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1 Introduction

Forecasting economic activity is one of the fundamental ingredients for decision analysis,

whether it is for public policy or strategic planning. Typically, forecasts are produced either

from models with a single predictor or with multiple predictors or from managerial expert

judgments. Models produce different forecasts just as managers offer varied judgments, and it

can be challenging to reconcile this information into a decision. One way to approach decision-

making in this context is to aggregate forecasts, that is, to combine forecasts into a consensus

forecast. Aside from facilitating decision-making, there are numerous statistical advantages

to combining forecasts. Bates and Granger (1969) demonstrate that the optimal combination

of forecasts for the mean squared error (MSE) loss function (or scoring rule) outperforms an

individual forecast. Furthermore, the vector of the optimal linear combination has a simple

closed form solution, which explains its popularity.

There is extensive literature that explores the combination of forecasts methodologically

and empirically; see de Menezes et al. (2000) or Timmermann (2006) for surveys. One

of the main focuses of the forecast combination literature is to investigate the forecasting

performance of various weighting schemes, including simple averaging or “equal weights” (for

example, see Larrick and Soll, 2006, Soll and Larrick, 2009, and Lichtendahl et al., 2013).

The superiority of averaging forecasts over combining forecasts optimally has been coined a

“forecast combination puzzle.” The reasons for this puzzle are discussed in detail in Clemen

and Winkler (1986), Capistrán and Timmerann (2009), Smith and Wallis (2009), Bjørnland

et al. (2012), and Claeskens et al. (2016).

Practitioners must often forecast data that span over a short horizon, but combining

forecasts in small samples by minimizing MSE loss is challenging. This is because it depends

on the sample variance-covariance matrix of the forecast errors, which can be sensitive to

outliers and extreme observations, especially in small samples. It is well known, however,

that mean absolute error (MAE) loss is less sensitive to outliers. While combination methods

based on MSE are prominent in theory and in practice, less attention has been devoted to

other loss functions such as MAE.1 This paper provides some theoretical results for combining

forecasts under MAE loss and shows that it is equivalent to combining forecasts under MSE

loss.

Our main contributions can be summarized as follows:

1. We start by providing the first-order condition for the MAE loss function, which is

necessary to derive the optimal combination of forecasts under MAE loss. Then, we

1Some statistical properties of the MAE loss function are discussed in Gastwirth (1974) and Bassett Jr.
and Koenker (1978). See Jose (2017) for an investigation of the advantages and properties of scale-free forecast
accuracy measures, such as mean absolute percentage errors (MAPE).
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prove that the optimal solutions, i.e., the optimal weights, are asymptotically equivalent

when minimizing either MSE or MAE loss functions, provided that the weights sum

to one. Hence, the equivalence of optimal weights implies the same optimal forecast

combination. The equivalence holds even when the forecast errors are asymmetrically

distributed or contain outliers. The literature, however, has emphasized the equivalence

in optimization problems between classes of loss functions rather than the equivalence

in optimal solutions. The latter is the subject of this paper. Fung and Mangasarian

(2011) and Peng et al. (2015) provide the results of equivalence between optimization

problems, namely, `p and `0 norm minimization. Patton (2019) provides a discussion for

a set of loss functions that belong to the Bregman class, including MSE. See Bregman

(1967), Savage (1971), and Banerjee et al. (2005) for further details.

2. We provide simulation evidence to support this equivalence by simulating fat-tailed

and asymmetric forecast errors. The forecast errors are drawn from either skew normal

or t3 distributions. The Fat-tailed distributions are included to evaluate the impact of

outliers in forecast combinations, as outliers usually imply poor forecasting performance

in small samples. For example, see Gupta and Wilton (1987) and Winkler and Clemen

(1992).

3. We investigate the practical implications of combining forecasts optimally under MAE

and MSE loss with real-world data on inflation rate, unemployment rates, and growth

rate forecasts. The forecasts are taken from the quarterly European Central Bank

(ECB) Survey of Professional Forecasters (SPF). The ECB SPF is often used in em-

pirical applications of forecast combination methods, including Genre et al. (2013),

Conflitti et al. (2015), Matsypura et al. (2018), and Diebold and Shin (2019).2 In this

small sample of data, we show that the MAE optimal weights are less susceptible to

bias and outliers than its MSE counterpart. Moreover, when there are no outliers, the

MAE and MSE optimal weights are close to equivalent.

How are these results useful practically? In large samples, the optimal weights of the

forecast combination are equivalent whether minimizing MSE loss or MAE loss when the

weights sum to one. In this case, MSE appears to be more convenient due to its closed form

minimization solution, i.e., there is no need for numerical computation. This is especially rel-

evant in large-scale combination problems. However, estimating MSE-based weights requires

a variance-covariance matrix that is subjected to finite sample bias. Furthermore, this can

be exacerbated in the presence of outliers, whereas minimizing MAE loss is robust to them.

2For detailed discussion of the ECB Survey of Professional Forecasters, see Garćıa (2003), Kenny et al.
(2007), and Bowles et al. (2010).
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In small samples, we recommend checking for outliers in the dataset when choosing between

MAE and MSE, whereas in a large sample, the choice is a matter of convenience.

The rest of the paper is organized as follows. Section 2 provides a motivating example

and intuition for equivalence. Section 3 presents the main theoretical results of the paper.

Section 4 conducts a simulation study to support the theory. Section 5 provides an empirical

illustration. Section 6 concludes. All proofs and additional results are provided in Appendix

A and in an Online Supplement available here. The computer code, data, and framework for

all the figures and tables presented in the paper are available here.3

2 Motivation

This section provides an intuition with a motivating example for why forecast combinations

with MAE loss provide the same optimal solutions, or optimal weights, as MSE loss under

the constraint that the weights sum to one, i.e., a budget constraint. Suppose that an expert

forecaster or a model i produces a point forecast, fit, for some random variable of interest,

say yt, at a given time t. Then, a simple expression of the forecast errors, νit, is

νit = yt − fit. (1)

Without loss of generality, assume that f0t is the best forecast in the sense that

Pr [h (ν0t) < ε] > Pr [h (νit) < ε] (2)

for ε > 0 and i = 1, . . . , k, where h denotes some loss function or forecasting criterion and ν0t

essentially denotes the maximum bound on how accurately yt can be forecast. The forecast

errors can be rewritten as the sum of the random errors associated with the best forecast and

a forecast specific random error, i.e., νit = ν0t + uit.

Consider the simple case of combining two forecasts, f1t and f2t, into

fct = a1f1t + a2f2t (3)

with a1, a2 ∈ R representing the combination weights associated with the two forecasts. The

optimization problem of combining the two forecasts at time t is expressed as

minimize
a1,a2

E [h (a1ν1t + a2ν2t)]

subject to a1 + a2 = c,
(4)

3The URL for the GitLab repository is https://gitlab.com/chansta/mae-forecast/-/tree/master.
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where E denotes the expected value, the combined forecast error is a1ν1t+a2ν2t = yt−a1f1t−
a2f2t and is assumed to be second-order stationary, and c ∈ R is a constant that is typically

set to one. The optimal weights are found by minimizing problem (4). Note that the best

forecast is not included in the combination set of forecasts because if it were included, the

optimal solution to the combination would weight the best forecast exclusively.4 Moreover,

the setup in this paper does not exclude forecasts from any combination of forecasts.

When combining multiple forecasts, h is usually specified to be the mean squared error

such that the optimal solution minimizes the forecast error variance, i.e., (a1ν1t + a2ν2t)
2.

MSE is a convenient loss function to minimize because of its close form solution and inter-

pretability (minimum variance). Optimal weights obtained by minimizing the forecast error

variance were first introduced by Bates and Granger (1969). Since then, the optimality prop-

erties of combining forecasts by minimizing MSE have been investigated theoretically and

empirically throughout the literature. See, among others, Smith and Wallis (2009), Elliott

(2011), Claeskens et al. (2016), and Chan and Pauwels (2018). To our knowledge, the same

cannot be said about mean absolute error loss. In the MAE case, h is expressed in absolute

value form as such |a1ν1t + a2ν2t|.
For the purpose of demonstration, suppose that the two forecast error distributions are

asymmetric specifically, they follow the skew normal distribution as defined in Azzalini (1985)

with ν1 ∼ SN(µ = 0, σ = 1.5, λ = 0.4) and ν2 ∼ SN(µ = 0, σ = 0.4, λ = −0.3). Figure 1

depicts the MAE and MSE loss curves specified in problem (4) for a range of values of the

forecast combination weight, for example, a1. The optimal points are shown by the vertical

lines cutting through the MAE and MSE loss curves.5

(a) Weights sum to 1 (b) Weights sum to 0.5

Figure 1: MAE and MSE optimal weights

4This is demonstrated formally in Corollary S.1, which can be found in Online Supplement.
5The exact framework and the computer code for Figure 1 are available in this Jupyter Notebook.
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The left-hand side panel of Figure 1 shows the MAE and MSE loss curves for forecast

combinations under the constraint that the weights sum to one (c = 1). The optimal weights

of minimizing MAE and MSE loss under this constraint are the same and equal to 0.23.

The right-hand side panel of Figure 1 depicts the same MAE and MSE loss but under the

constraint that the weights sum to half (c = 0.5). Interestingly, in this case the optimal

weight of minimizing the MAE loss is 0.16, whereas the optimal weight of minimizing the

MSE loss is 0.11. This finding remains true for any value of the constraint not equal to

one, i.e., c 6= 1. This simple example shows that there is an equivalence between MAE and

MSE optimal weights when c = 1. However, this does not imply equivalence in the loss

functions. Importantly, this equivalence seems to suggest that the ‘sum to one’ constraint is

instrumental to this result.

A natural question that arises is what is special about c = 1? One implication of the

budget constraint is that it ensures that forecast combinations are unbiased. To see this, let

f1t and f2t be unbiased forecasts, i.e., E(f1t) = E(f2t) = E(yt), combined as in equation (3)

with the constraint a1 + a2 = c. When c = 1, it is clearly a special case, implying that

E (fct) = a1 E (f1t) + a2 E (f2t)

= a1 E(yt) + (c− a1) E(yt)

= c E(yt).

Thus E(fct) = E(yt) if and only if c = 1. When c 6= 1, the forecast combination is biased by

a factor of c. The unbiasedness implication of the budget constraint imposes a restriction on

the loss function, which leads to the equivalence result of this paper. The relaxation of this

restriction invokes the possibility of a bias-variance trade-off. While it is possible to have

a lower MSE with higher absolute values of c and hence more bias, there is no reason to

believe that MAE will follow suit. MAE and MSE loss functions do not have to behave in

the same way around such a trade-off; the bias will be handled differently. Hence, there are

no guarantees that the minimum points on the MAE and MSE losses could coincide when

c 6= 1.

Of course this simple example has its limitations. In practice, forecast combinations often

involve more than two forecasts. Moreover, forecasting requires samples of data, which often

involve estimation and random errors, outliers, and other data-related problems. The next

two sections of the paper generalize and formalize the findings in this example with statistical

theory and a numerical study.
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3 Theory

3.1 Minimizing mean absolute error

The aim of combining the set of k forecasts is to optimize the forecast accuracy by minimizing

the combined forecast errors, i.e., uit. The k forecast equations (1) are written in matrix form

as

ft = (yt − ν0t)1− ut (5)

where 1 denotes a k × 1 vector of ones, ft = (f1t, · · · , fkt)> and ut = (u1t, · · · , ukt)>. The

linear combination of the k forecasts at time t can be written as follows:

f>t a = (yt − ν0t)1>a− u>t a. (6)

where a ∈ Rn is a vector of weights. If the combination of forecasts is linear, i.e. a>1 = 1,

then yt − f>t a = ν0t + u>t a is a T × 1 vector containing the forecast errors from the forecast

combination.

Several results on the optimality of minimizing the mean absolute error are derived in this

section, which is then used to derive the equivalence results central to this paper. The opti-

mization problem in (4) can be generalized to combining k forecasts at time t and formulated

for mean absolute error loss as such

minimize
a

E
∣∣∣ν0t + u>t a

∣∣∣
subject to 1>a = 1.

(7)

The solution that minimizes the MAE loss function in (7), denoted as a∗MAE, is often found

by linear programming. Standard techniques to solve optimization problems with a nondif-

ferentiable function include transforming the problem into a linear programming problem

or utilizing other sophisticated methods such as generalized gradient (for further details see

Chapter 2 in Clarke, 1990). In this case, the optimal solution can be found by using the

standard Lagrangian technique.

The optimization problem (7) can then be restated by grouping the forecast errors (ν0t +

u>t a) according to their signs. Let
(
Rk+1,=, G

)
be a probability space and define the positive

set X+
a =

{
(ν0t,ut) : ν0t + u>t a > 0

}
and the negative set X−a =

{
(ν0t,ut) : ν0t + u>t a < 0

}
.

Then the MAE loss function in (7) is rewritten as

E
∣∣∣ν0t + u>t a

∣∣∣ =

∫
X+

a

(
ν0t + u>t a

)
G (dvt)−

∫
X−a

(
ν0t + u>t a

)
G (dvt)+

∫
X0

a

(
ν0t + u>t a

)
G (dvt) ,
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where dvt = dν0tdu1t . . . dukt. Note that X0
a =

{
(ν0t,ut) : ν0t + u>t a = 0

}
and the last in-

tegral is 0 because ν0t + u>t a = 0. Hence, the optimization problem (7) can be restated

as

minimize
a

∫
X+

a

(
ν0 + u>a

)
G(dv)−

∫
X−a

(
ν0 + u>a

)
G(dv)

subject to 1>a = 1.

(8)

Under the assumption of stationarity, G (dv) = G (dvt) for all t, so the subscript t can be

omitted from this point on.

Lemma 1 proposes mapping the optimization problem in (8) to a differentiable function.

While the loss function is nondifferentiable at 0, the expectation of the loss function is differ-

entiable for all values. Lemma 1 establishes the existence of the derivative, which is required

to obtain the first-order conditions of problem (8):

Lemma 1. Let F (a) =
∫
X+

a

(
ν0 + u>a

)
G(dv)−

∫
X−a

(
ν0 + u>a

)
G(dv); then,

∂F

∂a
=

∫
X+

a

uG(dv)−
∫
X−a

uG(dv). (9)

Proof. See Appendix A.

Using the first derivative obtained in Lemma 1, Theorem 1 shows the optimal solution of

problem (8):

Theorem 1. Let ωi(a) =
∫
X+

a
uiG(dv)−

∫
X−a

uiG(dv); then, the solution to the optimization

problem, weights a∗, as stated in equation (8), satisfies

ωi (a∗) = ωj (a∗) ∀i, j = 1, . . . , k. (10)

Proof. See Appendix A.

If 1>a = 1 is a binding constraint, then ωωω(a∗) = 0, where ωωω(a) =
∫
X+

a
uG(dν)−

∫
X−a

uG(dν).6

Equation (10) of Theorem 1 has a more intuitive representation in terms of the expectation

of u conditional on the sign of ν0t + u>t a, namely,

E
[
u|ν0 + u>a∗ > 0

]
Pr
(
ν0 + u>a∗ > 0

)
= E

[
u|ν0 + u>a∗ < 0

]
Pr
(
ν0 + u>a∗ < 0

)
. (11)

6It is worth pointing out that ωi(a
∗) = −λ for all i, where λ is the Lagrange multiplier associated with the

budget constraint 1>a = 1.
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The geometric interpretation of equation (11) can be explained as follows.7 First, consider the

case where all forecast errors follow symmetric distributions, that is, Pr
(
ν0 + u>a∗ > 0

)
=

Pr
(
ν0 + u>a∗ < 0

)
; then, equation (11) reduces to

E
[
u|ν0 + u>a∗ > 0

]
= E

[
u|ν0 + u>a∗ < 0

]
. (12)

This means that the optimal solution, weights a∗, is a hyperplane that satisfies a∗>u = −ν0
and divides the space in such a way that the conditional expectation of u in both half spaces

are equal. Second, in the case where the forecast errors do not follow symmetric distributions,

the equality of the conditional expectations from the two half spaces is compensated by the

skewness of the error distribution for the optimal combination of forecasts.

3.2 Equivalence in optimal solutions

In this section, we show that the optimal combination of forecasts obtained from minimiz-

ing the constrained MAE loss in (8) produces the same optimal combination of forecasts

when minimizing an MSE loss function under the same constraint, i.e., the weights sum to

one. As an exploratory exercise, this equivalence can be demonstrated intuitively under the

assumption that forecast errors are normally distributed.

Let the combined forecast errors be zt = ν0t + u>t a and zt ∼ N(0, σ2z) such that σ2z =

σ2ν + a>ΩΩΩa, where σ2ν = E(ν20t) and E(utu
>
t ) = ΩΩΩ. Note that the expected value of the

absolute combined error is

E|zt| =σz
∫ ∞
0

wφ(w)dw − σz
∫ 0

−∞
wφ(w)dw

=
2√
2π
σz,

where φ(w) denotes the standard normal density function. The last line above suggests

that minimizing E|zt| subject to the constraint that the weights sum to one is the same

as minimizing the standard error of zt subject to the same constraint. Since minimizing

the standard deviation gives the same results as minimizing the variance under the same

constraint, the optimization problem under the MAE loss has the same solution, i.e., it

produces the same weight a∗, as the optimization problem under the MSE loss when the

combined forecast errors are normal.8

The result is not limited to normally distributed errors. A more general result can be

found in Proposition 1 below.

7See the Online Supplement for full derivation.
8This intuition is formalized in Proposition S.1 in the Online Supplement.
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Proposition 1. Define νt = ν0t+u>t a and under the assumptions that (i) νt is independently

distributed over t and that (ii) E|νt|, E|ν0t| and E|ut| exist and are finite for all t, then

a∗MAE = a∗MSE where a∗MAE is defined in (7) and

minimize
a

E
(
ν0t + u>t a

)2
subject to 1>a = 1,

(13)

with closed form solution9

a∗MSE = ΩΩΩ−11
(
1>ΩΩΩ−11

)−1
. (14)

Proof. See Appendix A.

The strength of Proposition 1 is that there is no assumption on the distribution of the forecast

errors. Providing that the two mild assumptions are satisfied and the sample considered is

large enough, the optimal weight vector that combines forecasts from minimizing the MAE

is the same as the one that minimizes the MSE. This equivalence result can be extended

to other loss functions. Lemmas 3 and 4 in Appendix A provide a sufficient condition for

the equivalence in Proposition 1 to hold for any loss function with unique minima under

the constraint that the weights must sum to one. While the result can be generalized, the

sufficient conditions may be too restrictive for the more general case. However, relaxing

such sufficient conditions is beyond the scope of the current paper but may be an interesting

direction for future research.

Thus far, the results have focused on the expected value. However, in practice, a∗MAE is

estimated by solving the following optimization problem using a sample of T observations:

minimize
a

T∑
t=1

|yt − fta|

subject to a>1 = 1.

(15)

The solution to (15) is denoted as â∗MAE. Under the assumptions of Proposition 1, it is trivial

to show that â∗MAE − a∗MAE = op(1), that is, that the difference converges in probability to

zero. Note that the weights are not restricted to be positive, as is sometimes required in this

literature.

It is important to note that the equivalence result is an asymptotic result, which means

that the finite sample forecasting performance of MAE or MSE weights will vary from sample

to sample. Chan et al. (2020) provides a discussion that â∗MSE and â∗MAE share the same finite

9See Elliott (2011) and Chan et al. (2020) for a derivation and discussion of the optimal MSE weights,
a∗MSE.
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sample approximation to their distributions, as they both converge to the same asymptotic

distribution with the same variance-covariance matrix. The distribution of the MAE opti-

mal weights is derived from this paper’s Proposition 1 and the literature of epiconvergence,

specifically, Corollary 2 in Knight (2001). The basic idea of epiconvergence is that, if â∗MSE

is a solution to minimizing the MAE loss function, then â∗MAE converges in distribution to

â∗MSE. Therefore, it is sufficient to show that â∗MAE converges to â∗MSE, which is given under

the conditions of Proposition 1.

4 Simulations

The simulation study provides supporting evidence that the optimal weights obtained from

minimizing either the MAE or the MSE loss functions are equivalent, as shown in Proposition

1. The simulation framework can be summarized as follows. We simulate, in turn, five

forecast error series that come only from skew normal distributions and then only from t3

distributions. These error distributions are chosen because the skew normal distribution is

asymmetric and the t3 distribution is fat-tailed, which means that the forecast errors contain

outliers. Both types of distributions provide a nontrivial simulation framework to generate

supporting evidence in favor of equivalence.

We minimize the combined errors under MAE loss and under MSE loss and collect sets

of five weights for each optimization sequence and for each sample size N . The sample sizes

considered are N = {20, 30, 50, 100} and then in increments of 100 up to 1000, and the

number of replications per sample is 5000.

We provide a brief description of how the skew normal forecast errors are simulated

below. More details are available at Online Supplement.10 We simulate p = 5 correlated

skew normal random variates ZSN ∼ SN(0,ΣΣΣ,ΛΛΛ). The multivariate skew normal variates

ZSN depend on parametrizing two matrices, namely, a p × p matrix ΛΛΛ and a p × p matrix

ΣΣΣ. The ΛΛΛ matrix gathers the skewness parameters for each of the p variates, and ΣΣΣ is a

semipositive definite matrix containing the correlation information between the p variates.

We provide two parametrizations of ΛΛΛ and ΣΣΣ as it produces different sets of optimal weights:

one set with positive weights only and the other with a mix of positive and negative weights.

The optimal weights come from the closed form solution a∗ = ΩΩΩ−1i
(
i′ΩΩΩ−1i

)−1
, where the

variance-covariance matrix is ΩΩΩ = ΣΣΣ +
(
1− 2

π

)
ΛΛΛΛΛΛ′.

Set 1: a∗ such that a1 = 0.290, a2 = 0.193, a3 = 0.182, a4 = 0.079, and a5 = 0.255.

Set 2: a∗ such that a1 = 0.259, a2 = −0.311, a3 = 0.805, a4 = 0.374, and a5 = −0.128.

10The Julia code for the simulations is available in this Jupyter Notebook. The code is also available for
MatLab. The simulation results presented in this section are available in csv files.
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The same two ΩΩΩ matrices shown in Sets 1 and 2 are used to generate a multivariate t

distribution with three degrees of freedom, i.e., Zt3 ∼ t3(0,ΩΩΩ). A convenient implication is

that the set of weights ai are the same because the skew normal and the t3 variates have the

same variance-covariance matrix.11

Figures 2 - 5 present a summary of the simulation results for the two forecast error

distributions. Each figure presents the difference between the MAE weights and the MSE

weights, i.e., âMAE− âMSE, and the plus minus one standard deviation of âMAE− âMSE. Only

weight a1 is shown for each case to keep the presentation concise. The complete simulation

results displaying all the weights are shown in the Online Supplement.12 The conclusions

found for a1 also apply to the four other weights.

Figure 2: Skew Normal (Set 1)

The simulation results clearly support the theoretical findings in Proposition 1 in the

variety of cases presented. Figures 2 and 3 show that the difference in the MAE and the

MSE combination weight a1 is very close to zero on average for all samples when the forecast

error distributions are skew normal. The standard deviation of the difference also narrows

as the sample size N grows large. The simulations show that in large samples, the difference

between the MAE and MSE weights becomes negligible, supporting the equivalence presented

in the theory. The same conclusion regarding the equivalence between the MAE and MSE

11Technically, the variance-covariance of Zt3 is r/(r − 2) ×ΩΩΩ, where r > 2 and r is the degrees of freedom
of the tr distribution. However, the theoretical weights remain the same as the r/(r − 2) cancel out.

12Note that only weights a1 to a4 are shown since a5 = 1 −
∑4
i=1 ai, and if all first four weights converge,

so will the fifth.
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Figure 3: Skew Normal (Set 2)

weights can be drawn in Figure 4 and 5. However, the slightly wider standard deviation for

smaller values of N arises from the fact that the standard deviation of the MSE weight is

higher than MAE. The estimated variance-covariance matrix for the MSE weight is naturally

more sensitive to outliers frequently encountered in very fat-tailed distributions, such as t3,

especially in smaller sample sizes. That difference reduces as N grows large. This observation

is in line with the common view that MAE produces estimates that are less sensitive to outliers

(see, for example, Gupta and Wilton, 1987, and Winkler and Clemen, 1992). We also observe

this property with real-world data, which we turn to next.

5 Illustration

In this section, we turn our attention to a real-world small sample data application. The

purpose of this empirical illustration is to gain insights into the practical use and implications

of MAE and MSE optimal weights when aggregating expert forecasts. Each expert forecast

represents an independent prediction of a key economic indicator. The results highlight

that MAE optimal weights offer better forecasting performance than MSE optimal weights

when the forecast horizons are short and outliers are present. Furthermore, in some cases,

the optimal weights from both weighting schemes show signs of equivalence in small data

samples.
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Figure 4: t3 (Set 1)

Figure 5: t3 (Set 2)
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5.1 Data and preliminary analysis

The expert forecasts for this illustration are obtained from the European Central Bank Sur-

vey of Professional Forecasters, which provides a comprehensive database of forecasts from

various European Union-based experts affiliated with financial or nonfinancial institutions

at a variety of horizons for key macroeconomic indicators.13 In this study, we focus on the

expert-predicted rate of inflation, real GDP growth, and unemployment for the European

Union for the coming year (one year ahead).

The survey is conducted quarterly starting from Q3 1999 and ends in Q4 2018 for this

illustration, covering approximately 19 years of economic activity in the European Union.14

There are approximately 100 forecasters in the survey, but as is often the case in long-

term surveys, there are many instances of nonresponse. Since the optimal weights need to

be estimated over the entire historical period, only the forecasters that respond the most

consistently and in the same surveyed periods are kept for analysis.15 This amounts to four

forecasters for each of the three economic indicators over the entire sample period.16

Figure 6 presents the predictions of the four forecasters for a given economic indicator.17

Not surprisingly, all economic indicators exhibit larger fluctuations around the Global Fi-

nancial Crisis of 2008. As a result, we are likely to observe larger individual forecast errors

around this period, that is, a larger difference between the economic indicator and its re-

spective forecasts. Furthermore, under these conditions, we could expect that the estimated

MAE optimal weights provide better forecasting performance, as MAE weights are robust

to outliers, which in this case would manifest as very large forecast errors. If, on the other

hand, such outliers are not present, we can expect that either MSE or MAE weights would

perform adequately.

How does one capture large forecast errors or outliers? A simple way to detect the

presence of outliers in forecast errors is to measure the sample kurtosis. Table 1 presents the

sample kurtosis of the forecast errors for each of the four forecasters and for the corresponding

economic indicator. The kurtosis value for a standard normal distribution is 3. When the

sample kurtosis values are less than 3, it indicates fewer expected outliers than when it is

13The data are available publicly at https://www.ecb.europa.eu/stats/ecb_surveys/html/index.en.

html. See Matsypura et al. (2018) for a recent comprehensive analysis of the data in the context of the
aggregation of forecasts.

14The exact sample size is 68 data points for the inflation and unemployment rates and 69 for the growth
rate. Each indicator’s exact time coverage varies slightly.

15The actual values of the variables are occasionally revised by the ECB, but the revisions do not impact
the performance of different forecasting methods, as discussed in Genre et al. (2013).

16The ECB SPF forecaster IDs correspond to 37, 89, 94 and 95. All four forecasters are mostly consistent
over the time periods considered.

17The Julia code for the analysis in this section is available in a Jupyter Notebook with the relevant data.
The code is also available for MatLab.
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(a) Inflation rate

(b) Real growth rate

(c) Unemployment rate

Figure 6: Forecasters and economic indicators.
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Table 1: Sample kurtosis & Jarque-Bera normality tests for forecast errors

Macro. Professional Forecasters
indicator Statistic Fcst 95 Fcst 94 Fcst 37 Fcst 89

Inflation Kurtosis 2.86 2.61 3.45 2.78
JB p-value 0.15 0.62 0.22 0.11

Growth Kurtosis 9.32 6.85 11.34 8.45
JB p-value < 0.01 < 0.01 < 0.01 < 0.01

Unemployment Kurtosis 3.33 3.03 3.24 2.71
JB p-value 0.03 0.22 0.10 0.17

Notes: The table presents the sample kurtosis for the forecast errors of each of the four professional forecasters

from the European Central Bank Survey of Professional Forecasters, namely forecasters 37, 89, 94 and 95. The

three macroeconomic indicators forecast are the real growth rate, the inflation rate and the unemployment

rate in the European Union. The sample spans from 1999 Q3 until 2018 Q4. The table also reports the

p-values of the Jarque-Bera test for normality. The values in bold font reject the null hypothesis at the 5%

level.

above 3. This is the case for the forecast errors of the inflation rate, which displays the lowest

kurtosis of the three economic indicators and the unemployment rate. Both indicators have

sample kurtosis around 3 or less. The real growth rate, however, presents the largest kurtosis

values between 6.85 and 11.34, which indicates that outliers in the forecast errors are very

likely.

We go one step further and test for normality in the individual forecast errors for each

economic indicator. Table 1 also presents the p-value of the Jarque-Bera test. The results

are consistent with what we observe with the sample kurtosis. Normality is systematically

rejected at the 5% level for all four forecast errors of the real growth rate, whereas it is never

rejected in the case of the inflation rate. The Jarque-Bera test results and the conclusions

based on the sample kurtosis are further corroborated in Figure 7, showing quantile-quantile

(QQ) plots for each individual forecast error series. The QQ plots of the individual forecast

errors for the real growth rate in Figure 7 (b) show that the reason for non-normality lies

in the tail due to the presence of outliers and, hence, can be attributed to the large kurtosis

(rather than skewness). These findings have further use in explaining the empirical results

below.
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(a) Inflation rate

(b) Real growth rate

(c) Unemployment rate

Figure 7: Q-Q plots of individual forecast errors
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Table 2: Forecast combination evaluation

Macro. Weighting Forecast evaluation
indicator scheme MSFE MAFE

Inflation MSE 0.691 0.667
MAE 0.707 0.705

Growth MSE 1.404 1.013
MAE 1.023 0.842

Unemployment MSE 0.528 0.582
MAE 0.675 0.679

Notes: The table presents the forecast combination of four professional forecasters from the ECB SPF, namely

forecasters 37, 89, 94 and 95. The three macroeconomic indicators forecast are the real growth rate, the

inflation rate and the unemployment rate in the European Union. The sample spans from 1999 Q3 until 2018

Q4. The two weighting schemes minimize MSE and minimize MAE. MSFE and MAFE are evaluated over the

second half of the forecasting sample. The number presented are the average.

5.2 Methodology and results

All four forecasts are aggregated into two consensus forecasts: one with estimated MAE opti-

mal weights and the other with MSE optimal weights. The weights are estimated recursively,

starting with half of the sample, and then expanded by one data point until the end of the

sample. We then compare mean square forecast error (MSFE) of the forecast combination

with the estimated MSE weights and estimated MAE weights. We also do the same with

mean absolute forecast error (MAFE). MSFE and MAFE are computed over the second half

of the sample by using the estimated weights at time t to combine the forecasts at time t+ 1

and construct forecast errors with the actual value of the economic indicator at time t + 1.

This forecast combination exercise is conducted for all three economic indicators.

Table 2 presents the average MSFE and MAFE values for the inflation rate, real growth

rate, and unemployment rate. The findings from these three forecast combination exercises

can be succinctly described as follows. The MSFE and MAFE with the estimated MAE

weights are consistently lower than those with the estimated MSE weights for the real growth

rate. These results are consistent with the large sample kurtosis values in Table 1 and the

QQ plots in Figure 7 (b), which pointed to the presence of outliers in the individual forecast

errors. The estimated MAE weights are robust to such outliers. In contrast, the estimated

MSE weights provide the best forecast combination performance in terms of both MSFE and

MAFE for the unemployment and inflation indicators. Again, this is not surprising in light

of the kurtosis measure in Table 1 and especially the QQ plots in Figure 7 (a) and (c).
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The largest difference in MSFE between the estimated MAE and MSE weights comes

from the real growth rate forecast combination, whereas the smallest difference is from the

inflation rate forecast combination. The same is true for MAFE. While the discrepancy in

forecasting evaluations can be explained by the presence of outliers in the case of the real

growth rate, it is also manifested in the estimated weights themselves, as seen in Figure

8. The inflation rate, which shows the lowest MSFE and MAFE difference, also displays

the smallest difference between the estimated MAE and MSE weights, as shown in Figure

8 (a). Moreover, Figure 8 (a) shows that the MAE and MSE optimal weights are close to

equivalent, as predicted by theory, when the forecast errors are normally distributed.18 Note

that normality is supported empirically for the four sets of forecast errors for the inflation

rate indicator, as seen from the Jarque-Bera test results in Table 1 and the QQ plot in Figure

7 (a). The equivalence is not as apparent for the unemployment rate and even less so for the

real growth rate, which is most affected by the small sample and outliers in this exercise.

The results for the inflation rate are not unexpected. The ECB SPF’s main purpose is

to collect information on inflation expectations, as it is the ECB’s mandate to ensure price

stability with its policy tools. It is often perceived that inflation expectations convey the

private sector’s views on the macroeconomy (see Garćıa, 2003). While not being the primary

focus, the forecasts from the two other economic indicators, the unemployment rate and the

real growth rate, are also collected to give some Euro Area economy context. Both of these

indicators tend to be harder to forecast, as they are not part of the official policy mandate of

the ECB, unlike the inflation rate, but rather dependent on the economic climate of individual

Euro Area countries.

6 Concluding comments

This paper demonstrates that, under a mild set of assumptions, there is an equivalence in

optimal forecast combination between minimizing MAE and MSE loss functions, providing

that the sample of data is large enough and the weights of the combination sum to one. This

is demonstrated by theory derived in this paper. It is also supported by a simulation study

featuring asymmetric and fat-tailed forecast error distributions.

In large samples, the advantages of using one weighting scheme over the other should

mainly be guided by the convenience of computation and by the nature of the problem or

dataset used. However, when dealing with small samples, the forecasting performance of

weighting schemes is prone to estimation errors and outliers depending on the data. As

shown with the ECB SPF of macroeconomic indicators for the European Union, the MAE

18See section 3.2 and Proposition S.1 in the Online Supplement.
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(a) Inflation rate

(b) Real growth rate

(c) Unemployment rate

Figure 8: Difference between MAE and MSE forecast combination weights
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optimal weighting scheme provides a more consistent strategy in small samples when outliers

are present. In the case of the inflation rate, the equivalence in the MAE and MSE weights

is observable even though the sample is small.
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Appendix A: Proofs and supplementary results

Proof of Lemma 1: It is sufficient to show that

∂F

∂aj
= lim

h→0

F (a + hi)− F (a)

h

=

∫
X+

a

ujg(ν0,u)dv −
∫
X−a

ujg(ν0,u
>)dv.

(A.1)

Partitioning each X+ and X− sets into mutually exclusive sets, such that

X+
a+hi

=
[
X+

a+hi
∩X+

a

]
∪
[
X+

a+hi
∩
(
X−a ∪X0

a

)]
X−a+hi

=
[
X−a+hi

∩X−a
]
∪
[
X−a+hi

∩
(
X+

a ∪X0
a

)]
X+

a =
[
X+

a+hi
∩X+

a

]
∪
[(
X−a+hi

∪X0
a+hi

)
∩X+

a

]
X−a =

[
X−a+hi

∩X−a
]
∪
[(
X+

a+hi
∪X0

a+hi

)
∩X−a

]
then equation (A.1) can be rewritten as

∂F

∂aj
= lim

h→0

1

h
(A1 +A2 −A3 +A4) (A.2)

where

A1 =

∫
X+

a+hi
∩X+

a

uihG(dv)−
∫

X−a+hi
∩X−a

uihG(dv) (A.3)

A2 =

∫
X+

a+hi
∩X−a

(
ν0 + u>(a + hi)

)
G(dv) +

∫
X+

a+hi
∩X−a

(
ν0 + u>a

)
G(dv) (A.4)

A3 =

∫
X−a+hi

∩X+
a

(
ν0 + u>a + uih

)
G(dv) +

∫
X−a+hi

∩X+
a

(
ν + u>a

)
G(dv) (A.5)

A4 =

∫
X+

a+hi
∩X0

a

(
ν0 + u>a + uih

)
G(dv)−

∫
X−a+hi

∩X0
a

(
ν0 + u>a + uih

)
G(dv) (A.6)

−
∫

X+
a ∩X0

a+hi

(
ν0 + u>a

)
G(dv) +

∫
X−a ∩X0

a+hi

(
ν0 + u>a

)
G(dv) (A.7)
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For A1,

lim
h→0

1

h
A1 =

∫
X+

a+hi
∩X+

a

uiG(dv)−
∫

X−a+hi
∩X−a

uiG(dv)→
∫
X+

a

uiG(dv)−
∫
X−a

uiG(dv)

For A2,

lim
h→0

1

h
A2 = lim

h→0

1

h


∫

X+
a+hi

∩X−a

(
ν0 + u>(a + hi)

)
G(dv) +

∫
X+

a+hi
∩X−a

(
ν0 + u>a

)
G(dv)


= lim
h→0

2

h

∫
X+

a+hi
∩X−a

(
ν0 + u>a

)
G(dv) + lim

h→0

∫
X+

a+hi
∩X−a

uiG(dv)

= lim
h→0

2

h

∫
X+

a+hi
∩X−a

(
ν0 + u>a

)
G(dv).

Similarly for A3,

lim
h→0

1

h
A3 = lim

h→0

1

h


∫

X−a+hi
∩X+

a

(
ν0 + u>a + uih

)
G(dv) +

∫
X−a+hi

∩X+
a

(
ν + u>a

)
G(dv)


= lim
h→0

2

h

∫
X−a+hi

∩X+
a

(
ν0 + u>a

)
G(dv) + lim

h→0

∫
X−a+hi

∩X+
a

uiG(dv)

= lim
h→0

2

h

∫
X−a+hi

∩X+
a

(
ν0 + u>a

)
G(dv).

Therefore,

lim
h→0

1

h
A2 −A3 = lim

h→0

2

h


∫

X+
a+hi

∩X−a

(
ν0 + u>a

)
G(dv)−

∫
X−a+hi

∩X+
a

(
ν0 + u>a

)
G(dv)


, ∆i (a) .

Using an axiom from the extended real line, specifically ∞.0 = 0, it is then clear that

∆i (a) = 0 ∀a.
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For A4,

lim
h→0

A4

h
=2


∫

X+
a+hi

∩X0
a

uiG(dv) +

∫
X+

a ∩X0
a+hi

uiG(dv)


=0.

This completes the proof. �

Proof of Theorem 1: The Lagrangian function for the optimization problem as defined

in equation (8):

L (a, λ) =

∫
X+

a

(
ν0 + u>a

)
G(dv)−

∫
X−a

(
ν0 + u>a

)
G(dv) + λ

(
1>a− 1

)
.

Using Lemma 1, the first-order conditions are:

∂L

∂a

∣∣∣
a=a∗,λ=λ∗

=ωωω′(a∗) + λ∗1> = 0 (A.8)

∂L

∂λ

∣∣∣
a=a∗,λ=λ∗

=1>a− 1 = 0. (A.9)

Rearranging equation (A.8) gives the result. This completes the proof. �

The following lemmas are useful for proving Proposition 1.

Lemma 2. Let g : X → Y and h : Y → Z, where h and g are twice differentiable convex

functions with X ⊂ Rk and Y,Z ⊂ R. Consider the following optimization problems:

minimize g(a)

subject to 1>a = 1,
(A.10)

and

minimize h(g(a))

subject to 1>a = 1,
(A.11)

where a∗g and a∗h are the solutions to problems (A.10) and (A.11), respectively, then

a∗g = a∗h
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Moreover, let λ∗g and λ∗h be the associated Lagrange multipliers for Problems A.10 and A.11,

respectively; then,

λ∗h = h′
[
g(a∗g)

]
λ∗g.

Proof of Lemma 2: The first-order necessary conditions for Problem A.10 are

∇g(a∗g) =λ∗g1 (A.12)

1>a∗g =1 (A.13)

Note that equation (A.12) yields exactly k − 1 unique equations, specifically, ∇ig(a∗g) =

∇kg(a∗g) for all i = 1, . . . , k − 1. Along with equation (A.13), these yield exactly k equations

to identify a∗g. Given a∗g, λ
∗
g can be obtained by evaluating the gradient vector ∇g(a) at a∗g.

Now, consider the first order necessary conditions for Problem A.11:

h′(g∗)∇g(a∗h) =λ∗h1 (A.14)

1>a∗h =1 (A.15)

where g∗ = g(a∗h) 6= 0 and since h is a scalar function, equation (A.14) can be rewritten as

∇g(a∗h) =
λ∗h

h′(g∗)
1.

Along with equation (A.15), these equations yield the same system of simultaneous equa-

tions as the first-order conditions for Problem (A.10) for a∗g and therefore a∗h = a∗g. The

relation between the two Lagrange multipliers follows directly from the conditions above.

This completes the proof. �

Lemma 3. Let h(x) : RK → R and f(x) : RK → R be C1 functions and consider the

following:

a∗h = arg min
a

h(a) + λh

(
1− 1>a

)
(A.16)

a∗f = arg min
a

f(a) + λf

(
1− 1>a

)
(A.17)

where λh and λf are scalars with a∗h and a∗f being the unique solutions to equations (A.16)

and (A.17), respectively. If there exists a g(a) : RK → R and a p(a) : RK → RK such that

∂h

∂a
= g(a)

∂f

∂a
+ p(a) (A.18)
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with g(a∗h) = c 6= 0 and p(a∗h) = c11K then a∗h = a∗f .

Proof of Lemma 3: Note that
∂h

∂a

∣∣∣∣
a∗h

= λ∗h1, (A.19)

and under the condition of the theorem, specifically equation (A.18), it follows that

c
∂f

∂a

∣∣∣∣
a∗h

+ c11 =λ∗h1

∂f

∂a

∣∣∣∣
a∗h

=c−1 (λ∗h − c1)1.

This means that âh satisfies the first-order conditions of the optimization problem (A.17) and

under the condition of uniqueness, a∗h = a∗f and λ∗h = cλ∗f + c1. This completes the proof. �

Lemma 4. Let the functions h(a) satisfy the conditions as stated in Lemma 3. Let {hT (a)}
be a sequence of C1 functions that converge to h(a) for some point a0 on some closed interval

[a, b] with the property that
∂hT
∂a

converges uniformly on
K∏
i=1

[ai, bi]. Define

â∗h = arg min
a

hT (a) + λh

(
1− 1>a

)
(A.20)

then â∗h − a∗h = op(1).

Proof of Lemma 4: Note that

∂hT
∂a
− ∂h

∂a
= op(1)

by Theorem 7.17 in Rudin (1976) and hence âh − a∗h = op(1), and the result follows from

Lemma 3. This completes the proof. �

Proof of Proposition 1 : Define g(a) = T−1
∑T

t=1 |νt|, h(g) = Tg2(a) and f(a) =

T−1
∑T

t=1 ν
2
t with

minimize g(a)

subject to 1>a = 1,
(A.21)

minimize h(a)

subject to 1>a = 1,
(A.22)
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minimize f(a)

subject to 1>a = 1,
(A.23)

where â∗g, â
∗
h and â∗MSE are the optimal solutions to (A.21) – (A.23). Note that in problems

(A.21) and (A.23), the MAE and MSE loss functions are minimized, respectively.

Under the assumptions of Lemma 2, â∗g = â∗h for all T > 0. Now, rewrite h(g) as

h(a) =T−1

 T∑
t=1

ν2t +
T∑
t=1

T∑
τ=1,τ 6=t

|νt||ντ |


∇h(a) =T−1

[
2

T∑
t=1

νtut +
T∑
τ=1

∑
νt>0

ut|ντ | −
T∑
τ=1

∑
νt<0

ut|ντ |+
T∑
t=1

∑
ντ>0

uτ |νt| −
T∑
t=1

∑
ντ<0

uτ |νt|

]
.

By the continuous mapping theorem and the law of large numbers, â∗g = a∗MAE + op(1) where

a∗MAE is the solution to the following optimization problem:

minimize
a

E|νt|

subject to 1>a = 1.

This implies that a∗MAE must also satisfy the first-order condition as defined in equation (11).

As T becomes sufficiently large

∇h(a) =2Eutνt + E (ut|ντ ||νt > 0)− E (ut|ντ ||νt < 0)

+ E (uτ |νt||ντ > 0)− E (uτ |νt||ντ < 0) + op(1)

=2Eutνt + [E (ut|νt > 0) Pr(νt > 0)− E (ut|νt < 0) Pr(νt < 0)]E|ντ |

+ [E (uτ |ντ > 0) Pr(ντ > 0)− E (uτ |ντ < 0) Pr(ντ < 0)]E|νt|+ op(1)

The last line follows from the independent properties of ut and ντ . Equation (11) implies

that

∇h(a∗MAE) =2Eutνt + op(1)

=∇f(a∗MAE),

for sufficiently large T . The result then follows directly from Lemmas 3 and 4. This completes

the proof. �
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