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1. Introduction 

The attainment of the net-zero policy targets by 2050 has hastened the need for 

electricity markets in the European Union (EU), as well as globally, to facilitate the transition 

to clean energy while ensuring energy security and affordability. A key strategy to achieve this 

in the EU is to establish an integrated electricity market as a cost-effective way to achieve these 

objectives.1 In a fully integrated market there are no barriers to cross-border electricity trade 

and electricity produced in one country can be delivered to consumers in another one. As a 

result, wholesale and retail competition intensifies, thereby encouraging companies to invest 

in innovative and cost-saving technologies. Such investments might cause electricity prices to 

progressively decrease, become more stable, and converge among member countries, thus 

leading to improved efficiency, higher welfare, and (or) diversified energy sources (Böckers 

and Heimeshoff, 2014; Newbery et al., 2016; Batalla et al., 2019). Estimates from the EC 

suggest that the potential welfare gain of fully integrated electricity markets could range 

between EUR 16 billion to EUR 43 billion annually by 2030.  

A large strand of literature has investigated the extent to which electricity prices in the 

EU are integrated (e.g., Bower, 2002; Zachmann, 2005; Robinson, 2007a; Robinson, 2007b; 

Robinson, 2008; Zachmann, 2008; Nitsche et al., 2010; Böckers and Heimeshoff, 2014; 

Ouriachi and Spataru, 2015; de Menezes and Houllier, 2016; Telatar and Yaşar, 2020; Ciferri 

et al., 2020; Saez et al., 2019; Cassetta et al., 2021; Cassetta et al., 2022). Most of these studies 

agree that there remain large heterogeneities in electricity prices across the Member Countries 

(MCs), which is a concern for decision-makers (ACER, 2021; European Commission, 2021). 

However, it remains to be examined how the external shocks in the electricity market propagate 

into price differences. A better understanding of how price shocks are transmitted is extremely 

important for designing energy, climate, and environmental policies of the EU. 

 
1 https://energy.ec.europa.eu/topics/markets-and-consumers/market-legislation/electricity-market-design_en 
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In this paper, we contribute to the literature by investigating the dynamic transmission 

of return shocks2 between electricity prices in eleven European countries, including four Nordic 

countries (Norway, Finland, Denmark, Sweden), the United Kingdom, and six EU member 

states (France, Germany, Italy, Netherlands, Spain, and Poland), together with two principal 

components of costs of electricity generation and price determinants in Europe, namely, natural 

gas and carbon prices. An investigation of the impacts of the COVID-19 outbreak and the 

Russia-Ukraine war is a worthwhile contribution to this end as examples of external shocks 

faced by liberalized electricity markets. The former constituted a positive demand shock, while 

the latter was a negative supply shock to the electricity markets. As markets increasingly 

become renewable based, a critical question is the effect of the increasing share of intermittent 

sources on volatility in the wholesale markets. Understanding the effect of tail risks related to 

rare events such as pandemics as well as supply and political crises is highly relevant for energy 

policy in improving the sectoral resiliency and power systems robustness.  

To this end, we aim to answer the following questions: (i) how strong is the magnitude 

of return interconnectedness between the EU electricity, natural gas, and EUA markets; (ii) 

which are the net transmitters (recipients) of return shocks in the European electricity network; 

(iii) does the return interconnectedness vary by return quantile; and more importantly, (iv) what 

are the impacts of recent crises caused by the COVID-19 pandemic and the Russia-Ukraine 

war on the interconnectedness. 

To examine return connectedness in the electricity markets, we employ daily returns of 

wholesale electricity prices in eleven European countries, the natural gas prices of the Trading 

Hub Europe (THE), and the European Union Allowances (EUA) carbon prices from January 

02, 2012, to December 12, 2022. First, we apply the connectedness framework of Diebodl and 

 
2 We define asset returns as daily changes in the logarithmic prices of the asset. Return shock refers to an effect 

of an exogeneous shock that cause change in the asset return. Besides, following Diebold and Yilmaz (2014), we 

use the term “spillover” and “connectedness” interchangeably.  
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Yilmaz (2012) to compute the mean-based return connectedness between electricity, natural 

gas, and EUA carbon prices. To further shed light on connectedness dynamics during extremely 

volatile market conditions, we use a quantile connectedness approach developed by Ando et 

al. (2022). The quantile-based measures of connectedness are necessary because mean-based 

measures may not be appropriate for measuring connectedness in crisis periods, especially at 

the tails of the return distributions. Previous studies have shown the potential volatility in 

electricity and gas markets (e.g., Escribano et al., 2011; Huisman and Mahieu, 2003; 

Hailemariam and Smyth, 2019). However, by focusing on extreme shocks in the tails, we gain 

a better understanding of how electricity, natural gas, and carbon prices are connected under 

rare conditions. 

Our analyses deliver several significant findings. First, our empirical results show that 

the electricity prices, natural gas, and EUA are connected much stronger in the tails of the 

distribution compared to the central portion. The total connectedness index of the network 

increases from 40.6% at the mean of the return distribution to 81.5% (81.5%) at the upper 

(lower) quantiles. As expected, the main contribution to system connectedness is from the 

electricity sector. Notably, cross-market connectedness between natural gas or EUA with the 

European electricity markets is much more pronounced at the tails of the return distribution. In 

normal conditions (i.e., at the conditional mean), the cross-market spillover index between 

European electricity and natural gas and that between European electricity and EUA are 1.1% 

and 0.7%, respectively. Though, at the lower (upper) quantiles, these measures increase 

remarkably to 6.1% and 5.9% (5.8% and 6.0%). Our findings reveal that the EU electricity 

markets are more vulnerable to changes in EUA and natural gas prices during extreme 

fluctuations. Furthermore, the connectedness indices at various quantiles are symmetric, 

indicating that electricity market participants tend to equitably respond to extremely negative 

or positive return shocks of EUA and natural gas. 
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Secondly, return shock spillover from natural gas and EUA to electricity prices varies 

across European countries. In normal market conditions, Italy and Denmark experience the 

greatest and smallest effect of natural gas prices, respectively. Meanwhile, at the extreme 

conditions, the UK is most affected by return shocks from natural gas, while Germany is least 

affected. Pertaining to the role of EUA, Italian prices bear the greatest effect of EUA in both 

normal and extreme market conditions, while France is relatively independent from the EUA 

prices. In the group-level analysis, Nordic countries show less dependence on natural gas prices 

compared to other countries. This finding holds regardless of the quantile of return distribution 

used to compute the connectedness indices. 

Most importantly, we present a comprehensive analysis of the effects of the COVID-

19 pandemic and the Russia-Ukraine war on the return interconnectedness of selected markets, 

focusing on the middle, lower, and upper quantiles of the return distribution. At the aggregate 

level, we find that the COVID-19 pandemic had a negative impact on the total connectedness 

index at the middle and lower tails, indicating a reduction in the integration of the EU electricity 

market. The Russia-Ukraine war, on the other hand, exerted a significantly positive effect on 

the interconnectedness at the middle and lower tails, suggesting that the war fuelled the 

transmission of average and extremely negative return shocks between the markets. 

The heterogeneous effects of the two recent crises on the interconnectedness might be 

attributed to their inherent differences. The COVID-19 pandemic is a demand shock to the EU 

electricity market as Prol and Sugmin (2020) find that COVID-19-related containment 

measures reduced electricity demand by 3-12% in 5 months following the outbreak. Besides, 

the effects of the pandemic were heterogeneous across European countries as Bahmanyar et al. 

(2020) documents that electricity consumption during the pandemic reflects the heterogeneity 

in peoples’ activities across EU countries due to various containment measures applied. This 

heterogeneity could lead to more variations in electricity prices across European countries 
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during the pandemic, as shown by the decreasing effect of COVID-19 on the 

interconnectedness. Contrary to COVID-19, the Russia-Ukraine war restraints natural gas 

supply, and induces substantial volatility in the energy commodity markets (Fang and Shao, 

2022). As natural gas is an important input for electricity generation for most countries, a shock 

to natural gas prices could be perceived alike in most European electricity markets, leading to 

a higher level of interdependence during the war period. 

In light of the above, our study makes several contributions to the literature. Firstly, it 

is the first attempt to investigate the transmission of return shocks between European 

electricity, natural gas, and carbon markets. Prior studies on the integration of the EU electricity 

market mostly focus on the co-integration of contemporaneous energy prices among MCs (e.g., 

Bower, 2002; Böckers and Heimeshoff, 2014; Ouriachi and Spataru, 2015; de Menezes and 

Houllier, 2016; Ciferri et al., 2020; Saez et al., 2019; Cassetta et al., 2021; Cassetta et al., 2022; 

among others) and the obstacles to integrating energy market (e.g., Glachant and Ruester, 2014; 

Grossi et al., 2018; Pepermans, 2019). We aim to fill the gap in the literature by exploring the 

lead-lag relationship among European markets, considering the significant variations in 

electricity prices and market design among the Member States (Osińska et al., 2022). Second, 

besides focusing on the interaction among European markets, we add insights into the 

interconnectedness between two important energy sources (i.e., natural gas and EUA) and 

electricity prices. In this way, we contribute to the extant literature on shock transmission 

between energy commodities and electricity markets (e.g., Naeem et al., 2020; Moutinho et al., 

2011; Kolos and Ronn, 2008). Third, in terms of methodologies, our paper differs from 

previous works on the interconnectedness among electricity markets or between electricity and 

energy commodity markets by calculating the return connectedness measures under extreme 

circumstances. In this way, we contribute to prior research that limit their analyses to Diebold 

and Yilmaz’s (2009; 2012, 2014) mean-based connectedness framework or Barunik and 
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Křehlík’s (2018) frequency connectedness approach.3 Finally, since the extant literature have 

rarely discussed the determinants of the interconnectedness, our study provides a thorough 

investigation of its drivers with a focus on the recent crises caused by the COVID-19 pandemic 

and the Russia-Ukraine war. 

The analysis, at both the aggregate level and country level, reveals several financial and 

macroeconomic drivers of the return connectedness measures not only at the conditional 

median but also at the lower and upper tails. Most importantly, we find that COVID-19 and the 

Russia-Ukraine war affect the network interconnectedness in opposite directions, emphasizing 

their distinct impacts on European energy markets. This paper contributes to an emerging 

strand of literature that examines the consequences of the pandemic and the war on energy and 

electricity markets (e.g., Werth et al., 2021; Bhmanyar et al., 2020; Prol and Sungmin, 2020; 

Korosteleva, 2022; Nerlinger and Utz, 2022; among others). 

The remainder of the paper proceeds as follows. Section 2 presents the methodology 

used. Section 3 describes the data and offers descriptive analysis. Section 4 reports and 

discusses the empirical findings. Finally, we discuss policy implications and conclude the paper 

in section 5. 

 

2. Methodologies 

We utilize the quantile connectedness framework of Ando et al. (2022) to compute the 

return connectedness between natural gas, EUA, and electricity markets. This approach first 

employs quantile regression to estimate a vector autoregressive (VAR) model at a specific 

conditional quantile. Then, we apply the approach of Diebold and Yilmaz (2012) to measure 

the connectedness indices. Specifically, suppose that we have a VAR (p)4 model including 13 

 
3 See e.g., Apergis et al. (2017), Do et al. (2020a), Do et al. (2020b), Han et al. (2020), Naeem et al. (2020), Naeem 

et al. (2022), and Ma et al. (2022). 
4 p is the lag order, which is determined based on the Akaike Information Criteria (AIC). 
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assets5. At th conditional quantile, we can estimate the VAR model using equation-by-

equation quantile regression as below: 

𝜔𝑡 = Λ0(𝜏) + ∑ Λℓ(𝜏)𝜔𝑡−ℓ

𝑝

ℓ=1

+ 𝑒𝑡(𝜏)                                                                                                    (1) 

where (0,1)   is a given quantile index, 𝜔𝑡 denotes the 13 × 1 return vector for the 13 

selected, Λ0(𝜏) represents the 13 × 1 vector of intercepts and ( )te   indicates the 13 × 1 vector 

residual at th quantile. Λℓ(𝜏) is the ℓth 13 × 13 autoregressive parameter matrix at th

quantile. 

 We rewrite Eq. (1) as follows,  

𝜔𝑠𝑡 = Λ𝑠(𝜏)
⊤ 𝜅𝑡 + 𝑒𝑗𝑡(𝜏)                                                                                                                            (2)                                                                                                               

where s=1, 2…, 13 and 𝜅𝑡 denotes (13𝑝 + 1) × 1 coefficient vector including the constant; 

Λ𝑠(𝜏) is the corresponding estimated parameters at th quantile. The residuals in Eq. (2) follow 

the conditional quantile restriction, 𝑄𝑡(𝑒𝑠𝑡(𝜏)|𝑧𝑡) = 0. Based on Koenker and Xiao (2006), the 

conditional quantile function of 𝜔𝑠𝑡 at th is denoted by 𝑄𝜏 and  𝑄𝜏 is expressed as, 

𝑄𝜏(𝜔𝑠𝑡|𝜅𝑡) = Λ𝑠(𝜏)
⊤ 𝜅𝑡                                                                                                                            (3)                                                                                                                

 Koenker and Hallock (2001), the autoregressive coefficients Λ𝑗(𝜏) at quantile 𝜏, is 

attained through resolving the problem, 

min
Λ𝑠(𝜏)

∑(𝜏 − 𝑳[𝜔𝑠𝑡 ≤ Λ𝑠(𝜏)𝑠(𝜏)

⊤ 𝑧𝑡])(𝜔𝑠𝑡

𝑇

𝑡=1

− Λ𝑠(𝜏)
⊤ 𝜅𝑡)                                                                       (4) 

where L[•] denotes the indicative function, being 1 if 𝜔𝑠𝑡 ≤ Λ𝑠(𝜏)
⊤ 𝜅𝑡 and 0 otherwise; T  

indicates the number of observations.  

Note, Eq. (1) can be expressed as an infinite moving average form as, 

 
5 Including natural gas, EUA, and 11 electricity markets. 
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𝜔𝑡 = 𝜋(𝜏) + ∑ Β𝑘(𝜏)𝑒𝑡−𝑘(𝜏)

∞

𝑘=1

                                                                                                              (5) 

where 𝜋(𝜏) and Β𝑘(𝜏) are determined as, 

𝜋(𝜏) = (𝐿𝑚 − Λ1(𝜏) − ⋯ − Λ𝑝(𝜏))−1Λ0(𝜏) 

Β𝑘(𝜏) = {

0 for  𝑘 < 0; 

𝐿𝑚  for 𝑘 = 0;

Λ1(𝜏)Β𝑘−1(𝜏) + ⋯ + Λ𝑝(𝜏)Β𝑘−𝑝(𝜏) for 𝑘 > 0

 

Following Diebold and Yilmaz (2012), the generalized forecast error variance 

decomposition (GFEVD) of the ith variable, due to shocks of other variables for a forecast 

horizon H at 𝜏th quantile, can be computed as, 

𝜃𝑖𝑗(𝜏)(𝐻) =
𝜎𝑗𝑗

−1 ∑ (𝑒𝑖
′Βℎ(𝜏)𝛴𝑒𝑗)

2𝐻−1
ℎ=0

∑ 𝑒𝑖
′Βℎ(𝜏)𝛴Βℎ(𝜏)

′ 𝑒𝑖
𝐻−1
ℎ=0

                                                                                                (6) 

where 𝜃𝑖𝑗(𝜏)(𝐻) is the contribution of asset 𝑗 to the variation of h-step-ahead forecast error of 

asset 𝑖 at quantile 𝜏; 𝜎𝑗𝑗 is the jth diagonal value of 𝛴; 𝛴 indicates the variance matrix of 

residuals; and 𝑒𝑖 represents the selection vector, which equals 1 for the ith element and 0 

otherwise. We normalize 𝜃𝑖𝑗(𝜏)(𝐻) using the following formula, 

𝜃̃𝑖𝑗(𝜏)(𝐻) =
𝜃𝑖𝑗(𝐻)

∑ 𝜃𝑖𝑗(𝐻)𝑚
𝑗=1

                                                                                                                    (7) 

Based on the GFEVD, we calculate five connectedness indices at each quantile. First, 

the pairwise spillover index (PSI) between asset 𝑖 and asset 𝑗 is computed as, 

𝑃𝑆𝐼𝑖𝑗(𝜏)(𝐻) = (𝜃̃𝑖𝑗(𝜏)(𝐻) + 𝜃̃𝑗𝑖(𝜏)(𝐻))/2                                                                          (8) 

By definition, 𝑃𝑆𝐼𝑖𝑗(𝜏)(𝐻) shows the average connectedness between asset 𝑖 and asset 

𝑗. Second, the total connectedness index (TCI) at 𝜏th quantile is: 

𝑇𝐶𝐼(𝜏) =
∑ 𝜃̃𝑖𝑗(𝜏)(𝐻)𝑚

𝑖,𝑗=1;𝑖≠𝑗

13
×  100                                                                                                (9) 
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 The net spillover index (NSI)6 of asset 𝑖 at 𝜏th quantile can be estimated as, 

𝑁𝑆𝐼𝑖(𝜏) = 𝜗.𝑖(𝜏) − 𝜗𝑖.(𝜏)                                                                                                                      (11) 

where 𝜗𝑖.(𝜏) is the spillover effects that 𝑖 receives from all other assets at 𝜏th quantile and 

𝜗𝑖.(𝜏) =
∑ 𝜃̃𝑖𝑗(𝜏)

𝑚
𝑗=1;𝑖≠𝑗

13
×  100; 𝜗.𝑖(𝜏) is the spillover effects that 𝑖 transmits to all other assets at 

𝜏th quantile and 𝜗.𝑖(𝜏) =
∑ 𝜃̃𝑗𝑖(𝜏)

𝑚
𝑗=1;𝑖≠𝑗

13
×  100. 

As the TCI encompasses the spillover effects within eleven European electricity 

markets, we further estimate two connectedness indices that primarily measure the return 

connectedness between the European electricity markets with natural gas and EUA. The first 

is the cross-market spillover index between European electricity markets and natural gas 

market (CSIGas-Electricity), which is calculated as, 

𝐶𝑆𝐼𝐺𝑎𝑠−𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝜏)(𝐻) = ∑ (𝑃𝑆𝐼𝑖,𝐺𝑎𝑠(𝜏)(𝐻))11
𝑖=1 /11                                                         (12) 

where 𝑃𝑆𝐼𝑖,𝐺𝑎𝑠(𝜏) is the pairwise spillover index between electricity market 𝑖 and the natural 

gas market. Similarly, the cross-market spillover index European electricity markets and EUA 

(CSIEUA-Electricity) is defined as, 

𝐶𝑆𝐼𝐸𝑈𝐴−𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝜏)(𝐻) = ∑ (𝑃𝑆𝐼𝑖,𝐸𝑈𝐴(𝜏)(𝐻))11
𝑖=1 /11                                                            (13) 

where 𝑃𝑆𝐼𝑖,𝐸𝑈𝐴(𝜏) is the pairwise spillover index between electricity market 𝑖 and EUA. 

 

3. Data and preliminary analysis 

3.1 Sample and data 

We use daily baseload electricity price7 data of the eleven European countries including 

Denmark (DNK), Finland (FIN), Norway (NOR), Sweden (SWD), France (FRA), Germany 

 
6 It is defined as the change between the total return shocks sent to and those obtained from all other assets at 𝜏th 

quantile. 
7 Baseload electricity prices are calculated by power exchanges from day-ahead market prices for the lowest 

demand periods (i.e., midnight). 



11 

 

(GER), Italy (ITA), Netherlands (NTH), Spain (SPN), the United Kingdom (UK), and Poland 

(PLN). Daily electricity price data are sourced from Thomson Reuters DataStream. Following 

de Menezes and Houllier (2016), we choose the electricity prices from the following power 

exchanges: Nordpool for the Nordic countries (i.e., Denmark, Finland, Norway, Sweden, APX 

for the Netherlands and the UK, EPEX for France and Germany, IPEX for Italy; OMEL for 

Spain. For Poland, we employ price data from POLPX. Electricity price is quoted as EUR per 

MWh for all countries except for Norway (NOK per MWh) and Poland (Zloty per MWh). We 

use daily exchange rates from DataStream to convert electricity prices in Norway and Poland 

to EUR per MWh. Our data are collected for the period between January 02, 2012, to December 

31, 2022. This sample period covers two recent crises in the European energy markets, 

including the COVID-19 pandemic and the Russia-Ukraine war. 

To proxy for the European natural gas market, we employ the price series of the EEX 

GAS Price Reference EGIX index for the German market (thereafter, EGIX). This index was 

constructed by the European Energy Exchange as the arithmetic mean of the daily volume 

weighted average prices of all trades of the largest nationwide natural gas hub in Germany – 

the Trading Hub Europe (THE).8 The unit of the index is EUR per MMBtu. Finally, to proxy 

for the carbon price in Europe, we follow Chevallier (2011) and Lutz et al. (2013) and employ 

the European Union Allowances (EUA) futures price, which is originally from the European 

Climate Exchange (ECX). As mentioned in Chevallier (2011), carbon spot prices are not used 

in this paper since the data has not been available since 2007 between Phases I and II of the 

EU Emissions Trading Scheme. The unit of EUA is EUR per ton of CO2. The data of both 

natural gas and EUA prices are also sourced from DataStream. 

 
8 THE was established in October 2021 by the merge of two largest natural gas hubs in Germany, namely, 

NetConnect Germany (NCG) and GASPOOL (GPL). 
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The daily returns9 of the selected markets are plotted in Figure 1. Natural gas and EUA 

exhibit substantially lower return range fluctuations than electricity prices. The natural gas 

market experienced significant volatility during the period 2020-2022, characterised by the 

COVID-19 pandemic and the start of the Russia-Ukraine war. 

Figure 1. Return series 

  

  

  

 
9 Based on the price data, daily return is measured by the change between the natural logarithm of the price of day 

t and the price of day t-1 times 100%. 
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Note: This figure shows the time-varying return series for each sample asset during the research period between 

January 02, 2012, to December 31, 2022 

3.2 Descriptive statistics 

Table 1 summarizes the key statistics of the selected return series. The results show that 

the daily average returns are positive for both natural gas and EUA. However, the average 

return of EUA (0.04%) is substantially higher than that of GAS (0.02%). By contrast, the daily 

-150

-100

-50

0

50

100

150
2
/0

1
/2

0
1
2

1
0
/0

9
/2

0
1
2

2
0
/0

5
/2

0
1
3

2
7
/0

1
/2

0
1
4

6
/1

0
/2

0
1
4

1
5
/0

6
/2

0
1
5

2
2
/0

2
/2

0
1
6

3
1
/1

0
/2

0
1
6

1
0
/0

7
/2

0
1
7

1
9
/0

3
/2

0
1
8

2
6
/1

1
/2

0
1
8

5
/0

8
/2

0
1
9

1
3
/0

4
/2

0
2
0

2
1
/1

2
/2

0
2
0

3
0
/0

8
/2

0
2
1

9
/0

5
/2

0
2
2

FRA

-150

-100

-50

0

50

100

150

1
/2

/2
0
1
2

9
/1

0
/2

0
1
2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1
4

1
0
/6

/2
0
1
4

6
/1

5
/2

0
1
5

2
/2

2
/2

0
1

6

1
0
/3

1
/2

0
1
6

7
/1

0
/2

0
1
7

3
/1

9
/2

0
1
8

1
1
/2

6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2
/2

1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

GER

-100

-50

0

50

100

1
/2

/2
0
1
2

9
/1

0
/2

0
1
2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1

4

1
0
/6

/2
0
1
4

6
/1

5
/2

0
1
5

2
/2

2
/2

0
1
6

1
0
/3

1
/2

0
1
6

7
/1

0
/2

0
1

7

3
/1

9
/2

0
1
8

1
1
/2

6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2
/2

1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

ITA

-100

-50

0

50

100

1
/2

/2
0
1
2

9
/1

0
/2

0
1
2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1
4

1
0
/6

/2
0
1
4

6
/1

5
/2

0
1
5

2
/2

2
/2

0
1
6

1
0

/3
1
/2

0
1
6

7
/1

0
/2

0
1

7

3
/1

9
/2

0
1
8

1
1

/2
6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2

/2
1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

NTH

-200

-150

-100

-50

0

50

100

150

1
/2

/2
0
1
2

9
/1

0
/2

0
1

2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1
4

1
0
/6

/2
0
1
4

6
/1

5
/2

0
1

5

2
/2

2
/2

0
1
6

1
0
/3

1
/2

0
1
6

7
/1

0
/2

0
1
7

3
/1

9
/2

0
1

8

1
1
/2

6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2
/2

1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

SPN

-100
-80
-60
-40
-20

0
20
40
60
80

100

1
/2

/2
0
1
2

9
/1

0
/2

0
1
2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1
4

1
0
/6

/2
0
1
4

6
/1

5
/2

0
1
5

2
/2

2
/2

0
1
6

1
0
/3

1
/2

0
1
6

7
/1

0
/2

0
1

7

3
/1

9
/2

0
1
8

1
1
/2

6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2
/2

1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

UK

-60

-40

-20

0

20

40

60

1
/2

/2
0
1
2

9
/1

0
/2

0
1
2

5
/2

0
/2

0
1
3

1
/2

7
/2

0
1
4

1
0
/6

/2
0
1

4

6
/1

5
/2

0
1
5

2
/2

2
/2

0
1
6

1
0
/3

1
/2

0
1
6

7
/1

0
/2

0
1
7

3
/1

9
/2

0
1
8

1
1
/2

6
/2

0
1
8

8
/5

/2
0
1
9

4
/1

3
/2

0
2
0

1
2
/2

1
/2

0
2
0

8
/3

0
/2

0
2
1

5
/9

/2
0
2
2

PLN



14 

 

average returns of prices vary below or above zero level, depending on the country examined. 

Notably, countries with positive daily average returns are Denmark (DNK), Finland (FIN), 

Norway (NOR), Italy (ITA), and Poland (PLN), of which Poland has the highest figure 

(0.05%). On the contrary, countries with negative daily average returns include Sweden 

(SWD), France (FRA), Germany (GER), Netherlands (NTH), Spain (SPN), and the UK (UK). 

Among them, electricity prices in France (FRA) exhibits the lowest daily average return of -

0.06%. 

In addition, the variance of returns shows that natural gas and EUA are much less 

volatile than electricity prices. The high return volatility is an inherent characteristic of 

wholesale prices in Europe, which is widely documented in the literature (e.g., Huisman and 

Mahieu, 2003; Escribano et al., 2011; among others). Furthermore, electricity prices in the 

Nordic countries tend to be more volatile with their return variance ranging from 42.91 

(Norway: NOR) to Denmark (DNK: 200.23). From the bottom, Italy (ITA: 26.91) and Poland 

(PLN: 28.44) have the lowest price volatility during the sample period. 

Table 1. Descriptive statistics and diagnostic tests 

 Mean Variance Skewness Kurtosis JB ERS 
LB-

Q(10) 

LB-

Q(20) 

GAS 0.02 2.67 1.09 19.77 47,314.9*** -24.9*** 22.4*** 719.3*** 

EUA 0.04 2.01 -0.93 13.72 22,934.1*** -23.8*** 11.7*** 86.2*** 

DNK 0.02 200.23 0.38 20.66 51,084.6*** -16.9*** 240.8*** 327.5*** 

FIN 0.00 159.38 0.34 34.19 139,813.1*** -15.1*** 137.1*** 159.0*** 

NOR 0.03 42.91 3.28 91.66 1,009,709.7*** -15.4*** 36.6*** 32.6*** 

SWD -0.05 168.01 1.68 30.53 112,828.4*** -18.3*** 143.8*** 332.7*** 

FRA -0.06 57.62 -0.22 12.27 18,013.8*** -3.1* 145.9*** 455.2*** 

GER -0.05 140.49 -0.13 19.25 44,331.8*** -13.7*** 233.0*** 385.9*** 

ITA 0.00 26.91 0.07 30.00 107,645.1*** -8.7*** 298.6*** 787.4*** 

NTH 0.00 38.13 0.05 14.20 24,115.6*** -28.9*** 152.2*** 102.4*** 

SPN -0.05 113.13 -0.51 30.48 111,190.0*** -6.7*** 213.0*** 544.1*** 

UK -0.04 69.38 -0.27 11.71 16,444.0*** -19.1*** 302.7*** 325.0*** 

PLN 0.05 28.44 0.00 7.17 6,155.2*** -8.2*** 188.7*** 339.5*** 
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Note: This table reports the descriptive statistics of daily return series of European electricity prices, natural gas, 

and EUA between January 02, 2012, to December 31, 2022. LB-Q(10) and LB-Q(20) represent the Ljung-Box 

Q-statistics up to the 10th and 20th order autocorrelation. Jarque-Bera statistics indicate the test for the normality 

of sample data. ERS test represent the Elliot, Rothenberg, and Stock’s (1996) unit root test. *** denotes the cases 

where the null hypothesis of no autocorrelation (for LB Q test), and normal distribution (for JB test), and a 

presence of a unit root (for ERS test) is rejected at the 1% significance level.  

 

As shown in Table 1, GAS exhibit positive skewness (1.09) whereas EUA has negative 

skewness (-0.93). These figures indicate that sudden extreme positive returns are common for 

natural gas. Conversely, EUA tends to experience more extreme negative return shocks. The 

skewness results also show significant differences among the European markets with positive 

skewness observed for DNK, FIN, NOR, SWD, ITA, and NTH and negative skewness for 

FRA, GER, SPN, UK, and PLN. In addition, each market is prone to high occurrences of 

extreme returns, as suggested by its kurtosis value of above 3. This leptokurtic distribution 

indicates the necessity to adopt the quantile connectedness approach when investigating the 

return shock transmission between natural gas, EUA, and electricity markets. 

We further show the diagnostic tests’ results in the last four columns of Table 1. First, 

the Jarque-Bera statistics significantly differ from zero, rejecting the null hypothesis of normal 

distribution in all cases. Second, the Elliott-Rothenberg-Stock (1996) (ERS) test’s results also 

dismiss the null hypothesis that there is a unit root in the return series. These results imply that 

all return series are stationary. Lastly, the Ljung-Box Q statistics up to 10 and 20 lags indicate 

significant autocorrelation in the return series of the selected markets. 

The pairwise correlation matrix is shown in Fig. 2. The figure reveals a positive return 

correlation between natural gas and each electricity market, but the correlation coefficient is 

relatively low (below 0.1). By contrast, EUA has both positive and negative correlations with 

the selected electricity markets. In addition, the correlation coefficients between European 

electricity markets are all positive but differ substantially in magnitude. Natural gas has the 

highest return correlation with the UK electricity market (0.08). The highest return correlations 

between European electricity markets belong to the pairs of GER and FRA (0.59), and GER 
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and DNK (0.59) while the lowest coefficients belong to the duos of UK and SPN (0), and SWD 

and SPN (0.01). Finally, the contemporaneous linkage between GAS and EUA is mild with 

their correlation coefficient standing at 0.08. 

Figure 2. Correlation matrix 

 

Note: This graph shows the matrix of pair-wise Pearson correlation coefficients among the sample assets. The 

sample is from January 02, 2012, to December 31, 2022. 

 

4. Empirical results and discussion 

This section examines four different perspectives of the return shock transmission 

between European electricity prices, EUA, and natural gas. Subsection 4.1 discusses return 

connectedness at the conditional mean and conditional median. Subsection 4.2 computes 

connectedness measures at the lower upper quantiles of the return distribution. Subsection 4.3 

1 0.46

1

0.17

0.24

1

0.21

0.34

0.55

1

0.26

0.28

0.31

0.29

1

0.46

0.55

0.35

0.46

0.4

1

0.25

0.35

0.59

0.58

0.47

0.59

1

0.1

0.09

0.26

0.2

0.12

0.08

0.15

1

0.05

0.04

0.2

0.13

0.06

0.07

0.11

0.14

1

0.14

0.18

0.08

0.11

0.02

0.14

0.06

0.02

0.01

1

0.04

0.1

0.21

0.29

0.1

0.17

0.21

0.05

0

0.13

1

0.04

0.06

0.04

0.07

0.04

0.05

0.06

0.04

0.02

0.01

0.08

1

-0.01

-0.01

-0.02

0

0.01

0.01

0.01

0.01

0

0.01

0

0.08

1

FIN

NOR

FRA

NTH

PLN

DNK

GER

ITA

SPN

SWD

UK

GAS

EUA

FIN
N
O
R

FRA
N
TH PLN

D
NK

G
ER

IT
A

SPN
SW

D U
K

G
AS

EUA

-1.0 -0.5 0.0 0.5 1.0

Pearson
Correlation



17 

 

displays and discusses the evolution of the connectedness measures over time. Lastly, 

subsection 4.4 investigates the effect of COVID-19 and the Russia-Ukraine war on the 

interconnectedness indices. 

 

4.1 Return connectedness at the conditional mean and median 

We first utilize the mean-based connectedness framework of Diebold and Yilmaz 

(2012) to calculate the return spillover effects of the system at the conditional mean. Then, the 

quantile connectedness approach by Ando et al. (2022) is applied to estimate the return 

connectedness measures at the conditional median (quantile τ = 0.5 or middle quantile). The 

results of the connectedness measures at the conditional mean and median are reported in Table 

2 Panels A and B, respectively. The results show a remarkable likeness across different 

connectedness measures at the conditional mean and median. To illustrate, in Panel A, the Total 

Connectedness Index (TCI) stands at 40.6%, which is relatively close to the TCI reported in 

Panel B (38.5%). 

In addition to this similarity, further important findings are noticeable from the table. 

First, the relatively high connectedness in the system is largely attributable to within-sector 

return spillover effects among the European electricity markets. The results indicate that the 

return shock transmission tends to be stronger among the Nordic markets. For instance, as 

evidenced in the fourth row of Panel A, the Finnish market was considerably affected by the 

volatility of prices in Denmark (9.1%), Norway (8.9%), and Sweden (12.2%). By contrast, 

price volatility in other countries only mildly influences the Finnish prices. The significant 

interdependency among the Nordic markets is consistent with Amundsen and Bergman (2006), 

who documented substantial integration among the Nordic markets. Among the EU countries, 

Spain, Sweden, and the UK are least dependent on shocks from other markets as indicated by 

their lowest numbers in the “From” column of both panels.
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Table 2. Connectedness table at the conditional mean and median 

Panel A. At the conditional mean 
 

GAS EUA DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN From 

GAS 83.1 4.7 1.1 0.8 1.4 1.0 1.1 0.9 1.3 1.0 1.0 1.7 0.9 16.9 

EUA 4.3 86.7 0.9 1.3 0.7 1.2 0.7 0.7 0.7 0.8 0.8 0.6 0.7 13.3 

DNK 0.6 0.5 37.3 6.6 8.6 9.4 5.1 14.7 0.9 6.6 0.7 1.6 7.5 62.7 

FIN 0.6 0.7 9.1 52.9 8.9 12.2 2.2 3.6 1.3 2.0 0.8 1.8 4.1 47.1 

NOR 0.8 0.5 10.9 8.0 47.9 12.0 3.1 5.5 1.0 4.3 0.8 1.9 3.4 52.1 

SWD 1.0 0.7 4.8 4.0 5.1 72.7 2.1 2.1 1.0 2.3 0.8 1.8 1.5 27.3 

FRA 1.0 0.4 5.7 1.5 2.6 2.9 43.3 14.8 4.8 11.7 3.8 2.5 5.1 56.7 

GER 0.7 0.3 14.7 2.4 4.3 4.0 12.5 36.0 1.6 10.7 1.4 2.1 9.4 64.0 

ITA 2.3 0.8 1.3 1.3 1.4 1.4 6.6 2.9 70.9 3.0 3.3 1.8 3.1 29.1 

NTH 0.9 0.5 7.4 1.7 4.3 3.8 12.1 13.2 2.0 44.9 1.5 3.7 4.1 55.1 

SPN 1.6 0.7 1.1 1.0 1.2 1.1 5.8 2.5 3.6 2.5 75.7 1.2 2.0 24.3 

UK 1.5 0.7 2.7 1.1 2.2 2.5 4.0 4.0 1.2 5.8 1.1 71.6 1.6 28.4 

PLN 0.6 0.5 9.7 3.5 3.8 3.6 5.9 12.4 2.3 4.7 2.1 1.4 49.4 50.6 

To 15.8 10.7 69.4 33.3 44.5 55.0 61.1 77.5 21.7 55.4 18.0 22.0 43.3  

NSI -1.1 -2.6 6.7 -13.8 -7.6 27.8 4.4 13.4 -7.4 0.2 -6.3 -6.4 -7.3  

TCI 40.6              

CSIGas-Electricity 1.1              

CSIEUA-Electricity 0.7              

Panel B. At the conditional median 
 

GAS EUA DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN From 

GAS 85.3 3.9 1.1 0.9 1.2 1.2 0.8 0.9 1.0 0.8 0.7 1.7 0.6 14.7 

EUA 4.1 87.6 0.8 1.3 0.7 1.3 0.5 0.6 0.7 0.6 0.6 0.6 0.6 12.4 

DNK 0.4 0.4 38.5 6.4 8.3 11.0 4.8 14.4 0.7 6.1 0.6 1.3 7.1 61.5 

FIN 0.5 0.5 8.8 54.0 8.5 13.8 2.0 3.3 1.1 1.8 0.7 1.4 3.7 46.0 

NOR 0.6 0.3 10.6 7.9 51.9 10.4 2.8 5.4 0.9 4.2 0.7 1.1 3.4 48.1 

SWD 0.6 0.4 4.1 3.6 4.7 77.9 1.7 1.6 0.7 1.7 0.6 1.5 0.9 22.1 

FRA 0.9 0.3 5.6 1.5 2.4 2.4 45.2 14.7 4.7 11.3 3.7 2.3 5.0 54.9 

GER 0.4 0.4 14.8 2.2 4.1 3.7 12.6 37.7 1.5 10.3 1.2 1.9 9.2 62.3 

ITA 2.3 0.8 1.3 1.2 1.4 1.5 6.4 3.0 71.7 2.7 3.2 1.8 2.8 28.3 

NTH 0.8 0.4 7.1 1.7 4.2 3.4 11.8 12.8 1.9 47.1 1.4 3.6 3.7 52.9 
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SPN 1.1 0.5 0.9 0.9 1.0 0.9 5.7 2.3 3.2 2.5 78.6 0.8 1.7 21.4 

UK 1.6 0.7 2.5 0.9 1.9 2.1 3.9 3.8 1.1 5.5 1.1 73.4 1.5 26.6 

PLN 0.4 0.4 9.4 3.4 3.8 3.2 5.9 12.3 2.2 4.4 2.0 1.3 51.2 48.8 

To 13.7 8.9 67.0 32.0 42.3 54.9 58.9 74.9 19.7 51.9 16.4 19.2 40.0   

NSI -1.0 -3.5 5.5 -14.0 -5.7 32.8 4.0 12.6 -8.6 -1.0 -5.0 -7.4 -8.8   

TCI 38.5                           

CSIGas-Electricity 0.9                           

CSIEUA-Electricity 0.6                           

Note: Panel A reports the average connectedness indexes across the sample assets, estimated based on mean-based connectedness framework of Diebold and Yilmaz (2012). 

Panel B presents the average connectedness indexes estimated based on the quantile VAR at the quantile =0.5. NSI denotes Net Spillover Index. TCI indicates Total 

Connectedness Index. CSI represents Cross-market Spillover Index. 
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Second, the return shock transmission from (to) the natural gas market to (from) 

European electricity markets is fairly low at both conditional mean and median. In detail, the 

“From” column of Table 2 Panel A (Panel B) indicates that natural gas is modestly influenced 

by other markets, with 16.9% (14.7%) of its return variations justified by past fluctuations of 

other markets’ returns. Of which, past variations of EUA account for 4.7% (3.9%) and the rest 

12.2% (10.8%) from past fluctuations of European electricity markets.10 Further, variations in 

electricity prices in the UK and Norway exert the greatest impacts on the gas market with 

contributions of 1.7% (1.7%) and 1.4% (1.2%), respectively. Conversely, changes in gas return 

account for less than 2% of the variation of each electricity market except for Italy (ITA), as 

shown in the first column of both panels. The higher impact of the natural gas market on Italian 

electricity prices is due to dependence on gas as a key energy source.11 In summary, the cross-

market spillover indices between gas and electricity markets (CSIGas-Electricity) at the conditional 

mean and middle quantile are 1.1 and 0.9, respectively. These indicate that, on average, past 

return variations in the gas market affect 1.1% (0.9%) of return fluctuation of an EU electricity 

market and vice versa. 

Third, Table 2 points out the direction and magnitude of the return spillover between 

EUA and European electricity markets. Similar to the natural gas-electricity price nexus, we 

find that EUA-electricity spillover effects are weak at both the conditional mean and median, 

evidenced by the cross-market spillover indices between EUA and EU electricity market 

(CSIEUA-Electricity) standing at 0.7 and 0.6, respectively. These figures further imply that 

compared to natural gas, EUA is less interrelated with European electricity markets. 

 
10 4.7% is the proportion that past variation of EUA contributes to fluctuations of GAS as numbered in the first 

row of the second column (EUA) in Table 1 Panel A. The sum of other entries in the first row (except for the first 

and second items) indicates the contributions of past variations in electricity price returns of eleven EU countries 

to return fluctuations of natural gas, which equals 12.17%. Alternatively, 12.17% equals the difference between 

“From” of GAS (16.87%) minus 4.7%. 
11 As shown in Appendix A1, as of 2021, natural gas accounts for 43.71% of the energy mix of Italy, the highest 

proportion among the selected European countries. 
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Fourth, the net spillover indexes (NSI) of natural gas and EUA are negative, standing 

at -1.1 and -2.6 at the conditional mean and -1.0 and -3.5 at the conditional median, 

respectively. These negative figures indicate that both gas and EUA are net recipients of shocks 

in the network, implying that they receive more shocks from electricity markets than they 

transmit to. 

Finally, the net transmitters of return shocks are DNK, SWD, FRA, and GER while the 

net receivers are FIN, NOR, ITA, NTH, SPN, UK, and PLN. The net-transmitter role of FRA 

and GER can be explained by their economic importance in the EU as Germany and France 

are the largest and second-largest electricity consumers in Europe, respectively. Additionally, 

the net-diffuser role of DNK and SWD can be partly justified by their highest volatility of 

prices (Table 1). 

 

4.2 Return connectedness at the tails 

In Tables 3 and 4, we present the tail connectedness measures, computed at the lower 

quantile (τ = 0.1) and upper quantile (τ = 0.9), respectively. At both lower and upper quantiles, 

the TCIs are significantly higher than those computed at the conditional mean and median. In 

particular, in Tables 3 and 4, the TCI has a value of 81.5% and 81.5%, respectively, compared 

to 38.5% at the conditional median (i.e, middle quantile or τ = 0.5). Furthermore, the cross-

market spillover indices (CSI) of gas or EUA with European electricity markets are noticeably 

higher at the tails. Specifically, the CSIGas-Electricity rises dramatically from 0.9% at the 

conditional median to 6.1% at the lower tail and 5.8% at the upper tail. Similarly, the CSIEUA-

Electricity increases tenfold from 0.6% at the middle quantiles to 5.9% and 6.0% at the lower and 

upper tails, respectively. These results suggest that gas and EUA are more connected with 

European electricity markets in extremely negative and positive shocks. Concerning the net 

spillover effect, we observe that that gas and EUA continue to be net receivers of shocks,
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Table 3. Connectedness table at the lower quantile  
GAS EUA DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN From 

GAS 21.5 8.2 6.5 6.6 5.5 6.0 6.2 5.8 7.0 7.0 5.6 7.6 6.7 78.5 

EUA 8.3 21.5 6.5 6.7 5.8 6.5 5.8 5.8 7.1 6.7 5.7 6.7 7.0 78.5 

DNK 5.6 5.3 14.8 8.3 7.9 8.2 7.2 9.5 5.8 8.3 4.6 6.6 8.0 85.2 

FIN 6.0 5.6 8.9 17.1 8.2 8.8 6.5 6.7 6.5 6.8 4.9 6.7 7.5 82.9 

NOR 5.3 5.1 9.1 8.4 18.2 8.7 6.6 7.0 5.9 7.6 4.6 6.5 6.9 81.8 

SWD 5.9 5.9 7.6 7.8 7.4 21.4 6.4 6.1 6.3 7.0 4.9 6.9 6.5 78.6 

FRA 5.6 4.9 7.3 6.1 6.1 6.6 15.9 9.4 7.7 9.5 6.4 6.8 7.8 84.1 

GER 5.0 4.8 10.0 6.5 6.6 6.4 9.5 15.8 6.1 9.4 4.7 6.4 8.9 84.3 

ITA 6.8 6.1 6.2 6.8 5.9 6.0 8.2 6.5 19.4 7.5 6.4 6.7 7.6 80.6 

NTH 5.8 5.3 8.2 6.2 6.7 6.5 9.1 9.0 6.6 16.2 5.2 7.6 7.6 83.8 

SPN 6.2 5.9 6.1 6.0 5.4 5.8 8.1 6.2 7.9 7.0 22.7 5.9 6.8 77.3 

UK 6.8 6.0 7.2 6.2 6.2 6.3 7.1 7.0 6.5 8.7 5.0 20.1 6.9 79.9 

PLN 5.7 5.6 8.8 7.2 6.6 6.4 7.8 9.1 7.0 8.1 5.3 6.4 16.0 84.0 

To 72.8 68.7 92.5 82.7 78.2 82.0 88.3 88.4 80.3 93.7 63.2 80.8 87.9   

NSI -5.7 -9.9 7.2 -0.1 -3.5 3.4 4.2 4.1 -0.3 9.9 -14.1 0.9 3.9   

TCI 81.5                           

CSIGas-Electricity 6.1                           

CSIEUA-Electricity 5.9                           

Note: This table reports the average return connectedness indexes across the sample assets, estimated based on the quantile VAR at the lower quantile =0.1. NSI denotes Net 

Spillover Index. TCI indicates Total Connectedness Index. CSI represents Cross-market Spillover Index. 
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Table 4. Connectedness table at the upper quantile  
GAS EUA DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN From 

GAS 21.8 8.3 6.3 6.4 5.6 6.3 6.2 6.0 6.7 7.0 5.5 7.4 6.5 78.2 

EUA 7.8 21.5 6.4 6.6 5.7 6.9 6.1 5.9 7.0 6.8 5.8 6.9 6.7 78.5 

DNK 5.1 5.1 15.4 8.2 8.2 7.8 7.3 9.9 5.6 8.3 4.6 6.4 8.2 84.6 

FIN 5.4 5.6 8.9 17.6 8.4 8.0 6.7 7.1 6.6 6.9 5.1 6.3 7.4 82.4 

NOR 4.7 5.2 9.5 8.6 17.6 8.7 6.7 7.4 5.9 7.7 4.8 6.4 6.9 82.4 

SWD 5.6 6.5 7.8 7.8 7.3 19.2 6.7 6.5 6.7 7.3 5.0 7.1 6.6 80.8 

FRA 4.9 4.7 7.7 6.3 5.8 6.2 16.6 10.1 7.6 9.7 6.3 6.7 7.6 83.4 

GER 4.7 4.7 10.4 6.4 6.6 6.0 9.8 16.3 5.9 9.4 4.9 6.2 8.8 83.7 

ITA 5.7 6.2 6.2 6.7 5.9 6.4 8.4 6.7 19.6 7.6 6.7 6.8 7.3 80.4 

NTH 5.5 5.2 8.1 6.3 6.8 6.7 9.3 9.2 6.8 15.9 5.5 7.5 7.3 84.1 

SPN 5.6 6.2 6.2 6.2 5.4 5.8 8.1 6.3 8.0 7.1 22.4 6.1 6.8 77.6 

UK 6.1 6.0 7.2 6.0 6.2 6.7 7.6 7.1 6.8 8.5 5.4 19.7 6.7 80.3 

PLN 5.2 5.6 9.0 7.2 6.7 6.3 7.9 9.2 6.7 7.8 5.5 6.3 16.7 83.3 

To 66.1 69.5 93.5 82.6 78.4 81.8 90.7 91.1 80.2 93.9 65.1 80.0 86.8   

NSI -12.1 -9.0 8.9 0.2 -3.9 1.0 7.4 7.4 -0.3 9.8 -12.5 -0.3 3.5   

TCI 81.5                           

CSIGas-Electricity 5.8                           

CSIEUA-Electricity 6.0                           

Note: This table reports the average return connectedness indexes across the sample assets, estimated based on the quantile VAR at the lower quantile =0.9. NSI denotes Net 

Spillover Index. TCI indicates Total Connectedness Index. CSI represents Cross-market Spillover Index.
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evidenced by their net spillover index (NSI) at the lower (upper) tail of -5.7% (-12.1%) and -

9.9% (-9.0%), respectively. 

Fig. 3 shows the connectedness network between European electricity prices, EUA, and 

natural gas across different quantiles. Figs. 3a, 3b, and 3c display the network at the conditional 

median, lower tail, and upper tail, correspondingly. The node’s size indicates the degree of the 

net return spillover effects of each asset in the network. The node’s colour implies whether the 

considered asset is a net transmitter (green) or net recipient (yellow) of shocks. Lastly, the 

magnitude of pairwise spillover between two assets is denoted by the width of the arrow edge 

(in purple). 

At the conditional median, (i.e., Fig. 3a), Sweden (SWD), Germany (GER), France 

(FRA), and Denmark (DNK) act as net transmitters of return shocks whereas natural gas 

(GAS), carbon prices (EUA), and other countries’ markets play the role of net receivers. 

Notably, of the net transmitters, SWD is the strongest diffuser of return shocks, followed by 

GER. Conversely, Finland (FIN) and the UK (UK) are the most significant return shock 

absorbers. The width of the arrow edge suggests strong transmission of return shocks between 

German and French markets and between German and Denmark markets. 

In Fig. 3b, we display the connectedness network of the system at the lower quantile. It 

is evident that there are significant changes in the role of each market when they experience 

extremely negative shocks. First, more countries become net shock transmitters at the lower 

tail. For instance, compared to Fig. 3a, the UK (UK), Netherlands (NTH), and Poland (PLN) 

play the role of net diffusers of shocks instead of net recipients. Moreover, NTH and DNK are 

the largest transmitters of extremely negative shocks. In addition, Spain (SPN), GAS, and EUA 

are the most important net recipients of return shocks at the lower tail. 

In Fig. 3c, we plot the connectedness network at the upper quantile. Compared to Fig. 

3b, the British market’s role (UK) has switched from net diffuser to net recipient of shocks. 
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Figure 3. Network connectedness at various quantiles 
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Note: These graphs illustrate the network connectedness across the selected assets. Figure 5a, 5b, 5c describe the 

network connectedness at middle quantile (τ = 0.5), at lower quantile (τ = 0.1) and at upper quantile (τ = 0.9), 

respectively. The node colour represents the role of net transmitter (green)/ receiver (yellow) of return shocks. 

The node size is determined by the magnitude of the net return spillover of each asset.  The thickness of the arrow 

edge indicates the strength of pairwise directional spillover. 

Conversely, the Finnish electricity market (FIN) plays the role of net shock diffuser 

instead of net shock recipient as in Fig. 3b. In terms of significance, similar to Fig. 3b, the 

Netherlands (NTH) and Denmark (DNK) remain the largest net transmitters of extremely 

positive shocks, followed by Germany (GER) and France (FRA). In the same vein, Spain 

remains the largest net absorber of shocks at the upper tail, followed by natural gas (GAS) and 

EUA. 

In addition to these notable observations, Fig. 3 shows a greater interrelationship of 

European electricity markets with natural gas and EUA markets at the lower and upper 

quantiles than at the conditional median. Specifically, in Fig. 3a, the arrows connecting GAS 

(or EUA) with European electricity markets have a very slim edge, indicating very low levels 

of interconnectedness. By contrast, in Fig. 3b and Fig. 3c, these arrows become substantially 
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thicker, implying considerable interdependency between European electricity markets, EUA, 

and natural gas. The visualization of higher interdependence at the lower and upper tails 

corroborates our prior results shown in Tables 3 and 4. 

In Fig. 4, we increase the number of quantiles used to estimate the TCI and display the 

variations in the TCI of the network across different quantiles. The fluctuations of the TCI 

across various quantiles emphasize that the return spillover effects are intensified at both tails, 

reaffirming that the strength of shock transmission increases with both extremely negative and 

positive shocks. In addition, the TCI in Fig.4 exhibits a symmetrical shape at the lower and 

upper quantiles, implying that negative or positive shocks are evenly significant in driving the 

transmission of return shocks within the system.  

Figure 4. TCI and CSIs across quantiles 

 

Note: This figure shows the Total Connectedness Index (TCI) of the system across different quantiles.  

 

4.3 Return connectedness measures over time 

In previous subsections, the connectedness network between European electricity 
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investigate the time evolution of the connectedness indices by implementing a rolling analysis. 

Specifically, we employ a 10-step forecasting horizon and a constant 200-day window length 

to compute different connectedness measures of the system. 

Figure 5. Dynamic total connectedness index (TCI) at the conditional mean and at various quantiles 

 

Note: This figure shows the time-varying Total Connectedness Index (TCI) at the conditional mean and at various 

quantiles, during the research period. 

 

The dynamic TCI at the conditional mean and at various quantiles (i.e, median, lower, 

and upper quantiles) is shown in Fig. 5. We observe that the TCIs at the conditional mean and 

median chart an analogous pattern. Moreover, they display large variations over time, 

fluctuating between 25% and 51%. Starting in October 2012 at about 31%, the TCIs 

experienced a short uptrend until October 2013 when they started to decrease. The downward 

trend starting in October 2013 lasted about two years and terminated in the end of October 

2015, reaching a low level of 25%. The indices then recovered quickly between November 

2015 and May 2016. The sharp increase in the TCIs during this period reflected the increased 

integration of MCs electricity markets in Europe derived from the market coupling of 15 

European countries in 2014. This market coupling added the Baltic States, the UK, and Poland 

to the Market Coupling in Western Europe and the Nordic countries. Furthermore, in 2015, the 
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Italian market started coupling its borders with France. Since 2016, the Multi-Regional 

Coupling (MRC) with 19 European countries is established (including the 11 sample countries) 

and covers about 85% of European electricity consumption.12 After a swift correction in late 

2016 and early 2017, the indices plateaued between February 2017 and September 2018. After 

that, the uptrend in the TCI resumed and the indices reached a new high in January 2019. 

During this time, the increase in the TCI would stem from heightened risks in energy markets, 

sparkled by Fed’s successive monetary tightening.13 After an abrupt soar of the indices in 

February 2020 admitting the start of the COVID pandemic, the indices retreated until July 2021 

when they started to rise again. The indices attained their highest points in June 2021 and 

experienced a sharp correction afterward. The tension in the Russia-Ukraine relationship in 

November 2021 coincides with the rise of indices in late 2021. The indices spiked in late 

February 2022 when the Russia-Ukraine war started on February 24, 2022. The effect of the 

war seems long-lasting as the indices remained high despite experiencing minor fluctuations 

afterward. 

Fig. 5 also illustrates the TCI at the upper and lower quantiles. Three noteworthy 

observations regarding its temporal fluctuations are evident from the figure. Firstly, in contrast 

to the TCI at the conditional mean and median, the TCIs at both tails exhibit a narrower range 

of variation, hovering between 77% and 85% throughout the sample period. Second, though 

exhibiting limited variations, the TCIs at the lower and upper quantiles consistently surpass the 

TCIs at the conditional mean and median. This observation affirms our earlier conclusion that 

across all market situations, participants in the carbon, gas, and electricity markets exhibit 

greater sensitivity to extreme shocks compared to normal shocks. Third, although there are 

dissimilarities in the short-term fluctuations between the TCI at the upper and lower quantiles, 

 
12 For a chronology of market coupling in Europe, see https://www.next-kraftwerke.com/knowledge/market-

coupling 
13 From March 2018 to August 2019, the U.S. Federal Reserve (Fed) has risen its target rates five consecutive 

times.  
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the TCIs at both tails demonstrate a relatively common trend in the long-run.14 This provides 

additional support to our prior finding that both extremely negative and positive shocks are 

evenly crucial in driving the return connectedness of the selected assets.  

Figure 6. Dynamic CSIGas-Electricity at the conditional mean and at various quantiles 

 

Note: This figure shows the time-varying Cross-market Spillover Index (CSI) between electricity and natural gas 

markets at the conditional mean and at various quantiles, during the research period. 

 

Fig. 6 display the dynamic cross-market spillover index between gas and electricity 

markets (CSIGas-Electricity). It showcases the index at the conditional mean and median as well as 

at the upper and lower quantiles. Similar to Fig. 5, we find that the CSIGas-Electricity at the lower 

and upper tails are substantially higher than at the conditional mean and median throughout the 

research period. This observation reinstates that the transmission of extremely negative and 

positive return shocks between gas and electricity markets is more severe than the spillover of 

average shocks. In addition, we observe that the CSIGas-Electricity at the lower and upper quantiles 

exhibits strong fluctuations, which is contrary to the findings of TCI in Fig. 5. Finally, the 

CSIGas-Electricity at the conditional mean and median stabilized at the low level (below 2%) during 

most of the sample period, including the COVID-19 pandemic. The indices, however, rose 

 
14 The correlation coefficient between the TCIs at the upper and lower quantiles is 0.50. 
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sharply by October 2021 when the Russia-Ukraine relationship became tense and hit the 

highest values during the war. While the connectedness between gas and electricity markets 

reduced since June 2022, they were still much higher than in the pre-war period. 

Figure 7. Dynamic CSIEUAs-Electricity at the conditional mean and at various quantiles 

 

Note: This figure shows the time-varying Cross-market Spillover Index (CSI) between electricity and EUA 

markets at the conditional mean and at various quantiles, during the research period. 

 

Fig. 7 shows the movement of the cross-market spillover index between EUA and 

electricity markets (CSIEUA-Electricity) at the conditional mean and across various quantiles over 

the sample period. In line with the results shown in Fig. 5 and Fig. 6, we find that CSIEUA-

Electricity at the lower and upper quantiles is considerably higher than at the conditional mean and 

median. In addition, while the indices at the conditional mean and mean move closely with 

each other, the CSIs at the lower and upper tails are less connected. In particular, the differences 

were noticeable after the early stage of the COVID-19 pandemic in March 2020. The CSIEUA-

Electricity at the conditional mean (median) reached its highest value in July 2019, which is 

different from the CSIGas-Electricity in Fig. 6. Finally, the CSIs at the conditional mean and median 

were quite calm during the COVID-19 pandemic and the Russia-Ukraine war. By contrast, the 

CSIs at the lower and upper tails fluctuated strongly during these periods. 
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Figure 8. Dynamic net spillover index (NSI) of natural gas across quantiles 

 

Note: This figure shows the time-varying Net spillover index (NSI) of natural gas at the conditional mean and at 

various quantiles, during the research period. 

 

Fig. 8 plots the dynamic net spillover index (NSI) of natural gas. First, as shown in Fig. 

8, the NSIs were below the zero threshold during most of the study period, indicating that the 

energy commodity market is primarily a net recipient of shocks. Second, there were remarkable 

increases in the indices since the end of 2019. Notably, the NSI of gas at the conditional mean 

(blue line) rose robustly since the onset of the COVID-19 pandemic in 2020 and stayed above 

zero for most of 2020. Intriguingly, all NSIs except the NSI at the upper quantile (yellow line) 

were mostly in the positive zone from the end 2021 until the end of the sample period. These 

observations suggest that while gas is a net receiver of shocks, the energy commodity is a net 

diffuser during periods of market crises such as COVID-19 and the Russia-Ukraine war. 

Fig. 9 displays the net spillover (NSI) index of EUA over time. Throughout most of the 

sample period, the NSIs exhibit negative values, indicating the carbon market is mostly a net 

absorber of shocks. The dynamic NSIs at the conditional mean and across quantiles mostly stay 

negative during the study period, suggesting that the carbon market is consistently a net 

recipient of shocks. Furthermore, the NSIs at lower and upper tails are prone to be more 

negative and experience higher volatility than those at the conditional mean and median. 

Remarkably, they attained their lowest levels during the start of Russia-Ukraine war in 2022, 
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implying the carbon market receives substantially extreme shocks from gas and electricity 

markets during this period. 

Figure 9. Dynamic net spillover index of European Emission Allowances (EUA) across quantiles 

 

Note: This figure shows the time-varying Net spillover index (NSI) of EUA at the conditional mean and at various 

quantiles, during the research period. 

 

 

4.4 Determinants of the connectedness indices: The impact of the crises 

4.4.1 Analysis at the aggregate level 

Given the significant variations and volatility observed in the quantile connectedness 

measures, it is crucial for investors to monitor and balance their portfolios based on these key 

drivers. Furthermore, considering the effects of recent crises such as COVID-19 and the 

Russia-Ukraine war on the European economy and energy markets, we also examine the impact 

of these events on the connectedness indices. 

To uncover the factors influencing the connectedness indices, we employ the model as 

follows, 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡 = 𝛽 + 𝛾𝑋𝑡−1 + 𝛼1𝐶𝑂𝑉𝐼𝐷 + 𝛼2𝑊𝐴𝑅 + 𝜀𝑡                                             (14)                                                                                                                                                                                      

where 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑡 is either the dynamic total connectedness index (TCI), the cross-

market spillover index between gas and electricity markets (CSIGas-Electricity) or the cross-market 

spillover index between EUA and electricity markets (CSIEUA-Electricity), which are computed at 
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the conditional median, upper quantile, and lower quantile; 𝛽 denotes the intercept; 𝜀𝑡 

represents the error term; and 𝑋𝑡−1 demonstrates a vector of six control variables.  

The control variables include daily frequency of (1) the implied volatility of the crude 

oil market measured by the CBOE15 Crude Oil Volatility Index (𝑂𝑉𝑋); (2) the expected 

volatility of the Dow Jones EuroStoxx 50 Index (𝑉𝑆𝑇𝑂𝑋𝑋); (3) the European term spread 

proxied by the discrepancy between the yield of Germany 10-year Treasury note and that of 

the 2-year Treasury note (𝑇𝐸𝑅𝑀𝑆𝑃𝑅); (4) the Economic Policy Uncertainty (𝐸𝑃𝑈) index, as 

defined by Baker et al. (2016); (5) the index of global geopolitical risk (𝐺𝑂𝑃𝑅𝑋), developed 

by Caldra and Iacoviello (2022); (6) a dummy variable (𝑊𝐼𝑁𝑇𝐸𝑅), which equals 1 for data 

recorded in November, December, January, or February and 0 for data recorded in other 

months. To account for the impacts of COVID-19, we followed Güler et al. (2022) and include 

the dummy variable 𝐶𝑂𝑉𝐼𝐷, which equals 1 if the data is between January 1st, 2020 and 

September 30th, 2020 and 0 otherwise. Following Güler et al. (2022), this period could have 

significant impact on European electricity markets as it includes both the outbreak of the 

pandemic in Europe and the time when strict containment measures were applied to suppress 

the outbreak. Finally, considering the impact of the Russia-Ukraine war, we include the 

variable 𝑊𝐴𝑅. It is set to 1 for data recorded between February 24th, 2022 and December 30th, 

2022, and 0 otherwise. 

The control variables have been identified in the literature as factors that can influence 

volatility of energy commodities and electricity markets, as well as their interconnectedness. 

First, 𝑂𝑉𝑋 not only reflects expected volatility in the oil market but is also considered a 

barometer of energy market uncertainty (Dutta et al., 2020). As 𝑂𝑉𝑋 levels rise, uncertainty in 

energy markets is forecasted to rise. Zhang et al. (2023) show that 𝑂𝑉𝑋 increases the 

interconnectedness among clean energy, electricity, and energy metal markets. Second, 

 
15 Chicago Board Options Exchange (CBOE). 
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𝑉𝑆𝑇𝑂𝑋𝑋 is used to account for the systematic risk in the stock market, which is deemed a 

driving force of gas market volatility. Chen et al. (2021) find a positive impact of stock market 

volatility on the fluctuations of gas prices. Ding (2021) finds both negative and positive 

correlation between gas price volatility and stock market volatility. Besides, 𝑉𝑆𝑇𝑂𝑋𝑋 has been 

used in the literature as an indicator of business environment in Europe (Tang and Yang, 2010). 

Thirdly, we employ 𝑇𝐸𝑅𝑀𝑆𝑃𝑅, or yield curve slope, a widely considered an important 

barometer of the economy. Particularly, positive term spreads typically indicate economic 

growth, whereas negative readings presage economic slowdown or recession. As demand for 

electricity and economic growth are highly interrelated (e.g., Stern, 1993; Lorde et al., 2010; 

Gurgul and Lach, 2012; among others), expectations of economic slowdown or expansion can 

influence electricity demand, price, and their fluctuations. According to Karali and Ramirez 

(2014), energy commodities become volatile as the term spread narrows.  

The next control variable is the economic policy uncertainty index (𝐸𝑃𝑈). As the daily 

data of EPU in Europe is not available, we employ the daily U.S. EPU to proxy for the 

economic policy uncertainty of the sample countries. This replacement is supported by studies 

that reveal that the U.S. EPU has a critical role in shaping volatility and risk transmission in 

European markets (e.g., Krol, 2014; Bernal et al., 2016; Mei et al., 2018). Kang and Yoon 

(2018) find strong connectedness between country-level connectedness indices, including the 

U.S. EPU and European EPU. Also, earlier studies indicate substantial interconnections 

between the gas market and EPU (e.g., Geng et al., 2021; Scarcioffolo and Etienne, 2021; and 

Dash and Maitra, 2021). Additionally, EPU is positively correlated with the spillover effects 

in financial markets as shown in Adekoya et al. (2021) and Youssef et al. (2021). Another 

control variable, 𝐺𝑂𝑃𝑅𝑋, is initiated by Caldara and Iacoviello (2022) to capture risks caused 

by global geopolitical tensions. According to Victor et al. (2006), Liang et al. (2021), and Su 

et al. (2023), 𝐺𝑂𝑃𝑅𝑋 is priced in the gas market. Furthermore, Gong and Xu (2022) find that 
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𝐺𝑂𝑃𝑅𝑋 significantly amplifies the interconnectedness between different commodities. We 

expect that both 𝐸𝑃𝑈 and 𝐺𝑂𝑃𝑅𝑋 exert a positive effect on the interconnectedness between 

European electricity markets, EUA, and natural gas. Lastly, the indicative variable, 𝑊𝐼𝑁𝑇𝐸𝑅, 

captures the seasonality of the European gas market (Martínez and Torró, 2015) and electricity 

markets (Kan et al., 2021; Taylor, 2010). 

We first estimate Eq. (14) using TCI as the dependent variable and employ OLS 

estimation and report the corresponding results in Table 5. The t-statistics are corrected for 

heteroscedasticity based on Newey and West’s (1987) robust standard errors. Table 5 reveals 

several important findings. Firstly, we find that across all models, the adjusted R2 is fairly 

significant, varying from 13% in Column (1) (i.e., TCI at upper tail) to 40% in Column (1) 

(i.e., TCI at the middle quantile). Moreover, the robust F-statistics support the appropriateness 

of the independent variables used to explain the fluctuations in the TCI. Secondly, impacts of 

all control variables except 𝐸𝑃𝑈 are heterogeneous across various quantiles, and this strong 

heterogeneity underlines the necessity to explore the determinants of return spillover effects 

across quantiles. Specifically, as shown in Table 5, expected volatility of the crude oil 

market (𝑂𝑉𝑋) only significantly affects the TCI at the middle quantile, whereas its effect on 

the index at the upper and lower tails is insignificant. Surprisingly, the results show that the 

expected volatility of the European stock market (𝑉𝑆𝑇𝑂𝑋𝑋) exerts a negative and significant 

impact on the index at the middle and upper quantiles. However, it does not influence the TCI 

at the lower quantile. This finding aligns with previous research by Creti et al. (2013), which 

suggests that volatility correlations between stock and electricity markets are often negative 

due to the distinctive fundamental of the electricity market. The impact of term spread 

(𝑇𝐸𝑅𝑀𝑆𝑃𝑅) is also noteworthy. In particular, the coefficient of 𝑇𝐸𝑅𝑀𝑆𝑃𝑅 (-3.85) is negative 

and highly significant in Column (1) but statistically insignificant in both Columns (2) and (3). 

These figures indicate that narrowing term spreads or worsening economic outlook intensifies 
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the transmission of average return shocks among gas, EUA, and European electricity markets. 

Additionally, in Column (2), the coefficient estimates of 𝐺𝑂𝑃𝑅𝑋 and 𝑊𝐼𝑁𝑇𝐸𝑅 are both 

statistically significant and positive, suggesting that the transmission of extremely negative 

shocks is more severe when geopolitical risk is heightened and during the winter period. The 

effects of 𝐺𝑂𝑃𝑅𝑋 and 𝑊𝐼𝑁𝑇𝐸𝑅, however, are muted regarding the index at the middle and 

upper quantiles. Lastly, Table 5 indicates a consistently positive effect of 𝐸𝑃𝑈 on the total 

connectedness index across quantiles. This result emphasizes the critical role of economic 

policy uncertainty in intensifying the risk transmission in Eurozone markets and is consistent 

with evidence from Bernal et al. (2016) and Ma et al. (2022). 

The results in Table 5 show the effect of two recent crises, including the COVID-19 

pandemic and the Russia-Ukraine war, on the total connectedness index. First, the results show 

that the coefficient of 𝐶𝑂𝑉𝐼𝐷 is very consistent, negative, and statistically significant across 

all model specifications. This implies that interconnectedness among the markets is lower 

during the pandemic. This reduction is justifiable as the pandemic’s effect on each electricity 

market was heterogeneous across European countries, depending on factors including but not 

limited to the intensity of the outbreak and the strictness of governments’ measures to contain 

the outbreak. There are recent studies whose results support our argument (e.g, Bahmanyar et 

al., 2020; Halbrügge et al., 2021; Buechler et al., 2022; Werth et al., 2021; Prol and Sungmin, 

2020; among others). Halbrügge et al. (2021) analyse the impacts of COVID-19 on 5 European 

countries’ electricity markets (i.e., France, Germany, Spain, Italy, and Sweden) and find that 

while restriction measures have induced a substantial temporal decline in electricity 

consumption in Germany and Spain, their effects were unnoticeable in other countries. They 

attribute these variations to different approaches that European governments chose to fight the 
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pandemic.16 Using a sample of 58 countries, Buechler et al. (2022) examine variations in 

energy consumption during the pandemic and the drivers behind these. For European countries, 

they find that many countries in Southern Europe (e.g., Italy, Spain) experienced a large 

decrease in electricity consumption, while minimal change was observed in Sweden, Denmark, 

and Finland). In addition, they show that fluctuations in energy consumption during the 

pandemic depend largely on the change in daily mobility, severity of government restrictions, 

and intensity of the pandemic. 

Second, Table 5 indicates that the Russia-Ukraine war exerts an intensifying effect on 

the TCI at the middle and lower tails while not affecting the TCI at the upper tail. This is 

consistent with several studies, which find that risk spillover effects among global financial 

markets was amplified during the war (e.g., Wang et al., 2022; Adekoya et al., 2022). Contrary 

to the COVID-19 pandemic, which mostly affects the demand for electricity (i.e., electricity 

consumption), the war was a supply shock to most European countries and disrupted the supply 

of Russian gas – an important input for electricity generation in Europe. According to 

International Energy Agency (IEA), natural gas accounts for an average of 22% of the energy 

mix of the eleven European countries in our sample.17 Consequently, the war, through its 

effects on the gas market, would cause fluctuations in electricity prices in the same direction 

in most or all selected electricity markets, leading to a higher interconnectedness and 

integration.  

Table 5. Determinants of total connectedness index (TCI) 

 TCI (median) TCI (lower tail) TCI (upper tail) 

 (1) (2) (3) 

𝑂𝑉𝑋 -1.51*** 

(-2.93) 

-0.09 

(-0.47) 

-0.10 

(-0.75) 

𝑉𝑆𝑇𝑂𝑋𝑋 -0.09*** 

(-3.27) 

-0.003 

(-0.43) 

-0.03*** 

(-3.51) 

𝑇𝐸𝑅𝑀𝑆𝑃𝑅 -3.85*** 0.31 0.37 

 
16 For instance, the Swedish government applied an approach relied on citizens’ own responsibility rather than 

deploying strict containing measures such country-wide lockdowns. 
17 Please see Appendices A1 and A2 for details. 
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(-4.33) (1.01) (1.58) 

𝐸𝑃𝑈 7.27*** 

(11.76) 

0.49*** 

(2.97) 

1.96*** 

(10.57) 

𝐺𝑂𝑃𝑅 0.80 

(0.92) 

1.13*** 

(5.20) 

-0.15 

(-0.65) 

𝑊𝐼𝑁𝑇𝐸𝑅 -0.04 

(-0.10) 

0.42*** 

(3.95) 

-0.04 

(-0.32) 

𝐶𝑂𝑉𝐼𝐷 -2.18*** 

(-3.93) 

-1.37*** 

(-7.54) 

-1.12*** 

(-3.65) 

𝑊𝐴𝑅 6.07*** 

(4.77) 

2.48*** 

(5.44) 

-0.42 

(-1.31) 

Intercept 27.97*** 

(10.95) 

77.96*** 

(136.8) 

78.52*** 

(130.7) 

N. Obs. 2,672 2,672 2,672 

Adj. R-squared 0.40 0.25 0.13 

F-statistics 227.78*** 115.05*** 50.23*** 

Note: This table presents the regression results of Eq. (14) to investigate the effects of COVID-19 and the Russia-

Ukraine war on the Total Connectedness Index (TCI) among European electricity prices, natural gas, and EUA. 

Eq. (14) is estimated using OLS estimation with t-statistics computed using Newey and West’s (1987) robust 

standard errors. ***, **, and * indicate statistical significance at 10%, 5%, and 1% level, respectively.  

 

Besides investigating the effects of COVID-19 and the Russia-Ukraine war on the TCI, 

we also estimate the impacts of these crises on the cross-market spillover indices of the 

European electricity markets with the gas market (CSIGas-Electricity) and carbon market (CSIEUA-

Electricity). The regression results of Eq. (14) with dependent variables being CSIGas-Electricity and 

CSIEUA-Electricity are shown in Table 6 Panels A and B, respectively. As shown in Panel A, the 

parameter estimate of 𝐶𝑂𝑉𝐼𝐷 is broadly negative and statistically significant, irrespective of 

the quantile used to calculate CSIGas-Electricity. This indicates that the pandemic contributes to 

reducing the transmission shocks between the gas and European electricity markets. This 

finding suggests the drivers of electricity and gas markets are less correlated during the 

pandemic. While the literature finds that COVID-19 had significant impacts on European 

electricity markets, little evidence is found on the impact of COVID-19 on gas volatility. Meher 

et al. (2020) finds that though the COVID-19 outbreak increased the volatility of crude oil, this 

leverage effect is not observed in the gas market. Ahmed and Sarkodie (2021) reveal that the 

intensity of the pandemic, measured by new deaths from COVID-19, has not affected the gas 

market. By contrast, as shown in Panel A, the Russia-Ukraine war imposes a leverage effect 
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on the interconnectedness between the energy commodity and electricity markets. Fang and 

Shao (2022) find that the Russia-Ukraine tension substantially heightened the volatility risk of 

energy commodities including gas. In addition, as gas is an important input in the energy mix 

of Europe, the return shocks can be transmitted to electricity prices, intensifying their 

interconnectedness. 

In Table 6 Panel B, the pandemic variable, 𝐶𝑂𝑉𝐼𝐷, is negatively and significantly 

correlated with the CSIEUA-Electricity at the middle and lower quantiles, whereas its impact on the 

CSIEUA-Electricity at the upper quantile is statistically insignificant. This indicates that COVID-19 

reduces the interconnectedness between the European carbon and electricity markets. This 

finding is consistent with the effect of COVID-19 on the TCI and the CSIGas-Electricity, 

documented previously in the study. According to Dong et al. (2021), while the outbreak of 

disease in March 2020 and the subsequent lockdown measures in European countries caused a 

sharp decrease in EUA price, its price gradually recovered thereafter.18 In addition to bearing 

the impact of the pandemic, Dong et al. (2022) find that price volatility of EUA in 2020 was 

largely driven by the EU “green recovery plan” with a value of EUR 750 billion, passed by the 

European Commission in May 2020 with the aim to recover EU economy after COVID-19.19 

The authors reveal that this plan is the main contributor to increase EUA price and reduce EUA 

volatility in the second half of 2020. This could explain the low return connectedness between 

EUA and electricity markets during the pandemic. Concerning the Russia-Ukraine war, Panel 

B shows that its effect on the CSIEUA-Electricity is significantly positive at the middle and lower 

quantiles, but negative at the upper quantile. These results indicate that the war intensifies the 

transmission of average and extremely negative shocks between carbon and electricity markets 

while diminishing the spillover of their extremely positive shocks.  

 

 

 
18 Dong et al. (2022) find similar results for the impact of COVID-19 on EUA. 
19 Please see the details of the plan at https://www.undrr.org/media/75031/download 
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Table 6. Determinants of cross-market spillover index (CSI) 

Panel A. CSIGas-Electricity 

 CSIGas-Electricity  

(median) 

CSIGas-Electricity  

(lower tail) 

CSIGas-Electricity  

(upper tail) 

 (1) (2) (3) 

𝑂𝑉𝑋 0.55*** 

(4.69) 

0.37 

(0.97) 

-0.45 

(-1.22) 

𝑉𝑆𝑇𝑂𝑋𝑋 0.02*** 

(4.02) 

0.06*** 

(2.73) 

0.05 

(1.44) 

𝑇𝐸𝑅𝑀𝑆𝑃𝑅 -0.98*** 

(-5.20) 

1.21* 

(1.85) 

3.51*** 

(4.92) 

𝐸𝑃𝑈 0.31*** 

(3.78) 

0.73** 

(2.29) 

2.22*** 

(5.02) 

𝐺𝑂𝑃𝑅 1.03*** 

(5.93) 

2.77*** 

(6.38) 

1.54*** 

(3.11) 

𝑊𝐼𝑁𝑇𝐸𝑅 0.11 

(1.52) 

0.76*** 

(3.28) 

0.52* 

(1.81) 

𝐶𝑂𝑉𝐼𝐷 -0.87*** 

(-7.75) 

-3.51*** 

(-8.60) 

-3.42*** 

(-3.75) 

𝑊𝐴𝑅 0.57* 

(1.75) 

4.12*** 

(4.09) 

2.42** 

(2.45) 

Intercept -1.31*** 

(-2.98) 

14.37*** 

(11.94) 

11.89*** 

(7.73) 

N. Obs. 2,672 2,672 2,672 

Adj. R-squared 0.42 0.31 0.21 

F-statistics 240.00*** 153.10*** 87.08*** 

Panel B. CSIEUA-Electricity 

 CSIEUA-Electricity 

 (median) 

CSIEUA-Electricity  

(lower tail) 

CSIEUA-Electricity  

(upper tail) 

 (1) (2) (3) 

𝑂𝑉𝑋 -0.28*** 

(-8.23) 

-1.11*** 

(-3.61) 

-0.70** 

(-2.31) 

𝑉𝑆𝑇𝑂𝑋𝑋 -0.016*** 

(-4.49) 

-0.04*** 

(-4.03) 

-0.08*** 

(-6.36) 

𝑇𝐸𝑅𝑀𝑆𝑃𝑅 0.27*** 

(3.87) 

1.07** 

(2.18) 

0.13 

(0.26) 

𝐸𝑃𝑈 0.20*** 

(4.24) 

-0.15 

(-0.80) 

1.23*** 

(3.66) 

𝐺𝑂𝑃𝑅 0.15*** 

(2.76) 

1.74*** 

(6.53) 

-1.74*** 

(-4.26) 

𝑊𝐼𝑁𝑇𝐸𝑅 -0.04 

(-1.04) 

0.56*** 

(4.25) 

-0.44* 

(-1.93) 

𝐶𝑂𝑉𝐼𝐷 -0.38*** 

(-8.21) 

-3.05*** 

(-11.23) 

-0.33 

(-0.62) 

𝑊𝐴𝑅 0.39*** 

(5.02) 

4.51*** 

(5.73) 

-1.73* 

(-1.95) 

Intercept 0.40*** 20.40*** 26.77*** 
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(3.63) (31.42) (27.05) 

N. Obs. 2,672 2,672 2,672 

Adj. R-squared 0.17 0.34 0.17 

F-statistics 68.44*** 176.68*** 68.77*** 

Note: This table presents the regression results of Eq. (14) to investigate the effects of COVID-19 and the Russia-

Ukraine war on the Cross-market spillover index (CSI) between European electricity markets and natural gas 

market (CSIGas-Electricity) and that between European electricity markets and EUA (CSIEUA-Electricity). Eq. (14) is 

estimated using OLS estimation with t-statistics computed using Newey and West’s (1987) robust standard errors. 
***, **, and * indicate statistical significance at 10%, 5%, and 1% level, respectively. 

 

Last but not least, in both panels of Table 6, among control variables, the effects of 

economic policy uncertainty and geopolitical risk are mostly positive and statistically 

significant. These findings emphasize their role as key drivers of the connectedness of 

European electricity markets with the natural gas market and EUA. 

 

4.4.2 Heterogeneous impacts of COVID-19 and the war on Nordic electricity markets 

In this subsection, we explore the impacts of the two crises on the connectedness of 

electricity markets with gas and with EUA between Nordic countries and the rest of Europe. 

This exploration is motivated by studies that point out several distinct characteristics of Nordic 

electricity markets compared to other European countries (e.g., Amundsen and Bergman, 2006; 

Hellmer and Wårell, 2009; Hellström et al., 2012). First, compared to other countries, Nordic 

markets are less dependent on gas in their energy mix as shown in Appendix 2. Gas accounts 

for only 2.23% of the Swedish energy mix in 2021. Second, the Nordic electricity markets are 

expected to be less connected with EUA than other European countries as renewable energy 

has a larger share in the Nordic market. This difference translates to lower CO2 emissions in 

Nordic countries compared to other markets in our sample (see Appendix A3). Given the 

heterogeneities above, we expect that the pairwise spillover index between each electricity 

market and natural gas (PSIGas-Electricity) and that between each electricity market and EUA 

(PSIEUA-Electricity) of Nordic markets are less affected by the COVID-19 pandemic and the 

Russia-Ukraine war than European countries. 
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To empirically investigate this hypothesis, we estimate the following equation: 

𝑃𝑆𝐼𝑖,𝑡 = 𝛽 + 𝛾𝑋𝑡−1 + 𝛼1𝐶𝑂𝑉𝐼𝐷 + 𝛼2𝐶𝑂𝑉𝐼𝐷 × 𝑁𝑜𝑟𝑑𝑖𝑐 + 𝛿1𝑊𝐴𝑅 + 𝛿2𝑊𝐴𝑅 × 𝑁𝑜𝑟𝑑𝑖𝑐 +

                𝛿𝑖 + 𝜖𝑖,𝑡                                                                                                                             (15) 

where 𝑃𝑆𝐼𝑖,𝑡 is either the PSIGas-Electricity or PSIGas-Electricity of country 𝑖 at day 𝑡; 𝑋𝑡−1, 𝐶𝑂𝑉𝐼𝐷, 

and 𝑊𝐴𝑅 are defined as the same as in Eq. (14); 𝑁𝑜𝑟𝑑𝑖𝑐 is an indicator variable, which equals 

to 1 if country 𝑖 is a Nordic country (e.g., Denmark, Finland, Norway, Sweden) and zero 

otherwise; 𝛿𝑖 accounts for the country-fixed effects; and 𝜖𝑖,𝑡 is the error term. The sum of 𝛼1 

and 𝛼2 reflects the effect of COVID-19 on the interconnectedness of Nordic electricity markets 

with natural gas or EUA. In a similar vein, the sum of 𝛿1 and 𝛿2 indicates the effect of the 

Russia-Ukraine war. We expect the absolute value of the sum of 𝛼1 and 𝛼2 to be lower than 

the absolute value of 𝛼1, implying that the PCIGas-Electricity of Nordic countries is less affected 

by the pandemic than other countries. Likewise, we hypothesize that the absolute value of the 

sum of 𝛿1and 𝛿2 is less than the absolute value of 𝛿1. 

We report the OLS regression results of Eq. (15), with standard errors corrected for 

heteroscedasticity, in Table 7. In Panel A, the dependent variable is the pairwise spillover 

between each electricity market and the gas market (PSIGas-Electricity) at various quantiles. The 

PSIGas-Electricity of non-Nordic countries bears the negative impact of COVID-19 and the positive 

effect of the Russia-Ukraine war, as evidenced by the negative 𝛼1 and positive 𝛿1 observed 

across quantiles. In addition, the estimates of 𝛼2 and 𝛿2 are all statistically significant, implying 

that the effects of the two crises on the electricity-gas nexus vary considerably between the 

Nordic and other European markets. Specifically, the sum of 𝛼1 and 𝛼2 remains negative in all 

cases, indicating that COVID-19 exerts a negative impact on the PSIGas-Electricity of Nordic 

countries. However, the absolute value of the sum (0.30) is lower than that of 𝛼1 (0.53). This 

means that the PSIGas-Electricity of Nordic markets is less vulnerable to COVID-19 shocks than 

other European countries, which is consistent with our expectations. Relatedly, the sum of 𝛿1 
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and 𝛿2 has lower absolute value than that of 𝛿1, lending further support to our hypothesis. It is 

noteworthy that in Column (3), the sum of 𝛿1and 𝛿2 as a negative value, implying that the war 

has a reducing effect on the transmission of extremely positive shocks between gas and Nordic 

electricity markets. This reducing effect is contrary to the increasing impact of the war on the 

gas-electricity market nexus in other European countries as shown by the estimates of 𝛿1. 

Table 7. Heterogeneous impacts of COVID-19 and the Ukrainian-Russian war between Nordic countries 

and the rest of Europe 

Panel A. PSIGas-Electricity 

 PSIGas-Electricity  

(median) 

PSIGas-Electricity  

(lower tail) 

PSIGas-Electricity  

(upper tail) 

 (1) (2) (3) 

𝑂𝑉𝑋 0.29*** 

(15.24) 

0.01*** 

(3.69) 

-0.01*** 

(-3.15) 

𝑉𝑆𝑇𝑂𝑋𝑋 0.01*** 

(9.18) 

0.003*** 

(13.63) 

0.003*** 

(9.94) 

𝑇𝐸𝑅𝑀𝑆𝑃𝑅 -0.44*** 

(-14.08) 

0.08*** 

(12.18) 

0.17*** 

(23.81) 

𝐸𝑃𝑈 0.09*** 

(3.84) 

0.03*** 

(5.87) 

0.12*** 

(21.58) 

𝐺𝑂𝑃𝑅 0.43*** 

(12.51) 

0.11*** 

(16.00) 

0.06*** 

(8.47) 

𝑊𝐼𝑁𝑇𝐸𝑅 0.07*** 

(5.43) 

0.04*** 

(14.36) 

0.01*** 

(4.79) 

𝛼1  -0.53*** 

(-16.70) 

-0.14*** 

(-25.29) 

-0.24*** 

(-23.91) 

𝛼2 0.23*** 

(5.42) 

0.01* 

(1.81) 

0.11*** 

(7.50) 

𝛿1 0.57*** 

(10.39) 

0.28*** 

(29.15) 

0.21*** 

(19.94) 

𝛿2 -0.34*** 

(-7.78) 

-0.26*** 

(-41.07) 

-0.31*** 

(-27.53) 

N. Obs. 29,392 29,392 29,392 

Adj. R-squared 0.09 0.13 0.14 

Sum of 𝛼1 and 𝛼2 -0.30 -0.13 -0.13 

Sum of 𝛿1and 𝛿2 0.23 0.02 -0.10 

 

 

 

Panel B. PSIEUA-Electricity 

 PSIGas-Electricity  

(median) 

PSIGas-Electricity  

(lower tail) 

PSIGas-Electricity  

(upper tail) 
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 (1) (2) (3) 

𝑂𝑉𝑋 -0.36*** 

(-22.61) 

-0.05*** 

(-14.13) 

-0.02*** 

(-5.88) 

𝑉𝑆𝑇𝑂𝑋𝑋 -0.02*** 

(-17.46) 

-0.002*** 

(-8.88) 

-0.003*** 

(-21.70) 

𝑇𝐸𝑅𝑀𝑆𝑃𝑅 0.46*** 

(17.09) 

0.05*** 

(8.20) 

-0.01 

(-1.32) 

𝐸𝑃𝑈 0.27*** 

(11.24) 

-0.01** 

(-2.25) 

0.05*** 

(11.57) 

𝐺𝑂𝑃𝑅 0.14*** 

(4.52) 

0.08*** 

(12.45) 

-0.07*** 

(-12.39) 

𝑊𝐼𝑁𝑇𝐸𝑅 0.03*** 

(2.80) 

0.03*** 

(12.70) 

-0.02*** 

(-8.32) 

𝛼1  -0.57*** 

(-21.39) 

-0.16*** 

(-27.90) 

-0.03*** 

(-5.31) 

𝛼2 0.54*** 

(15.06) 

0.05*** 

(6.67) 

0.05*** 

(6.77) 

𝛿1 0.86*** 

(19.12) 

0.27*** 

(33.15) 

-0.02* 

(-1.85) 

𝛿2 -0.57*** 

(-14.85) 

-0.22*** 

(-24.25) 

-0.27*** 

(-17.39) 

N. Obs. 29,392 29,392 29,392 

Adj. R-squared 0.10 0.09 0.09 

Sum of 𝛼1 and 𝛼2 -0.03 -0.11 0.02 

Sum of 𝛿1and 𝛿2 0.29 0.05 -0.29 

Note: This table presents the regression results of Eq. (15) to investigate the heterogeneous effects of COVID-19 

and the Russia-Ukraine war on the Pairwise Spillover Index (PSI) of Nordic and non-Nordic countries. Eq. (14) 

is estimated using OLS estimation with t-statistics corrected for heteroscedasticity. ***, **, and * indicate statistical 

significance at 10%, 5%, and 1% level, respectively. 

 

In Panel B, we report the results of Eq. (15) using PSIEUA-Electricity as the dependent 

variable. Similar to Panel A, we observe the statistical significance of 𝛼2 and 𝛿2 across model 

specifications, which highlights the differences between Nordic and non-Nordic countries in 

bearing the impact of COVID-19 and the Russia-Ukraine war. More importantly, the absolute 

value of the sum of 𝛼1 and 𝛼2 (𝛿1and 𝛿2) is lower than the absolute value of 𝛼1 (𝛿1) in most 

cases, reaffirming our conjecture. 

[Please insert Table 7 in here] 

4.4.3 Country-level impacts of COVID-19 and the Russia-Ukraine war 
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In this final analysis, we remove the variable 𝑁𝑜𝑟𝑑𝑖𝑐 and re-estimate Eq. (15) at the 

country level. In this way, we can add more insights into the heterogeneous impacts of the two 

crises. To conserve space, we report the estimates of 𝛼1 and 𝛿1 of each country at various 

quantiles and corresponding t-statistics in Appendices A4 and A5. We display 𝛼1 and 𝛿1from 

the lowest to the highest in Figs. 10-13. In Figs. 10 and 11, 𝛼1 and 𝛿1 measure the effects of 

the COVID-19 pandemic and the Russia-Ukraine war on the PSIGas-Electricity of each country, 

respectively. Likewise, Figs. 12 and 13 show their impacts on the PSIEUA-Electricity. 

Figure 10. Effect of COVID on PSIGas-Electricity of Selected European Countries at Various Quantiles 

 

Figure 10A. At the middle quantile 

 

 
Figure 10B. At the lower quantile 
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Figure 10C. At the upper quantile 

 

As observed in Fig. 10, the impact of COVID-19 on PSIGas-Electricity is mostly negative 

across countries and quantiles, which is consistent with our findings in Table 7. The negative 

effect of COVID-19 is most severe in Italy in all quantiles, indicating that the return nexus 

between the Italian electricity and gas markets are profoundly impacted by the pandemic. Other 

countries exhibit strong impacts of the pandemic across quantiles including the UK and France 

(at the middle quantile); the UK and Germany (at the lower quantile); and Spain and Poland 

(at the upper quantile).  

In Fig. 11, the effect of the war on the PSIGas-Electricity is strongest in Italy and Norway 

(at the middle quantile); France and Netherlands (at the lower quantile); and Italy and Spain 

(at the upper quantile). The severe impact of COVID-19 and the war on the electricity-gas 

nexus in Italy can be explained by the strong reliance of the country on gas. As shown in 

Appendix A2, gas accounts for 43.71% of the energy mix in Italy in 2021, which is the highest 

proportion across countries in the sample. In addition, as of 2021, the majority of gas imports 

in Italy come from Russia (29.2%)20, indicating the large impact of the war on the country’s 

gas-electricity nexus. 

 

 
20 See the gross imports of natural gas in Italy in 2021 by country at 

https://www.statista.com/statistics/787720/natural-gas-imports-by-country-of-origin-in-italy/ 
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Figure 11. Effect of WAR on PSIGas-Electricity of Selected European Countries at Various Quantiles 

 

Figure 10A. At the middle quantile 

 

 

Figure 10B. At the lower quantile 

 

 
Figure 10C. At the upper quantile 
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In Fig. 12, the PSIEUA-Electricity of Italy continues to suffer the most impacts from the COVID-

19 pandemic, regardless of the quantile used to compute PSIEUA-Electricity. On the contrary, the 

effects of the war on PSIEUA-Electricity are highest in the Netherlands (at the middle quantile), 

Spain (at the lower tail), and Norway (at the upper tail). 

Figure 12. Effect of COVID-19 on PSIEUA-Electricity of Selected European Countries at Various Quantiles 

 
Figure 10A. At the middle quantile 

 

 
Figure 10B. At the lower quantile 
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Figure 10C. At the upper quantile 

 

Figure 13. Effect of War on PSIEUA-Electricity of Selected European Countries at Various Quantiles 

 
Figure 10A. At the middle quantile 

 

 
Figure 10B. At the lower quantile 
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Figure 10C. At the upper quantile 

 

4.5 Robustness tests 

To check the robustness of our findings, we conduct two additional empirical works. 

First, we re-estimate the time-varying TCI index using different VAR model specifications. 

Specifically, we change the H-step forecast head (ℎ) from 10 to 5 and the rolling window 

(𝑛) from 200 to 250 days. The TCIs at the conditional mean and across quantiles calculated 

using new model specifications are displayed in Appendix A6. As evidenced in the appendix, 

the time variations of these indices are very similar to those in Fig. 5, showing that our baseline 

findings are not affected by changing model specifications. 

In addition, we use another proxy for the gas market, which is the reference gas price 

from the Title Transfer Facility (TTF) in the Netherlands (RFV), to compute the dynamic TCI. 

The results, displayed in Appendix A7, are very similar to our baseline results in Fig. 5. This 

closeness adds further credence to our main findings documented in the papers.21 

 

5. Conclusion and policy implications 

 
21 Connectedness tables using the new model specifications or the new gas proxy also yield similar results about 

the role of gas, EUA, and electricity markets as our baseline results in Tables 2, 3, and 4. These results are available 

upon request. 
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This paper examines return connectedness among the European electricity, EUA, and 

natural gas markets. The study covers an extended period, which includes upheaval in these 

markets due to external factors. 

Unlike many physical and financial commodities, price volatility interconnectedness in 

the electricity markets is dependent on the physical links through interconnectors between the 

electricity systems, their capacity, and free flow of electricity. Demand and supply in the 

electricity markets must match in real-time while transmission of volatility towards price 

equalisation can, especially at times of market stress, can have economic and even political 

concerns.  

The present study has outlined a range of detailed results pertaining to return 

connectedness in the European electricity, natural gas, and emissions allowance markets. These 

conclusions highlight the high-level prominent findings among these. The results show large 

differences in return connectedness among the markets. A closer examination reveals a regional 

pattern in these differences where the Nordic, central and western European, and southern 

clusters of connectedness can be observable. From a resource-mix perspective, the Nordic 

markets are complementary and physically well-connected. As expected, they exhibit a high 

degree of price return volatility connectedness, as evidenced in our results. Moreover, we 

observe that the total connectedness indices at lower and upper tails of the conditional 

distribution are significantly higher than those of mean or middle quantiles. 

We also find that natural gas and EUA markets are net receivers of shocks from the 

electricity markets, i.e. both receive more return shocks from the electricity markets than they 

diffuse to the electricity markets. Moreover, natural gas and EUA markets exhibit stronger 

connectedness with electricity markets at times of extreme negative or positive shocks, while 

they remain net receivers of return shocks. 
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Our time-varying analysis also found additional insights. For instance, unlike the total 

connectedness indices at mean and median, these indices at lower and upper tails vary in a 

relatively narrow band and exhibit a similar pattern over time. Furthermore, the spillover 

effects are symmetrical for both extremely negative and positive shocks. 

Regarding the effect of the COVID-19 pandemic and the Ukraine-Russia war events, 

the results are justifiable. The overall effects of COVID-19 on measures of connectedness at 

the median, upper, and lower tails of are negative and significant. By contrast, the effect of the 

Ukraine-Russia war on connectedness is positive and significant, with the upper tail of total 

connectedness being a notable exception. 

A high-level conclusion from the results is that intra-regional interconnectedness in the 

EU electricity market is relatively high. However, the integration across the different regions 

of the EU can still be improved. Moreover, much of the future renewable resources are far from 

demand centres thus requiring extensive and costly new grid systems. The lack of sufficient 

grid capacity can limit or slow down future development of the sector. The Ten-Year Network 

Development Plan (TYNDP) exercise and associated arrangements in the EU aim to increase 

the interconnectedness of the physical electricity markets with a view to facilitate the free flow 

of electricity and to promote renewable energy and security of supply. 

However, while substantial grid investments will be needed in the coming years, public 

acceptance of major grid developments will remain as a major issue in many parts of Europe. 

Reducing this obstacle requires new legislation as innovative mechanisms that also address 

citizen concerns. Finally, political concerns over distributional implications of volatility in 

individual member countries and market connectedness may emerge at times of crisis and 

market stress. Therefore, a need for further strengthening political agreements for burden 

sharing of the increasingly interconnected network capacity and energy flows. 
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Appendix A1. Energy Mix of Selected European Countries Over Time 
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Note: This figure shows the energy mix of the selected countries with data sourced from the International Energy Association’s website. 
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Appendix A2. Role of Natural Gas in Energy Mix of Selected Countries 

 

Note: This figure shows the contribution of natural gas (as percentage) to the energy mix of selected 

countries in 2021 with data sourced from the International Energy Association’s website. 
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Appendix A3. CO2 emission by European countries in 2019 

 

Note: This figure shows the amount of CO2 emission in thousand metric tons of selected countries in 

2019 with data sourced from Statista. 
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Appendix A4. Effects of COVID-19 and the Russian-Ukrainian war on PCIGas-Electricity at the country-level 

Panel A. Impact of COVID-19 

 DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN 

𝛼1(middle) 0.02 

(0.24) 

-0.23*** 

(-3.25) 

0.53*** 

(7.71) 

-0.30** 

(-2.65) 

-1.24*** 

(-17.96) 

0.59*** 

(7.11) 

-1.78*** 

(-15.22) 

0.44*** 

(5.68) 

-0.64*** 

(-9.80) 

-1.54*** 

(-17.92) 

-0.78*** 

(-10.05) 

𝛼1(lower) -0.15*** 

(-15.34) 

-0.14*** 

(-10.44) 

-0.14*** 

(-7.76) 

0.07*** 

(2.90) 

-0.17*** 

(-11.95) 

-0.20*** 

(-12.70) 

-0.31*** 

(-20.29) 

-0.05*** 

(-4.36) 

-0.04*** 

(-3.00) 

-0.29*** 

(-22.49) 

-0.11*** 

(-10.40) 

𝛼1(upper) -0.12*** 

(-4.66) 

-0.08** 

(-2.58) 

-0.25*** 

(-10.40) 

-0.05* 

(-1.81) 

-0.18*** 

(-7.80) 

-0.19*** 

(-5.75) 

-0.43*** 

(-12.81) 

-0.04 

(-1.25) 

-0.35*** 

(-17.18) 

-0.20*** 

(-13.29) 

-0.28*** 

(-13.77) 

Panel B. Impact of war 

 DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN 

𝛿1(middle) 0.14 

(1.44) 

0.31*** 

(3.22) 

1.06*** 

(10.03) 

-0.75*** 

(-4.28) 

0.89*** 

(6.61) 

0.67*** 

(5.04) 

1.89*** 

(10.68) 

-0.26** 

(-2.54) 

0.75*** 

(4.58) 

-0.72*** 

(-4.70) 

0.88*** 

(7.02) 

𝛿1(lower) -0.02 

(-1.18) 

0.15*** 

(7.08) 

0.34*** 

(6.92) 

0.34*** 

(10.38) 

0.55*** 

(15.00) 

0.006 

(0.30) 

0.36*** 

(12.40) 

0.39*** 

(13.16) 

-0.06* 

(-1.88) 

-0.21*** 

(-8.57) 

0.17*** 

(5.71) 

𝛿1(upper) -0.02 

(-0.85) 

0.08*** 

(3.28) 

0.06 

(1.09) 

0.16*** 

(6.52) 

0.15*** 

(5.78) 

-0.10*** 

(-4.28) 

0.24*** 

(9.23) 

0.17*** 

(5.26) 

0.05 

(1.51) 

-0.07*** 

(-4.10) 

0.34*** 

(11.30) 

Note: This table represents the estimates of coefficients, 𝛼1 and 𝛿1, in Eq. (15) at the country-level regression using PCIGas-Electricity as the dependent variable. ***, 
**, and * indicate statistical significance at 10%, 5%, and 1% level, respectively.
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Appendix A5. Effects of COVID-19 and the Russian-Ukrainian war on PCIEUA-Electricity at the country-level 

Panel A. Impact of COVID-19 

 DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN 

𝛼1(median) 0.16* 

(1.87) 

-0.20*** 

(-3.48) 

0.41*** 

(5.55) 

-0.48*** 

(-5.16) 

-0.54*** 

(-8.53) 

-0.15** 

(-2.42) 

-1.73*** 

(-24.13) 

0.24*** 

(3.94) 

-1.42*** 

(-18.53) 

-0.03*** 

(-0.53) 

-0.36*** 

(-5.49) 

𝛼1(lower) -0.03*** 

(-2.76) 

-0.26*** 

(-25.77) 

-0.07*** 

(-3.85) 

0.01 

(0.65) 

-0.28*** 

(-16.85) 

-0.22*** 

(-15.33) 

-0.39*** 

(-34.52) 

-0.04*** 

(-4.55) 

0.005 

(0.34) 

-0.24*** 

(-16.43) 

-0.06*** 

(-9.13) 

𝛼1(upper) 0.08*** 

(6.02) 

0.04*** 

(3.09) 

-0.05*** 

(-4.82) 

0.04** 

(2.08) 

-0.04*** 

(-3.27) 

0.02 

(1.10) 

-0.32*** 

(-14.88) 

0.09*** 

(7.31) 

-0.07*** 

(-4.55) 

-0.01 

(-0.64) 

0.07*** 

(6.33) 

Panel B. Impact of war 

 DNK FIN NOR SWD FRA GER ITA NTH SPN UK PLN 

𝛿1(middle) 0.33*** 

(2.87) 

-0.47*** 

(-4.52) 

0.86*** 

(8.63) 

0.94*** 

(8.92) 

0.97*** 

(11.19) 

0.39*** 

(3.80) 

1.17*** 

(8.98) 

1.58*** 

(9.33) 

0.96*** 

(7.33) 

-0.38*** 

(-2.92) 

0.85*** 

(8.70) 

𝛿1(lower) 0.06*** 

(2.71) 

0.15*** 

(8.57) 

0.10** 

(2.61) 

0.26*** 

(11.56) 

0.33*** 

(12.04) 

0.03 

(1.44) 

0.28*** 

(12.51) 

0.15*** 

(7.58) 

0.51*** 

(15.97) 

-0.09*** 

(-5.16) 

0.32*** 

(12.61) 

𝛿1(upper) -0.14*** 

(-4.68) 

-0.10*** 

(-4.22) 

-0.50*** 

(-10.58) 

-0.16*** 

(-9.22) 

-0.12*** 

(-5.35) 

-0.35*** 

(-12.85) 

-0.07*** 

(-4.15) 

-0.11*** 

(-4.50) 

0.23*** 

(7.23) 

-0.27*** 

(-9.46) 

0.31*** 

(13.13) 

Note: This table represents the estimates of coefficients, 𝛼1 and 𝛿1, in Eq. (15) at the country-level regression using PCIEUA-Electricity as the dependent variable. 

***, **, and * indicate statistical significance at 10%, 5%, and 1% level, respectively.
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Appendix A6. Robustness check using RFV as natural gas proxy 

 

Note: This figure shows the time-varying Total Connectedness Index (TCI) of the system at the conditional mean and at various quantiles, during the research 

period, using RFV as natural gas proxy.
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Appendix A7. Robustness check using different specifications to compute the TCI 

 

Note: This figure shows the time-varying Total Connectedness Index (TCI) of the system at the conditional mean and at various quantiles, during the research 

period, using alternative VAR model specifications. 
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