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Abstract
Fuel price caps are one of the potential regulatory tools for controlling wholesale

electricity prices when fuel prices are volatile. In this paper, we introduce a theoretical
model to study the effects of such caps on firms’ bidding behavior and clearing prices
in spot market auctions. We then use data from the Australian National Electricity
Market (NEM), which recently implemented such caps, to empirically test and compare
their effectiveness in three different states. Our theoretical findings suggest that fuel
price caps can be binding, especially when electricity demand is lower and competition
among generators is higher. When demand is high, alternative policy tools, such as
market price caps, may be more effective in controlling auction prices. Our empirical
analysis employs various techniques, such as Generalized Additive Models (GAM) and
machine learning algorithms, to test the effectiveness of price caps in the NEM. We
find mixed results regarding the effectiveness of fuel price caps in different states.
Specifically, fuel price caps reduced wholesale electricity prices in Queensland and New
South Wales, while they were not effective in controlling wholesale prices in Victoria.
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1 Introduction

The prices for fuel such as natural gas and coal skyrocketed in the aftermath of the
2022 war between Russia and Ukraine causing a crisis among wholesale electricity markets
such as the Australian National Electricity Market (NEM) dominantly powered by fossil
fuels. In 2021 alone, fossil fuels contributed to 71% of total electricity generation in the
NEM consisting of coal (51%), gas (18%) and oil (2%). Therefore, since late 2022, several
countries including Australia have imposed general fuel price caps as a market correction
mechanism to protect the businesses and households from instances of excessively high
gas and coal prices. Australia’s Commonwealth Government imposed fixed price caps of
$125 per tonne (t) and $12 per giga joule (GJ) for coal and gas respectively in late 2022
(Simshauser, 2023). The European Union also agreed on a “dynamic” gas price cap to be
triggered for inframarginal electricity producers excluding hydro at 180 euros per megawatt
hours (Council Regulation EU, Benjamin, 2022).1 Interestingly, in Australia, the price cap
on natural gas may become permanent to ensure that domestic industry remains viable
while consumers have access to affordable energy (Australian Government, 2022).2

In liberalized wholesale electricity markets such as the NEM, increases in gas prices
have been passed on to the wholesale electricity markets, as gas-fired generation often sets
market prices. This has led to electricity prices that are well above their historical average
(Fabra, 2022). Consequently, the rational economic expectation is that fuel price caps, if
implemented appropriately, will lower the auctioned wholesale electricity price and ulti-
mately result in lower prices for consumers and households. However, to date, no empirical
evidence exists to document the effectiveness of the imposed price caps in Australia. The
primary question this study seeks to answer is whether price caps have successfully lowered
wholesale electricity prices by suppressing the auction price of wholesale electricity. We aim
to address this question by first proposing a theoretical framework that investigates how
price caps on fuels might affect bidding behaviour and auction prices in a wholesale market.
Subsequently, we use data from the NEM to test how the implemented caps influenced spot
market prices in three major states in Australia.

Our theoretical analysis reveals that fuel price caps may help in reducing the auction
clearing prices, particularly under conditions of lower electricity demand. Nevertheless,
these price caps do not significantly impact auction prices when the price increase is driven
by higher demand. Under such circumstances, market price caps become crucial in con-
trolling inflated prices due to demand. Therefore, the effectiveness of fuel price caps is
context-dependent, working effectively in some scenarios and proving less useful in others.
Our empirical investigation leverages three forecasting methodologies - simple linear regres-
sion, non-linear regression via Generalized Additive Models (GAM), and machine learning

1The price cap will be automatically activated if the month-ahead Title Transfer Facility (TTF) price
exceeds €180/MWh for 3 working days and if the TTF price is €35 higher than a reference price for
liquefied natural gas (LNG) on global markets for the same 3 working days.

2https://treasury.gov.au/sites/default/files/2022-12/c2022-343998-cp_2.pdf.
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models. The findings suggest a mixed effectiveness of the fuel price cap policy across dif-
ferent regions. For Queensland, the policy appears successful, as actual prices were lower
than the predicted ones. In New South Wales, the impact of the policy was less clear,
showing some effectiveness but not producing very significant outcomes. In Victoria, the
results were statistically insignificant, indicating that the policy was ineffective in reducing
electricity prices.

Our study is one of the few studies globally, and certainly the first in the Australian
context, to directly examine the effectiveness of fuel price caps on auctioned wholesale
electricity prices. This study is both timely and relevant, as the Australian government
has proposed permanent price controls in the form of a ‘reasonable pricing provision’, con-
sidering that Australia exports most of its natural gas.3 Therefore, the extremely high
international prices, caused by market disruptions in Europe, are leading to high domestic
prices in Australia, against which Australian consumers need to be safeguarded.4

The economics of implementing price caps as a credible regulatory instrument to es-
tablish market stability is, however, debated. Nonetheless, an observable or unobservable
price cap has always existed for a vital commodity or service such as electricity that is
motivated by political economy factors (Jamasb et al., 2023). Moreover, price caps are
generally driven by distributional and equity concerns, although they incur some efficiency
losses. Gas price caps, for example, have been demonstrated to hinder long-term investment
in Australia by sending negative signals for exploration and development of gas resources,
gas storage economics in Victoria, and the viability of LNG imports on the east coast.5

Reducing long-term investment incentives is detrimental to achieving resource adequacy
inviting future supply shortages. Price caps will certainly lower Australian gas production
and reduces the value of Australia’s gas resources (i.e., resource wealth).6 Gas price caps
can also delay the progress towards global emissions reduction and renewable energy tran-
sition. A better economic approach would be to let the market maximise the value of the
resource and then to choose a tax policy such as a tax on windfall profits that does not
affect investment (Pollitt et al., 2022). A recent modelling study by Roeger and Welfens
(2022) in the context of the Russia-Ukraine War captured the impacts of gas price caps on
electricity production effects. Their results favour a combination of gas price caps targeted
at the electricity market rather than a general price cap and transfers over a tax on windfall
profits in generating positive macroeconomic effects as well as a positive welfare effect on

3Natural Gas Price Caps in Australia are Poor Policy and may be Permanent:[https://www.iaee.org/
en/publications/newsletterdl.aspx?id=1063]

4It is important to note that the 2023 Gas Mandatory Code of Conduct allows companies that satisfy the
Australian Competition and Consumer Commission (ACCC) with “court-enforceable supply commitments”
to become exempt from the cap. See, The Australian Government, Department of Climate Change, Energy,
the Environment and Water:[https://www.dcceew.gov.au/]. Furthermore, the gas price caps are not
binding to small producers that direct their supply solely to the domestic market.

5See, The Australian Petroleum Production & Exploration Association (APPEA):[https://www.appea.
com.au/wp-content/uploads/2022/12/221201-EnergyQuest-APPEA-Price-Cap-Report.pdf]

6https://www.iaee.org/en/publications/newsletterdl.aspx?id=1063
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households through lower electricity prices.
The NEM provides an intriguing case study to investigate the impacts of gas price caps.

The government has opted to extend the price cap on wholesale gas prices until at least mid-
2025 with the aim of curbing escalating energy costs. The NEM, operational as a wholesale
spot market for electricity since December 1998, is composed of five interconnected states
that also function as price regions: Queensland (QLD), New South Wales (NSW) (inclusive
of the Australian Capital Territory (ACT)), South Australia (SA), Victoria (VIC), and
Tasmania (TAS). The NEM operates as an energy-only market, where the wholesale elec-
tricity price is determined based on offers made by generators to supply specific volumes
of electricity to the market at specified prices and times, and according to the prevailing
demand. Price volatility is inevitable in an energy-only market and therefore NEM has a
market price cap of $15,500/MWh and a market price floor of -$1000/MWh. In addition
to the marker price cap, the NEM has built-in price caps which are automatically triggered
if wholesale prices are persistently too high. The regulator imposes a $300/MWh price if
cumulative wholesale spot prices total approximately $1.4m in any state on a seven-day
rolling.

The market clearing rule in the NEM is based on a uniform-price auction.7 Numerous
studies have analysed various aspects of the uniform-price auction in wholesale electricity
markets. For instance, Fabra et al. (2006) compares the uniform-price auction with the
discriminatory auction in a paper motivated by the electricity market in England and
Wales. They show that the uniform-price auction results in higher prices, but the overall
efficiency ranking of the two auctions remains ambiguous. In the Australian context, Khezr
and Nepal (2021) previously studied uniform-price auctions in a wholesale electricity market
where firms have diminishing marginal values. They argue that if marginal cost regulation is
not properly designed, firms cannot generate a positive profit in the auction. Consequently,
capacity payments are necessary to guarantee the long-term operation of the generators.
However, in this paper, our primary focus is on fuel price caps in an energy-only market,
where we aim to show how these price caps could influence bidding behavior and under
what conditions the caps are effective.

The contributions of the paper are twofold. From the empirical point of view, this is the
first paper in the Australian context to empirically examine the impacts of fuel price caps on
wholesale electricity prices by price zones under different conditions. We employ Random
Forest and Boosting algorithms to identify significant variables and analyze the impact of
coal/gas caps on electricity prices. These algorithms excel in capturing non-linear relation-
ships, extracting hidden insights, and improving predictive performance. Additionally, their
robustness against outliers minimizes their influence on the analysis.8 For forecasting, we

7Given that electricity is a homogeneous product, the literature on multi-unit auctions involving homo-
geneous goods is most relevant to this context. See Khezr and Cumpston (2022) for a survey.

8Capturing intricate patterns and interactions that may not be easily captured by traditional time
series models. This flexibility allows for the extraction of hidden insights and enhances overall predictive
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utilize the GAM due to its flexibility in capturing complex relationships, and handling non-
linearity, interactions, and non-parametric components. GAMs adapt to changing trends
and capture time-varying effects, enhancing forecasting accuracy. Furthermore, GAMs ex-
hibit robustness against outliers, making them resilient to extreme values in the time series
data (For more details about the application of GAM in forecasting, see Serinaldi (2011),
Meier et al. (2020), and Matsumoto et al. (2022).9 The second contribution of the paper is
the theoretical analysis of fuel price caps in wholesale electricity auctions. This study is the
first of its kind that investigates such interventions and using auction theory shows under
what circumstances these price caps can reduce the auction clearing price. The findings of
our study is significant to policymaking and would shed light on the important issue of the
design of effective price caps on fuels in the wholesale electricity market.

The rest of this paper is organized as follows. Section 2 presents a fundamental model of
the spot market incorporating fuel price caps. In Section 3, we outline the empirical analysis
and methodology employed to investigate the NEM both before and after the introduction
of price caps. The empirical findings are presented in Section 4. Lastly, Section 5 concludes
the paper by offering final remarks.

2 Theoretical model

Suppose there are two firms in a wholesale electricity market that collectively produce
the entire supply of the market. Each firm i ∈ 1, 2 has a marginal cost of ci > 0 for
producing electricity. Without loss of generality, we assume c1 < c2. We attribute the
marginal cost of producing electricity solely to fuel costs. Hence, the two firms use different
technologies, each with varying levels of fuel efficiency. One can consider generators that
use different fossil fuels, such as natural gas or coal, to produce electricity. The marginal
costs are random realizations from two different distributions: C1(.) on [c1, c̄1] and C2(.)
on [c2, c̄2] with c̄1 < c2.

Each firm i has a maximum capacity, denoted by λi, to produce electricity at their fixed
marginal cost. Market demand for electricity is represented by θ, which is unknown at the
time of production. Firms are only aware that θ is independently distributed according to
some distribution function D(.) with density d < ∞ on [0, θ̄]. We allow the possibility of
demand exceeding the supply, that is, λ =

∑
λi < θ̄.

Firms compete to sell electricity in a spot market using a uniform-price auction. The
stages of the game are as follows: First, the marginal costs are realized by all parties. Then
both firms submit bid prices, indicating the minimum price they are willing to accept to

performance. Further, employing Random Forest and Boosting algorithms effectively minimize the influence
of outliers, unlike certain time series models that may be more susceptible to outliers and require additional
preprocessing steps.

9Some recent studies about electricity price forecasting relied on time-series modelling and agent-based
simulation techniques (Lehna et al., 2022; Naeem et al., 2022; Apergis et al., 2023).
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sell their supply of electricity. Finally, the system operator begins with the lowest bid and
continues to clear the market until supply meets demand. The price for all units supplied
is set at the intersection of supply and demand. Let p̄ denote the maximum price (market
price cap) that is allowed for electricity in the wholesale market. Consequently, the price
paid to the generators is the minimum of the auction clearing price and p̄.

In this paper, we investigate two scenarios: In the first, fuel prices are not regulated,
and marginal prices can assume any value within their defined intervals. In the second, we
consider a case where the regulator imposes a cap on fuel prices, which is binding and less
than the highest possible fuel prices. We seek to understand how such fuel price regulation
influences the bidding behavior of firms in the spot market and, ultimately, how it impacts
wholesale electricity prices.

2.1 Bidding in a spot market

We start by exploring a case where firms bid to sell electricity in a spot market with
no control over the fuel prices. At this stage we assume the marginal costs can take any
value within their interval. Given that the demand is not known at the time of bidding we
abstract to a case where each firm submit a bid price for their total capacity. Therefore
firms cannot withhold capacity to increase the auction clearing price.

Proposition 1. The equilibrium auction clearing price is set as follows depending on the
demand:

• If θ ≤ λ1 then the auction clearing price is equal to min{c2, p̄}.

• If λ1 < θ ≤ λ then the auction clearing price is equal to p̄.

• If λ ≤ θ then the auction clearing price is equal to p̄.

Proof. (i) Suppose θ ≤ λ1. In this case, demand is lower or equal to the production
capacity of Firm 1. As Firm 1 is the more cost-efficient firm, it will be able to supply all
the electricity needed at its marginal cost c1. However, since the auction clearing price is
set by the highest accepted bid, and Firm 2 will bid no less than its own marginal cost
c2, the auction clearing price will be equal to c2 if Firm 2’s supply is needed to meet the
demand. This results in the price being set to c2. If Firm 1 bids any amount above c2, then
Firm 2 can underbid it and win the auction. Therefore any bid above c2 by Firm 1 cannot
be an equilibrium.

(ii) If λ1 < θ ≤ λ: In this case, demand exceeds the capacity of Firm 1 but is lower or
equal to the total capacity available from both firms λ. Therefore, both firms’ supplies are
needed to meet the demand. As the auction price is set by the highest accepted bid, bidding
equal to c2 guarantees the dispatch of Firm 1’s entire capacity. Firm 2’s best response is to
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bid equal to p̄ and sell an amount equal to the remaining demand at the highest possible
price.

(iii) When λ ≤ θ, the demand is too high and above the total capacity to supply. In
this case, the demand for electricity exceeds the total capacity available from both firms.
Here, every unit of capacity from both firms will be used to meet the demand. In this high
demand scenario, the firms have the incentive to bid high, and considering the price cap,
they will bid at p̄. Hence, the auction clearing price will be equal to p̄.

The analysis above suggests that marginal costs and market price caps play a critical
role in determining the auction clearing price. In our basic model, where there are only two
firms, the significance of price caps is heightened as firms possess greater market power.
They can easily exploit this power during the bidding process to drive prices to their
maximum level. However, even with only two firms, there are instances where the marginal
cost of firm 2 sets the auction clearing price. Therefore, a price cap on marginal costs
implies that, on average, we observe lower auction clearing prices.

Moreover, the results of Proposition 1 underscore the importance of market price caps
in the spot market and their potential impact on setting wholesale electricity prices. If the
caps are too high, they will become non-binding, and we can expect to see higher prices on
average. If the price caps are seen too low, they may fall below marginal (fuel) costs and
result in negative profits for electricity generators. Consequently, in an environment fraught
with multiple uncertainties, selecting an appropriate price cap becomes a challenging task.

2.2 Bidding with fuel price caps

Suppose the regulator imposes two binding price caps on fuel prices. Specifically, we
denote κ1 < c̄1 and κ2 < c̄2 as the two price caps. In situations where the fuel price exceeds
these caps, the regulator enforces the hard cap either through subsidies or other regulatory
methods. It is reasonable to assume that these price caps are lower than the market price
cap, p̄. The reasoning is if a fuel price cap exceeds the market price cap, p̄, it essentially
becomes non-binding as the price can never surpass p̄. The following proposition examines
various scenarios concerning the demand and firms’ capacities.

Proposition 2. When there are price caps on fuel prices, the equilibrium auction clearing
price is set as follows depending on the demand:

• If θ ≤ λ1 then the auction clearing price is equal to min{c2, κ2}.

• If λ1 < θ ≤ λ then the auction clearing price is equal to p̄.

• If λ ≤ θ then the auction clearing price is equal to p̄.
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Proof. (i) If θ ≤ λ1: In this case, demand is lower or equal to the production capacity of
Firm 1. As before, Firm 1 can meet all the electricity demand. Hence the auction clearing
price will be set by Firm 1’s bid based on the uniform price auction rules defined before.
Similar to the proof of Proposition 1, one can show that bidding equal to c2 is the best
response of Firm 1. However in this case, because there is a cap on fuel prices, c2 cannot
go beyond κ2. Therefore the auction clearing price is the minimum of the two.

The rest of the proof is similar to the proof of Proposition 1.

The above result suggests that when demand is too low, the fuel price cap could play
a role in setting the auction clearing price. However, similar to the case without fuel price
caps, with average to high demand the price can only be controlled with the market price
cap. Thus fuel price caps are only effective for a particular case; where the demand is
low and fuel price is high. Later in subsection 2.4 we discuss the effectiveness of the two
different price regulations in more detail.

2.3 Multiple electricity generators

We now extend our basic model to a case where there are multiple generators of each
type. Suppose there are n > 1 firms with a marginal cost equal to c1 and there are m > 1
firms with a marginal cost equal to c2. Denote λn and λm as the total capacity of type 1
and 2 firms respectively. For tractability, we assume firms in each type are identical.

When there are multiple firms that generate electricity, the market power of firms de-
clines relative to the benchmark case with only two firms. Therefore, we expect that in
more instances we observe prices that are below the market cap. However, one concern
is that with multiple firms, a pure strategy Nash equilibrium may not exist. The next
proposition characterises the results in such scenarios.

Proposition 3. With multiple firms and fuel price caps, the equilibrium auction clearing
price is set as follows depending on the demand:

• If θ ≤ λn then the only pure strategy equilibrium price is min{c1, κ1}.

• If λn < θ ≤ λn + λm then the only pure strategy equilibrium price is min{c2, κ2}.

• If λn + λm ≤ θ then the auction clearing price is equal to p̄.

Proof. If θ ≤ λn: In this case, the market demand θ is less than or equal to the total
capacity of firms with marginal cost c1. All demand can be met by these low cost firms. If
all type one firms place bids equal to c2 they are not guaranteed to dispatch their capacity
as the demand is less or equal to the sum of their capacities. In fact, any price above c1
cannot characterize an equilibrium as type 1 firms would have incentives to undercut this
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price marginally and sell their total capacity. The only price that can be an equilibrium is
c1 which gives all type one firms zero profit. Type two firms are indifferent between placing
any bid equal to or above c2. The auction clearing price is therefore determined by the bids
of type one firms and the price cap imposed by the regulator, which is min c1, κ1.

If λn < θ ≤ λ: Suppose type one firms submit a bid price equal to c2. We first show
there is no equilibrium with a clearing price above c2. To have such equilibrium at least
one type 2 firms must bid above c2. Given that in this scenario the total demand is less
than the supply, any firms with not dispatched remaining capacity would have incentives
to marginally bid below a price that is above c2 to increase their payoff. Therefore a price
above c2 cannot characterize a pure strategy equilibrium.

If λ ≤ θ: In this scenario, the total market demand exceeds the total capacity of all
firms. The market is short on supply. Therefore, similar to the previous proposition the
price cap p̄ becomes the equilibrium price.

The above result suggests that, with more producers, there’s a higher chance that
prices become lower. It is intuitive as more firms mean less market power and higher
competition. The implication of this result for the caps we study is that, when we extend
our model to a more realistic situation with multiple firms, then there is a lower chance that
the auction clearing price becomes equal to the market cap. Therefore, market caps will
become less important. Although the results cannot confirm the importance of marginal
prices in determining the auction clearing price, it is reasonable to conclude that now with
multiple firms the marginal price caps may become more important than the market price
cap. While there is no pure strategy equilibrium when the market demand is between
λn < θ ≤ λ, one can still argue marginal costs are important determinant of firms’ bidding
functions as they are the lowest price that firms accept to produce electricity.

2.4 Market price cap versus fuel caps

In this subsection, we discuss the distinctions between market price caps and fuel caps
from a regulatory perspective. The analysis conducted so far in this section provides us with
a deeper understanding of how firms react to each of these regulatory frameworks. Subse-
quently, we highlight the advantages and disadvantages of each method from a theoretical
viewpoint.

One crucial point to note is that when high demand drives prices up, fuel price caps have
no role in determining wholesale electricity prices. In such circumstances, the market price
cap p̄ is the only mechanism available to prevent high electricity prices. Our benchmark
results suggest two main bidding strategies. The first is competitive bidding, where firms
reduce their bids to match their marginal costs. This is the scenario where fuel price caps
can influence electricity prices. The second strategy involves firms pushing the price up
to the market price cap. In such circumstances, fuel price caps have no influence on the
auction clearing price.
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When we expand the benchmark model to include multiple firms of each type producing
electricity, the reduction in market power results in fewer instances where the auction
clearing price equals the price cap. Under these circumstances, we expect bidding strategies
to fall somewhere between the two extreme scenarios outlined above. Consequently, the
significance of fuel price caps increases relative to a situation with high market power and
a low number of firms.

In conclusion, both fuel price caps and market price caps are effective regulatory tools
for controlling prices in a wholesale electricity spot market. As competition among firms
increases, we anticipate fuel price caps to play a more substantial role in controlling market
prices. When competition is low or demand is high, fuel price caps are not an effective
way of controlling prices. In such cases, the market price cap plays a more crucial role in
controlling wholesale electricity prices.

3 Empirical analysis

In this section, we aim to comprehensively examine the impact of the gas cap policy in
Australia. Our analysis focuses on three crucial regions located in the eastern part of the
country, namely Queensland, New South Wales, and Victoria. These regions are of partic-
ular interest as they encompass a substantial portion of the NEM10 and collectively caters
to a considerable number of energy consumers, estimated to be in the range of millions.
Figure 1 shows NEM network regions on the east coast of Australia11.

To investigate the effects of the Gas cap policy, we employ a range of analytical methods
and techniques. To gain a deeper understanding of how the policy influences the electricity
market and its implications for the mentioned regions. We aim to provide valuable insights
and shed light on the potential consequences and outcomes associated with the market
capitalization policy. The selected regions, hold significant importance within the NEM
framework. Queensland, located in the northeastern part of Australia, is renowned for its
abundant natural resources, particularly coal and gas reserves. New South Wales, situated
to the south of Queensland, is also rich in coal resources and plays a crucial role in the
country’s energy landscape. Victoria, located in the southeastern part of Australia, has
diverse energy sources, including coal, natural gas, and renewable energy.

When comparing the Australian electricity market to other markets, distinct features
emerge. On the demand side, electricity is traded almost in real-time, with prices settled

10According to the Australian Energy Market Operator (AEMO), which operates the NEM, the market
serves over 9 million customers in the eastern and southern states. However, this figure represents the total
number of customers rather than households specifically. It includes residential, commercial, and industrial
customers, both small and large.

11Source: Australian Energy Market Operator
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just five minutes ahead. In contrast, European markets settle electricity prices one day
in advance. On the supply side, Australia relies more heavily on high running cost fossil
fuel power stations, whereas the American and European markets have a larger share of
nuclear or hydraulic power generation. Therefore, a modelling approach is needed that can
accommodate the unique characteristics of each market and be easily applied to electricity
prices across different regions. So in order to analyze the impact of the gas cap on electricity
prices, we adopt a systematic approach consisting of three distinct steps. Firstly, we employ
linear regression models to assess the relationship between the gas cap and electricity prices.
Secondly, we utilize a generalized additive model, which is a nonlinear model, to further
investigate this association. Lastly, we incorporate machine learning techniques, specifically
Support Vector Machines (SVM) and Random Forests, to enhance our understanding of
the complex dynamics between the gas cap and electricity prices.12

Figure 1: The National Electricity Market encompasses five interconnected regions situated
along the east coast of Australia, encompassing Queensland, New South Wales, Victoria,
Tasmania, and South Australia.

12In the NEM, wholesale prices can range from the floor price of −1000 AUD/MWh to the cap price of
14200 AUD/MWh.
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Figure 2: Australian electricity generation by fuel mix.

3.1 Data and Setting

The data set in this study contains the following; (a) five minutes of electricity (price
and demand) data sourced from each state of Australia, (b) temperature data set records
in Melbourne airport, NSW airport and Brisbane airport,13 (c) we consider calendar effects
such as holidays, weekdays and trend as well which we will explain them further in the
model.
The selection of states is based on their significant installation capacities and unique char-
acteristics within the electricity market. NSW possesses an installed generation capacity
of approximately 18,000 MW, with a diverse mix of generation sources including coal-fired
power plants, gas-fired plants, and renewable energy installations. In contrast, QLD boasts
a higher installed generation capacity of around 20,000 MW, derived from a variety of
sources such as coal, gas, and renewables. VIC, on the other hand, has a relatively lower
installed generation capacity of approximately 9,500 MW. While VIC relies heavily on
brown coal for electricity generation, it also utilizes gas-fired power plants and is experienc-
ing growth in its renewable energy sector. NSW has historically experienced higher prices
compared to other states. This can be attributed to factors such as network infrastruc-
ture costs, the generation mix, and demand-supply dynamics. However, prices in NSW are
subject to variation based on factors such as wholesale market conditions and regulatory
influences. In contrast, QLD has generally enjoyed lower electricity prices compared to
NSW and VIC. This can be partially attributed to the state’s abundant coal resources,
which provide a cost-effective source of generation. Nevertheless, variations in prices can
still occur in QLD due to factors such as network costs and demand patterns. In VIC, elec-

13We use daily temperature and maximum temperate data records via The Bureau of Meteorology in
Australia.
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tricity prices have shown fluctuating behavior influenced by elements like fuel costs, network
tariffs, and market dynamics. The state’s reliance on brown coal, which is becoming less
cost-competitive compared to renewable sources, contributes to price fluctuations.14

The datasets utilized in this study encompass a duration of 2 years, specifically ranging
from 01 September 2021 to 30 April 2023, resulting in a total of 166,176 five-minute obser-
vations. It should be noted that for analytical purposes, the data has been transformed into
578 daily observations. This decision is primarily motivated by the central objective of this
research, which aims to analyze the impact of coal and gas caps on electricity prices. By
aggregating the data into daily observations, the potential for biased outcomes arising from
forecasting errors is significantly reduced, thereby minimizing the risk of spurious results.
Additionally, the conversion to daily data facilitates synchronization with weather records,
as they are available at a comparable frequency. This transformation to daily data was also
influenced by limitations in the available dataset, which necessitated the consideration of
daily observations.
The Australian Energy Market Operator (AEMO) serves as the primary data source for
this information.15 Additionally, we incorporate temperature data obtained from records
at Melbourne Airport, NSW Airport, and Brisbane Airport. We specifically utilize daily
temperature records and maximum temperature values for these locations. The Bureau of
Meteorology in Australia provides the dataset utilized for this purpose.16 Furthermore, we
consider calendar effects in our analysis, including holidays, weekdays, and trends. These
factors are essential in capturing temporal variations that may influence electricity prices.
A detailed explanation of these calendar effects and their incorporation into the model will
be provided further in the subsequent sections.
Figure 3 presents the historical prices observed in the three distinct regions, namely NSW,
QLD, and VIC. The shaded portion corresponds to the duration when the market cap
policy was implemented. Table 1 demonstrates descriptive statistics of data for each re-
gion which in terms of the price range, NSW exhibits prices ranging from 17.91 to 966.19,
QLD’s prices span from -63.40 to 1933.65, and VIC’s prices vary between -50.03 and 797.55.
Skewness values indicate the distribution’s asymmetry, with NSW and VIC showing pos-
itive skewness of 2.61 and 2.23, respectively, while QLD demonstrates a highly positively
skewed distribution with a skewness of 4.78. It indicates a tendency towards higher price
spikes or extreme positive price movements. Kurtosis values reflect the tail heaviness of
the distributions, with NSW having a relatively high kurtosis of 9.32, QLD showing high

14In NSW, there are over 4 million electricity customers, with an estimated 2.7 million households using
electricity. Moving to QLD, approximately 2.6 million customers are served by the electricity network, with
around 1.9 million households utilizing electricity. Similarly, in VIC, the number of electricity customers is
approximately 2.6 million, aligning with the figure in QLD. VIC also has an estimated 2.6 million households
using electricity. These numbers highlight the substantial consumer base and high demand for electricity
in these states.

15AEMO:[https://aemo.com.au/]
16The Bureau of Meteorology in Australia

13

https://aemo.com.au/
http://www.bom.gov.au/climate/data/


0

500

1000

1500

2000

2021−10−20 2022−02−07 2022−05−28 2022−09−15 2023−01−03 2023−04−23
Date

P
ric

e

Electricity price of NSW

(a) Historical price of electricity in NSW

0

500

1000

1500

2000

2021−10−20 2022−02−07 2022−05−28 2022−09−15 2023−01−03 2023−04−23
Date

P
ric

e

Electricity price of QLD

(b) Historical price of electricity in QLD

0

500

1000

1500

2000

2021−10−20 2022−02−07 2022−05−28 2022−09−15 2023−01−03 2023−04−23
Date

P
ric

e

Electricity price of VIC

(c) Historical price of electricity in VIC

Figure 3: Historical price of electricity in each state.
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leptokurtosis with 31.66, and VIC exhibiting moderate kurtosis at 6.98.

Min Max Std Skew Kurtosis Obs

NSW Price 17.91 966.19 122.80 2.61 9.32 578
Demand 7034.35 2791932.00 247547.90 -0.63 8.74 578

QLD Price -63.40 1933.65 192.55 4.78 31.66 578
Demand 5593.44 2247101.00 163527.30 -1.70 21.70 578

VIC Price -50.03 797.55 114.06 2.23 6.98 578
Demand 4705.95 1803686.00 182128.30 -0.25 4.41 578

Table 1: Descriptive statistics of the dataset for both price and demand.

3.2 Model specification

In the primary analysis, our investigation incorporates four distinct categories of vari-
ables, namely "recent demand," "temperature," "policy," and "calendar" variables. The
model is defined as follows:

Pt = f1(Dt) + f2(Tt) + f3(MaxTt) +B0hd(t) +
7∑

j=1

Bjw
j
d(t) + f4(L((d− 1) + t)). (1)

In Equation (1), P represents the grid price in megawatts of the dth day in the dataset.
The functions f1, f2, f3, and f4 are assumed to be smooth and will be estimated using a
cubic regression spline. It is worth noting that different knot positions and various numbers
of knots need to be considered for this purpose.17

The holiday effect is denoted by hd(t) and takes a value of 1 if it corresponds to a
public holiday, and 0 otherwise. The variable wjd(t) is equal to 1 if d(t) represents the jth

day of the week. The coefficients B1, ..., B7 are unknown parameters associated with the
weekdays.

Furthermore, the “time of year” effect is captured using a half-hourly timescale spanning
the first to the last hour of the calendar year, with the function defined as L((d− 1) + t).
Inputs are repeated annually to account for the recurring trend.

In this model, Tt represents all temperature variables available at the time of forecast,
while MaxTt represents the maximum monthly temperature. The smooth function Lt(d)
captures the repeating trend of the data over each year.

It is important to note that the non-linear function fi for i = 1, 2, 3, 4 can be estimated
using a penalized regression approach with a spline basis. Each function can be expressed

17In this part it needs to consider different knot positions and different numbers of knots.
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as:

fi(x) =
k∑

j=1

γi,jψ
i
j(x),

Here, k represents the dimension of the spline basis function, and ψi
j corresponds to

the corresponding spline function. A common approach to estimate these smooth functions
is by employing penalized regression methods such as ridge regression. The minimization
objective is defined as follows:

n∑
k=1

(
Pk −

s∑
i=1

fi(xk)

)2

+
s∑

i=1

λi

∫
||f ′′i (x)||2dx,

In the above equation, the penalty terms Λ=(λ1, · · · , λs) need to be optimized. It should be
noted that Λ controls the level of smoothness, with larger values of λs resulting in smoother
functions. To estimate these smooth functions, we will utilize the R package mgcv Wood
(2001), which implements this method.

4 Empirical results

In the first step, we fit GAM model based constant coefficients which will be a simple
regression model. Results of modelling reports on Table 2 show that in NSW, electricity
prices are significantly impacted by variables such as electricity demand (coefficient: 0.0001,
p < 0.001), temperature (coefficient: 1.5766, p = 0.0794), and temperatureMax (coefficient:
-6.0776, p < 0.0001). This indicates that these factors play a crucial role in determining
electricity prices in NSW. Conversely, variables trend, weekdays, and CPI are found to be
statistically insignificant. Notably, the variables gas and coal have a significant influence on
electricity prices in NSW, while the policy does not exhibit a significant effect. In the QLD
model, the primary variables influencing electricity prices are electricity demand (coeffi-
cient: 0.0005, p<0.001), temperature (coefficient: 1.4070, p=0.5938), and temperatureMax
(coefficient: -25.4200, p<0.001). These findings suggest that electricity prices in QLD are
predominantly driven by electricity demand and maximum temperature, with temperature
exerting a stronger impact compared to NSW. Significantly, the cap policy variable (CPol)
demonstrates expected significance (p < 0.0139) and plays a notable role in determining
electricity prices in QLD. In terms of the Victoria model, the significant variables affecting
electricity prices are electricity demand (coefficient: 0.0002, p < 0.001), temperature (co-
efficient: 0.5433, p=0.4175), and temperatureMax (coefficient: -5.7210, p < 0.001). This
implies that electricity prices in Victoria are influenced by electricity demand and maximum
temperature, although the impact of temperature is less pronounced compared to NSW and
QLD. Furthermore, the cap policy variable (CPol) is found to be statistically insignificant
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in Victoria, aligning with the expected result.

In order to gain a more comprehensive understanding of the independent variables, we
have employed a non-linear modelling approach known as GAM. The results of the GAM
analysis can be found in Tables 3 to 5. Table 3, reveals that the parametric coefficients
indicate that the intercept term has a significant positive impact on electricity prices (Es-
timate = 104.6916, p < 0.001), while the CPol variable has a significant negative effect
(Estimate = -16.7562, p = 0.0268). Moreover, the Coal variable shows a significant positive
association with electricity prices (Estimate = 0.1769, p < 0.001). The table also provides
approximate significance for smooth terms, indicating that the interaction between WDN
and demand, as well as the relationship between temperature and Trend, have significant
effects on electricity prices. Additionally, the smooth terms for temperatureMax and Gas
show a significant relationship with electricity prices. For NSW, this cap policy is signifi-
cant at the level of 10%.
In terms of results for QLD, Table 4c, the parametric coefficients indicate that the in-
tercept term has a significant positive impact on electricity prices (Estimate = 137.4739,
p < 0.0001). The CPol variable is found to have a significant negative effect on electric-
ity prices (Estimate = −47.8780, p = 0.0006), while the Coal variable shows a significant
positive association (Estimate = 0.1856, p = 0.0411). The table also presents approximate
significance for the smooth terms, indicating that the interaction between WDN (Weekday
name) and demand, as well as the relationship between temperature and Trend, have signif-
icant effects on electricity prices. Additionally, the smooth term for temperatureMax shows
a significant relationship. The smooth term for Gas has a lower significance (p = 0.0178).
Importantly, the cap policy for QLD as we expected is highly significant (p < 0.0006).
Finally, in terms of VIC, Table 4, shows that the intercept term has a significant positive
impact on electricity prices (Estimate = 94.8439, p < 0.001). However, the CPol variable
(Estimate = −0.7896, p = 0.9120) and the Coal variable (Estimate = 0.0505, p = 0.3400)
do not exhibit significant associations. The table also provides information on the signifi-
cance of smooth terms. The interaction between WDN and demand ( p < 0.0001) and the
relationship between temperature and Trend (p = 0.0184) are significant factors impacting
electricity prices. Additionally, the smooth term for temperatureMax ( p = 0.0055) and
Gas (p = 0.0033) show significant relationships.

Figures 4-6 display the smooth functions associated with each dataset, providing insights
into observed patterns. In Figure 4, distinct variations arise in the behaviours of variables,
such as demand and weekdays, across states. Specifically, the effects of weekdays in NSW
and VIC exhibit similarities, while demonstrating significant differences in QLD. Notably,
in NSW, the weekdays consistently exhibit high values throughout the work days of the
week, whereas in QLD, the early days of the week exhibit maximum values.18 Regarding

18One possible reason for this pattern in NSW would be related to its larger population and concentra-
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Coefficients: Estimate Std.Error t value Pr(>|t|)
NSW

demand 0.0001 0.0000 8.2440 0.0000 ***
temperature 1.5766 0.8970 1.7580 0.0794 .

temperatureMax -6.0776 0.7115 -8.5420 0.0000 ***
Trend -8.1553 10.3531 -0.7880 0.4312
WDN -1.3229 1.4782 -0.8950 0.3712
CPI 0.6570 1.3997 0.4690 0.6390
CPol 7.9474 8.6248 0.9210 0.3572
Gas 4.9024 0.4885 10.0350 0.0000 ***
Coal 0.1343 0.0407 3.2980 0.0010 **

Multiple R-squared: 0.8732, Adjusted R-squared: 0.8712
F-statistic: 434.8, p-value: < 2.2e-16

QLD
demand 0.0005 0.0001 9.1240 0.0000 ***

temperature 1.4070 2.6370 0.5340 0.5938
temperatureMax -25.4200 3.6710 -6.9230 0.0000 ***

Trend 1.3000 23.5600 0.0550 0.9560
WDN -2.3220 3.3670 -0.6900 0.4907
CPI 6.3630 2.9880 2.1290 0.0336 *
CPol -46.6100 18.9000 -2.4660 0.0139 *
Gas 3.7880 0.9594 3.9490 0.0001 ***
Coal 0.1025 0.0831 1.2340 0.2179

Multiple R-squared: 0.6599, Adjusted R-squared: 0.6545
F-statistic: 122.5, p-value: < 2.2e-16

Victoria
demand 0.0002 0.0000 10.6370 0.0000 ***

temperature 0.5433 0.6697 0.8110 0.4175
temperatureMax -5.7210 0.5341 -10.7120 0.0000 ***

Trend -14.3700 9.6930 -1.4820 0.1388
WDN -0.3666 1.4080 -0.2600 0.7947
CPI 5.2420 1.4380 3.6470 0.0003 ***
CPol 4.1410 7.8160 0.5300 0.5964
Gas 4.0820 0.4524 9.0230 0.0000 ***
Coal -0.0897 0.0410 -2.1900 0.0289 *

Multiple R-squared: 0.8337, Adjusted R-squared: 0.831
F-statistic: 316.3, p-value: < 2.2e-16

Note: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2: Regression model for three states.
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Figure5, considering the trend value of 1/365 on the first day of January and 1 on the last
day of December, a peak is observed around the mid-year (approximately 0.5 of the trend
value). In NSW and QLD, this peak is evident for both low and high temperatures, whereas
in VIC, it is primarily associated with low temperatures, in June and July, which corre-
sponds to the winter season. The contour plots indicate slightly higher demand in QLD, as
evidenced by the pink areas above and below the plot. This disparity can be attributed to
the broader geographic area of NSW, encompassing both coastal and inland regions with
varying climate patterns. Urban centres like Sydney may experience higher demand for
air conditioning and cooling systems compared to more temperate regions. Energy-efficient
building practices and regulatory measures further contribute to a comparatively smaller
impact of temperature on electricity consumption in NSW. Conversely, VIC displays more
blue areas on the plot, indicating a more temperate climate. Although summers in VIC can
still be warm, they generally do not reach the extreme heat levels observed in QLD and cer-
tain parts of NSW. Consequently, the influence of temperature on electricity consumption
in VIC is somewhat less pronounced.

In Figure 6, which pertains to the gas cap policy, the effect of gas price cap policy
during the first half of January is not significant across all three regions. Subsequently, the
effect reaches its maximum in February before gradually declining in March and April. One
possible reason for this decline could be the decreasing demand for electricity observed in
all regions during this period.

Parametric coefficients
Estimate Std.Error tvalue Pr(>|t|)

(Intercept) 104.6916 15.5251 6.7430 0.0000 ***
CPol -16.7562 7.5471 -2.2200 0.0268 *
Coal 0.1769 0.0511 3.4610 0.0006 ***
Approximate significance of smooth terms:

edf Ref.df F p-value
te(WDN,demand) 3.9300 4.7580 7.1550 0.0000 ***
te(temperature,Trend) 20.6740 24.9300 9.3180 0.0000 ***
s(temperatureMax) 2.9290 3.0000 12.9640 0.0000 ***
s(Gas) 1.8720 2.0000 13.2430 0.0000 ***

R-sq.(adj) = 0.74 Deviance explained = 75.4%
GCV = 4159.7 Scale est. = 3926.1 n = 577

Table 3: GAM model estimation for NSW

tion of commercial and financial activities in Sydney, which may demonstrate higher weekday electricity
demand. The densely populated metropolitan areas, along with manufacturing and service industries, can
significantly impact electricity consumption on weekdays.
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Parametric coefficients
Estimate Std.Error tvalue Pr(>|t|)

(Intercept) 137.4739 27.7583 4.9530 0.0000 ***
CPol -47.8780 13.9196 -3.4400 0.0006 ***
Coal 0.1856 0.0906 2.0480 0.0411 *
Approximate significance of smooth terms:

edf Ref.df F p-value
te(WDN,demand) 43.9060 50.4000 7.0530 0.0000 ***
te(temperature,Trend) 49.7190 52.0700 6.5460 0.0000 ***
s(temperatureMax) 1.0000 1.0000 12.4000 0.0005 ***
s(Gas) 1.4620 3.0000 1.8100 0.0178 *

R-sq.(adj) = 0.714 Deviance explained = 76.3%
GCV = 12804 Scale est. = 10605 n = 577

Table 4: GAM model estimation for QLD

To gain a deeper understanding of the key variables influencing electricity prices, we
employ the machine learning techniques random forest (RF) and Gradient Boosted (GB)
models, (both explained briefly in Appendix A). These models, widely used for classifica-
tion and regression tasks, offer valuable insights into variable importance. The GB model,
in particular, is an ensemble method that combines multiple weaker models to form a robust
model Natekin and Knoll (2013).19 In our study, we utilize both RF and GB models, which
are trained with hyperparameters such as a learning rate of λ = 0.1, 500 trees, and a tree
depth of 8. It is worth noting that the results are not significantly affected by these specific
parameter choices. The summary of the model fitting, showcasing the important variables
and their effects, is depicted in Figure 7. Generally, we can see there is consistency between
both results with different approaches.

In the final phase of our analysis, we employ forecasting techniques under specific condi-
tions to gain deeper insights into a particular scenario by ignoring market caps for both gas
and coal. Given that we possess information about all other variables in equation (1), this
approach enables us to examine the potential outcomes for prices. Moreover, this approach
would allow us to analyze the average policy effect by comparing the changes in the outcome
variable (electricity price) during the last few months after the policy’s introduction to the
changes in the outcome variable before the policy caps were imposed over the same period.

19Note that random forest regression models differ from simple regression models in their approach to
estimating coefficients. While simple linear regression estimates coefficients for the linear equation linking
the response variable to predictors, random forest regression models consist of a collection of decision trees,
each constructed using a random subset of predictors. As a result, instead of estimating a single set of
coefficients, random forest regression models assign weights to each predictor, indicating their significance
in the model. This approach reduces the risk of overfitting and enhances robustness against outliers.
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Parametric coefficients
Estimate Std.Error tvalue Pr(>|t|)

(Intercept) 94.8439 16.1519 5.8720 0.0000 ***
CPol -0.7896 7.1473 -0.1100 0.9120
Coal 0.0505 0.0529 0.9540 0.3400
Approximate significance of smooth terms:

edf Ref.df F p-value
te(WDN,demand) 17.7270 22.4200 7.5010 0.0000 ***
te(temperature,Trend) 14.6570 19.7100 1.7880 0.0184 *
s(temperatureMax) 8.9290 9.5800 2.8910 0.0055 **
s(Gas) 2.5550 3.0000 3.7780 0.0033 **

R-sq.(adj) = 0.753 Deviance explained = 77.3%
GCV = 3498.9 Scale est. = 3214.7 n = 577

Table 5: GAM model estimation for VIC

Our objective is to minimize forecasting bias, which in turn enables us to determine whether
the current real price is lower than the price forecast. If the current price is indeed lower
than the forecast values, it can be inferred that the market cap is functioning effectively,
leading to a decrease in prices.20

To conduct this analysis, we utilized a dataset spanning from September 2021 to the
end of December 2022 as our in-sample data. The remaining portion of the dataset was set
aside for out-of-sample analysis. This division enables us to evaluate the reliability of our
forecasting model and its ability to accurately predict future prices. Figure 4 illustrates
the outcomes of the forecasting process conducted for the three aforementioned states. It
is evident from the results that the projected price values exceed the actual values in over
70% of cases for QLD. In contrast, the proportions of overestimated values for NSW and
VIC are relatively lower, approximately 60% and 49% respectively. Additionally, the root
mean square errors (RMSE) associated with the forecasting models are found to be 139.04,
64.31, and 41.86 for QLD, NSW, and VIC correspondingly.

20It is important to note that, in the absence of the policy, the trends in the price of electricity before
and after introducing the policy would have followed parallel paths over time.
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(b) Contour plot of WDN & demand for QLD
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(c) Contour plot of WDN & demand for VIC

Figure 4: Smooth functions of models for each state based on GAM for all three states.
The first row showcases contour plots specifically for NSW, while the second and last rows
correspond to QLD and VIC, respectively.
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Figure 5: Smooth functions of models for each state based on GAM for all three states.
The first row showcases contour plots specifically for NSW, while the second and last rows
correspond to QLD and VIC, respectively.
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Figure 6: Smooth functions of models for each state based on GAM for all three states.
The first row showcases contour plots specifically for NSW, while the second and last rows
correspond to QLD and VIC, respectively.
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Figure 7: Important variables were identified using Random Forest (RF) and Boosting
algorithm (GB) for each state. Node purity, a stopping criterion in decision trees, including
Random Forest, measures the extent to which the samples within a node belong to a single
class.
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5 Concluding remarks

This paper investigates the effectiveness of fuel price caps in controlling wholesale elec-
tricity prices. As demonstrated in our theoretical analysis, fuel price caps do not consistently
prove effective, rather, their effectiveness depends on the drivers of market conditions and
competition. Therefore, they may or may not be binding under different circumstances.
Considering the varying dynamics of electricity markets, we propose a two-pronged ap-
proach, suggesting a combination of fuel price caps and market price caps, as the ideal
solution to address all sources of price volatility in a spot market. It is important to note
that a single market price cap may not achieve the same objectives as a fuel price cap, as a
single market price cap is primarily effective when high prices are driven by high demand.

Our empirical analysis provides further insight into the effectiveness of fuel price caps.
While our findings reveal a mixed impact across different zones, it is imperative to interpret
this variability within the context of the region’s unique market characteristics, including
factors like demand elasticity, fuel availability, and market competition level.

Furthermore, our research opens the avenue for additional work on optimizing price
cap policies. Policymakers could explore adaptive, region-specific approaches that account
for these varying market conditions and other external factors weather and regulatory
changes. By combining theoretical and empirical analyses, this study has advanced our
understanding of how fuel price caps influence electricity markets and underscored the
importance of further research to enhance their effectiveness in designing electricity markets
and regulating electricity prices.
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Appendices

A Machine learning approaches

Random Forest and Gradient Boosting Machines (GBMs) are ensemble learning tech-
niques that harness the combined power of multiple models to achieve accurate predictions.
Random Forest excels in creating a diverse set of decision trees and consolidating their pre-
dictions. In contrast, GBMs employ an iterative optimization process that minimizes loss
gradients to continually enhance the ensemble. In the subsequent sections, we will provide
concise explanations of each technique.

A.1 Random Forest algorithm (RF)

Random Forest is an ensemble learning algorithm that combines the predictions of mul-
tiple decision trees to make accurate predictions. The algorithm operates by constructing
a forest of decision trees during the training phase. Each tree is trained on a randomly se-
lected subset of the training data, as well as a random subset of features. This randomness
helps to create diversity among the trees and reduces overfitting. The final prediction of
the Random Forest is obtained by aggregating the predictions of all the individual trees.
For a classification task, let’s consider a Random Forest ensemble with T decision trees.
Each tree is denoted as Tt(x), where x represents the input features. The prediction of the
Random Forest ensemble for a given input x is obtained through majority voting:

ŷ = argmaxy

t=1∑
T

I(Tt(x)− y),

where ŷ is the predicted class label, I(.) is the indicator function that returns 1 if the
condition is true and 0 otherwise, and y represents the class label, (for more information
see Biau and Scornet (2016))

A.2 Gradient Boosting algorithm (GB)

Gradient Boosting algorithm (GB) is a powerful machine learning technique that is
widely used for regression and classification tasks. The main idea behind GB is to iteratively
build an ensemble of weak prediction models, such as decision trees, and combine their
predictions to form a strong overall prediction. At each iteration, the algorithm tries to fit
the negative gradient of a loss function associated with the data, effectively minimizing the
residuals. This is done by training a new weak model on the negative gradient values, and
then adding it to the ensemble. The final prediction is obtained by summing the predictions
of all the weak models. Mathematically, the prediction at each iteration can be represented
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as follows:

Fm+1(x) = Fm(x) + νhm+1(x),

where Fm+1(x) represents the overall prediction at iteration m, Fm(x) is the prediction
from the previous iteration, ν is the learning rate that controls the contribution of each
weak model, and hm(x) represents the prediction of the new weak model trained on the
negative gradient. The learning rate is typically set to a small value to prevent overfitting.
By iteratively adding weak models that focus on the residual errors of the previous models,
GB is able to gradually improve the overall prediction accuracy, (for more detail see Natekin
and Knoll (2013)).
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