
orderings of λ in the third star economy are unambiguous. Specifically, it is always
the case that λS > λU > λD.32 Figure 5 shows the relationship between µ and λ as the
star sector becomes increasingly important as a producer and consumer of intermediate
goods. In each panel, the green point represents a downstream sector, the blue point
is an upstream industry, and the orange point again represents the star sector. Panel
A depicts a possible trend between µ and λ when there are few upstream and down-
stream sectors, where µU > µD. As discussed above, the slope of the trend line in Panel
A may not be greater than one since i) upstream sectors always lie on the 45-degree
line, ii) λD is less than λU , and iii) µU may be less or greater than µD. However, as
the number of upstream and downstream industries grow large, scale centralities and
Domar weights of the upstream and downstream sectors approach zero, while both µ

31Specifically, µU > µD if M(1−αS)> N−1.
32The Domar weight of S is given by λS = ϒS +ϒS ∑

M
j=1 Ω jS, while the Domar weights of D and U are,

respectively, λD = ϒS and λU = ϒS +ϒSΩSU +ϒS

(
∑

M
j=1 Ω jS

)
ΩSU . Although it is evident that λS > λD and

λU > λD, it is not immediately clear that λS > λU . For λS to be strictly greater than λU , the condition
∑

M
j=1 Ω jS > ΩSU (1−ΩSU )

−1 must hold. Since the star sector and all downstream sectors are equally
dependent on intermediates, (1−α j) = (1−αS), this condition can be expressed as ∑

M
j=1(1−αS)ω jS >

(1−αS)ωSU (1− (1−αS)ωSU )
−1. Simplifying this expression yields M > 1

N−(1−αS)
, which is true whenever

the number of upstream sectors is greater than one, N > 1.
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Figure 5: Scale Centrality and Domar Weights (Star Economy III)

Note: Panel A plots sectors’ scale centrality µ against their Domar weight λ under the Star Economy
III network structure shown in Figure 2. The orange point represents the star sector S, the blue point
represents a purely upstream industry U , and the green point depicts a purely downstream industry D.
The household sector depends equally on the final goods produced by the sectors (ωD,S = ωD,i for all
i). The faint dotted line visually approximates the trend in the relationship between µ and λ , whereas
the solid red line represents the 45-degree line. Panel B shows the trend as the number of upstream and
downstream sectors increases.

and λ remain greater than zero for the star sector, as shown in Panel B.33

In other words, the significance of sector S as both a user and producer of intermedi-
ate inputs determines whether the slope of the trend line is greater than one: the more
important is S, the greater the slope. This point is significant in light of our empirical
findings, where we observe the relationship between µ and λ to be similar to that of
Figure 5, Panel B.

Anticipating our empirical results in Section 3, our analysis of the three network
structures in Figure 2 indicates that sectors with high scale centralities i) exhibit a
greater reliance on intermediates relative to sectors with lower values of µ , and ii) are
also significantly more important producers of final or intermediate goods compared
to other industries.

33Formally, as N,M→ ∞, µS→ (1−αS)(1+(1−αS))
2 > 0 and λS→ 1−αS

2 > 0.
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2.2 How Do Taxes Affect Sectors’ Macroeconomic Importance?

Since we derive sectors’ scale centrality within the framework of an inefficient produc-
tion networks model, a natural question arises: what is the effect of distortions on the
scale centrality of producers? In our model, taxes increase sectors’ scale centrality µi

relative to an economy without distortions. This result is formalized in Proposition 1
below.

Proposition 1. Sector-level taxes on sales τy,i and intermediate purchases {τx,ik}N
k=1 contribute

to the macroeconomic importance of a sector i via

ζi = µi−µ
F
i ≥ 0, (11)

where ζi is the contribution of taxes to µi and µF
i is the scale centrality of i in a frictionless

economy without taxes.

Proof. See Appendix B.

Taxes on sales τy,i and intermediate inputs τx,i j have a compounding effect along sup-
ply chains, reducing the allocative efficiency of producers and amplifying the impact
of microeconomic shocks on aggregate fluctuations. In equation (11), we demonstrate
that distortions increase sectors’ scale centrality compared to a frictionless economy
without taxes.34 The statistic ζi measures the contribution of taxes to the macroeco-
nomic importance of sector i where µF

i represents i’s scale centrality in a frictionless
economy. In the Proof of Proposition 1 in Appendix B, we characterize ζi in terms of
the parameters of the production network ΩΩΩ, final expenditure shares ϒϒϒ, and taxes on
sales {τy,i} and intermediates {τx,i j} and show that ζi is always greater than or equal to
zero.35

34Notably, taxes on factor payments τL,i only affect real GDP in the presence of labor supply shocks
and play no role when there are shocks to sectors’ input use and supply (d logXi).

35In Appendix D, we estimate the contribution of taxes to sectors’ supplier effects using US input-
output data from 1982 to 2012. Our analysis shows that taxes at the sector level have a minimal impact
on the estimated values of supplier effects and scale centralities. While other distortions such as nominal
rigidities, financial frictions, and market power may also affect the systemic importance of industries,
we abstract from these distortions in our calculation of industries’ scale centrality.
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3 Taking the Model to the Data

In this section, we use the framework presented in Section 2 to measure the scale cen-
trality µ and Domar weight λ of approximately 450 sectors (on average) in the United
States between 1982 and 2012. We then document the relationship between µ and
λ and establish a connection between our empirical findings and the discussion of
the network structures presented in Section 2.1.2. Next, we identify sectors that have
experienced substantial fluctuations in scale centrality despite having relatively sta-
ble Domar weights. Finally, we study industries’ scale centralities across six major
economies: the United States, United Kingdom, Japan, China, Germany, and Australia,
and decompose µ into direct, indirect, and supplier effects.

3.1 Comparing scale centrality with Domar weights

We begin by measuring scale centrality µi (as defined in equation 6) for all sectors
in the US using the detailed input-output tables provided by the BEA between 1982
and 2012.36 Specifically, we first calibrate ΩΩΩ to each year’s input-output table, which
further yields ΩΩΩ(i) and Ω̃ΩΩ

(i). We use final demand data in the BEA Use tables to estimate
the final expenditure shares ϒϒϒ. We then use ΩΩΩ and ϒϒϒ to compute the Domar weights
via λλλ

′ = ϒϒϒ
′ (I−ΩΩΩ)−1. Figure 6 compares sectors’ scale centrality and Domar weights

between 1982 and 2012. The red line is the 45-degree line, or the point at which a
sector’s scale centrality coincides with its Domar weight. Panel A plots all industries
(excluding government sectors) appearing in the detailed BEA input-output accounts
from 1982 to 2012, along with a line-of-best-fit through the data for each year. On the
other hand, Panel B decomposes the scale centrality of three key sectors in 2012 into
direct, indirect, and supplier effects.

Panel A of Figure 6 yields three notable observations. Firstly, a positive relation-
ship exists between sectors’ scale centrality and Domar weights. This suggests that
sectors with higher scale centrality typically also have larger Domar weights, signify-
ing their greater systemic influence and highlighting significant asymmetries within
the US production structure. Secondly, the scale centrality of a sector is generally dis-
tinct from its Domar weight, implying that the two measures capture different aspects
of a sector’s influence within the network. Finally, the scale centrality of a sector is
typically greater than its Domar weight. This finding is expected, as scale centrality

36The detailed input-output tables are only available at five-year intervals. See Appendix C for a
discussion of the BEA data.
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Figure 6: Scale Centrality and Domar Weights in the US (1982 - 2012)

Note: This figure shows the relationship between scale centrality and Domar weights in the US from
1982-2012. On average, there are approximately 450 sectors per year. The solid red line is the 45-degree
line, representing the equality of Domar weights and scale centrality. Panel A displays data for all
sectors in the detailed BEA input-output accounts, excluding government sectors. Panel B decomposes
the scale centrality of three key industries in 2012 into direct, indirect, and supplier effects.

encompasses producers’ Domar weight, providing a more comprehensive assessment
of a sector’s significance.

Importantly, the figure highlights that the Domar weight of a sector tends to under-
estimate its systemic importance, and this underestimation becomes more pronounced
as the sector’s Domar weight increases, as evidenced by the deviation from the 45-
degree line. This finding is not immediately obvious since scale centrality and Domar
weights can coincide, even for sectors with a large Domar weight. This can occur when
upstream sectors do not rely on intermediate inputs for production, as shown in Panel
A of Figure 2 and Figure 3. However, the magnitude of this underestimation is signifi-
cant and consequential. On average, the extent to which Domar weights underestimate
the systemic significance of a sector ranges between approximately 40-50% (with the
median figure being similar), depending on the year.

Additionally, the figure also reveals a remarkable similarity in the relationship be-
tween scale centrality and Domar weights over time, as shown by the similar slope of
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the trend line for each year. It is thus an empirical regularity that sectors with larger
Domar weights also have significantly greater supplier effects. This suggests that as
sectors grow larger in size, they (in general) become increasingly reliant on interme-
diate inputs and, therefore, become even more important from a macroeconomic per-
spective.

As discussed in Section 2.1.2, our findings in Figure 6 reflect significant asymme-
tries in the US network structure (emphasized in Acemoglu et al., 2012). Panel B of
Figure 6 decomposes the scale centrality of three key US sectors in 2012 (pharma-
ceuticals, oil and gas extraction, and petroleum refineries) into direct, indirect, and
supplier effects. These sectors all record large scale centralities, and are consequently
positioned well above the 45-degree line, albeit for different reasons. The figure high-
lights that most influential sectors typically fall into one of three categories: a) they
are disproportionately significant producers of final goods (like pharmaceuticals) and
hence have substantial direct effects, b) they serve as essential suppliers of intermedi-
ate inputs (like oil and gas), resulting in larger indirect effects, or c) they are important
producers of both final and intermediate goods (like petroleum refineries). This sug-
gests that the US network structure resembles the asymmetric star networks depicted
in Panels B and C of Figure 2. In such networks, sectors with large scale centralities
are typically located downstream in the supply chain and serve as critical suppliers of
intermediate or final goods.

3.2 Tracking changes in supplier effects and Domar weights for spe-

cific sectors over time

While Figure 6 demonstrates a positive relationship between Domar weights and scale
centrality, it is important to note that there is significant variation in how scale cen-
tralities and Domar weights of sectors change over time. To highlight this, Figure 7
compares supplier effects and Domar weights for select industries across time.37 To
ensure comparability of the BEA input-output codes, we divide the sample period into
two intervals: 1982-1992 (Panel A) and 1997-2012 (Panel B).38 The figure displays the

37Here, we track supplier effects instead of scale centrality as the supplier effect distinguishes scale
centrality from the Domar weight of a sector.

38The input-output industry codes between 1992 and 1997 are not consistent with each other as the
BEA revised its input-output classification system in 1997. Dividing the sample into the two periods,
therefore, prevents fluctuations in supplier effects or Domar weights from being artificially driven by
changes in BEA industry codes. Further details on the comparison of the 1992 and 1997 benchmark
IO accounts of the BEA can be found at https://apps.bea.gov/scb/pdf/2002/08August/0802_I-O_
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four largest sectors (by gross sales) in which the absolute value of the ratio between
the percentage change in supplier effects and the percentage change in Domar weights
exceeded two within the corresponding period covered in each panel. For example,
this ratio is approximately 27 for the “eating and drinking places” sector, reflecting
the large change in its supplier effect relative to its Domar weight between 1982 and
1992.39 The gross sales of the sectors depicted in Figure 7 equate to approximately 11%
of GDP, on average, across all years.
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Figure 7: Tracking Changes in Supplier Effects and Domar Weights for Key Industries
Over Time

Note: This figure illustrates the relationship between sectors’ supplier effects and Domar weights at five-
year intervals from 1982 to 1992 (Panel A) and from 1997 to 2012 (Panel B). For each sample period,
the growth rate of supplier effects for each sector is at least twice as large (in absolute value) as the
growth rates of their corresponding Domar weights. Supplier effects are calculated as in equation (6),
and Domar weights are computed as in equation (4), both using the detailed input-output accounts of
the BEA.

The figure highlights that scale centrality can vary significantly across sectors over
time, even when Domar weights remain relatively stable. For example, consider the
case of motor vehicle production (represented by the red ellipse) in Panel A. Between

Benchmark.pdf.
39The aggregate sales of all sectors for which this ratio is greater than two amount to approximately

40% of GDP, on average, from 1982 to 2012.
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1982 and 1992, the industry experienced a 30% increase in its supplier effect (or an in-
crease of around 0.5% of GDP), while its Domar weight remained almost unchanged.
This finding may reflect the increase in the complexity of motor vehicle production
over time. The number of electrical components and engine parts in motor vehicles
grew substantially throughout the 1980s and 1990s (Fine et al., 1996), a trend that has
continued to accelerate in the 21st century. By 2010, the average motor vehicle con-
tained approximately 2,000 components, 30,000 parts, and 10 million lines of software
code (MacDuffie and Fujimoto, 2010). Crucially, the increase in supplier effects implies
that motor vehicle production became more systemically important over time, which
is not captured in the Domar weight of the industry.

In contrast, in Panel B, computer manufacturing (represented by the grey ellipse)
experienced a 68% decline in its supplier effect, while its Domar weight slightly in-
creased by 0.4% between 1997 and 2012. This finding reflects the rapid reduction in
production costs in the computer manufacturing sector during the late 20th century,
resulting from technological improvements in IT industries (Jorgenson, 2001). While
input costs continued to fall throughout the mid-2000s, growth in final computer sales
slowed substantially, leading to stability in the computer manufacturing sector’s Do-
mar weight between 1997 and 2012. The evolution of supplier effects in the computer
manufacturing industry may also be explained by changes in market structure and in-
creases in international competition during the 1990s. For example, in the mid-1990s,
a growing portion of computer parts and components were imported from Asian mar-
kets, where production costs were significantly lower than in the US (Warnke, 1996).
Taken together, the findings presented in Figure 7 suggest that relying solely on Domar
weights provides only partial information about changes in sectors’ systemic impor-
tance over time. This highlights the relevance of scale centrality as a complementary
measure of the macroeconomic significance of industries.

3.3 Analyzing scale centrality for key sectors across countries

Next, using data from the World Input-Output Database (WIOD) from 2000 to 2014,
we identify the industries with the greatest scale centrality for six major economies:
the US, Great Britain, Japan, China, Germany, and Australia.40 Figure 8 shows the top
ten sectors (by scale centrality) for each of the countries. In the figure, each sector’s

40See Appendix C for a detailed description of the WIOD data. These economies accounted for ≈
57% of nominal world GDP in 2021 (World Bank, 2023).
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scale centrality is captured by the total of the direct effect (orange bars), indirect effect
(yellow bars), and supplier effect (blue bars). Overall, for each economy shown, con-
struction, real estate, public administration, and food & beverages are always among
the top five sectors in terms of their ability to influence aggregate output.41

Notably, there are significant differences in the size of each effect across countries
and industries. Labor-intensive sectors like education and health services have sub-
stantial direct effects (accounting for ≈ 75% of scale centrality, on average) due to
their low dependency on intermediate inputs and direct provision of services to end-
consumers. These attributes reduce their ability to shape aggregate fluctuations, re-
sulting in lower indirect and supplier effects compared to other sectors. On the other
hand, the influence of sectors like wholesale trade and electricity & gas supply comes
mostly from the indirect effect (≈ 50% of scale centrality for both industries), reflecting
the importance of these sectors in providing key intermediate inputs for production for
many other sectors in the economy. Finally, construction and food & beverages have
proportionately large direct (≈ 50% for construction and ≈ 40% for food & beverages)
and supplier effects (≈ 30% for construction and ≈ 35% for food & beverages), attest-
ing to their central role as both producers of final goods and consumers of intermedi-
ate goods. Hence, each effect represents a distinct mechanism with which a sector can
influence aggregate outcomes, and each subcomponent explains a consequential pro-
portion of scale centrality. For the countries and industries shown in Figure 8, direct
effects account for about 50% of sectors’ overall influence, on average, whereas indirect
and supplier effects account for approximately 20% and 30%, respectively.

Our results demonstrate significant differences in the ability of industries to affect
aggregate volatility through direct, indirect, and supplier effects. Moreover, our de-
composition exercise indicates that the impact of a producer on the broader economy
is heavily influenced by its location within the production network. The intensity with
which producers use and supply intermediate inputs is a key determinant of their sys-

41We abstract from international trade when computing each sector’s scale centrality. Baqaee and
Farhi (2021) characterize how microeconomic shocks propagate through international input-output link-
ages and generalize Hulten’s theorem to open economies. Other papers in the trade literature high-
light the importance of input-output linkages as a mechanism for amplifying shocks and generating
co-movements in business cycles across countries (see, for example, Caliendo and Parro, 2014, Chaney,
2014, di Giovanni et al., 2014, Redding and Rossi-Hansberg, 2017, di Giovanni et al., 2018, Auer et al.,
2019, Antràs and de Gortari, 2020, and Kikkawa et al., forthcoming). A related literature emphasizes that
diversified global value chains insulate economies against shocks, limiting aggregate volatility (Caselli
et al., 2020; D’Aguanno et al., 2021, and Antràs, 2021). See Baldwin and Freeman (2022) for a detailed
overview of the global supply chain literature and Bernard and Moxnes (2018) for a survey of the liter-
ature on production networks and international trade.
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Figure 8: Scale Centrality by Country

Note: This figure presents estimates of scale centrality µ for six major economies. For each sector, scale
centrality is measured as in equation (6), averaged over the years 2000 to 2014. The top 10 industries
with the greatest scale centrality are shown for each economy. Orange bars capture the direct effects,
whereas the yellow and blue bars represent the indirect and supplier effects, respectively. The data is
from the World Input-Output Database (2016 Release).

temic importance.
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4 Conclusion

We propose a novel measure of sectors’ systemic importance in economies with pro-
duction networks. Our measure, which we refer to as scale centrality, captures how
shocks to a producer impact real GDP by i) directly affecting the final consumption of
its output, ii) indirectly affecting the production of firms that are directly or indirectly
connected to it, and iii) changing its demand for intermediate inputs from upstream
suppliers.

Our approach is nonparametric, only requiring observable information on an in-
dustry’s intermediate goods purchases, nominal gross sales, and tax payments. No-
tably, scale centrality encompasses and extends an existing notion of systemic impor-
tance in production networks: producers’ Domar weights (or sales shares). In an em-
pirical application for the US, we show that Domar weights underestimate the systemic
importance of an industry by ≈ 40-50% between 1982-2012. We find that the extent of
underestimation increases with the Domar weight of a sector; a non-trivial result given
that scale centrality and Domar weights can perfectly coincide, even for large sectors.

Additionally, we provide evidence of significant changes in the scale centrality of
crucial sectors within the US economy over time, such as motor vehicle production
and computer manufacturing, despite the relative stability of their Domar weights.
Furthermore, we compare sectors’ scale centrality across countries and identify indus-
tries such as construction, food & beverages, and real estate as powerful amplifiers of
shocks between 2000 and 2014.

Our empirical findings are interpreted through the lens of an inefficient production
network model. Though our model only includes one type of friction (taxes), it can
be easily extended to incorporate other distortions such as financial frictions, market
power, and nominal rigidities, as in Liu (2019); Baqaee and Farhi (2020b); Bigio and
La’O (2020) and Baqaee and Farhi (2022), highlighting the flexibility of our framework.
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Online Appendix to Beyond Domar Weights: A
New Measure of Systemic Importance in Production

Networks1

Girish Bahal Damian Lenzo

This Appendix is organized as follows. Section A discusses the data and empirical
strategy used to produce Figure 1 in the main text. Section B contains proofs of our key
theoretical results. Section C provides a discussion of the data used in Section 3 of the
paper. Section D discusses the role of taxes in the measurement of scale centrality. Sec-
tion E presents the derivation of scale centrality up to a second-order approximation.

A Motivating Empirical Evidence

In this section, we discuss the data and identification strategy used in Figure 1 of the
main text. For more detail on the data and our estimation strategy, see Bahal et al.
(2023).

Firm-level financial data. Firms’ financial data comes from Compustat’s North Amer-
ica Fundamentals Quarterly database. We use quarterly information on firms’ sales (in
USD), number of employees, asset holdings, and income before depreciation, among
other variables for all publicly listed firms in the US. We restrict the sample to firms
headquartered in the US between 1978 and 2017.2 We deflate firms’ sales using the
GDP price index from the Bureau of Economic Analysis so that sales growth (the de-
pendent variable in our regressions) reflects firms’ performance, not price dynamics.

1Bahal: University of Western Australia and Centre for Applied Macroeconomic Analysis, Aus-
tralian National University. Lenzo: University of Western Australia. We thank Enghin Atalay, Matthew
Elliott, James Graham, Basile Grassi, Lu Han, Hugo Hopenhayn, Simon Mongey, Matthew Read, Diego
Restuccia, Julien Sauvagnat, Petr Sedláček, Anand Shrivastava, Juan Carlos Suárez Serrato, Yves Zenou,
and seminar participants at Bocconi University, European University Institute, Indian Statistical Insti-
tute, Delhi, Reserve Bank of Australia, Deakin University, University of Adelaide, University of New
South Wales, and University of Western Australia for many helpful comments and suggestions. All
remaining errors are our own.

2Customer-supplier transactions data in Compustat’s Customer Segments files is available from 1978
onwards.
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All continuous variables are winsorized at the 1st and 99th percentiles. To reduce mea-
surement error, we restrict the sample to firms that report financial information in cal-
endar quarters (which is how the natural disaster data is reported). This reduces bias
in our estimates by ensuring firms are not hit by natural disasters after they report their
financial information.

Firm-level input-output linkages. We use Compustat’s Customer Segments dataset
for information on inter-firm relationships, the duration of each link, and customers’
purchases from suppliers. The Customer Segments data has been used in Barrot and
Sauvagnat (2016) and Bahal et al. (2023), among other studies. A key limitation of
the data is that we only observe a fraction of each firm’s suppliers. This is because
suppliers are only required to report the identity of major customers that account for
at least 10% of total annual sales. The reporting threshold likely biases our estimates
against finding upstream or downstream propagation effects, as some observations in
the control groups of suppliers and customers are actually treated (see Bahal et al.,
2023 for more detail on this point). We assume input-output linkages are active for all
quarters between the first and last time the connection is recorded in the Customer Seg-
ments data. We omit all links where suppliers and customers are within 300 kilometers
of each other, allowing us to isolate the propagation effects from the direct effects of
disasters on suppliers and customers.

Natural disaster data. We use the Emergency Events Database (EM-DAT) for informa-
tion on all disaster events across our sample period. EM-DAT contains information
on event duration, type of disaster, event name, affected regions (usually at the state
level), and estimates of damages (in USD). A limitation of EM-DAT is that it does not
contain county-level information. We complement the EM-DAT data with informa-
tion from the Federal Emergency Management Agency’s (FEMA) Disaster Declarations
dataset, which contains information on the US counties affected by each disaster. Our
resulting dataset contains county-level data for all US natural disasters between 1978
and 2017, total damage estimates, and each event’s duration. Following Barrot and
Sauvagnat (2016), we include all disasters with damages exceeding $1 billion (in 2017
USD) that lasted less than a month. Over our sample period, there were 52 major
natural disasters.
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Summary statistics. Table A.1 presents basic summary statistics for our subsamples
of supplier (Panel A) and customer (Panel B) firms. Firms are included in the supplier
(customer) sample from one year before being first reported to one year after last being
reported as a supplier (customer). The supplier sample includes 5,665 distinct firms,
generating 153,390 supplier-quarter observations. In contrast, the customer sample
consists of 2,352 firms across 78,629 customer-quarter observations.

Table A.1: Descriptive Statistics

Panel A: Supplier Sample Never Treated Eventually Treated

Obs. Mean Std. Dev. Obs. Mean Std. Dev.

Sales growth (t−4, t) 73,108 0.20 0.90 80,282 0.17 0.75
Total assets (Bil. USD) 73,108 0.70 2.22 80,282 1.42 3.76
Return on assets 73,108 0.03 0.29 80,282 0.06 0.26
Number of employees (’000s) 71,117 3.51 9.30 78,849 4.62 11.47
Age (Years) 73,108 37.87 17.97 80,282 38.73 19.89
Number of customers 73,108 0.98 0.96 80,282 1.51 1.40

Panel B: Customer Sample Never Treated Eventually Treated

Obs. Mean Std. Dev. Obs. Mean Std. Dev.

Sales growth (t−4, t) 37,079 0.10 0.40 41,550 0.08 0.31
Total assets (Bil. USD) 37,079 3.02 6.09 41,550 13.02 21.95
Return on assets 37,079 0.11 0.15 41,550 0.14 0.10
Number of employees (’000s) 36,293 10.85 20.36 41,049 40.78 60.94
Age (Years) 37,079 41.19 17.75 41,550 43.96 16.15
Number of suppliers 37,079 0.73 0.96 41,550 4.28 9.36

Notes: The table presents summary statistics for the sample of supplier (Panel A) and customer (Panel B)
firms in Compustat’s Customer Segments files. Firms are included for every quarter from one year prior
to when they first appear as a supplier (customer) and ending one year after they are last reported as a
supplier (customer) in the Customer Segments dataset. The supplier sample comprises 5,665 distinct firms,
creating 153,390 firm-quarter observations from 1978 to 2017. In Panel A, ’Never Treated’ (’Eventually
Treated’) refers to those suppliers that did not have (had) at least one customer hit by a major natural dis-
aster at some point in the sample period. The customer sample consists of 2,352 firms across 78,629 firm-
quarter observations. In Panel B, ’Never Treated’ (’Eventually Treated’) refers to those firms for which a
natural disaster did not (did) hit a supplier at any point in the sample period.

In Panel A, ‘Never Treated’ refers to those suppliers that at no point in the sam-
ple period had a customer affected by a major natural disaster, whereas ‘Eventually
treated’ refers to those suppliers that at some point had an affected customer. The
mean sales growth (measured over the previous four quarters) of never-treated and
eventually-treated suppliers is comparable, at 20% and 17%, respectively. However,
the median sales growth is much lower for both groups, at 3.8% and 4.3% for never-
and eventually-treated suppliers, suggesting a right-skewed distribution. Affected
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suppliers tend to be slightly larger (in terms of total assets and number of employ-
ees) and more profitable (as measured by return on assets (ROA)). The average age of
‘never-treated’ suppliers is 37.9 years, while ‘eventually-treated’ suppliers have an av-
erage age of 38.7 years, highlighting the similar age profile of the two groups. Finally,
treated suppliers have an average of 1.51 customers in a given quarter, whereas never-
treated suppliers have 0.98 customers on average. This difference is expected since the
probability of a supplier being affected by a disaster increases with a firm’s number of
customers.

In Panel B, ‘Never Treated’ refers to customers that at no point between 1978 and
2017 had a supplier affected by a disaster, and ‘Eventually Treated’ refers to firms with
at least one supplier struck by a disaster. The mean sales growth of customers in these
two groups is quite similar, at 10% and 8% for the never-treated and eventually-treated
subgroups, respectively. However, treated customers are larger (as measured by total
assets and number of employees), more profitable, older, and have more suppliers
in a given quarter. These differences are expected due to the 10% reporting threshold,
which results in larger customers being over-represented in the eventually-treated sub-
group. Larger customers tend to have more suppliers, increasing the likelihood of hav-
ing a supplier affected by a disaster in a given quarter. The differences in observable
characteristics of treated and never-treated suppliers/customers highlight the need to
control for these variables in our regressions.

Empirical models. We first establish that exogenous shocks (natural disasters) simul-
taneously affect firms’ and their direct suppliers’ sales growth. To this end, we estimate
the following difference-in-differences specification using the supplier sample:

Sales Growthit,t−4 = α +
9

∑
j=−2

β j×Disaster Strikes Firmi,t− j

+
9

∑
j=−2

η j×Disaster Strikes Customeri,t− j +Xi,t + τt + γi + εi,t . (A.1)

In equation (A.1), Sales Growthit,t−4 represents the real sales growth of firm i in quar-
ter t relative to the same quarter in the previous year. Disaster Strikes Firmi,t− j is a
dummy variable that takes the value one if firm i was affected by a major natural dis-
aster in quarter t− j and zero otherwise. Similarly, Disaster Strikes Customeri,t− j is an
indicator that takes the value one if at least one customer of firm i experienced a shock
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at time t− j. We include two leads and nine lags of these dummy variables to analyze
sales dynamics before and after the shocks. The coefficients of interest are β j and η j,
which respectively estimate the average change in the sales growth of firm i when a
disaster directly strikes the firm or one of its customers at time t − j. Xi,t is a vector
of time-varying controls, including firm age, number of employees, lagged values of
ROA and total assets, a dummy variable that indicates if the firm has an above-median
customer count, and state-decade and fiscal-quarter fixed effects. Equation (A.1) also
includes year-quarter (τt) and firm (γi) fixed effects.

We also estimate the effect of natural disaster shocks on downstream firms’ sales growth
using the customer sample. For this, we estimate the following regression:

Sales Growthit,t−4 = α +
9

∑
j=−2

κ j×Disaster Strikes Supplieri,t− j

+
9

∑
j=−2

µ j×Disaster Strikes Firmi,t− j +Xi,t + τt + γi + εi,t , (A.2)

where Disaster Strikes Supplieri,t− j is a dummy that takes the value one if at least one
supplier of customer firm i was hit by a natural disaster at time t− j and zero other-
wise. To avoid confounding propagation effects with direct effects of natural disasters
on customers’ sales growth, we also control for Disaster Strikes Firmi,t− j. As above, we
allow for two leads and nine lags of the key regressors to analyze propagation dynam-
ics. All other variables in equation (A.2) are the same as in (A.1), except that instead
of controlling for customer count in Xi,t , we include a dummy that indicates whether
firm i has an above-median supplier count. The coefficients of interest in (A.2) are the
κ j’s, which estimate the average change in sales growth of downstream customer firms
following a shock to at least one of their suppliers at quarter t− j. We cluster standard
errors at the firm level in equations (A.1) and (A.2).

Results. Our results are summarized in Figure 1 of the main text. The left panel plots
estimates of the impact of natural disasters on suppliers’ sales growth (red line) as well
as the direct effects of the shocks (black line) from two quarters before to nine quar-
ters after a major natural disaster. The figure shows that the sales growth of directly
affected firms decreases by 4.6pp two quarters following a shock, while shocked firms’
immediate suppliers experience a decline of 3.6pp concurrently. Following this, sales
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growth of directly affected firms returns to pre-shock levels after eight quarters, while
sales growth for upstream suppliers normalizes after nine quarters.

The right panel of Figure 1 shows customer firms’ average change in sales growth
following a shock to at least one supplier (orange line) from two quarters before to
nine quarters after the shock. For reference, the right panel also includes the direct
effect of natural disasters on the sales growth of directly affected firms (black line),
which is the same as the left panel. The figure reveals that the propagation shocks
to downstream firms occur with a lag. Specifically, the customers of shocked firms
experience an average decline in sales growth of 3pp four quarters after a disruption
and stay below pre-shock levels for a further four quarters. The delayed impact of the
shock could be attributed to customers holding excess inventory, thereby preventing
an immediate shortfall in production (Hendricks et al., 2009).3

Overall, our results from Figure 1 highlight two key points: 1) natural disasters
have simultaneous effects on directly affected firms and their immediate suppliers, and
2) these disasters also impact the customers of affected firms, but with a substantial lag.

B Proofs

Proof of Theorem 1. The Lagrangean for the aggregator problem is

L=

(
N

∑
j=1

(
ωD, jc j

)σ−1
σ

) σ

σ−1

+η

(
wL−

N

∑
j=1

p jc j

)
,

where η is the Lagrange multiplier. Optimization with respect to ci yields

ci = wLp−σ

i ω
σ−1
D,i

(
N

∑
j=1

p1−σ

j ω
σ−1
D, j

)−1

, (B.1)

from which we derive an expression for ϒi:

ϒi =
pici

wL
=

p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) . (B.2)

3Figure 1 also reveals that pre-existing trends do not account for the change in suppliers’ and cus-
tomers’ sales growth, as treated and untreated firms exhibit no systematic difference in sales growth
before a major natural disaster.
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Substituting equation (B.1) into the consumption aggregator, yields

Y = wL

(
N

∑
j=1

ω
σ−1
D, j pσ−1

i

) 1
σ−1

. (B.3)

Furthermore, total (log) differentiation of the consumption aggregator gives

d logY =
N

∑
i=1

Y
1−σ

σ

(
ωD,ici

)σ−1
σ
(
d logci +d logωD,i

)
. (B.4)

Substituting (B.1) and (B.3) into equation (B.4), yields

d logY =
N

∑
i=1

p1−σ

i ω
σ−1
D,i(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

) (d logci +d logωD,i
)
,

which can be rewritten using equation (B.2) as

d logY =
N

∑
i=1

ϒid logci +
N

∑
i=1

ϒid logωD,i. (B.5)

Total (log) differentiation of equation (B.1) implies that (B.5) can be written as

d logY =
N

∑
i=1

ϒi

(
d logw+d logL−σd log pi +(σ −1)d logωD,i−d log

(
N

∑
j=1

p1−σ

j ω
σ−1
D, j

))

+
N

∑
i=1

ϒid logωD,i. (B.6)

Noting that d log
(

∑
N
j=1 p1−σ

j ω
σ−1
D, j

)
simplifies to (1− σ)

(
∑

N
i=1 ϒi

(
d log pi−d logωD,i

))
,

equation (B.6) can be rewritten as

d logY = d logw−
N

∑
i=1

ϒi
(
d log pi−d logωD,i

)
. (B.7)

We now turn to producers’ optimization problem to derive an expression for d log pi.
The first-order conditions for labor and intermediate inputs imply

li = αi(1− τy,i)piyiw−1(1+ τL,i)
−1 (B.8)
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and

xi j = (1−αi)
θ pθ

i yθ
i ω

θ−1
i j p−θ

j (1− τy,i)
θ (1+ τx,i j)

−θ M1−θ

i . (B.9)

From (B.8) and (B.9), we derive expressions for the labor expenditure shares Λi and
input-output parameters Ωi j

Λi =
(1+ τL,i)wli
(1− τy,i)piyi

= αi (B.10)

and,

Ωi j = (1−αi)
θ pθ−1

i yθ−1
i ω

θ−1
i j p1−θ

j (1− τy,i)
θ−1(1+ τx,i j)

1−θ M1−θ

i . (B.11)

Substituting (B.8) and (B.9) into sector i’s production function, we derive the following
expression for the price of good i,

pi = A−1
i (1− τy,i)

−1(1+ τL,i)
αiwαiα

−αi
i (1−αi)

αi−1P1−αi
M,i , (B.12)

where PM,i ≡
(

∑
N
j=1 ω

θ−1
i j

[
(1+ τx,i j)p j

]1−θ
) 1

1−θ . Total differentiation of equation (B.12),
yields

d log pi = Λid logw−d logAi− (αi−1)d logPM,i,

where d logPM,i is given by

d logPM,i = (1−αi)
−1

N

∑
j=1

Ωi jd logωi j +(1−αi)
−1

N

∑
j=1

Ωi jd log p j.

Therefore, we can write

d log pi = Λid logw−d logAi +
N

∑
j=1

Ωi jd logωi j +
N

∑
j=1

Ωi jd log p j,

which we can re-arrange to get

d log pi =
N

∑
k=1

ψikΛkd logw−
N

∑
k=1

ψikd logAk−
N

∑
k=1

N

∑
j=1

ψikΩk jd logωk j.

From the identity, ΩΩΩ1R+ΛΛΛ = 1R, it follows that ΨΨΨ
′
ΛΛΛ = 1R (with 1R being an N× 1
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vector of ones). Therefore, the above equation can be rewritten as

d log pi = d logw−
N

∑
k=1

ψikd logAk−
N

∑
k=1

N

∑
j=1

ψikΩk jd logωk j. (B.13)

Substituting equation (B.13) into (B.7) yields

d logY = d logw−
N

∑
i=1

ϒi

(
d logw−

N

∑
k=1

ψikd logAk−
N

∑
k=1

N

∑
j=1

ψikΩk jd logωk j−d logωD,i

)
,

which simplifies to

d logY =
N

∑
i=1

N

∑
k=1

ϒiψikd logAk +
N

∑
i=1

N

∑
k=1

N

∑
j=1

ϒiψikΩk jd logωk j +
N

∑
i=1

ϒid logωD,i.

Using the fact that λk = ∑
N
i=1 ϒiψik, we can re-write the above equation as

d logY =
N

∑
k=1

λkd logAk +
N

∑
k=1

N

∑
j=1

λkΩk jd logωk j +
N

∑
i=1

ϒid logωD,i. (B.14)

From the above equation, we derive

d logY
d logAi

= λi,

which is equation (5). From equation (B.14), we derive i’s scale centrality µi≡1′C
d logY
d logXi

1R

µi =
N

∑
k=1

λkΩki +
N

∑
k 6=i

λiΩik +ϒi

or, in matrix form,

µi = ϒi +λλλ
′
ΩΩΩ(i)+λiΩ̃ΩΩ

(i)
1R.

�

Proof of Corollary 2. This follows from equation (B.14) in the Proof of Theorem 1.
�
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Proof of Proposition 1. Denote by ΩΩΩ
F the frictionless input-output matrix, with the

i jth element given by ΩF
i j =

p jxi j
piyi

. The frictionless input-output matrix relates to the
tax-adjusted input-output matrix ΩΩΩ via the identity

ΩΩΩ = ΓΓΓ◦ΩΩΩ
F ,

where ΓΓΓ is an N×N matrix with i jth element given by

Γi j =
1+ τx,i j

1− τy,i
.

Noting that Γi j ≥ 1 for all i, j since 0≤ τx,i j < 1 and 0≤ τy,i < 1, it implies that

Ωi j ≥Ω
F
i j

for all i, j. Furthermore, the i jth element of the Leontief inverse ΨΨΨ =
(
I−ΓΓΓ◦ΩΩΩ

F)−1
can

be written as

ψi j = 1+
(

1+ τx,i j

1− τy,i

)
Ω

F
i j +

N

∑
k=1

(
1+ τx,ik

1− τy,i

)(
1+ τx,k j

1− τy,k

)
Ω

F
ikΩ

F
k j + ...

Noting that

ψi j ≥ 1+Ω
F
i j +

N

∑
k=1

Ω
F
ikΩ

F
k j + ...,

where the right-hand side of the above inequality is the i jth element of the frictionless
Leontief inverse, defined as

(
I−ΩΩΩ

F)−1
i j .

Denoting by µF
i sector i’s scale centrality in the frictionless economy, it follows that

ζi = µi−µ
F
i ≥ 0

for all i, where
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ζi = ϒϒϒ
′
((

I−ΓΓΓ◦ΩΩΩ
F)−1 (

ΓΓΓ◦ΩΩΩ
F)

(i)−
(
I−ΩΩΩ

F)−1
ΩΩΩ

F
(i)

)
︸ ︷︷ ︸

Impact of taxes on i’s indirect effect

+
N

∑
k=1

ϒk

((
I−ΓΓΓ◦ΩΩΩ

F)−1
ki

(
ΓΓΓ◦ Ω̃ΩΩ

F
)(i)

1R−
(
I−ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1R

)
︸ ︷︷ ︸

Impact of taxes on i’s supplier effect

,

and where (L)(i) and (L)(i) denotes the ith column and row of a matrix L, respectively.
�

C Data for Quantitative Application

BEA Input-Output Data

We use the detailed benchmark input-output accounts provided by the Bureau of Eco-
nomic Analysis (BEA) from 1982 to 2012. These accounts, which are compiled every
five years, offer comprehensive information on inter-industry relationships and the
flow of goods and services in the economy. For our analysis, we use the commodity-
by-industry Use table, assuming that each industry produces only one commodity (as
in Baqaee and Farhi, 2020b). We exclude the government, scrap, noncomparable im-
ports, and used and secondhand goods sectors from our analysis. The number of in-
dustries included in the tables varies each year, ranging from 534 sectors in 1982 to 393
sectors in 2012.

To compute each entry of the US input-output table for each year, we divide the ex-
penditure of industry i on commodity j by i’s gross sales (net of sector-level taxes). We
also calculate the final expenditure share of each sector i by summing all components
of final demand in the detailed Use tables, excluding changes in private inventories,
and dividing by nominal GDP. If any final demand share is negative, we set it equal to
zero. Similarly, if any value in the equilibrium input-output matrix is negative, we set
it to zero as well.
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WIOD Input-Output Data

We use the 2016 release of the World Input-Output Database (WIOD) (see Timmer
et al., 2015 for an overview of the WIOD data) for our cross-country analysis. The
dataset contains information on gross output, value-added, factor compensation, tax
payments, final expenditures, and intermediate input flows for 43 countries from 2000
to 2014. The WIOD data is disaggregated into 56 sectors based on the International
Standard Industrial Classification Revision 4 (ISIC Rev. 4). The block-diagonal of each
input-output table captures domestic intermediate input transactions for each country.
In contrast, the off-diagonal relates to the flow of intermediates between countries. For
our purposes, we focus solely on domestic transactions and abstract from international
trade. We compute each entry of country c’s input-output matrix ΩΩΩct ≡

[
Ωi jct

]
at time

t by dividing sector i’s nominal expenditure on sector j’s product by sector i’s total
domestic nominal sales (net of taxes). Notably, we exclude each sector’s spending on
imported inputs, which ensures that factor compensation plus domestic intermediate
input expenditure equals nominal gross output for each sector. We calculate tax rates
τict at the country-sector-year level as

τict =
Tict

∑
N
k=1 pkctykct

,

where Tict is the nominal value of taxes (less subsidies) paid by sector i in country c at
year t, and ∑

N
k=1 pkctykct is aggregate nominal gross output for country c. Therefore, a

typical entry of country c’s input-output matrix is computed as4

Ωi jct =
p jctxi jct

(1− τict)pictyict
.

Finally, we calculate industries’ final expenditure shares ϒict as the sum of household
and government final consumption expenditure plus gross fixed capital formation, all
as a fraction of nominal GDP.

D The Effect of Taxes on Sectors’ Importance

In the Proof of Proposition 1, we derived the following expression for the contribution
of taxes to sector i’s scale centrality, ζi:

4Given that we do not have information on input-specific tax wedges τx,i j, we do not include these
when computing the input-output matrices.
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ζi = ϒϒϒ
′
((

I−ΓΓΓ◦ΩΩΩ
F)−1 (

ΓΓΓ◦ΩΩΩ
F)

(i)−
(
I−ΩΩΩ

F)−1
ΩΩΩ

F
(i)

)
︸ ︷︷ ︸

Impact of taxes on i’s indirect effect

+
N

∑
k=1

ϒk

((
I−ΓΓΓ◦ΩΩΩ

F)−1
ki

(
ΓΓΓ◦ Ω̃ΩΩ

F
)(i)

1R−
(
I−ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1R

)
︸ ︷︷ ︸

Impact of taxes on i’s supplier effect

, (D.1)

where (L)(i) and (L)(i) denotes the ith column and row of a matrix L, respectively.
In equation (D.1), the first term on the right-hand side quantifies the impact of

sector-level sales and intermediates taxes on the indirect effect of sector i, while the
second term measures the significance of these taxes for the supplier effect of sector i.
Thus, in the absence of these frictions, the supplier effect of i is given by

N

∑
k=1

ϒk
(
I−ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1R, (D.2)

and the importance of taxes for supplier effects is given by

N

∑
k=1

ϒk

((
I−ΓΓΓ◦ΩΩΩ

F)−1
ki

(
ΓΓΓ◦ Ω̃ΩΩ

F
)(i)

1R−
(
I−ΩΩΩ

F)−1
ki

(
Ω̃ΩΩ

F
)(i)

1R

)
. (D.3)

Figure D.1 compares the impact of taxes on industries’ supplier effects (equation D.3),
represented by yellow bars, for the top 10 sectors ranked by supplier effects. The anal-
ysis covers the years from 1982 to 2012, using the detailed BEA input-output accounts.
In the figure, the orange bars represent the frictionless supplier effects of each industry,
calculated using equation (D.2). The combined sum of the orange and yellow bars for
each sector represents the total supplier effect, which includes the impact of taxes, for
the sector listed on the horizontal axis.

The figure shows that taxes only account for a small portion of the overall supplier
effects of industries across all years. However, a few notable exceptions stand out. In
2002, taxes on retail and wholesale trade accounted for approximately 15% and 18%,
respectively, of these industries’ total supplier effects. Additionally, in 1982, taxes ac-
counted for 23% of the supplier effect of crude petroleum production. Nonetheless, on
average, taxes only account for around 4% of supplier effects across all industries and
years in the BEA IO tables.
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Figure D.1: Contribution of Taxes to Sectors’ Supplier Effects
Note: This figure presents estimates of the contribution of taxes to sectors’ supplier effects from 1982 to
2012 using the detailed input-output accounts of the BEA. The top 10 sectors, ranked by supplier effects,
are displayed for each year. The orange bars represent each sector’s supplier effect in the absence of
taxes, calculated using equation (D.2). The yellow bars capture the contribution of taxes to each sector’s
supplier effect, computed as in equation (D.3).
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E Second-Order Scale Centrality

We compute sectors’ second-order scale centrality by characterizing the derivatives of
Domar weights and input-output parameters. We begin by noting that the change in
real GDP in response to productivity shocks, to a second-order approximation, is given
by

∆Y
Y
≈

N

∑
i=1

λi

(
∆Ai

Ai

)
+

1
2

N

∑
i=1

N

∑
j=1

dλi

d logA j

(
∆Ai

Ai

)(
∆A j

A j

)
, (E.1)

where the first set of summands capture the first-order change in real GDP in response
to the technology shocks (∆A1

A1
, ..., ∆AN

AN
) and the second set of summands capture the

second-order change in GDP. Next, note that change in real GDP in response to shocks
to i’s supply and use of inputs, up to a second-order approximation, is given by

∆Yi

Yi
= µ

2nd-order
i ≈ ϒi

(
∆ωD,i

ωD,i

)
︸ ︷︷ ︸

First-order direct effect

+
N

∑
k=1

λkΩki

(
∆ωki

ωki

)
︸ ︷︷ ︸

First-order indirect effect

+
N

∑
k 6=i

λiΩik

(
∆ωik

ωik

)
︸ ︷︷ ︸

First-order supplier effect

+
1
2

N

∑
k=1

N

∑
m=1

d(λkΩki)

d logωmi

(
∆ωki

ωki

)(
∆ωmi

ωmi

)
︸ ︷︷ ︸

Second-order indirect effect

+
1
2

dϒi

d logωD,i

(
∆ωD,i

ωD,i

)2

︸ ︷︷ ︸
Second-order direct effect

+
1
2

N

∑
k 6=i

N

∑
m 6=i

d(λiΩik)

d logωim

(
∆ωik

ωik

)(
∆ωim

ωim

)
︸ ︷︷ ︸

Second-order supplier effect

. (E.2)

where ∆Yi
Yi

= µ2nd-order
i is scale centrality of producer i under heterogeneous shocks, up

to a second-order approximation. Therefore, to characterize equation (E.2), we must
compute dϒi

dωD,i
, d(λkΩki)

d logωmi
and d(λiΩik)

d logωim
. We begin by noting that

dϒi

d logωD,i
=

d logϒi

d logωD,i
ϒi, (E.3)

where

d logϒi

d logωD,i
= (σ −1)(1−ϒi). (E.4)
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Next, to characterize the second-order indirect effect, we need to compute

d(λkΩki)

d logωmi
=

d logλk

d logωmi
λkΩki +

d logΩki

d logωmi
λkΩki. (E.5)

Firstly, the change in the input-output parameter Ωki in response to the change in ωmi

is given by

d logΩki

d logωmi
= (θ −1)

(
ψimΩmi−

1
1−Λk

N

∑
j=1

Ωk jψ jmΩmi +
d logωki

d logωmi

)
. (E.6)

(See equation B.10 for the definition of Λk.) Secondly, the change in sector k’s Domar
weight is given by

d logλk

d logωmi
=

1
λk

N

∑
l=1

ϒlψlk
d logϒl

d logωmi
+

1
λk

N

∑
l=1

N

∑
s=1

Ωlsλlψsk
d logΩls

d logωmi
, (E.7)

where,

d logϒl

d logωmi
= (σ −1)(ψlmΩmi−λmΩmi) (E.8)

and

d logΩls

d logωmi
= (θ −1)

(
ψsmΩmi−

1
1−Λl

N

∑
j=1

Ωl jψ jmΩmi +
d logωls

d logωmi

)
. (E.9)

Together, equations (E.6), (E.7), (E.8) and (E.9) are sufficient to characterize the second-
order indirect effect in equation (E.2).

Our last step is to characterize the second-order supplier effect. To this end, we
must compute

d(λiωik)

d logωim
=

dλi

d logωim
Ωik +

dΩik

d logωim
λi.

The change in the input-output parameter Ωik in response to a change in ωim is given
by

dΩik

d logωim
= (θ −1)Ωik

(
ψkiΩim−

1
1−Λi

N

∑
j=1

Ωi jψ jiΩim +
d logωik

d logωim

)
. (E.10)
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Next, we compute dλi
d logωim

dλi

d logωim
=

N

∑
l=1

ψli
dϒl

d logωmi
+

N

∑
l=1

N

∑
s=1

λlψsi
dΩls

d logωim
, (E.11)

where

dϒl

d logωim
= (σ −1)ϒl (ψliΩim−λiΩim) , (E.12)

and

dΩls

d logωim
= (θ −1)Ωls

(
ψsiΩmi−

1
1−Λl

N

∑
j=1

Ωl jψ jiΩim +
d logωls

d logωim

)
. (E.13)

Together, equations (E.3)–(E.13) characterize second-order scale centrality.
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