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1 Introduction

Is there a tradeoff between inflation and output in the long-run?

The answer is no, according to undergraduate macroeconomics textbooks. These textbooks

explain that while there is a short-run tradeoff between inflation and output (or the unemploy-

ment rate), this tradeoff disappears in the long run, so that the long-run Phillips curve is vertical

at the natural level of output (or the natural rate of unemployment). The long-run relationship

between inflation and economic activity, dubbed the long-run Phillips curve (LRPC), can shift

if real forces shift this natural level, but inflation and monetary factors do not affect the LRPC,

so that inflation and real economic activity are unrelated in the long-run. From the seminal

works of Friedman (1968) and Phelps (1967) onwards, the idea that “inflation is a monetary

phenomenon” is a central tenet of macroeconomic theory and of the inflation targeting monetary

policy strategy of most western central banks.

The relationship between inflation and economic activity is therefore of paramount impor-

tance for monetary policymaking as most central banks, including the Federal Reserve and the

European Central Bank, perceive price stability as the basis for long-term economic growth.

Inflation, both headline and core, is on the rise in the world economy at large. Inflation in the

U.S. is at at 40-year highs, sparking a debate about whether high inflation is on the way back

after years of playing dead. If inflationary pressures turn out to be more permanent, this may

lead to higher underlying trend inflation. What would be the impact of higher trend inflation

on real economic activity in the long-run?

While considerable effort has been devoted in the economics literature to investigate this

relationship in the short-run, it might be very surprising to realize that (see the related literature

paragraph below): (i) little econometric work has been devoted to estimating the LRPC, and

(ii) many theoretical frameworks would not imply a vertical LRPC.1 This paper tackles both

issues by first trying to establish the nature of the long-run relationship between inflation and

economic activity in U.S. data and testing the natural rate hypothesis. Then, it provides a

possible theoretical structural interpretation of the empirical finding.

Regarding (i), a first contribution of the paper is to develop a new empirical framework

to investigate the existence of a potential non-linear relationship between inflation and output

in the long-run. The framework generalizes the Bayesian VAR with stochastic trends (see

Del Negro et al., 2017; Johannsen and Mertens, 2021) to a piecewise linear case. From a

1The property of the absence of a long-run relationship between the rate of growth of money - which is
equal to the rate of inflation in steady state - and real variables is often referred to as superneutrality of money.
Macroeconomic models with optimizing agents generally do not satisfy this property, where by ‘generally’ we
mean ‘without some further assumptions’. Already Sidrauski (1967) showed that money is not superneutral
in a Ramsey model of growth with money in the utility function. The same applies to a real business cycle
with a cash-in-advance constraint, see Cooley and Hansen (1989), or to almost any model with a shopping time
technology, as well as to overlapping generations monetary models, see, e.g., Drazen (1981), just to give some
basic examples.
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methodological point of view, the functional form of the piecewise linear model depends on

the latent processes, which in our case is trend inflation. Our theoretical contribution is to

show that both the likelihood function and the posterior distribution of the latent states can

be derived analytically. Therefore, in terms of efficiency our estimator is comparable to linear

models. More importantly, the piecewise linear framework allows us to test the idea that the

long-run relationship between inflation and output can change nature depending on the level

of trend inflation. In other words, we think about the piecewise linear model as an efficient

way to approximate a possible underlying non-linear relation. The main result is the evidence

in favor of a threshold level of trend inflation below which potential output is independent

of trend inflation, and above which, instead, potential output is negatively affected by trend

inflation. This threshold level of inflation is around 4%. Moreover, the slope of the LRPC is

sizeable. Every percentage point increase in inflation above the threshold level of inflation is

related to about 1% decrease in potential output per year. Given these findings, we define a

new concept: “the long-run output gap”, which is defined as the deviation of potential output

under positive trend inflation from its counterfactual level under zero trend inflation. The long-

run output gap has been about negative 2% per year on average during the Great Inflation,

implying sizeable output costs. Related to this point, we also discuss the implications of a

negatively-sloped LRPC for the measurement of business cycles. Specifically, neglecting the

long-run relationship between inflation and output leads to more negative short-run output gap

estimates in periods of high inflation, particularly during the Great Inflation, thereby overstating

the cyclical component of output fluctuations.

Regarding (ii), we then look for a possible theoretical interpretation of this empirical reduced-

form result. It is natural to start by asking whether the most standard workhorse New Key-

nesian (NK) framework can quantitatively reproduce the LRPC estimates of the BVAR. The

canonical NK model does imply a non-linear LRPC (see Ascari and Sbordone, 2014) because

positive trend inflation creates inefficient price dispersion due to nominal rigidities and hence

reduces the natural level of output.2 The relevance of this non-linearity and the magnitude

of the negative effect depend on the parameters of the model. Then, the question becomes

empirical. Moreover, to verify the extent to which the New Keynesian model can reproduce

the main features of the long-run relationship between inflation and output found in the BVAR

analysis, we need to extend the model by allowing for time variation in steady state inflation.

Allowing trend inflation to vary every period is a non-trivial modification of the baseline model,

both because the steady state of the model becomes time-varying, and because the dynamics of

the model is affected non-linearly by the level of trend inflation. This paper, thus, generalizes

to a full NK model the work in Cogley and Sbordone (2008), who estimate the New Keynesian

2We use the terms ‘natural level of output’, ‘potential output’, ‘steady state output’ as indicating the same
object: the long-run level of output. Furthermore, we will use as synonymous the terms ‘trend inflation’, ‘inflation
target’ and ‘steady state inflation’.
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Phillips Curve (NKPC) allowing for time variation in trend inflation, and thus in the NKPC

coefficients.3 A second contribution of the paper is, therefore, to estimate the structural NK

model generalized by adding time-varying trend inflation and stochastic volatility. We develop

an econometric strategy suited for this problem, allowing us to jointly estimate the short-run

dynamics and the long-run relationship implied by the model. The model parameters and the

latent states are estimated using a Bayesian approach based on Sequential Monte Carlo meth-

ods. In particular, we use the econometric strategy for parameter learning that combines the

approach of Carvalho et al. (2010), and the particle filter of Liu and West (2001), as in Ascari

et al. (2019).4

The estimated Generalized New Keynesian (GNK) model reproduces very well the evidence

of the reduced-form BVAR model of a negative long-run relationship between inflation and

output. The LRPC is not vertical but negatively sloped and non-linear. In particular, it is

vertical for very low levels of inflation and then it exhibits an increasingly negative slope as

the long-run inflation rate increases above 3-4%. In terms of output losses, going from 2% to

4% inflation target causes an output loss of roughly about 0.6% per year. The effect is highly

non-linear such that a 5% and a 6% inflation target would imply an output loss (relative to 2%

target) of roughly 1.2% and 2% per year, respectively. The estimates are quite precise and they

are not statistically different from the one implied by the reduced-form piecewise linear BVAR

model, i.e., the estimated structural LRPC is within the credibility bands of the estimated

long-run relation between trend inflation and potential output from the BVAR. In addition,

the long-run output gap estimate from the structural model is quantitatively similar to the one

from the BVAR, with output cost estimates of about 1−3% per year during the Great Inflation.

From a medium to long-run perspective, these numbers are not negligible, even for low levels

of trend inflation if one looks at the cumulative losses over the years.

Related Literature. The famous correlation unveiled by Phillips (1958) was initially thought

to imply a long-run negative tradeoff between (wage) inflation and unemployment (Phillips,

1958; Samuelson and Solow, 1960). As is well-known, the idea of a long-run tradeoff disap-

peared with the seminal papers by Friedman (1968) and Phelps (1967) that introduce the

keystone concept of a natural rate of unemployment and a vertical LRPC. Early tests of the

natural rate hypothesis (NRH) (e.g., Sargan, 1964; Solow, 1969; Gordon, 1970) were based on

3Cogley and Sbordone (2008) structurally decompose inflation dynamics into a time-varying long-run com-
ponent (i.e., trend inflation) and a short-run one (i.e., the inflation gap given by the difference between inflation
and trend inflation). Their main finding is that time-varying trend inflation captures the low frequency variation
in the dynamics of inflation, while the short-run inflation gap fits well a purely forward-looking NKPC without
the need of any ad hoc intrinsic inertia.

4Fernández-Villaverde and Rubio-Ramı́rez (2007) present pioneering work on the estimation of non-linear or
non-Gaussian DSGE models, based on particle filtering within a Markov Chain Monte Carlo scheme. The use
of Sequential Monte Carlo methods is less common in the literature. Exceptions are Creal (2007), Chen et al.
(2010) and Herbst and Schorfheide (2014).
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estimating a Phillips Curve using some distributed lags of inflation to capture expectations and

then look at whether the sum on the inflation coefficients would add up to one.5 After these

early times, the literature on testing the natural rate hypothesis is surprisingly slim, compare

to its pivotal role in macroeconomics. King and Watson’s (1994) influential paper find the

inflation and unemployment series to be I(1) but no evidence of cointegration between them.

Karanassou et al. (2005) is one of the first papers to cast doubt about the NRH.6 Beyer and

Farmer (2007) cannot reject the assumption of I(1) for inflation and unemployment, but, unlike

King and Watson (1994), they find that the low frequency comovements are stable and coin-

tegrated across the whole sample. They interpret their finding as evidence against the NRH.

Even more surprisingly, they find that the cointegrating vector in their VECM model implies

a positive long-run relationship between inflation and unemployment, contrary to the famous

Phillips (1958) negative correlation. Berentsen et al. (2011) report a positive correlation be-

tween the low frequency (filtered) component of inflation and unemployment. Haug and King

(2014) corroborate this suggestive evidence using more advanced time-series methods for filter-

ing. A recent paper by Ait Lahcen et al. (2021) uses cross-country panel data from the OECD

countries to document that the positive correlation between long-run anticipated inflation and

unemployment is state-dependent, i.e., it is higher when unemployment is higher. This is con-

sistent with our findings. Benati (2015) conducts SVAR analysis for several advanced economies

including the U.S. and concludes that there is no evidence in favour of a non-vertical LRPC.

However, the uncertainty surrounding the estimates is so large that is not possible to reject an

alternative view, where he meant a negative relationship.

We add to this literature in many dimensions. First, we employ a different methodology

based on the BVAR analysis with stochastic trends, thereby providing a multivariate trend-cycle

decomposition. Second, we provide a methodological contribution as we generalize this approach

to a non-linear setting. While the non-linear approach is necessary to identify a threshold value

of trend inflation that tilts the long-run relationship between inflation and output, it is also

justified by the difficulties in estimating this relationship, as flagged by Beyer and Farmer

(2007) and Benati (2015). Beyer and Farmer (2007) estimate the model over two different sub-

samples because of parameter shifts. Benati (2015) discusses the difficulties in identifying this

long-run relationship because of changing inflation dynamics due to different monetary policy

regimes (Benati, 2008). The possibility of identifying the LRPC depends on the inflation process

displaying permanent variations, i.e., a unit root. However, inflation persistence changed quite

dramatically during the post-WWII sample in the U.S. data, and the Great Inflation might be

5See King and Watson (1994) and King (2008) for a comprehensive survey of the history of the debate over
the nature of the Phillips curve in macroeconomic history in the ‘70s and‘80s. See Karanassou and Sala (2010)
and Svensson (2015) for a very recent investigation using a similar approach.

6Karanassou and Sala have a series of papers investigating the NRH for various countries and using different
methods - GMM, VAR and chain-reaction theory (CRT) - see Karanassou and Sala (2010) and Karanassou et al.
(2010) for a survey of these works.
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the only period that allows identification of the LRPC. Finally, we also estimate a structural

model providing theoretical underpinnings to the empirical analysis.

Regarding theory, first, it is well-known that the GNK model delivers a negative relationship

between steady state inflation and output (Ascari, 2004; Ascari and Sbordone, 2014). Hence, it

is natural to work with the workhorse NK model which is at the core of the modern analysis of

business cycle and monetary policy.7 Second, given the complexity of the estimation procedure

due to our assumption of time-varying trend inflation, we estimate a relatively small-scale

version of this model with flexible wages and no role for capital. Third, recently, some papers

have used micro data to try to infer the welfare or output costs of misallocation due to nominal

rigidities. In a dataset on pricing behavior during the Great Inflation period, Nakamura et al.

(2018) find no evidence of larger absolute price changes and evidence of an increase in the

frequency of price changes, suggesting that state-dependent sticky price models might be a more

plausible mechanism to describe pricing frictions. Nakamura et al. (2018) further show that the

positive relationship between inflation and price dispersion is very weak in their state-dependent

pricing model.8 Sheremirov (2020) shows that microdata exhibit a positive comovement between

inflation and the dispersion of regular prices - that is, excluding temporary sales - and that the

Calvo model overstates this comovement, while the standard fixed menu cost model understates

it. Moreover, Sheremirov (2020) suggests that a Calvo model with sales is the only one able

to replicate the relation between inflation and price dispersion in the microdata. Importantly

for us, he shows that: (i) the inflation cost of business cycles is 40% higher in his favourite

model compared to the standard Calvo model, leading to a lower optimal inflation rate; (ii)

the shape of the output response to monetary policy shock in the Calvo model with sales is

similar to the standard one without sales, suggesting that the implied short-run dynamics of

the Calvo model is a good approximation for aggregate variables. Adam et al. (2023) assume

that efficient prices follow (product-specific) trend inflation and use this assumption to identify

changes in the inefficient price dispersion in the UK data. Contrary to Nakamura et al. (2018),

they show that, at the aggregate level, fluctuations in inefficient price dispersion are sizable and

covary positively with aggregate inflation. The fact that suboptimally high (or low) inflation

is associated with distortions in relative prices that are quantitatively large provide empirical

support for the mechanism in standard sticky price models, as the one in our paper. A recent

paper by Cavallo et al. (2021) estimates the level of the cost of misallocation using granular price

level data for the Euro Area and a state dependent menu cost model. They provide evidence

for sizeable costs: in the low-inflation environment that prevailed before 2022, the efficiency

7Berentsen et al. (2011) use an alternative approach based on search-and-matching frictions both in the goods
and labor markets to explain the positive correlation between long-run anticipated inflation and unemployment.
Ait Lahcen et al. (2021) build on this model to explain the non-linearity in this relationship they find in the
OECD data. None of these papers estimate the model.

8The flat relationship between price dispersion and inflation in menu costs model heavily depends on the fact
that the model needs large idiosyncratic shocks to fit the microdata.
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cost amounts to roughly 2% of GDP. From a modelling perspective, the literature recognizes

that the cost of steady state inflation is higher in the standard Calvo model compared to

alternative sticky price models. However, these recent works just mentioned above, provide

evidence of much more sizeable costs of price dispersion than previously thought using detailed

and granular micro data, and thus more similar to the one implied by the standard NK model.

Most importantly, we are mainly concerned here with the steady state relationship, not the

short-run costs. In this regards, our results show that our estimated GNK model is able to

reproduce the LRPC estimated from the reduced-form BVAR analysis. Therefore, it is able to

capture the long-run tradeoff between inflation and output in the aggregate data, despite not

capturing the richness of the microdata behaviour. Estimating a LRPC in a DSGE model with

state-dependent prices and time-varying trend inflation is computationally challenging, if not

infeasible. Future research might tell whether a menu cost model is able to match the reduced

form empirical evidence in aggregate data.

Finally, closer to our approach, a recent paper by Abbritti et al. (2021) augment a standard

Calvo-type New Keynesian (NK) framework with endogenous growth, frictional labor market

and downward wage rigidity. The calibrated model yields a long-run trade-off between output

growth and inflation, and consumption equivalent welfare losses of deviation from the opti-

mal inflation target that are a multiple of those associated with traditional models, because

endogenous growth magnifies the trade-off between price distortions and output hysteresis.

The paper proceeds as follows. The next section presents the reduced form BVAR method-

ology along with the estimated long-run Phillips curve. The section introduces the notion of

the long-run output gap and shows its estimates from the BVAR and also discusses the impli-

cations for business cycle measurement arising from a non-linear LRPC. Section 3 presents the

structural GNK model, the estimation methodology and the estimation results. The section

documents that a canonical NK model with time-varying trend inflation implies an estimated

LRPC that is both qualitatively and quantitatively in line with the BVAR analysis. Finally,

Section 4 concludes.

2 A time series approach

We propose a time series model that is tailored to the purpose of estimating the long-run Phillips

curve. As in Del Negro et al. (2017) and Johannsen and Mertens (2021), we express a VAR

in deviations from time varying trends that we interpret as the long-run components of the

respective variables. The methodology is a generalization of the steady state VAR by Villani

(2009) and is a trend-cycle decomposition where the dynamics of the cyclical components are

described by an unrestricted VAR, but the long-run trends have a structure inspired by economic

6



theory.9

More formally, indicate with Xt a n × 1 vector of observed variables at time t. We define

X̄t as the long-run component of Xt. This interpretation follows from the assumption that the

deviations (Xt − X̄t) have stable dynamics and unconditional expectations equal to zero. In

particular these deviations are described by the following stable VAR:

A (L)
(
Xt − X̄t

)
= ϵt (1)

where A (L) is a polynomial in the lag operator L and ϵt ∼ N (0,Σϵ,t). We assume that the

reduced-form shocks ϵt have stochastic volatility:

Σϵ,t = B−1St(B
−1St)

′ (2)

where St is diagonal and B is lower triangular. Collecting the elements in the main diagonal

of St in the vector st, we follow the well-established literature (see, for example, Cogley and

Sargent, 2005; Primiceri, 2005) by modeling the time variation in the volatilities as:

log st = log st−1 + νt νt ∼ N (0,Σν) (3)

and we restrict Σν to be diagonal.

The focus of our analysis is the long-run component X̄t which is assumed to depend on a

(q × 1) vector of latent variables θt:  X̄t = h (θt)

θt = f (θt−1, ηt)

(4)

where h(θt) and f (θt−1, ηt) are generic (potentially non-linear) functions, and ηt is a vector of

exogenous Gaussian shocks. In this way we can specify the dynamics of the long-run component

in a sufficiently general way, and in particular we are going to use equation (4) to define a long-

run Phillips curve.

2.1 The model

We build a model for GDP per capita yt, the inflation rate πt and the nominal interest rate

it. We use a bar over each respective variable to indicate its time-varying long-run component,

e.g., π̄t is the long-run component of inflation (i.e., trend inflation) at time t.

9This approach has been recently used by Maffei-Faccioli (2020) and Ascari and Fosso (2021).
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We assume that potential output ȳt can be decomposed as the sum of two components:

ȳt = y∗t + δ (π̄t) (5)

where y∗t is a trending component and δ (π̄t) is a function of trend inflation such that δ (0) = 0.

Then, we can interpret y∗t as the long-run level of output in case of zero trend inflation, and we

assume it has the following dynamics:

y∗t = y∗t−1 + gt−1 + ηyt ηyt ∼ N
(
0, σ2y

)
(6)

gt = gt−1 + ηgt ηgt ∼ N
(
0, σ2g

)
. (7)

The assumption about the trend component y∗t is quite standard in the literature, and as in

Harvey and Todd (1983) and Clark (1987), we allow for both the slope and the level to change

over time.10

We depart from the existing literature by adding the explicit possibility of a relation between

the long-run level of output and trend inflation: equation (5) is the long-run Phillips curve. In

particular, the function δ (π̄t) measures the long-run costs or benefits from having a positive

trend inflation. We model it as a piecewise linear function:

δ(π̄t) =

 k1π̄t if π̄t ≤ τ

k2π̄t + ck if π̄t > τ .

(8)

With this assumption we allow for the slope of the long-run Phillips curve to change depending

on trend inflation being higher or lower than a certain threshold τ . k1 and k2 are the slope

parameters below and above the threshold, respectively, and ck is a constant that assures

continuity between the two piecewise lines. The main advantage of using a piecewise linear

setting is the availability of an analytical expression for the likelihood function, so the efficiency

of the estimator we propose is comparable to the one we use in case of linear models. Moreover,

equation (8) is easy to interpret, and the posterior distribution of τ is a natural statistic to

consider when reasoning about the potential costs or benefits of a positive level of trend inflation.

We describe more formally how we propose to treat this simple class of models in Section 2.2,

where we also discuss the pros and cons of this approach.

The long-run components of the other two variables in the model evolve as follows: trend

10In our specification the process for GDP is by assumption integrated of order 2. The more parsimonious
option with σg = 0 has been extensively used in the literature (Watson, 1986; Kuttner, 1994; Planas et al., 2008).
However, in the sample considered we find convenient to capture the slowdown in GDP as a slow moving decline
in the growth rate of potential output (see also Maffei-Faccioli, 2020).
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inflation dynamics are described by a random walk:11

π̄t = π̄t−1 + ηπt ηπt ∼ N
(
0, σ2π

)
, (9)

and the nominal interest rate obeys the long-run Fisher equation:

īt = π̄t + cgt + zt. (10)

As in Laubach and Williams (2003), we assume that the long-run real interest rate is a function

of the growth rate of potential output gt and of a component zt that captures all the slow

moving trends that might affect the natural rate of interest, but are not directly included in the

model. In particular we assume that zt also evolves as a random walk:

zt = zt−1 + ηzt ηzt ∼ N
(
0, σ2z

)
. (11)

The model described above belongs to a general class of piecewise linear specifications in

which equation (4) is written as: X̄t = Htθt

θt = M̄t + Ḡtθt−1 + P̄tηt

(12)

with ηt ∼ N (0,Ση,t) and Ht, M̄t, Ḡt, P̄t are matrices of appropriate dimensions that are func-

tions of π̄t, that is an element of the latent vector θt. In particular, at each time t we have two

possibilities depending on the region to which π̄t belongs:

(
Ht, M̄t, Ḡt, P̄t

)
=


(
H1,t, M̄1,t, Ḡ1,t, P̄1,t

)
if π̄t ≤ τ(

H2,t, M̄2,t, Ḡ2,t, P̄2,t

)
if π̄t > τ .

(13)

In the general specification above, we allow the matrices in equation (13) to be time varying

as commonly done for state space models - e.g., they can depend on data - even though in our

particular empirical exercise based on (8) they will not.

For the model we just described, the vector X̄t contains the long-run components of GDP per

capita, inflation rate and the nominal interest rate, that is, potential output ȳt, trend inflation

π̄t and the long-run nominal interest rate īt. Ht = H is a constant matrix. Finally, the latent

vector θt = (π̄t, ȳt, gt, zt)
′, so it contains trend inflation π̄t, potential output ȳt, the growth rate

of long-run output gt and the residual component of the long-run real interest rate zt. For a

11A large part of the literature also assumes stochastic volatility for the shock to trend inflation (see Stock
and Watson, 2007, 2016; Mertens, 2016; Mertens and Nason, 2020). We make this assumption for the structural
model in Section 3.
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detailed description of the state space representation of our model, see Appendix A.4.

2.2 Econometric strategy

We use a Bayesian approach to estimate the joint posterior distribution of the unknown param-

eters and latent processes. Note that we have two sources of non-linearity: the piecewice linear

nature of the state space model and the presence of stochastic volatility. Then, we find it con-

venient to base our econometric strategy on particle filtering. Our approach is tailored for the

specific class of models we consider in this paper. In particular, there are two important aspects

to stress. The first concerns the posterior distribution of the latent states which is approximated

in an efficient way making use of the so called “Rao-Blackwellization” principle. The second

aspect is about the posterior distributions of the parameters which are approximated jointly

with the posterior of the latent processes through particle filtering. For clarity of exposition,

we describe these two aspects one at a time.

2.2.1 Inference on the latent processes

Let’s assume, for the moment, that the parameters are known and we only need to make

inference on the latent processes, which are the elements of the latent vector θt and the stochastic

volatilities in st. Appendix A.2.1 shows that we can write our time series model in the following

state-space form:

Yt = Ftϑt + ϵt (14)

ϑt =Mt +Gtϑt−1 + Ptηt (15)

where Yt is an observed vector of dimension n×1 and the latent vector ϑt is equal to
(
θ′t θ′t−1 · · · θ′t−p

)′
,

where p is the number of lags in the VAR (1). Equations (14) and (15) define a piecewise linear

state-space model with stochastic volatility, where the matrices of the state space are generally

allowed to be a functions of ϑt as in equation (13), and the covariance matrix of the shocks εt

is modeled as in equation (2).

Particle filtering allows to approximate the posterior distribution of the latent processes

recursively. Assume that at time t − 1 we have a set of N particles
{
ϑ
(i)
t−1, log s

(i)
t−1

}N

i=1
with

associated weights
{
ω
(i)
t−1

}N

i=1
that approximate the joint distribution of (ϑt−1, log st−1), and we

want to get an analogous set of particles
{
ϑ
(i)
t , log s

(i)
t

}N

i=1
and weights

{
ω
(i)
t

}N

i=1
to approximate:

p (ϑt, log st|Y1:t) , (16)

where p(·) is a generic density function. The presence of stochastic volatility makes direct

sampling from the joint posterior above not possible. Particle filtering is based on importance

10



sampling: we can choose an alternative distribution q (ϑt, log st) called the “importance distri-

bution” from which we draw the new set of particles. Standard derivations show that if the

support of the posterior distribution is included in the support of the importance density, the

associated weights for the respective particles will be proportional to:

ωi
t ∝ ωi

t−1

p
(
ϑ
(i)
t , log s

(i)
t |ϑ(i)t−1, log s

(i)
t−1, Y1:t

)
q
(
ϑ
(i)
t , log s

(i)
t

) for i = 1, ...N. (17)

The choice of the importance distribution is crucial for accuracy of the approximation. The

best choice in terms of statistical efficiency is the density in the numerator of (17), that is the

posterior distribution of (ϑt, log st), conditional on the data and on the past draws. This case

would imply perfectly equal weights. As we already mentioned, we are not able to draw directly

from the full conditional posterior, however we can get close by writing it as:

p
(
ϑt, log st|ϑ(i)t−1, log s

(i)
t−1, Y1:t

)
= p

(
ϑt| log st, ϑ(i)t−1, log s

(i)
t−1, Y1:t

)
p
(
log st|ϑ(i)t−1, log s

(i)
t−1, Y1:t

)
.

The first factor on the right hand side is the posterior distribution of the latent vector ϑt

conditional on stochastic volatility. A methodological contribution of this paper is to show that

this distribution is available analytically. Then, given a set of particles for log st, we can directly

draw the particles for ϑt from its full conditional posterior distribution. In this way we increase

the efficiency of our estimator as an implication of the Rao-Blackwell theorem. In practice this

is a crucial improvement.

Note that this procedure is analogous for conditionally linear models: if we consider the

particular case in which the state space form (14) and (15) has linear propagation dynamics

(when the matrices of the system do not depend on trend inflation), the full conditional dis-

tribution of ϑt is also available analytically through the well-known Kalman filter recursions.

Our contribution is to show that similar recursions exist for the class of piecewise linear models

we consider, such that we can write both the likelihood and the posterior distribution of ϑt in

explicit forms. Below we give an intuitive derivation of both densities, referring to Appendix

A.2.2 for the details.

The likelihood. The contribution to the likelihood of the observation at time t, for particle

i, is:

p
(
Yt|ϑ(i)t−1, Y1:t−1

)
= p

(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
+ p

(
Yt|π̄t > τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t > τ |ϑ(i)t−1, Y1:t−1

)
, (18)
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where we omit the conditioning on log st to simplify the notation, and we indicate with Pr (x) the

probability of an event x. Start considering the first addend of equation (18): it is the product

of a density function scaled by the probability that trend inflation is below the threshold. The

density is given by the integral:

p
(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
=

∫
π̄t≤τ

p
(
Yt, π̄t|ϑ(i)t−1, Y1:t−1

)
dπ̄t . (19)

Equation (19) can be solved analytically: it corresponds to the definition of the Unified Skew

Normal (SUN) distribution introduced by Arellano-Valle and Azzalini (2006).12 Following an

analogous reasoning, we recognise that the density function of the second addend of equation

(18) is also a SUN.

The probabilities that appear in the two addends are scaling factors that make sure the

likelihood is a proper density that integrates to one. These probabilities are easily computed,

given the random walk assumption for trend inflation. Then, the likelihood is a combination

of two Unified Skew Normal densities with parameters that are recursively updated: the exact

formulas are shown in Appendix A.2.2.

The posterior distribution of ϑt. The posterior distribution of ϑt is also the sum of two

pieces, depending on trend inflation being above or below the threshold:

p
(
ϑt|ϑ(i)t−1, Y1:t

)
= p

(
ϑt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t

)
+ p

(
ϑt|π̄t > τ, ϑ

(i)
t−1, Y1:t

)
Pr
(
π̄t > τ |ϑ(i)t−1, Y1:t

)
. (20)

Again, let’s focus on the first addend of equation (20). Since trend inflation is an element of

ϑt, the density is a multivariate truncated Normal with the truncation that only applies to π̄t.

The probability that scales this distribution is proportional to:

Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t

)
∝ p

(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
, (21)

that is exactly the first addend of equation (18). An analogous reasoning hold for the second

piece of the posterior distribution.

The particle filter. Using the derivations above we can get draws of the latent processes in

two steps: first, we get a particle approximation for the volatilities using their law of motion

(3). This proposal is labeled a “blind” distribution because it is not conditional on the data at

time t. Then, we can use the full conditional distribution to obtain the corresponding particles

12The Unified Skew Normal is defined by Arellano-Valle and Azzalini (2006) as a generalization of the Skew
Normal distribution by Azzalini (1985).
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for ϑt.

We choose to implement a “resample - propagation” scheme based on the Auxiliary particle

filter by Pitt and Shephard (1999). The idea is to start selecting the “best” particles through

a resampling step of
{
ϑ
(i)
t−1, log s

(i)
t−1

}N

i=1
using weights proportional to the predictive likelihood.

Then, the resampled particles are propagated to time t using the two steps procedure just

described. All the details of the filter are described in Appendix A.2.2.

Discussion. The state-space form (14) and (15) is quite general and it can be useful for a

wide range of applications using likelihood-based methods. A common trade-off in the choice of

the model specification is the following: on one hand it is desirable to estimate a fully non-linear

model in order to reduce the misspecification. However, this task might be too difficult, or the

approximation of the likelihood can be poor due to computational constraints. On the other

hand, a linear approximation may suffer from model misspecifications but has the advantage

that the likelihood function can be computed analytically. In this trade-off, we propose a third

option: the piecewise linear specification. The advantage of this choice is that it reduces the

misspecification with respect to the linear case, while keeping the analytical availability of the

likelihood. The cost in this case is in the number of parameters to estimate, as clear from

equation (13). The more the number of intervals, the better the approximation, but the more

the number of parameters to estimate. We lack a formal criterion to choose an appropriate

number of intervals. While we think this is an interesting question for future research, in this

paper we opt for the simple choice of a single break.

2.2.2 Inference on the parameters

For the estimation of non-linear macroeconomic models there is a strong tradition that makes

use of particle filters to get an approximation of the likelihood function in the context of Markov

Chain Monte Carlo methods, as pioneered by Fernández-Villaverde and Rubio-Ramı́rez (2007).

In this paper, instead, the use of a particle filtering strategy directly aims at approximating the

joint posterior distribution of the latent processes and the parameters.

We combine two approaches. We primarily use the particle learning scheme by Carvalho

et al. (2010). The methodology consists of augmenting the vector of latent processes with suffi-

cient statistics for the full conditional distributions of the different parameters. This idea uses

the same “Rao-Blackwellization” principle to increase the efficiency of the estimator. Unfor-

tunately, we are not able to use it for all the parameters: in particular sufficient statistics are

not available for the posterior distribution of the threshold τ . To estimate the latter, we use a

mixture of Normal distributions, following Liu and West (2001).

The use of particle filters, and in general sequential Monte Carlo methods, to estimate

the parameters of macroeconomic models is becoming more common (e.g., Ascari et al., 2019;
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Mertens and Nason, 2020). With respect to the more traditional approaches based on Markov

Chain Monte Carlo (MCMC), sequential Monte Carlo (SMC) methods do not have the problems

related to the convergence of the chain (which can be severe in case of non-linear models), and

are much better at approximating multi-modal posterior distributions. Moreover, it is easy

to exploit computational advantages from parallelization, especially in this era of multi-core

processors (see Herbst and Schorfheide, 2014).

2.2.3 Data and priors

We estimate the model using three U.S. quarterly time series, available from the St. Louis Fed

FRED database: per capita real GDP, (annualized) quarterly growth rate of the GDP deflator,

and the Federal Funds rate, over the period 1960Q1 − 2008Q2. We choose to exclude post-

2008 data from our sample to avoid technical issues related to the lower bound on the nominal

interest rate.

The prior distribution of the parameters in the model for the long-run component X̄ are

reported in Table 1. According to our prior information the long-run Phillips curve is vertical:

this is summarized by the choice of a Normal distribution with mean equal to 0 and standard

deviation equal to 0.6 for both k1 and k2. The prior for the threshold τ is centered at 4, which

is close to the average of inflation in our sample. This prior is quite informative because we

want to avoid wasting effort in exploring unrealistic region of the support, especially considering

the range of trend inflation estimates in the literature (see, e.g., Cogley and Sbordone, 2008;

Cogley et al., 2010; Stock and Watson, 2016; Mertens, 2016; Mertens and Nason, 2020). The

parameter c governs the relation between the growth rate of potential output and the natural

interest rate. While the empirical evidence in favor of this link has been debated (Hamilton

et al., 2016), this relation can be derived from the Euler equation in a micro-founded structural

model, and we make our prior consistent with logarithmic utility (the nominal interest rate

is expressed in annual terms). The priors for the variances of the shocks to the long-run

components are assumed to follow standard Inverse-Gamma distributions whose parameters

are shown in Table 1. The short-run dynamics are described by the VAR in equation (1) for

which we choose 4 lags. For the 36 parameters in A(L), we use a standard Minnesota prior with

the hyperparameter governing the overall tightness equal to 0.2, the one for the cross-variable

tightness equal to 0.5 and the hyperparameter for the lag length decay equal to 1. The prior

for the matrices in equation (2) that decompose the covariance matrix Σϵ,t is centered at the

OLS estimates of the corresponding VAR with constant volatility. In particular, we assume an

Inverse-Wishart distribution with 5 degrees of freedom and we consider the implied distributions

for each coefficient. Finally, the variances of the shocks to the stochastic volatilities have an

Inverse-Gamma prior with mean 0.0252 and 5 degrees of freedom.
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Table 1: Prior and posterior distributions for the long-run component of the time series model

Prior Posterior

Parameter Density Mean Standard Deviation Model L Model PWL

k1 Normal 0.0 0.6 −0.15
[−0.49 0.19]

−0.07
[−0.51 0.38]

k2 Normal 0.0 0.6 −0.92
[−1.35 −0.47]

τ Normal 4.0 0.3 4.09
[3.88 4.29]

c Normal 4.0 0.75 3.53
[3.28 3.78]

2.93
[2.68 3.18]

Density Mean Degrees of freedom

σ2π Inverse Gamma 0.252 15 0.22
[0.182 0.232]

0.232
[0.212 0.262]

σ2y Inverse Gamma 0.52 15 0.492
[0.452 0.542]

0.592
[0.542 0.662]

σ2g Inverse Gamma 0.052 15 0.0432
[0.0392 0.0482]

0.052
[0.0422 0.0582]

σ2z Inverse Gamma 0.152 15 0.142
[0.132 0.162]

0.172
[0.142 0.192]

Posterior median and the 90% probability interval in brackets

2.3 Results

We estimate two specifications of our model: the linear case (Model L) in which we assume

that the slope of the long-run Phillips curve is constant, and the piecewise linear case (Model

PWL) where we allow for two different slopes, as extensively explained in the previous Section.13

Table 1 reports the median and the 90% credibility interval of the posterior estimates for the

parameters of the long-run components. We discuss three main results. First, our evidence

suggests that the long-run Phillips curve is not vertical, but it is non-linear and negatively

sloped, and substantially so. Hence, trend inflation is an important determinant of potential

output. Second, we define the concept of the “long-run output gap (LROG)” and quantify the

losses due to high trend inflation in U.S. data. Third, our model implies that failing to take

into account the LROG results in biased estimates of the short-run output gap.

2.3.1 The long-run Phillips curve is non-linear and negatively sloped

Considering the linear specification, the estimates of Model L are in line with the results in the

existing literature, in particular with Benati (2015), providing no evidence against a vertical

long-run Phillips curve. The posterior distribution of the slope parameter k1 is concentrated

around zero with a negative median.

13We employ 500, 000 particles for each time iteration of our particle filter, for both Model L and Model PWL.
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Figure 1: Online inference of the slope k1 - Linear model.

Estimating the parameters of the model through particle filtering allows us to check how the

parameters’ estimates evolve over the sample, depending on the available information. Figure 1

shows sequential inference for the slope coefficient k1 of Model L. As a reference, we report the

time series of annualized inflation in the top panel. While at the very beginning of the sample

the median estimate moves more toward the positive side, when inflation starts fluctuating

around 4% during the Seventies, then the posterior estimate of k1 concentrates its mass more

toward negative values. During the Great Moderation, the posterior distribution of k1 remains

stable due to little variation in the estimated trend inflation series.

This result suggests that there is specific informational content on the slope of the LRPC in

different subsamples. In particular, when inflation is persistently high during the Great Inflation

period, then the model captures a negative correlation between the long-run components of

output and inflation. As stressed by Benati (2015), since this is the period in which inflation

clearly exhibits a unit root, the relevant information for the identification of the slope of the

LRPC comes from this sample. We deal with this identification problem allowing for non-

linearity in Model PWL.

When we allow for the slope of the long-run Phillips curve to change, the estimation prefers

to use this feature to interpret the data. While the estimate of k1 remains around zero, the

posterior distribution of k2 in Table 1 has a median of −0.92 and the 90% probability interval

lies entirely on the negative side. Note that the piecewise linear specification admits the linear

model as a particular case. However, the estimation rejects this option as evident from Figure

2, which compares the prior and the posterior distributions of the slopes k1 and k2 for Model

PWL.
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Figure 2: Estimates of the slopes of the long-run Phillips curve - Piecewise linear model.

Figure 3: Online inference of the slopes k1 and k2 - Piecewise linear model.
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Then, the first important result of our analysis is that the long-run Phillips curve is non-

linear and negatively sloped. The negative effects on output materialize when trend inflation is

above the threshold value τ , estimated to be about 4%. The second important takeaway from

these results is that the absolute value of the LRPC slope is sizeable and roughly equals one.

Hence, every percentage point increase in trend inflation above the threshold value of 4% is

related to about 1% decrease in potential output per year.

It is informative to look at the sequential inference about the slopes of the LRPC in the

non-linear model just as we did for the linear case. Figure 3 shows how the median and the

90% probability interval of the posterior distributions of k1 and k2 evolve recursively over the

sample. In the first panel, we plot the (annualized) inflation rate as well as the posterior

probability interval of τ (dotted lines). The pattern of the posterior distribution of k1 initially

resembles the one in the linear model: it becomes slightly positive until the beginning of the

Seventies when it reverts back toward zero. Now the model has the option to let k2 to capture

the negative correlation between output and inflation. The persistent high inflation during

this period makes trend inflation cross the threshold and k2 is confidently estimated to be

negative. Figure 3 makes it clear why non-linearity is important in finding evidence in favour

of a non-vertical (and negatively sloped) LRPC.

Figure 4 shows the estimated long-run Phillips curve by plotting the deviation of potential

output from its zero trend inflation counterfactual as a function of trend inflation based on (5).

The 90% probability interval reflects the uncertainty around the parameters estimates. The

LRPC is vertical when trend inflation is below the threshold τ and negatively sloped above.

Note that the uncertainty around k1 makes our results consistent both with models in which

there is a positive optimal level of trend inflation (see Adam and Weber, 2019; Abbritti et al.,

2021) and with frameworks in which the best value for trend inflation is zero.

Finally, it is important to stress that we interpret our piecewise linear model as an approx-

imation to an underlying non-linear relation as the one we estimate in Section 3. This means

that the value of the estimated threshold, while giving an important indication, does not have

to be taken literally: trend inflation can imply potential output losses even below τ , as clear

from the figure.

2.3.2 The long-run output gap

Under the assumption of a vertical long-run Phillips curve ȳt is exactly equal to y∗t in (5).

However, our estimates suggest that when trend inflation is above the threshold τ , potential

output ȳt is different from y∗t , the potential output under zero trend inflation. We call this

difference the long-run output gap (see also the discussion at the end of Section 3.3). The

estimates allow us to quantify the long-run output gap in our sample and to answer the following

question: how much was the loss in potential output due to high trend inflation in the U.S.
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Figure 4: Long-run Phillips curve estimated through the piecewise linear model: median (con-
tinuous line) and 90% probability interval (dashed lines).

data?

Our estimate of trend inflation is reported in Figure 5. During the Great Inflation period

the median reaches almost 7.5%, which induces substantial losses in potential output as shown

in Figure 6. During the Great Inflation, the median of the output cost associated with the

long-run Phillips curve had been on average about 2% per year and the maximum reached

3%.14

An alternative explanation of the high inflation and low output during the Great inflation pe-

riod is related to the important role of supply shocks. These are shocks to the short-run/cyclical

component of the variables. To allow our empirical framework to account for this possibility,

we allow for stochastic volatility in the reduced-form shocks in the VAR (1). Hence, the model

could capture large shocks, and eventually interpret the high inflation of the ’70s as short-run

deviations due to large supply shocks. Despite this possibility, the high inflation and the low

output are so persistent that the model prefers to attribute the negative correlation between

these two variables to their respective permanent components.

This finding suggests that the non-linearity in the LRPC has important implications for the

measurement of the costs associated with higher trend inflation, being related to a decline in

potential output. We discuss this point in further details below.

14Both trend inflation and the long run output gap are filtered estimates obtained by conditioning on the
median estimates of the parameters. The choice of showing the filtered series is motivated by an easier comparison
with the structural model (see next section) for which smoothed estimates are computationally difficult to obtain.
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Figure 5: Inflation and trend inflation - Piecewise linear model.

Figure 6: Long-run output gap estimated through the piecewise linear model.
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Table 2: Parameters in the long-run component of the time series model, case with k1 = 0

Posterior

Model L Model PWL

k2 −1.04
[−1.52 −0.51]

τ 4.08
[3.64 4.52]

c 3.08
[2.88 3.28]

4.17
[3.85 4.49]

σ2π 0.252
[0.232 0.272]

0.232
[0.212 0.262]

σ2y 0.562
[0.512 0.612]

0.532
[0.482 0.592]

σ2g 0.0352
[0.0322 0.042]

0.0592
[0.0442 0.0682]

σ2z 0.162
[0.142 0.182]

0.162
[0.142 0.192]

Posterior median and the 90% probability interval in brackets

2.3.3 Business cycle measurement: implications for the short-run output gap

A negatively-sloped LRPC has important consequences for the measurement of business cycles.

According to our estimates, assuming a vertical LRPC, that is, imposing the absence of a

relation between output and inflation in the long-run, leads to biased estimates of the short-run

output gap. In particular, during the Great Inflation period, these traditional estimates of the

short-run output gap tend to overstate the negative development of the business cycle. First, we

estimate a version of Model L presented in Section 2 but now we impose k1 = 0, that is a vertical

LRPC, rather than estimating k1 as in Table 1. The posterior estimates of the parameters of

the long-run component are reported in the first column of Table 2.

In Figure 7 we show the potential output and the implied output gap measures estimated

under the two models, focusing on the Great inflation period.15 The upper-left panel compares

the potential output estimated assuming a vertical LRPC with the corresponding CBO measure:

the inference is extremely similar implying almost the same values for the output gap during

the high trend inflation period (bottom-left panel). Let’s stress again that by assumption we

are offsetting the role of the long-run output gap which is calibrated to be zero.

We now relax this assumption by estimating a piecewise linear version of this model in

which we still calibrate k1 = 0, but we allow for k2 to be different from zero (we use the same

Gaussian prior as before). Calibrating k1 makes this model directly comparable to the linear

version we just described which is a nested case. The posterior estimates are reported in the

15Note that these measure are smoothed estimates.
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Figure 7: Potential output (upper panels) and implied output gap (lower panels) measures
under the linear model, the piecewice linear model and the official CBO estimate.
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second column of Table 2. The first result to highlight is that k2 is confidently estimated to be

negative: the data rejects the assumption of a vertical LRPC. The inference on the parameters

is in line with our previous estimates, in particular about the posterior distribution of k2 and

the resulting costs related to high trend inflation.

The upper-right panel of Figure 7 plots the measures of potential output estimated by the

two versions of our VAR. During the period of high trend inflation we notice a sizable decline

in the PWL estimate of potential output with respect to the corresponding measure under a

vertical LRPC. This decline captures the loss in potential output related to the non-linear and

negatively sloped LRPC. Then, while the linear model (similarly to the CBO) interprets the low

output as a drop in the output gap, Model PLW attributes part of this loss to potential output

because of the high trend inflation. This affects the measure of the output gap, resulting in a

different interpretation of the cyclical component of GDP, as clear from the bottom-right panel.

For example, under Model L the output gap turns negative already in the first half of 1980 and

reaches its trough at the end of 1982 with a value of −8.2%; under Model PWL, the output gap

turns negative only at the end of 1981, and its lowest value in 1982 is equal to −5.7%. In other

words, assuming a vertical LRPC leads to overstating the negative development of the business

cycle in times of high inflation.

Finally, we note that the time series model does not give any causal interpretation about

the LRPC: we can not state if the long-run losses in output are the consequence of high trend

inflation, or vice versa. In order to get such an interpretation we need a structural model. We

discuss this point in the next section.

3 A structural approach

We have shown above that the U.S. data are better described by a time-series model imply-

ing a negatively sloped LRPC in times of high trend inflation. However, such a model is not

able to give a structural interpretation and to explain the causal link in the long-run relation-

ship between output and inflation. Which type of structural model could deliver a theoretical

interpretation while at the same time be quantitatively in line with our empirical results? For-

tunately, we do not have to look very far: the standard workhorse New Keynesian model would

do it.16

Therefore, we embed time-varying positive trend inflation in a simple dynamic stochastic

general equilibrium (DSGE) model. As in the time-series model, the variables in the DSGE

model are decomposed into short-run and long-run components, and we estimate the two com-

16While there could be other possible model that could provide alternative structural interpretation to a nega-
tive sloped LRPC, it seemed to us natural to start with the most popular model in the literature. An interesting
question for future research would be to ask if other alternative structural interpretation are theoretically and
quantitatively coherent with our time-series results.
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ponents together with the parameters of the model. Our objective is to get a model-based

estimate of how trend inflation is related to potential output in the long-run, in other words,

estimate the LRPC using a structural DSGE model.

3.1 The model

The artificial economy is a variant of the Generalized New Keynesian (GNK) model in Ascari

and Sbordone (2014). The model consists of a representative household, a representative final-

good firm, a continuum of intermediate-good firms, and a monetary authority. The model is

very standard, so here we describe the main features, while Appendix B contains more details.

The novelty comes from the assumption of a time-varying steady state or trend inflation. Hence,

we need to take particular care of how we log-linearize the model around a time-varying steady

state.

The representative agent maximizes the following expected utility function where preferences

are additively separable in individual consumption of final goods, Ct, and labor, Nt :

E0

∞∑
t=0

βtdt

[
ln
(
Ct − hC̃t−1

)
− dn

N1+φ
t

1 + φ

]
0 < β < 1, dn > 0, φ ≥ 0, 0 ≤ h < 1, (22)

where φ is the inverse of the Frisch labor supply elasticity, dn governs the steady state disutility

of work, and h is the degree of habit persistence in consumption. Habit persistence is ‘external’,

meaning that the consumer is concerned with the level of her current consumption Ct relative

to the aggregate consumption in the previous period C̃t−1. The term dt stands for a shock to

the discount factor, β, which follows the stationary autoregressive process:

ln dt = (1− ρd) d+ ρd ln dt−1 + σd,tϵd,t, (23)

where ϵd,t is i.i.d N(0, 1) and σd,t denotes time-varying standard deviation of the preference

shock. The period budget constraint is given by:

PtCt +R−1
t Bt =WtNt − Tt +Dt +Bt−1, (24)

where Pt is the price level, Rt is the gross nominal interest rate on bonds, Bt is one-period bond

holdings, Wt is the nominal wage rate, Tt is lump sum taxes, and Dt is the profit income.

Firms come in two forms. A final-good firm produces output for consumption. This output

is made from the range of differentiated goods that are supplied by intermediate-goods firms

who have market power. Each intermediate-good firm i produces a differentiated good Yi,t

under monopolistic competition using the production function Yi,t = AtN
1−α
i,t . Here At denotes

the level of aggregate technology that is non-stationary and its growth rate gt ≡ At/At−1 follows
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the process:

ln gt = ln g + σg,tϵg,t, (25)

where ḡ is the steady-state gross rate of technological progress which is also equal to the steady-

state balanced growth rate, ϵg,t is a i.i.d. N(0, 1) and σg,t is the time-varying standard deviation

of the technology shock. Intermediate-goods producers are subject to nominal rigidities in

the form of Calvo (1983) with partial indexation. Hence, they face a constant probability,

0 < (1− θ) < 1, of being able to adjust their price while the price of a firm that cannot change

the price is automatically indexed to past-inflation with a degree χ.

The central bank’s monetary policy follows a Taylor rule featuring inertia and responding

to the inflation gap, the output gap and output growth gap:

lnRt = ρ lnRt−1+(1− ρ) ln R̄t+(1− ρ)ψπ ln

(
πt
πt

)
+(1− ρ)ψx ln

(
Xt

Xt

)
+(1− ρ)ψ∆y ln

(
gyt
gy

)
+σr,tϵr,t,

(26)

where Xt is the output gap defined as the deviation of output from its natural (or flexible price)

level, Xt is the steady state output gap, gyt is the growth rate of output, gy = g is the steady

state growth rate of output, and ϵr,t is a i.i.d. N(0, 1) monetary policy shock with time-varying

standard deviation σr,t. The parameters ψπ, ψx and ψ∆y govern the central bank’s responses

to the inflation gap, output gap and output growth, respectively. Note that the output gap is

defined as usual as the deviation of the level of output from the flexible price output level. Thus,

it enters the Taylor rule relative to its long-run level, that is, the long-run output gap, which

emerges in this model (see the discussion in Subsection 3.3.2), as in the non-structural model

of the Section 2. The idea is that monetary policy responds, as usually assumed, to short-run

deviation of variables from their steady state values. The inflation gap is the deviation of the

inflation rate from time-varying trend inflation, i.e., πt, which represents the central’s banks

(time-varying) inflation target and follows a unit root process:

lnπt = lnπt−1 + σπ,tϵπ,t, (27)

where ϵπ,t is i.i.d. N(0, 1) and σπ,t denotes time-varying standard deviation of the inflation

target shock.

Following Justiniano and Primiceri (2008), we allow for stochastic volatility by assuming

that each element of σt evolves independently according to the following stochastic process:

lnσi,t = lnσi,t−1 + νi,t νi,t ∼ N
(
0, δ2i

)
for i = d, g, r, π. (28)

The steady state of the system is stochastically changing because it is characterized by

time-varying trend inflation, πt, and also because of stochastic (unit-root) technology process.
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As a result, we first de-trend the real variables of the model to remove the trend in technology

and then log-linearize the resulting non-linear model around a drifting steady state. Here,

we describe heuristically the state-space form for the estimation, composed of the following

elements.17

1. A set of equations that define the detrended variables as deviations from steady state

Zt = ZtZt/Zt = ZtZ̃t. In logs: lnZt = lnZt + Ẑt, where Ẑt ≡ ln Z̃t.

2. A law of motion for πt: πt = πt−1 exp(σπ,tϵπ,t).

3. A set of equations that define the steady state of the variables as a function of πt: Zt =

f(πt, πt−1).

We can then write the usual system for the dynamics of the log-linearized variables in

canonical form, but now the system will have time-varying parameters as they are functions of

πt:

Γ0(πt)Ẑt = Γ1(πt)Ẑt−1 +Ψ(πt)εt +Π(πt)ηt, (29)

where εt is a vector of exogenous disturbances and ηt is a vector of one-step ahead forecast

errors. However, for any given value of πt (and for a given realization of stochastic volatility),

the system (29) is conditionally linear and can be solved with standard methods.

At each time t, we observe a vector of data denoted by yt. Then, the solution of model (29)

has the following state-space representation:

yt = c1 + FẐt (30)

Ẑt = c2,t +Mz,tẐt−1 +Mε,tεt εt ∼ N(0,Σε,t)

where Σε,t is a diagonal matrix with σi,t of time-varying standard deviations on the main

diagonal. Note that the terms that appear in the state equations, c2,t, Mz,t, Mε,t, depend on t

due to time-varying trend inflation. In other words, when trend inflation drifts, the coefficients

of the state equation in (30) also drift, even if the underlying structural parameters are constant.

3.2 Econometric strategy

We follow a Bayesian approach to make inference regarding the parameters and the latent

processes of the DSGE model. The presence of time-varying trend inflation as well as stochastic

volatility leads to a non-Gaussian and analytically intractable likelihood function. We use the

same particle filtering strategy as for the time-series model to directly approximate the joint

17Appendix B presents the log-linearized equations of the model. As in Cogley and Sbordone (2008), the
steady state of the model is time-varying because of drifts in trend inflation. As such, care must be taken when
log-linearizing the model. As in Cogley and Sbordone (2008) - see footnote 5 therein - we assume ‘anticipated
utility’ following Kreps (1998).
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posterior distribution of both the parameters and the latent state variables. In the context of

DSGE models this approach has been use by Chen et al. (2010) and Ascari et al. (2019).

The main idea of using SMC methods is to get an approximation of a complicated posterior

through the sequential approximation of simpler distributions. Two approaches have been

proposed for DSGE models: (i) a likelihood tempering scheme (Herbst and Schorfheide, 2014)

in which the simpler sequential distributions are obtained by tempering the likelihood function;

(ii) a filtering scheme in which the intermediate distributions are obtained by sequentially adding

observations to the likelihood function.18 In this paper, in analogy with the estimation of the

time series model in the previous section, we opt for the second approach.

As for the time series model, we can get higher efficiency through Rao-Blackwellization:

conditional on πt and the realization of stochastic volatility σi,t, the state space (30) is linear

and Gaussian. This implies that, given a set of particles for πt and σi,t, both the predictive

likelihood and the full conditional distribution of the other latent states are analytically available

through the standard Kalman filter recursion.

Inference on the parameter is obtained combining the same methods as for the time series

model. The parameters are divided into two sets: one with the variances of the disturbance to

the stochastic volatility processes, and one with all the other structural parameters. For the

former, we assume Inverse-Gamma priors, allowing us to characterize the posterior distribution

analytically using sufficient statistics computed as functions of the data and the latent processes

of the model. We make inference on these parameters using the particle learning approach

of Carvalho et al. (2010). For the latter, we approximate the posterior distribution through

mixtures of Normal distributions, following Liu and West (2001).19

3.2.1 Data and priors

We estimate the model using the same U.S. data as in the time-series analysis: per capita real

GDP growth rate, (annualized) quarterly growth rate of the GDP deflator and the Federal

Funds rate, over the period 1960Q1− 2008Q2.

As customary when taking DSGE models to the data, we calibrate a small number of

parameters. In particular, we set the discount factor β to 0.997, the steady state markup to 10

per cent (i.e., ε = 11), the inverse of the labor supply elasticity φ to 1, the quarterly net steady

state output growth rate ḡ to 0.5, and the degree of decreasing returns to scale α to 0.3. In light

of the result of Cogley and Sbordone (2008) regarding the lack of support for intrinsic inertia

in the GNK Phillips curve, the model is estimated without backward-looking price indexation,

i.e., χ = 0. The remaining parametes are estimated. Table 3 summarizes the specification of

the prior distributions. The prior for the inflation coefficient ψπ follows a Gamma distribution

18See also Creal (2007) and Herbst and Schorfheide (2016).
19For a more detailed description of the SMC algorithm, we refer to the online appendix of Ascari et al. (2019).
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Table 3: Prior and Posterior Distributions

Parameter Prior Posterior

Density Mean St Dev

ψπ Gamma 1.5 0.5 2.36
[2.04 2.7]

ψx Gamma 0.125 0.05 0.13
[0.08 0.21]

ψ∆y Gamma 0.125 0.05 0.34
[0.20 0.56]

ρ Beta 0.7 0.1 0.75
[0.72 0.79]

h Beta 0.5 0.1 0.39
[0.33 0.45]

r∗ Gamma 2 0.5 2.12
[1.87 2.41]

θ Beta 0.5 0.1 0.49
[0.45 0.52]

ρd Beta 0.7 0.1 0.79
[0.74 0.83]

Density Mean Degree of freedom

δ2d Inverse Gamma 0.022 5 0.1192
[0.1052 0.1352]

δ2g Inverse Gamma 0.022 5 0.0282
[0.0232 0.0322]

δ2r Inverse Gamma 0.022 5 0.0572
[0.0462 0.0652]

δ2π Inverse Gamma 0.022 5 0.0292
[0.0262 0.0342]

Posterior median and 90% credibility interval in brackets
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centered at 1.50 with a standard deviation of 0.50 while the response coefficient to the output

gap and output growth are centered at 0.125 with standard deviation 0.05. We employ a Beta

distribution with mean 0.70 for the interest rate smoothing parameter ρ and the persistence of

the discount factor shock ρd, while the Calvo probability θ and habit persistence in consumption

h are centered around 0.50. The steady state real interest rate follows a Gamma distribution

centered at 2. For the variances of the shocks to the volatilities δ2i , we assume an Inverse Gamma

distribution with mean equal to 0.02 and 5 degrees of freedom. Our estimation assumes a unique

rational expectations equilibrium, i.e., we do not allow for indeterminacy.20

3.3 Results

Table 3 reports the posterior medians and the 90% posterior density intervals based on one

million particles from the final stage in the SMC algorithm. The Taylor rule’s response to the

inflation gap is strongly active as the estimated response lies mostly above 2. We also find a

moderate response to the output gap and a strong response to output growth along with high

degree of interest rate smoothing. The degree of habit formation is somewhat low and is close

to 0.4. The posterior mean for the degree of price stickiness θ turns out to be around 0.5, which

is smaller than the estimates reported in Smets and Wouters (2007) and Justiniano et al. (2010)

and implies an expected price duration of six months.

Figure 8 plots the model-implied evolution of trend inflation along with the 90% posterior

density interval and the actual GDP deflator inflation rate. Trend inflation began rising in the

mid-1960s and jumped higher in the aftermath of the 1973 oil crisis.21 Subsequently, it dropped

remarkably during the Volcker-disinflation period and somewhat settled around 2− 2.5% since

the mid-1990s. Overall, visual inspection suggests that the estimated trend inflation is similar

to others in the literature (e.g., Ireland, 2007; Cogley and Sbordone, 2008; Cogley et al., 2010;

Ascari and Sbordone, 2014, among others). Moreover, it is also very similar to the estimate of

trend inflation from the reduced-form piecewise linear model in Figure 5.

To the best of our knowledge, we are the first ones to estimate a DSGE model with time-

varying steady state or trend inflation using full-system Bayesian estimation. Most papers in

the literature either assume that steady state inflation is fixed (mostly at zero). One exception

is Cogley and Sbordone (2008) who derive a generalized NKPC (GNKPC) with time-varying

20This stands in contrast to the evidence on passive monetary policy in the pre-Volcker period proposed by,
among others, Clarida et al. (2000) and Lubik and Schorfheide (2004), that eventually led to non-fundamental
sunspot fluctuations, which these authors argued to be one of the drivers of the Great Inflation. Nevertheless,
Justiniano and Primiceri (2008) find that a model with active monetary policy and stochastic volatility fits the
post-war U.S. data better than one with indeterminacy. In addition, Haque (2020) in an estimated NK model
with exogenous time-varying inflation target finds that the evidence for indetermincay in the Great Inflation
period dissapears once the model allows for time variation in the Federal Reserve’s inflation target.

21The upward trend in inflation in the 1970s may be interpreted as “[...] a systematic tendency for Federal
Reserve policy to translate the short-run price pressures set off by adverse supply shocks into more persistent
movements in the inflation rate itself - part of an effort by policymakers to avoid at least some of the contractionary
impact those shocks would otherwise have had on the real economy.” (Ireland, 2007, p. 1853)
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Figure 8: Inflation and trend inflation - GNK model.

trend inflation and document that inflation persistence results mainly from variation in the

long-run trend component of inflation and that a purely forward-looking GNKPC fits the data

quite well.

Figure 9 shows the estimated pattern of the time-varying standard deviations of the shocks.

Despite the fact that we work with a much smaller model with respect to Justiniano and

Primiceri (2008), the main conclusions remain very similar. First, the model accounts for the

reduction in the volatility of U.S. macroeconomic variables, dubbed the Great Moderation, due

to a substantial decrease in the volatility of exogenous disturbances. The pattern of stochastic

volatility of monetary policy shocks is remarkably similar to that in Justiniano and Primiceri

(2008) - our estimates capture the Volcker disinflation episode as well as the reduction in the

volatility of monetary policy shocks during the Greenspan period. Other shocks also exhibit

fluctuations in their standard deviations. The standard deviation of the technology shocks

exhibit an inverted-U shaped pattern, which is consistent with the observed reduction in the

volatility of GDP during the Great Moderation period. The volatility of preference shocks have

also declined since the 1980s, possibly capturing the role that technological progress or financial

innovations may have played in easing households’ consumption smoothing. As in Cogley et al.

(2010), we find an increase in the volatility of trend inflation shocks during the Great Inflation

period and a subsequent decline in the post-Volcker period, although there is higher uncertainty

around the estimates.

3.3.1 The long-run Phillips curve is non-linear and negatively sloped

Figure 10 plots the estimated LRPC from the structural model, expressed as percentage devi-

ations from the zero inflation steady state, and compares it with the corresponding estimate

coming from the BVAR. The structural model is able to capture the negative long-run empirical
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Figure 9: Stochastic volatility of the structural shocks

relationship between output and inflation as observed in the data, both qualitatively and quan-

titatively. The estimated GNK LRPC and its 90% probability interval lies entirely within the

90% probability interval of the BVAR non-structural estimated LRPC. The LRPC is non-linear

and downward sloping. There is a flat part of the curve for low level of trend inflation, but for

trend inflation levels roughly above 3 − 4% the slope increases sharply in absolute value with

trend inflation. In terms of output losses, going from 2% to 4% inflation target causes an output

loss of roughly about 0.6% per year. The effect is highly non-linear such that a 5% and a 6%

inflation target would imply an output loss (relative to 2% target) of roughly 1.2% and 2% per

year, respectively.

As is well-known in the literature, the negative steady state relationship between inflation

and output in the GNKmodel is due to the negative effect of higher price dispersion on aggregate

output. Higher trend inflation increases price dispersion by causing a greater difference between

the price set by the resetting firms and the average price level. Higher price dispersion works

like a negative aggregate productivity shock, as it increases the amount of input required to

produce a given level of output, which in turn translates into an output loss (see Ascari, 2004;

Yun, 2005; Ascari and Sbordone, 2014). Therefore, long-run superneutrality breaks down and

a negative long run relationship emerges between inflation and output.

The Calvo model generally features larger costs of inflation relative to other price setting

model, both time dependent (e.g., the Rotemberg or the Taylor models) or state dependent

(menu cost models). Hence, the literature often stresses that the Calvo model tends to exagger-

ate the inflation costs, which are then considered as excessively large. It is important to stress

that our analysis rebuts this interpretation. Figure 10 shows that the LRPC implied by the
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Figure 10: Long-run Phillips curve: median (continuous line) and 90% probability interval
(dashed lines) - comparison between VAR (blue) and GNK (black) estimates.

Calvo model is in line with the costs from the non-structural model of Section 2, at least up to

trend inflation levels we historically observed in the U.S. data, i.e., up to 7-8% trend inflation.

3.3.2 The long-run output gap

As for the BVAR, a time-varying trend inflation generates a long-run wedge alongside the usual

short-run wedge for the variables in the model. In the standard NK model the output gap (i.e.,

short-run wedge) is usually defined as deviation of output from its flexible price counterpart:

Xt =
Yt
Y n
t

in logs → xt = yt − ynt . (31)
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Normally, the steady state output of the sticky price NK model and the one of its flexible price

counterpart are the same.22 If that is the case, (31) could also be written as:23

Xt =
Yt
Ȳt

Ȳt
Y n
t

in logs → xt = ŷt − ŷnt , (32)

where a ‘hat ’ on the variables indicates log-deviations from the trend level, i.e., the steady

state output level of the NK model and of the flexible price model, which are one and the

same. According to the GNK model, instead, the trend Ȳt for the sticky price model is different

from the trend of the flexible price model, Ȳ n
t . The latter does not depend on trend inflation,

because flexible prices imply a vertical LRPC. Instead, trend inflation affects the long-run level

of output under sticky prices.24 The model then implies another wedge with respect to the

flexible model counterpart: a long-run output gap arises from comparing the long-run behavior

of the flexible price and sticky price models, as in the BVAR specification, see (5). One possibly

useful decomposition is:

Xt =
Yt
Y n
t

=
Yt
Ȳt

Ȳt
Ȳ n
t

Ȳ n
t

Y n
t

in logs → xt = ŷt + ˜̄xt − ŷnt = ỹSRt + ỹLRt . (33)

The output gap is divided into a short-run and a long-run component. As before in (32), the

short-run component is the difference in the log-deviations of current output from its trend (Ȳt)

and the flexible price output and its trend (Ȳ n
t ), that is ỹSRt = ŷt− ŷnt . The long-run component

is the log-deviation between the GNK-output trend (Ȳt) and the flexible price output trend (Ȳ n
t ).

Assuming a vertical LRPC then ỹLRt = 0 and xt = ỹSRt . However, in the GNK model ỹLRt ̸= 0

because Ȳt ̸= Ȳ n
t . Further, the term Xt = (Ȳt/Ȳ

n
t ) enters the Taylor rule (26) because the

short-term interest rate reacts to deviation of the short-run output gap to its trend, that is:

(Xt/Xt) =
Yt

Ȳt

Ȳ n
t

Y n
t
, in logs, xt − ˜̄xt = ŷt − ŷnt = ỹSRt .

Figure 11 plots the estimated long-run output gap implied by the GNK model and compares

it to the one from the BVAR. The two estimates are very similar suggesting that the two models

measure the actual costs of higher trend inflation in a consistent way.

22This is because usually NK models assume either zero inflation in steady state - so they do not even consider
the long-run relationship between inflation and output - or full indexation of the prices that cannot be adjusted
to some combination of past inflation and trend inflation. The latter assumption yields a vertical LRPC.

23The level of steady state output Ȳt can be time varying if there is technological growth (either deterministic
or stochastic) as in our model. In solving the model, variables are stationarized so that the steady state levels in
stationarized variables are constant along a balanced growth path.

24This notion of a flexible price equilibrium complicates the analysis with respect to a non-structural one where
one has just potential output as an unobservable to filter out. The somewhat “normative” notion of comparing
the model with the flexible counterpart introduces other two non-observable variables: the flexible price output,
Y n
t and the flexible price trend output level, Ȳ n

t .
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Figure 11: Comparison between long-run output gap estimates: VAR (blue) and GNK (black).

4 Conclusion

The relationship between inflation and economic activity in the long-run is of paramount impor-

tance for monetary policymaking as most central banks perceive price stability as the basis for

long-term economic growth. The prominent tenet of the inflation targeting framework and of

the monetary policy practice is the absence of a long-run trade-off between output and inflation.

However, there are relatively few empirical investigations of this long-run relationship. This pa-

per aims to develop an empirical methodology which is tailored to the purpose of providing

more precise estimates of the LRPC.

We develop a Bayesian vector autoregression (BVAR) framework with stochastic trends, and

provide a sophisticated trend-cycle decomposition of the data. A key methodological contri-

bution is to generalize this BVAR-based trend-cycle decomposition to a piecewise linear model

and show that both the likelihood function and the posterior distribution of the latent state

variables can be derived analytically. Relative to existing studies, the framework allows for si-

multaneous estimation of both the short-run business cycle and the long-run trend components,

such that the estimated LRPC is also consistent with the cyclical properties of the data.

Our empirical results call for a reassessment of the conventional wisdom according to which

the LRPC is vertical and there is no trade-off between output and inflation in the long-run.

First, they show that the long-run relationship between output and inflation is non-linear.

While the LRPC is vertical for relatively low levels of trend inflation, it becomes negatively

sloped when trend inflation is above a certain threshold estimated to be around 4%. Second,

the slope of the LRPC is substantial: every percentage point increase in trend inflation above

the threshold level is related to about 1% decrease in potential output per year. Third, it

follows that trend inflation above the threshold carries material output costs. According to our
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estimated model, the long-run output gap, which captures the deviation of potential output

under positive trend inflation from its counterfactual level under zero trend inflation, has been

on average about negative 2% per year during the Great Inflation. Fourth, neglecting the

negative long-run relationship between output and inflation leads to mismeasurement of the

size of the short-run output gap, hence to a misinterpretation of the business cycle dynamics.

For example, not considering the negative slope of the LRPC leads to a more negative short-run

output gap estimates in periods of high inflation during the Great Inflation, thereby overstating

the cyclical component of output fluctuations.

Finally, a New Keynesian model generalized to admit time-varying trend inflation and es-

timated via particle filtering provides theoretical foundations to this reduced-form evidence

coming from the BVAR. We show that the structural long-run Phillips Curve implied by the es-

timated New Keynesian model is not statistically different from the one implied by the reduced-

form piecewise linear BVAR model. The structural model is able to provide, therefore, a the-

oretical rationale for the empirical non-structural results, suggesting that the costs of inflation

due to price dispersion in the standard NK model are in line with the empirical evidence.
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A Appendix: The piecewise linear Bayesian VAR

A.1 The time varying equilibrium VAR

Indicate with Xt a n × 1 vector of observed variables at time t and with X̄t the long-run
component of Xt. The deviations (Xt − X̄t) are described by the following stable VAR:

Xt − X̄t = A1(Xt−1 − X̄t−1) +A2(Xt−2 − X̄t−2) + ...Ap(Xt−p − X̄t−p) + ϵt (A1)

with ϵt ∼ N (0,Σϵ,t). We assume that the reduced-form shocks ϵt have stochastic volatility:

Σϵ,t = B−1St(B
−1St)

′ (A2)

where

St =

 s1t 0 0

0 s2t 0

0 0 s3t

 (A3)

and

B =

 1 0 0

β21 1 0

β31 β32 1

 (A4)

Collect the elements in the main diagonal of St in the vector st. We follow the well established
literature assuming:

log st = log st−1 + νt νt ∼ N (0,Σν) (A5)

and we restrict Σν to be diagonal.
The long-run component X̄t depends on a (q × 1) vector of latent variables θt:

X̄t = D̄t +Htθt (A6)

and we assume that θt has the following dynamics

θt = M̄t + Ḡtθt−1 + P̄tηt (A7)

with ηt ∼ N (0,Ση,t).
The first element of the latent vector θt is trend inflation π̄t, and the matrices in equations

(A6) and (A7) depend on it. In particular, at each time t, conditioning on π̄t−1 we have two
possibilities depending on trend inflation at time t:

(
D̄t, Ht, M̄t, Ḡt, P̄t

)
=


(
D̄1,t, H1,t, M̄1,t, Ḡ1,t, P̄1,t

)
if π̄t ≤ τ(

D̄2,t, H2,t, M̄2,t, Ḡ2,t, P̄2,t

)
if π̄t > τ

(A8)

where τ is a threshold value. The subscript 1, t and 2, t indicate that the two groups of matrices
do not have to be the same at each time t: the important assumption is that we always have a
finite number of options (in our case two), so the model is piecewise linear.
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A.2 Inference on the latent states θt

A.2.1 The state space form

Define Yt = Xt −A1Xt−1 −A2Xt−2 − ...ApXt−p and substitute equation (A6) in (A1) to get:

Yt =D̄t −A1D̄t−1 −A2D̄t−2...−ApD̄t−p+

Htθt −A1Ht−1θt−1 −A2Ht−2θt−2 − ...−ApHt−pθt−p + ϵt. (A9)

Define the latent vector ϑt =
(
θ′t θ′t−1 · · · θ′t−p

)′
. Using equations (A7) and (A9) we

can define the state space representation of our model:

Yt = Dt + Ftϑt + ϵt (A10)

ϑt =Mt +Gtϑt−1 + Ptηt (A11)

The system can be written more explicitly as:

Yt
n×1

=

(
D̄t
n×1

−
p∑

i=1

Ai
n×n

D̄t−i
n×1

)
+

(
Ht
n×q

−A1
n×n

Ht−1
n×q

· · · −Ap
n×n

Ht−p
n×q

)


θt
q×1

θt−1
q×1
...

θt−p
q×1


+ ϵt

n×1
(A12)

and 

θt
q×1

θt−1
q×1
...

θt−p
q×1


=



M̄t
q×1

0
q×1
...

0
q×1


+



Ḡt
q×q

0
q×q

· · · 0
q×q

I
q×q

0
q×q

· · · 0
q×q

...
. . .

...

0
q×q

· · · I
q×q

0
q×q





θt−1
q×1

θt−2
q×1
...

θt−p−1
q×1


+



P̄t
q×h

0
q×h
...

0
q×h


ηt
h×1

(A13)

Note that the state space is non-linear due to the dependency of the matrices of the state space
form on one of the elements of θt, and to the presence of stochastic volatility. It is important
to distinguish these two sources of non linearity: conditionally on the volatility processes, the
model is piecewise linear and we present a fully adapted particle filter to estimate this class of
models.

A.2.2 A fully adapted particle filter for ϑt

We derive the full conditional posterior distribution of the latent vector ϑt given all the param-
eters and the stochastic volatilities.

We tackle the curse of dimensionality described in the main text with a particle filtering

strategy. Assume that at time t − 1 we have a set of N particles
{
ϑ
(i)
t−1

}N

i=1
that approximate

p (ϑt−1|Y1:t−1), and we want to get an analogous set of particles
{
ϑ
(i)
t

}N

i=1
to approximate

p (ϑt|Y1:t). We use the following fully adapted particle filter:
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Fully Adapted Particle Filter

At t− 1:
{
ϑ
(i)
t−1

}N

i=1
approximate p (ϑt−1|Y1:t−1)

1) RESAMPLE

a) Compute w̃
(i)
t ∝ p

(
Yt|ϑ(i)t−1, Y1:t−1

)
b) Resample

{
ϑ
(i)
t−1

}N

i=1
using

{
w̃

(i)
t

}N

i=1
and get

{
ϑ̃
(i)
t−1

}N

i=1

2) PROPAGATE

Draw ϑ
(i)
t ∼ p

(
ϑt|ϑ̃(i)t−1, Y1:t

)

In order to implement the filter we need to find two distributions: the predictive density

p
(
Yt|ϑ(i)t−1, Y1:t−1

)
for the resample step, and the posterior density p

(
ϑt|ϑ(i)t−1, Y1:t

)
for the

propagation step.

The predictive density p
(
Yt|ϑ(i)t−1, Y1:t−1

)
Given that our model is piece-wise linear, we write the predictive density as the sum of the two
pieces:

p
(
Yt|ϑ(i)t−1, Y1:t−1

)
= p

(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
+ p

(
Yt|π̄t > τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t > τ |ϑ(i)t−1, Y1:t−1

)
(A14)

The two addends on the right hand side of equation (A14) are analogous, so we concentrate on
the first one, and a similar reasoning applies to the other one.

Start partitioning the latent vector as:

ϑt =

 π̄t

ϑxt


We are going to proceed in two steps: first consider the distribution:

p
(
Yt, ϑ

x
t |π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
=

∫
π̄t≤τ

p
(
Yt, ϑ

x
t , π̄t|ϑ

(i)
t−1, Y1:t−1

)
dπ̄t (A15)

that is a Unified Skew Normal (SUN) density, as defined by Arellano-Valle and Azzalini (2006).
In order to derive it we start from the joint distribution of (ϑt, Yt) under the assumption of a
linear model: we set the matrices of the state space form equal to

(
D̄1,t, H1,t, M̄1,t, Ḡ1,t, P̄1,t

)
independently from trend inflation, and we subsequently apply the truncation on π̄t. In case of
linear and unrestricted model we have: ϑt

Yt

 ∼ N (at, Rt) (A16)
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where:

at
l+n×1

=

 Mt
l×1

Dt
n×1

+ FtMt
n×1

+

 Gt
l×l

FtGt
n×l

ϑ
(i)
t−1
l×1

(A17)

and

Rt
l+n×l+n

=

 Pt
l×h

0
l×n

FtPt
n×h

I
n×n


 Ση

h×h

0
h×n

0
n×h

Σϵ
n×n


 P ′

t
h×l

P ′
tF

′
t

h×n

0
n×l

I
n×n

 (A18)

Now consider that πt is restricted below τ : the truncation of the first element below the
threshold makes the distribution of the remaining elements a Unified Skew Normal:(

ϑxt , Yt|π̄t ≤ τ, ϑ
(i)
t−1, Y1:t−1

)
∼ SUN (ξt, τ − π̄t−1, Rt) (A19)

where ξt is the (l + n− 1× 1) vector that contains all the elements in at except the first one.

The next step is to find the marginal distribution of
(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
. From the

properties of the SUN we know that the marginal distribution is still a SUN. In particular,
make the following partitions:

Rt =

 Γ
1×1

∆′
1×l+n−1

∆
l+n−1×1

Ω̄
l+n−1×l+n−1

 ; ∆ =

 ∆1
l−1×1

∆2
n×1

 ; ξt =

 ξ1t
l−1×1

ξ2t
n×1


and define:

Ω∗ =

 Γ ∆′
2

∆2 Ω̄22


where Ω̄22 is the n× n lower block of Ω̄. We have that:(

Yt|π̄t ≤ τ, ϑ
(i)
t−1, Y1:t−1

)
∼ SUN (ξ2t, τ − π̄t−1,Ω

∗) , (A20)

or, in explicit form:

p
(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
= ϕn

(
Yt; ξ2t, Ω̄22

) Φ (τ ; π̄t−1 +∆′
2Ω̄

−1
22 (Yt − ξ2t) ,Γ−∆′

2Ω̄
−1
22 ∆2

)
Φ (τ ; π̄t−1,Γ)

(A21)

where the denominator of the right hand side of equation (A21) is equal to Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
.

Then, the first addend in equation (A14) is:

p
(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
=

ϕn
(
Yt; ξ2t, Ω̄22

)
Φ
(
τ ; π̄t−1 +∆′

2Ω̄
−1
22 (Yt − ξ2t) ,Γ−∆′

2Ω̄
−1
22 ∆2

)
(A22)

The second addend of (A14) can be derived with an analogous procedure.
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The posterior distribution p
(
ϑt|ϑ(i)t−1, Y1:t

)
Also the posterior distribution can be written as the sum of two pieces:

p
(
ϑt|ϑ(i)t−1, Y1:t

)
= p

(
ϑt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t

)
+ p

(
ϑt|π̄t > τ, ϑ

(i)
t−1, Y1:t

)
Pr
(
π̄t > τ |ϑ(i)t−1, Y1:t

)
(A23)

As we did for the predictive density, we concentrate on the first row of (A23) (an analogous
reasoning will apply to the second row).

Operate the following partitions:

at =

 a1t
l×1

a2t
n×1

 ; Rt =

 R11
l×l

R12
l×n

R21
n×l

R22
n×n

 .

The posterior distribution of ϑt, conditioning on trend inflation below the threshold is a multi-
variate truncated normal:(

ϑt|π̄t ≤ τ, ϑ
(i)
t−1, Y1:t

)
∼ TN (mt, Ct; π̄t ≤ τ) (A24)

where:

mt = a1t +R12R
−1
22 (Yt − a2t) (A25)

Ct = R11 −R12R
−1
22 R21 (A26)

Finally, we need to compute the second term in the first line of equation (A23):

Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t

)
∝ p

(
Yt|π̄t ≤ τ, ϑ

(i)
t−1, Y1:t−1

)
Pr
(
π̄t ≤ τ |ϑ(i)t−1, Y1:t−1

)
= ϕn

(
Yt; ξ2t, Ω̄

)
Φ
(
τ ; π̄t−1 +∆′

2Ω̄
−1
22 (Yt − ξ2t) ,Γ−∆′

2Ω̄
−1
22 ∆2

)
(A27)

that is exactly equation (A22).

A.3 Stochastic volatility

We now augment our algorithm to estimate the time varying standard deviations of the shocks in

(A1). As in the Section above, given a set of particles
{
ϑ
(i)
t−1, log s

(i)
t−1

}N

i=1
that approximate the

joint distribution of (ϑt−1, log st−1), we want to get a new set
{
ϑ
(i)
t , log s

(i)
t

}N

i=1
to approximate

p (ϑt, log st|Y1:t)

where we omitted the dependencies on all the parameters to simplify the notation. Since in the
previous Section we derived the posterior distribution of ϑt conditional on log st, it is convenient
to write the full conditional posterior at time t as:

p (ϑt, log st|ϑt−1, log st−1Y1:t) = p (ϑt| log st, ϑt−1, log st−1, Y1:t)︸ ︷︷ ︸
Full conditional posterior

p (log st|ϑt−1, log st−1, Y1:t)︸ ︷︷ ︸
Blind proposal

.

(A28)
We can get draws using an importance distribution that operates in two steps: we first use
equation (3) to get particles of log st: this is called a ”blind” proposal because it is not condi-
tioned on observed data. Then, we can condition on these draws and get values for ϑt using
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the full conditional distribution that we derived analytically above.
Then, our particle filter is ”partially” adapted: we use the so called ”Rao-Blackwellization”

to improve the efficiency of the estimator. With respect to the a fully adapted particle filter,
we need to compute the final weights attached to each particle to get the approximation of the
target distribution.

The complete algorithm is:

Partially Adapted Particle Filter

At t − 1: the set of particles
{
ϑ
(i)
t−1, log s

(i)
t−1

}N

i=1
with corresponding weights{

w
(i)
t−1

}N

i=1
approximate p (ϑt−1, log st−1|Y1:t−1)

1) RESAMPLE

a) Compute w̃
(i)
t ∝ w

(i)
t−1 p

(
Yt|ϑ(i)t−1, g

(
log s

(i)
t−1

)
, Y1:t−1

)
b) Resample

{
ϑ
(i)
t−1, log s

(i)
t−1

}N

i=1
using

{
w̃

(i)
t

}N

i=1

Let the new particles be
{
ϑ̃
(i)
t−1, log s̃

(i)
t−1

}N

i=1
.

2) PROPAGATE

a) Draw log s
(i)
t ∼ N

(
log s̃

(i)
t−1,Σν

)
b) Draw ϑ

(i)
t ∼ p

(
ϑt| log s(i)t , ϑ̃

(i)
t−1, Y1:t

)
3) NEW WEIGHTS

Compute w
(i)
t ∝

p
(
Yt|ϑ̃(i)t−1, log s

(i)
t , Y1:t−1

)
p
(
Yt|ϑ̃(i)t−1, g

(
log s̃

(i)
t−1

)
, Y1:t−1

)

A.4 The model for the long run

A.4.1 The dynamics

The vector X̄t contains three variables: potential output ȳt, trend inflation π̄t and the long-run
nominal interest rate īt. We assume that potential output is the sum of a trend component and
a function of trend inflation:

ȳt = y∗t + δ (π̄t) (A29)

where the dynamics of the trend are:

y∗t = y∗t−1 + gt−1 + ηyt (A30)

gt = gt−1 + ηgt (A31)

and the function δ(π̄) is:

δ(π̄t) =

 k1π̄t if π̄t ≤ τ

k2π̄t + ck if π̄t > τ .
(A32)
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Imposing continuity in the piecewise linear function, we have ck = (k1 − k2) τ . We assume that
trend inflation follows a random walk:

π̄t = π̄t−1 + ηπt (A33)

and the nominal interest rate in the long run is described by a Fisher equation, so it is equal to
the sum of trend inflation and the long-run real interest rate:

īt = π̄t + cgt + zt. (A34)

Following Laubach and Williams (2003), the long-run real interest rate is assumed to be a linear
function of the growth rate of potential output and a random walk component zt that captures
all the slow moving trends that are potentially relevant but not directly present in the model:

zt = zt−1 + ηzt (A35)

A.4.2 The state space form

Take the first difference of potential output in equation (A29):

ȳt = ȳt−1 + gt−1 + δ (π̄t)− δ (π̄t−1) + ηyt (A36)

and note that taking into account the dynamics of trend inflation, δ (π̄t) is:

δ(π̄t) =

 k1π̄t−1 + k1η
π
t if π̄t ≤ τ

k2π̄t−1 + k2η
π
t + ck if π̄t > τ .

(A37)

Then, in computing the difference δ (π̄t)− δ (π̄t−1) we need to distinguish four possible cases:

δ(π̄t)− δ (π̄t−1) =


k1η

π
t if π̄t−1 ≤ τ and π̄t ≤ τ

(k2 − k1)πt−1 + ck + k2η
π
t if π̄t−1 ≤ τ and π̄t > τ

(k1 − k2)πt−1 − ck + k1η
π
t if π̄t−1 > τ and π̄t ≤ τ

k2η
π
t if π̄t−1 > τ and π̄t > τ

(A38)

We are now ready to write our state space in matrix form as in equations (A6) and (A7). Define

the vector θt =
(
π̄t ȳt gt zt

)′
, and write equation (A6) as:

 ȳt

π̄t

īt

 =

 0 1 0 0

1 0 0 0

1 0 c 1




π̄t

ȳt

gt

zt

 (A39)

where D̄t is equal to zero and Ht = H is a constant matrix.
In our case the matrices in equation (A7) depend on trend inflation at time t− 1 and time

t: we have to distinguish the four cases highlighted above in equation (A38).

Case when π̄t−1 ≤ τ and π̄t ≤ τ . The dynamics of potential output are described by the
following equation:

ȳt = ȳt−1 + gt−1 + k1η
π
t + ηyt (A40)
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so the system in matrix form is:
π̄t

ȳt

gt

zt

 =


0

0

0

0

+


1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1




π̄t−1

ȳt−1

gt−1

zt−1

+


1 0 0 0

k1 1 0 0

0 0 1 0

0 0 0 1




ηπt

ηyt

ηgt

ηzt

 . (A41)

Case when π̄t−1 ≤ τ and π̄t > τ . Potential output in this case follows:

ȳt = ȳt−1 + gt−1 + (k2 − k1)πt−1 + ck + k2η
π
t + ηyt (A42)

and equation (A7) becomes:
π̄t

ȳt

gt

zt

 =


0

ck

0

0

+


1 0 0 0

(k2 − k1) 1 1 0

0 0 1 0

0 0 0 1




π̄t−1

ȳt−1

gt−1

zt−1

+


1 0 0 0

k2 1 0 0

0 0 1 0

0 0 0 1




ηπt

ηyt

ηgt

ηzt

 . (A43)

Case when π̄t−1 > τ and π̄t ≤ τ . The equation for the dynamics of potential output is:

ȳt = ȳt−1 + gt−1 + (k1 − k2)πt−1 − ck + k1η
π
t + ηyt (A44)

and the system becomes:
π̄t

ȳt

gt

zt

 =


0

−ck
0

0

+


1 0 0 0

(k1 − k2) 1 1 0

0 0 1 0

0 0 0 1




π̄t−1

ȳt−1

gt−1

zt−1

+


1 0 0 0

k1 1 0 0

0 0 1 0

0 0 0 1




ηπt

ηyt

ηgt

ηzt

 .

(A45)

Case when π̄t−1 > τ and π̄t > τ . For this last case the dynamics of potential output follow:

ȳt = ȳt−1 + gt−1 + k2η
π
t + ηyt (A46)

and the system is:
π̄t

ȳt

gt

zt

 =


0

0

0

0

+


1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1




π̄t−1

ȳt−1

gt−1

zt−1

+


1 0 0 0

k2 1 0 0

0 0 1 0

0 0 0 1




ηπt

ηyt

ηgt

ηzt

 . (A47)

A.5 Inference on the parameters

In our particle filtering strategy we estimate the parameters combining two approaches: the
posterior distribution of τ is approximated through a mixture of Normal densities as in Liu and
West (2001); for all the other parameters we use the Particle Learning scheme by Carvalho et al.
(2010), which is based on the analytical availability of sufficient statistics that characterize the
posterior distributions. For most of the parameters the derivation of these sufficient statistics
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is standard. Then, we only describe the inference on the parameters in the model for the long
run, except for the variances of the shocks which are standard conjugate Inverse Gamma.

A.5.1 The posterior distribution of parameters in the matrix H

In our case D̄t is equal to zero and the matrix H is constant. Then, equation (A6) is:

X̄t = Hθt. (A48)

Rearranging equation (A1) and substituting the definition of X̄ we have:

Yt = Hθt −A1Hθt−1 −A2Hθt−2 − ...ApHθt−p + ϵt. (A49)

where Yt has been defined in Section A.2.1.
Then, indicating with H⃗ the vectorized matrix H we obtain the regression:

Yt = XH
t H⃗ + ϵt (A50)

where
XH

t =
[
θ′t ⊗ In − θ′t−1 ⊗A1 − θ′t−2 ⊗A2 − ...θ′t−p ⊗Ap

]
. (A51)

Note that usually H⃗ contains some known coefficients and some unknown coefficients that
we want to estimate. In our specific case we only have c as unknown: the other coefficients are
all ones or zeros. As general practice, collect all the known coefficients in H⃗K and the unknown
coefficients in H⃗U . With a similar notation indicate with XH

t,K and XH
t,U the corresponding

columns of XH
t . We can write:

Yt −XH
t,KH⃗K = XH

t,UH⃗U + ϵt (A52)

Y H
t = XH

t,UH⃗U + ϵt (A53)

Equation (A53) is our regression: using Gaussian priors for the coefficients in H⃗U , the inference
is obtained as in standard Bayesian regression models.

A.5.2 The posterior distribution of slopes k1 and k2

First, define Y G
t = ȳt − ȳt−1 − gt−1 and k⃗ =

(
k1 k2

)′
. Then, we define the vector XG

t

distinguishing the usual four possible cases:

XG
t =



(
π̄t − π̄t−1 0

)
if π̄t−1 ≤ τ and π̄t ≤ τ(

τ − π̄t−1 π̄t − τ

)
if π̄t−1 ≤ τ and π̄t > τ(

π̄t − τ τ − π̄t−1

)
if π̄t−1 > τ and π̄t ≤ τ(

0 π̄t − π̄t−1

)
if π̄t−1 > τ and π̄t > τ

(A54)

Finally, we can write the dynamics of potential output as:

Y G
t = XG

t k⃗ + ηyt . (A55)

The equation above is a regression with coefficients k⃗: using a Gaussian prior for k⃗ we easily
obtain a conjugate posterior distribution.
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B Appendix: The GNK model

Households. The first-order conditions with respect to consumption, labor supply and bond
holdings are:

λt =
dt

Ct − hCt−1
, (B56)

Wt

Pt
=
dndtN

φ
t

λt
,

1 = Et
βλt+1

λt

Rt

πt+1
, (B57)

where λt is the marginal utility of consumption, and πt =
Pt

Pt−1
is the gross inflation rate.

Firms. In each period t, a final good, Yt, is produced by a perfectly competitive represen-
tative final-good firm, by combining a continuum of intermediate inputs, Yi,t, i ∈ [0, 1], via the
technology

Yt =

[∫ 1

0
Y

ε−1
ε

i,t di

] ε
ε−1

, (B58)

where ε > 1 is the elasticity of substitution among intermediate inputs. The first-order condition
for profit maximization yields the final-good firm’s demand for intermediate good i

Yi,t =

(
Pi,t

Pt

)−ε

Yt. (B59)

The final-good market clearing condition is given by Yt = Ct.
We assume that the price of a firm that cannot change the price is automatically in-

dexed to past-inflation with a degree χ, that is Pi,t = Pi,t−1

(
Pt−1

Pt−2

)χ
= Pi,t−1 (πt−1)

χ , where

hence πt ≡ Pt
Pt−1

. Hence if a firm fix P ∗
i,t today and will not be able to change it in the

future then the price evolves accordingly to Pi,t+1 = P ∗
i,t (πt)

χ , Pi,t+2 = P ∗
i,t (πt)

χ (πt+1)
χ ,

Pi,t+j = P ∗
i,t (πt)

χ (πt+1)
χ ... (πt+j−1)

χ = P ∗
i,tπt|t−1+j , where

πt|t+j−1 =
Pt

Pt−1
× Pt+1

Pt
× ...× Pt+j−1

Pt+j−2
for j ⩾ 1 and πt|t =

Pt

Pt−1
= πt

= 1 for j = 0. (B60)

The intermediate goods producers face a constant probability, 0 < (1 − θ) < 1, of being able
to adjust prices to a new optimal one, P ∗

i,t. Thus, to maximize expected discounted profit they
solve the following problem

Et

∞∑
j=0

θjβj
λt+j

λt

[
P ∗
i,tπ

χ
t|t+j−1

Pt+j
Yi,t+j −

Wt+j

Pt+j

[
Yi,t+j

At+j

] 1
1−α

]

s.t. Yi,t+j =

[
P ∗
i,tπ

χ
t|t+j−1

Pt+j

]−ε

Yt+j ,

Defining “average” marginal cost as MCt =
A

1
1−α
t
1−α

Wt
Pt
Y

α
1−α

t , first order condition for the opti-
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mized relative price p∗t (=
P ∗
i,t

Pt
) can be written as

(p∗t )
1+ εα

1−α =
ε

ε− 1

Et
∑∞

j=0(θβ)
jλt+jYt+j

[
πχ
t|t+j−1

πt+1|t+j

]− ε
1−α

MCt+j

Et
∑∞

j=0(θβ)
jλt+jYt+j

[
πχ
t|t+j−1

πt+1|t+j

]1−ε . (B61)

The aggregate price level, Pt =
[∫ 1

0 Pi,t
1−εdi

] 1
1−ε

, evolves according to

p∗t =

[
1− θπ

(1−ε)χ
t−1 πε−1

t

1− θ

] 1
1−ε

. (B62)

Lastly, define price dispersion st ≡
∫ 1
0 (

Pi,t

Pt
)−εdi. Under the Calvo price mechanism, the above

expression can be written recursively as

st = (1− θ)(p∗t )
−ε + θπ−εχ

t−1 π
ε
t st−1. (B63)

Recursive formulation of the optimal price-setting equation. The joint dynamics
of the optimal reset price and inflation can be compactly described by rewriting the first-order
condition for the optimal price in a recursive formulation as follows:

(p∗t )
1+ εα

1−α =
ε

(ε− 1)

ψt

ϕt
, (B64)

where ψt and ϕt are auxiliary variables that allow one to rewrite the infinite sums that appear
in the numerator and denominator of the above equation in recursive formulation:

ψt =MCtYtλt + θβπ
− εχ

1−α

t Et

[
π

ε
1−α

t+1 ψt+1

]
, (B65)

and

ϕt = Ytλt + θβπ
χ(1−ε)
t Et

[
πε−1
t+1ϕt+1

]
. (B66)

Note that in defining these two auxiliary variables, we used the definition λt = dt
Ct−hCt−1

=
dt

Yt−hYt−1
.

Monetary Policy. The central bank’s policy is described by the following Taylor rule

lnRt = ρ lnRt−1+(1− ρ) ln R̄t+(1− ρ)ψπ ln

(
πt
πt

)
+(1− ρ)ψx ln

(
Xt

Xt

)
+(1− ρ)ψ∆y ln

(
gyt
gy

)
+σr,tϵr,t,

(B67)
where Xt is the output gap defined as the deviation of output from its natural (or flexible price)
level, Xt is the steady state output gap, gyt is the growth rate of output, gy = g is the steady
state growth rate of output, and ϵr,t is an i.i.d. N(0, 1) monetary policy shock with time-varying
standard deviation σr,t. The parameters ψπ, ψx and ψ∆y govern the central bank’s responses to
the inflation gap, output gap and output growth, respectively. Here πt denotes trend inflation,
which is the central’s banks (time-varying) inflation target and follows a unit root process

lnπt = lnπt−1 + σπ,tϵπ,t, (B68)

where ϵπ,t is i.i.d. N(0, 1) and σπ,t denotes time-varying standard deviation of the inflation
target shock.

By considering flexible prices, the law of motion for Y n
t is given by
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(
Y n
t

At

) 1+φ
1−α

=
(ε− 1) (1− α)

εdn
+ h

(
Y n
t

At

)φ+α
1−α Y n

t−1

At
. (B69)

B.1 Final equations of the log-linearized GNK model

We log-linearize the equilibrium conditions arising from the DSGE model described above
around a steady state characterized by a shifting trend inflation and derive the following set
of log-linearized equations. A separate online supplement provides further details including the
full set of non-linear equilibrium conditions of the model, the steady state and the details on the
log-linearization around the time-varying steady state. As in Cogley and Sbordone (2008), the
steady state of the model is time-varying because of drifts in trend inflation. As such, care must
be taken when log-linearizing the model. As in Cogley and Sbordone (2008) and following Kreps
(1998), we assume that agents treat drifting parameters as if they would remain constant at the
current level going forward in time. In what follows, hatted variables denote log-deviations of
stationary variables from their steady state values, which are, in turn, denoted with a bar.25

λ̂t = −
(

h

g − h

)
ĝt −

(
g

g − h

)
Ŷt +

(
h

g − h

)
Ŷt−1 −

(
h

g − h

)
ĝYt + d̂t (1L)

ŵt = d̂t + φN̂t − λ̂t (2L)

λ̂t = R̂t − Etπ̂t+1 + Etλ̂t+1, (3L)

0 =
[
1− θπ

(1−χ)(ε−1)
t

]
p̂∗t − θπ

(1−χ)(ε−1)
t

[
π̂t − χπ̂t−1 + χĝπt

]
(4L)

(
1 +

εα

1− α

)
p̂∗t = ψ̂t − ϕ̂t (5L)

ψ̂t =

[
1− θβπ

ε(1−χ)
1−α

t

](
m̂ct + Ŷt + λ̂t

)
+ θβπ

ε(1−χ)
1−α

t Et

(
ψ̂t+1 +

ε

1− α
π̂t+1 −

εχ

1− α
π̂t

)
(6L)

ϕ̂t =
[
1− θβπ

(1−χ)(ε−1)
t

] (
Ŷt + λ̂t

)
+θβπ

(1−χ)(ε−1)
t Et

(
ϕ̂t+1 + (ε− 1) π̂t+1 + χ (1− ε) π̂t

)
(7L)

N̂t = ŝt +

(
1

1− α

)
Ŷt (8L)

ŝt =

[
− ε

1− α

(
1− θπ

ε(1−χ)
1−α

t

)]
p̂∗t + θπ

ε(1−χ)
1−α

t

[
ε

1− α
π̂t −

εχ

1− α
π̂t−1 + ŝt−1 +

εχ

1− α
ĝπt − ĝst

]
(9L)

m̂ct = ŵt +

(
α

1− α

)
Ŷt (10L)

25Specifically, for any variable Zt, Ẑt = lnZt − lnZt. In addition, ĝπt = ln (πt/πt−1), ĝ
Y
t = ln

(
Y t/Y t−1

)
, and

ĝst = ln (st/st−1).
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R̂t = ρR̂t−1 − ρĝπt + (1− ρ)ψππ̂t + (1− ρ)ψxx̂t + (1− ρ)ψ∆y ĝ
y
t + ϵr,t (11L)

ĝyt = Ŷt − Ŷt−1 + ĝt + ĝYt (12L)

ĝt = ρg ĝt−1 + ϵg,t (13L)

d̂t = ρdd̂t−1 + ϵd,t (14L)[
ḡ (1 + φ)− h (φ+ α)

h (1− α)

]
Ŷ n
t = Ŷ n

t−1 − ĝt (15L)

x̂t = Ŷt − Ŷ n
t (16L)

We can write the system of log-linearized equations in Sims (2002)’s canonical form, but
now the system will have time-varying parameters, because they are functions of πt :

Γ0(πt)Ẑt = Γ1(πt)Ẑt−1 +Ψ(πt)εt +Π(πt)ηt.

However, for any given value of πt (and the realization of stochastic volatility), the above
system is conditionally linear and can be solved using standard methods.
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