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ABSTRACT 

Convergence in cross country per capita carbon emission rates is an important concept in 

the climate change debate. This paper provides an empirical analysis of emissions per 

capita convergence. This analysis is crucial to the assessment of projection models that 

generate convergence in emission per capita rates and to the assessment of policy 

proposals that advocate imposing convergence in emissions per capita. The main 

conclusions in this paper are based on a detailed examination of the intra-distributional 

dynamics of cross country emissions per capita over time. Stochastic kernel estimation of 

these dynamics suggests that the cross country distribution of emissions per capita is 

characterised by persistence. There is little evidence that emission per capita rates across 

countries are converging in an absolute sense. Projection models that generate 

convergence in emissions per capita are therefore inconsistent with empirical behaviour. 

Policies that impose convergence in emissions per capita are likely to generate large re-

distributional impacts.  
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1. Introduction 

Climate change represents a significant and complex challenge to policy makers.  

Economic analysis is crucial to the climate policy debate. Continued research into climate 

change and appropriate policy action is necessary if governments are going to adopt an 

efficient and effective response. This paper highlights the important role of economics in 

the climate change debate by analysing the role of convergence assumptions in 

generating emissions projections and in generating policy proposals.  By imposing 

convergence conditions in a projection model, differences between countries, in either a 

specific key variable or in a range of variables, are assumed to narrow over time. 

Assessing the methodology used to project future emissions is critical to the climate 

change debate because projections of future emissions are central to the debate over an 

appropriate climate policy response.  Projections should help to reduce the uncertainty 

surrounding climate change by providing information on the possible costs across 

countries in the absence of any climate policy response and by providing a framework in 

which to analyse alternative policy options. To be relevant projection models should take 

account of the aggregate trends and the distributional dynamics observed in key model 

variables. 

This paper provides an analysis of the evolution of carbon emissions per capita over time. 

The key question is whether emissions per capita show any evidence of convergence, as 

is assumed in many climate projection models. A clear understanding of the distribution 

of emissions per capita and the evolution of this distribution over time is crucial to the 

development of relevant emissions projection models and appropriate policy responses. 

Policy proposals designed to address the issue of climate change must consider the 

empirical behaviour of key target variables if they are going to be practical and 

appropriate. Policy proposals that advocate imposing convergence in emissions per capita 

are likely to involve large distributional impacts if there is no natural tendency towards 

convergence across countries. 
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2. Theoretical Issues  

The debate over emissions per capita convergence assumptions and the existence of 

policy proposals that advocate the distribution of emission permits on an equal per capita 

basis suggests that convergence in emissions per capita is a phenomenon that researchers 

regard as either a possibility or as a desirable outcome that should be the basis of policy.  

From an economic point of view, a desirable distribution of emissions across countries is 

an efficient distribution, where an efficient distribution is defined as an allocation that 

maximises the value of resources (where marginal benefits equal marginal costs).  Most 

climate change policy proposals include some variation of a tradable permit system that 

ensures, under certain conditions, an efficient distribution regardless of the initial 

allocation of permits.  It is possible (although unlikely) that an efficient allocation will be 

one where emission per capita rates are equal across countries.  However, before 

imposing such a distribution on emissions, it would be important to investigate the 

properties and effects of such a policy.   

Policy proposals that advocate convergence in emission per capita rates have emphasised 

the social value of such a distribution, drawing heavily on ideas of ‘fairness’ and ‘equity’.  

The Global Commons Institute (GCI) argues that “emissions need to be allocated by 

countries in a way that is both achievable and is seen by all to be fair” (GCI, 1998).  If 

greenhouse gas emissions result primarily from individual activities such as the use of 

automobiles and private electricity consumption then the idea of allocating each 

individual the same ‘right to pollute’ may appeal to some notion of fairness.  However, 

the distribution of fossil fuel related carbon dioxide (CO2) emissions1 is strongly related 

to the structure of a country’s economy, which in turn depends on that country’s natural 

endowments, development level and its comparative advantage in the production of 

various goods.  Given the (possibly large) wealth transfers that could result from 

changing the distribution of emissions across countries, it is not clear that imposing 

convergence in emission per capita rates would be fair or equitable.   

                                                 
1 Carbon dioxide is considered the most important human influenced greenhouse gas for climate analyses 
and policy targeting because it accounts for around two-thirds of greenhouse gas radiative forcing (the 
enhancement of the greenhouse effect) and because it is relatively easy to monitor. Fossil fuels account for 
around three quarters of anthropogenic CO2 emissions. (IPCC, 2001) 
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From an environmental point of view, the global nature of the climate change problem 

suggests that it is the total world level of emissions that matters the most, rather than the 

distribution of these emissions across country borders.  Nevertheless, the features of a 

particular policy proposal will impact how successful it is and whether or not it is 

accepted by the majority of countries.  If the requirement that countries equate their 

emission per capita rates results in a significant redistribution of emissions across 

countries, then the costs for some countries could be large.  

It is important therefore, when formulating such policy proposals, to understand the 

current distribution of emissions and how a particular policy proposal is likely to affect 

this distribution.  The examination in this paper, therefore, is fundamental to the policy 

debate.  

 

3. Literature Review 

Given that there has been extensive debate over convergence emissions policies and 

emission permit allocations determined on a per capita basis, the literature that 

empirically considers the tendency towards convergence in emissions per capita is very 

limited. Heil and Woden (1999) use decompositions of the Gini Index (a measure of 

inequality) to analyse convergence in projected emissions per capita out to 2100. The 

distribution of emissions in the analysis is, however, driven by assumptions in the 

forecasting model, such as convergence in GDP per capita and a diminishing marginal 

propensity to emit per capita. The conclusion that “convergence in per capita emissions is 

indeed likely” (p23) must therefore be interpreted with caution. The forecasting model 

used in the study is based on an econometric estimation of key economic variables but 

the model is still driven to a large extent by the underlying assumptions and the 

conclusions regarding convergence must be viewed as conclusions relating to this model 

specification. 

The most comprehensive empirical studies of convergence in emissions per capita have 

taken a time series or common trends approach to convergence analysis. Bernard and 

Durlauf (1995, 1996) have used this approach to analyse and test for convergence in 
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international output. Bernard and Durlauf use tests for cointegration to examine the 

existence of stochastic convergence and common trends in international output. 

Strazicich and List (2003) use the approach to examine stochastic convergence in 

emissions per capita by applying panel unit root tests to the emissions per capita from 21 

industrialised countries over the period 1960 to 1997. The basic idea is to calculate the 

variable ln(CO2pcit/CO2pct) (which is the log ratio of carbon dioxide emissions per capita 

in country i to the average emissions per capita rate for the sample) for each country and 

test for unit roots. The regression test specifications include a country specific constant 

term, or compensating differential and a time trend and the test for convergence is 

therefore a test of stochastic conditional convergence or common trends rather than a test 

for absolute convergence. In a test for absolute convergence both the constant term and 

the time trend coefficient would be restricted to zero. Strazicich and List reject the null 

hypothesis of a unit root in their test and therefore find evidence of stochastic conditional 

convergence in emissions per capita. This result must be evaluated with reference to the 

definition of convergence used and the series under consideration. 

Under the stochastic conditional convergence definition, shocks to the emissions per 

capita of individual countries relative to the average level of emissions per capita are 

temporary. The implication of this behaviour for absolute convergence depends on the 

model specification.  

Consider the following model specifications used to test for unit roots: 

Δyt = γyt-1  +  et                   (1) 

Δyt = a0 + γyt-1  + et                  (2) 

Δyt = a0 + γyt-1  + a2t + et                 (3) 

 Rejection of the unit root hypothesis (γ = 0) in specifications (2) and (3) implies that the 

series yt is stationary around a constant and stationary around a constant and a trend, 

respectively. If yt = ln(CO2pcit/CO2pct), then absolute convergence in emissions per 

capita requires that both a0 and a2 are equal to zero. If either a0 or a2 are non zero, there is 

a predictable gap between emissions per capita in any particular country and the average 

emissions per capita rate. 
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The Strazicich and List analysis is restricted to a sample of 21 industrialised countries. In 

the growth literature the use of such a restrictive sample implies a conditional 

convergence analysis because the countries under consideration are likely to share similar 

steady state characteristics. The framework presented by Bernard and Durlauf (1996) 

however, suggests that this type of data set is the most suitable to time series studies of 

convergence. They argue that time series tests of convergence assume that the data 

possess well defined population moments and that inferences from the time series 

approach may be invalid when based on data that are far from the limiting distribution. 

This suggests that the time series approach to convergence analysis may be most 

appropriate for industrialised countries that are most likely to be characterised by steady 

state behaviour. Bernard and Durlauf (1996) suggest that an alternative cross-sectional 

approach to convergence analysis would be appropriate for a data set characterised by 

transitional dynamics. 

Using a specification that includes both a constant and a time trend, Strazicich and List 

reject the hypothesis of a unit root using the IPS Panel Unit Root Test (Im, Pesaran and 

Shin, 2003) and conclude that “the null hypothesis that emissions have diverged is 

strongly rejected”. They argue that their results provide significant evidence that cross-

country per capita CO2 emissions have converged. As outlined above, the analysis 

examines conditional convergence through a number of restrictions, on the sample set 

under consideration and the test regression specifications. The analysis does not provide 

support for unconditional or absolute convergence of cross country emissions per capita. 

The existence of unconditional or absolute convergence is the focus of the empirical 

analysis undertaken in this paper. The conditional analysis presented in Strazicich and 

List (2003) is, however, still useful to researchers interested in modelling and projecting 

emissions. Evidence that there is a predictable relationship between emission per capita 

rates across countries could be integrated into long term models of future emission levels. 

An analysis of unconditional convergence is however crucial to the assessment of policy 

proposals that advocate imposing convergence in emissions per capita and to the 

assessment of emission projection models that include convergence assumptions.  
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4. Measuring Convergence 

Studies of convergence in the growth literature have tended to consider two alternative 

definitions of convergence: beta convergence and sigma convergence. Beta convergence 

refers to the existence of a negative relationship between the growth rate of income per 

capita (or the variable of interest) and the initial level – a situation where poor countries 

tend to grow faster than richer countries.  The implication is that poor countries will 

eventually ‘catch-up’ to the income levels of richer countries.  Papers by Sala-i-Martin 

(see, for example, 1996a, 1996b, 2002) and Barro and Sala-i-Martin (1991, 1992) have 

been particularly influential.  

Sigma convergence refers to a reduction in the spread or dispersion of a data set over 

time.  Beta convergence is a necessary condition for sigma convergence, but it is not a 

sufficient one (Quah (1995a) and Sala-i-Martin (1996b) provide a formal algebraic 

derivation of this result).  Some researchers have argued the relative merits of the beta 

and sigma approaches to convergence analysis (see, for example, Quah (1995a)).  Sala-i-

Martin, however, argues that “the two concepts examine interesting phenomena which 

are conceptually different … both concepts should be studied and applied empirically” 

(pp 1328-1329, 1996b). 

A third approach to convergence analysis is the commons trends or time series approach 

discussed in the previous section. The times series approach to convergence analysis is 

based on the assumption that forecasts of variable differences converge to zero in 

expected value as the forecast horizon becomes arbitrarily long. If the differences 

between countries’ variable levels contains either a non zero mean or a unit root then the 

convergence condition is violated (Bernard and Durlauf, 1995, 1996). 

The main results of this paper are based on a dynamic distributional approach to 

convergence analysis. The distributional approach to convergence analysis was 

developed in a series of papers by Quah (see 1995a, 1995b, 1996, 1997, 2000).  Quah 

(1995a) argues that cross sectional regression approaches to convergence (the estimation 

of beta convergence) analyse “only average behaviour” (p 15) and are uninformative on a 

distribution’s dynamics because they “only capture ‘representative’ economy dynamics” 

(p 16).  Quah argues that “to address questions of catch-up and convergence, one needs to 
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model explicitly the dynamics of the entire cross-country distribution” (1995b, p1). He 

proposes a dynamic distributional approach to convergence analysis and applies his 

techniques to a number of alternative theoretical specifications.  Quah’s approach has 

been influential because it has applications in a wide range of research areas (see 

Overman and Puga (2002) for an application to regional unemployment).  

The dynamic distributional approach to convergence considers the existence of sigma 

convergence but provides a more detailed examination of the dynamic intra-distributional 

properties of the data set. As explained in Section 6 below, the dynamic distributional 

approach does not restrict convergence analysis to a single characteristic of the data. It 

seeks to examine the full dynamic nature of the cross-country distribution of the variable 

of interest and is particularly valuable for considering the evolution of non-normal 

distributions. 

 

5. Descriptive Data Analysis  

5.1 The Data 

The data used in this paper are from two main sources. National data on fossil fuel CO2 

emissions and CO2 emissions per capita are sourced from Marland et al (2003).  The data 

relates to carbon dioxide emissions from the consumption of fossil fuels but is generally 

referred to as emissions throughout the paper (see footnote 1).  Historical estimates of 

population prior to 1950 were obtained from Maddison (1995, 2003).  It is possible to 

disaggregate the data on fossil fuel CO2 emissions into emissions from five sources: solid 

(mainly coal) fuel consumption, liquid (mainly petroleum) fuel consumption, gas fuel 

consumption, cement production, and gas flaring.  Total fossil fuel CO2 emissions from 

all sources are considered in this paper.   

5.2 World Trends (Marland et al, 2003) 

In 2000, world fossil fuel emissions were estimated at 6611 million metric tons of carbon. 

Liquid and solid fuels accounted for 77 percent of the total, the combustion of gas fuels 

accounted for 19 percent, 3 percent was attributed to cement production and less than 1 

percent was the result of gas flaring. The global per capita emissions rate in 2000 was 1.1 
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metric tons. This rate has been relatively stable since the 1970s.  Growth in fossil fuel 

emissions was generally strong over the 1950s, 1960s and 1970s. Since then, emissions 

have continued to grow, although the rate of growth has not been consistently as high 

(Figure 1).  In particular, the oil price shocks of the 1970s affected emissions in the early 

1980s.  

The top 5 sources for emissions, in 2000, in order, were: the United States, China, Russia, 

Japan and India (Figure 2). Australia ranked fourteenth. These trends are outlined in more 

detail below. 

5.3 National Trends (Marland et al 2003) 

The United States is the largest source of fossil fuel related CO2 emissions.  In 2000, 

fossil fuel emissions from the United States reached 1529 million metric tons of carbon, 

twice as high as the second highest emitter, the People’s Republic of China.  The United 

States’ share of emissions in total world emissions, however, is estimated to have fallen 

from over 40 percent in 1950 to 23 percent in 2000. The United States’ per capita 

emissions rate in 2000 was a relatively high 5.4 metric tons of carbon. 

China is the world’s second largest source of CO2 emissions. China is the world’s largest 

producer, and the second largest exporter, of coal and coal consumption accounts for 

almost 70 percent of China’s total CO2 emissions. China is also the world’s largest 

hydraulic cement producer and cement production accounted for around 10 percent of 

China’s total emissions in 2000. With a large population, China’s per capita emission rate 

was a relatively low 0.6 metric tons of carbon in 1999. 

Russia is the world’s third largest source of fossil fuel CO2 emissions. However, Russia’s 

estimated 2000 total of 392 million tons of carbon, represents a fall of 28 percent since 

1992. Russia is the world’s largest producer of natural gas and half of Russia’s CO2 

emissions are the result of gas consumption.  Estimates of Russian CO2 emissions are 

only available from 1992 onwards and, as such, Russia is omitted from the statistical 

analyses conducted in this paper.  

Japan is the fourth largest source of fossil fuel CO2 emissions, estimated to be 323 

million tons of carbon in 2000.  Japan is the largest importer of coal and liquefied 
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petroleum gas, the second largest importer of crude oil and the second largest importer of 

natural gas. Japan’s per capita fossil fuel CO2 rate was 2.55 metric tons in 2000. 

India is the world’s fifth largest source of fossil fuel CO2 emissions with an estimated 

292 million metric tons of carbon emissions in 2000.  India is the world’s third largest 

coal producer and most (over 70 percent) of India’s emissions are the result of coal 

burning.  With the world’s second largest population, India’s 1999 per capita emission 

rate was a relatively low 0.29 metric tons. 

Australia is the fourteenth largest source of fossil fuel CO2 emissions, with an estimated 

94 million metric tons of carbon emissions in 2000.  Australia is the world’s fourth 

largest coal producer and the largest exporter of coal.  Coal consumption accounts for 

almost 60 percent of Australia’s 2000 emissions total.  Australia’s per capita emission 

rate in 2000 was a relatively high 4.91 metric tons of carbon. 

 

6. Econometric Analysis 

The analysis undertaken in this section is designed to provide a comprehensive and 

dynamic examination of the cross-country distribution of fossil fuel CO2 emissions.  The 

information presented in this section provides an empirical foundation for projecting 

emissions and the analysis undertaken provides general information on the distribution of 

fossil fuel CO2 emissions and how this distribution has changed over time. The analysis 

is not restricted to a single characteristic of the data – it seeks to examine the full 

dynamic nature of the cross-country distribution of emissions per capita. The analysis is 

structured to answer the question: do emission per capita rates across countries converge 

over time? With normally distributed data, convergence could be defined as a reduction 

in the dispersion or spread of a data set.  This definition is often referred to as ‘sigma 

convergence’ in the growth literature.  With data that is not normally distributed, 

however, this definition is likely to be inappropriate, particularly if the data set exhibits 

multiple peaks.  The standard summary statistics that attempt to measure dispersion 

implicitly assume a narrow definition of convergence and are, as such, uninformative on 

more complicated dynamic behaviour.  For this reason, convergence in emissions per 

capita is assessed by examining a variety of summary measures and through a 
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comprehensive dynamic analysis of the entire cross-country distribution of fossil fuel 

CO2 emissions.  A range of stochastic kernels that describe how the cross-county 

distribution of emissions per capita at time t evolves into the distribution at time t+k are 

estimated to examine these dynamics.  

6.1 Sample Definitions 

The main data set used in this section is Sample A.  It includes 97 countries over the 

period 1950 to 1999 (see Table 1).  In addition, some results for a set of countries for 

which data is available over a longer time frame (Sample B) are provided. Unfortunately 

the number of countries in Sample B is significantly reduced.  Sample B includes 26 

countries over the period 1900 to 1999 (these are highlighted with an asterisk (*) in Table 

1).   

All OPEC countries are excluded from the analysis.  These countries have highly variable 

emissions series and, as such, have a disproportionately large effect on aggregate 

statistics, such as those used in this analysis. 

6.2 Summary Measures 

A variety of summary statistics are used to measure the spread or variability of a data set 

(NIST/SEMATECH, 2003).  Six measures are considered here: the variance (VAR), the 

standard deviation (STDEV), the coefficient of variation (CV), the average absolute 

deviation (AAD), the median absolute deviation (MAD), and the interquartile range 

(IQR). 

The (sample) variance of a data set is defined as 

( )
( )1
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2

−

−
=
∑
=

N

YY
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n

i
i

                 (4) 

where Y is the mean of the data set and Yi is the data under consideration. 

The variance uses the squared difference from the mean, giving greater weight to values 

that are further from the mean.  The variance, therefore, can be strongly affected by the 

behaviour in the tails of a distribution. 
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The (sample) standard deviation of a data set is defined as  

( )
( ) VAR
N

YY
STDEV

n

i
i

=
−

−
=
∑
=

1
1

2

               (5) 

 

When comparing the standard deviation of two data sets or over two points in time, 

researchers often normalise the standard deviation by dividing by the mean of the data. 

This statistic is called the coefficient of variation and is defined as 

MEAN
STDEVCV =                  (6) 

The coefficient of variation can be used to compare variation in data sets with different 

means and to compare changes in the spread of a data set over time.   

The average absolute deviation is defined as 

 
( )

N

YY
AAD

n

i
i∑

=

−
= 1                  (7) 

where Y  is the absolute value of Y. 

The AAD does not square the distance from the mean and it is therefore less affected than 

the variance by extreme observations. 

The median absolute deviation is defined as 

( )YYmedianMAD i
~−=                 (8) 

where Y~ is the median of the data.   

The MAD is even less affected by extreme observations in the tails of the distribution of 

the data. 

The interquartile range (IQR) is the value of the 75th percentile minus the value of the 

25th percentile. The IQR attempts to measure variability in the centre of the distribution 

and does not, therefore, consider tail behaviour. 
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All of the above statistics, except for the IQR, attempt to measure variability, both around 

the centre and in the tails of a distribution.  They differ in the weight placed on 

observations in the tails (NIST/SEMATECH, 2003).  The appropriate statistic will 

depend upon the question of interest and the distribution of the data under consideration.  

With a normally distributed data set, the variance or the standard deviation provide the 

best representation of the spread of the data set, both around the centre and in the tails.  

With data that is not normally distributed, however, an alternative method, such as the 

median absolute deviation or the average absolute deviation, may be more appropriate. 

Figures 3 and 4 contain estimates of each of these measures for Sample A over the period 

1950 to 1999.  In Figure 3, the mean along with the variance, the standard deviation and 

the coefficient of variation are plotted.  Both the mean and the standard deviation of the 

data set increase over the sample period. Between 1950 and 1999, the mean increases by 

more than the standard deviation (which increases only slightly) and, as a result, the 

coefficient of variation is falling over this period. Both the average absolute deviation and 

the median absolute deviation of Sample A increase over the period 1950 to 1999.  The 

interquartile range, which only looks at the spread in the centre of the distribution, is also 

increasing over the time period (Figure 4).   

In summary, all of the measures, except for the coefficient of variation, increase over the 

period 1950 to 1999.  This suggests that the spread or variability of the data series, 

emissions per capita, increased over the period from 1950 to 1999. These summary 

statistics are not consistent with a series that exhibits convergence.  

The CV result highlights the inconsistency between alternative measures of spread. A 

researcher who restricted their analysis to the coefficient of variation may conclude that 

the variation or spread in cross-country emissions per capita declined over the period 

1950 to 1999.  

6.3 Distributional Analysis 

Convergence is a difficult concept to define.  In the context of a distributional analysis, 

convergence could be defined as a sequence of distributions collapsing over time to a 

point limit (Quah, 1997). Progress in this area would then depend upon the series under 
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consideration. For example, the previous statistical analysis looked at the distribution of 

emissions per capita.  Using this series in a distributional analysis would implicitly define 

convergence in terms of the differences in levels between countries’ emission per capita 

rates.   

An alternative approach might look at the distribution of countries’ emission per capita 

rates relative to the world average.  This allows the analysis to abstract from the general 

increase in emission per capita rates over time.  The definition of convergence now 

concentrates on proportional deviations from the mean.  When the mean is changing over 

time, convergence to a particular emissions per capita rate is not distinguished from the 

convergence of countries to a per capita emissions rate that changes over time. 

Lastly, the logarithm of emissions per capita rates could be examined so that the 

definition of convergence depends on the percentage deviation between countries.  

Analyses that seek to study convergence must therefore clearly define convergence and 

how it relates to the series under consideration.  The analysis in this section considers 

relative emissions per capita, where emissions are measured as both the levels deviation 

from the mean and the proportional deviation from the mean.  These series are the most 

appropriate for an analysis of emissions and the most relevant to the current research 

debate.  

This section utilises cross country density estimation techniques developed by Quah 

(1995a, 1995b, 1997) to study income convergence. Kernel-smoothed estimates of the 

cross-country density of fossil fuel CO2 emissions over time are plotted.  The estimates 

were obtained using the Kernel Estimator described in Pagan and Ullah (1999, p 9).   

The estimator is defined as 

 ( ) ∑
=

⎟
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=
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i

h
xxK

nh
xf

1

1ˆ                            (9) 

 where xi  is the data under consideration; 

 the kernel K(·) is the standard normal;  

 the window width, h =  2*min(σ, (R/1.34))n-1/5, where R is the interquartile 

 range; and 

 14



 n is the sample size.   

In Figures 5, 6 and 7, kernel-smoothed cross-country densities for fossil fuel CO2 

emissions per capita are presented. In Figure 5 cross-country density estimates for 

various years between 1950 and 1999 – the time period over which the most 

comprehensive data set is available (Sample A) – are plotted. A general interpretation of 

the density functions based on Sample A is one of divergence. Although the 1950 density 

function exhibits more than one peak, the majority of countries are clearly grouped 

around 0.1 metric tons of carbon per capita.  In 1999, there is no apparent peak.  The 

majority of countries lie in the relatively wide range from 0.1 to 2.5 metric tons of carbon 

per capita.  Both the mean and the variance of this data set would have increased over this 

time period (this is confirmed by the summary statistics previously provided).  A visual 

interpretation of the distributions suggests that between 1950 and 1999, the distribution 

of emissions per capita changed significantly, with an increase in the mean and the 

variance and a flattening of the entire distribution.   

In Figure 6, the nonparametric densities for Sample B are plotted. From 1900 to 1990, 

there is a flattening of the distribution which appears consistent with divergence in 

emissions per capita rates.  Over the decade from 1990 to 1999, the density appears to 

narrow slightly in the middle.  Given that the number of countries in Sample B is 

relatively small, and that, as with income distribution analyses, there may be some 

selection bias due to data availability, these results are not inconsistent with the 

conclusions based on Sample A.  This does, however, highlight the need for a more 

detailed examination of the intra-distribution dynamics.  

Figure 7 contains density estimates for relative emissions per capita rates based on 

Sample A.  The data under consideration are the emission per capita rates for each 

country at time t, divided by the cross country average emissions per capita rate at time t.  

A 2 on the x-axis therefore represents 2 times the cross-country average.  The results are 

similar to those presented in Figure 5.  The interesting differences are less flattening in 

the distribution over time and a substantial change in the range of the distribution over 

time.  The reduction in the range of the data set helps to explain why the coefficient of 
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variation for the original data set (Figure 3), which is the standard deviation for this 

relative data set, decreases over time.  

Plotting the cross-country density over time provides information on how the shape of 

the distribution is evolving.  Density plots do not provide information on the intra 

distributional dynamics of the data set. For example, two data sets may both be 

characterised by density plots that do not appear to change over time. One data set is 

characterised by a high level of persistence, whilst the other is characterised by a high 

degree of mobility. This distinction is not gained from an examination of density plots 

but the intra-distributional dynamic properties of a data set are an important feature of the 

data that needs to be considered in projection models and policy approaches.    

A data series with a distribution that exhibits a high degree of mobility is more likely to 

be responsive to a policy proposal that imposes convergence than a distribution that 

exhibits a high degree of persistence. The distinction is also important when considering 

projection model assumptions since a data distribution that is characterised by persistence 

would be driven by very different factors from one characterised by a high degree of 

mobility. In the case of emissions per capita, for example, a high level of persistence 

would highlight the importance of country specific factors such as fossil fuel endowments 

and it would suggest that imposing an alternative distribution on emissions per capita 

may be difficult and costly.   

The next step in the analysis of emissions per capita therefore involves estimating the 

intra-distributional dynamics.  The stochastic kernel used to estimate these dynamics is 

based on the details in Quah (1995b). Readers interested in a more technical (and 

theoretical) derivation are directed towards the explanation provided in Quah (1997).   

The calculation of the stochastic kernel estimates is similar to the calculation of a non 

parametric conditional density function: 
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   where  xt,i  is the data under consideration at time period t 

           xt+k,i  is the data under consideration at time period t+k 

   the kernel K1(·) is the Epanechnikov;  h =  3*n-1/6

Rather than use a kernel estimate as the denominator (as is done in Equation 10), the 

denominator used in this analysis is calculated by numerically integrating under the joint 

density function (the numerator).  This ensures that the integral from any point xt across 

xt+k is unity (see interpretation below).2  

Readers unfamiliar with these calculations can think of the stochastic kernel estimates as 

a continuous representation of a transition probability matrix.   

When analysing the convergence properties of a data set, it is important to account for 

movements in the average rate of emissions per capita.  The relative series considered 

above is one method of doing so.  However, as is clear from a comparison of Figures 5 

and 7, such a transformation may affect the conclusions drawn.  In this dynamic analysis 

of emissions per capita, the concept of convergence in both levels and in proportions to 

the mean is considered. Two data transformations are used.   

Firstly, a relative emissions per capita series is considered where each country’s emission 

per capita rate is at time t is divided by the cross-country sample average emission per 

capita rate at time t.  This series measures proportional deviations from the cross-country 

mean.   

Secondly, a levels relative emissions per capita series is considered where the cross-

country sample average emission per capita rate at time t is subtracted from each 

country’s emission per capita rate at time t. This series measures level deviations from 

the mean.  

                                                 
2 Pagan and Ullah (1999) note that whilst kernel based density estimates are not very sensitive to the choice 
of kernel, they are sensitive to the choice of window width, h. For this reason alternative values of h were 
investigated. Smaller values of h do not qualitatively change the results or the conclusions presented here 
but they do make estimation difficult in areas of the distribution where observations are limited. As noted 
below, readers should be careful when interpreted the results for parts of the distribution where 
observations are limited.  
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In Figures 8 and 10 the conditional densities based on these series are plotted. Figures 9 

and 11 contain the corresponding contour graphs.  In both cases, the time period over 

which transitions are measured is 10 years. 

Interpreting these graphs is relatively simple. From any point on the axis marked Period 

t, extending parallel to the axis marked Period t+10, the stochastic kernel is a probability 

density function (Quah, 1997).  It describes transitions over 10 years from a given 

emissions per capita rate in period t.  A ridge along the 45° line extending from the 

bottom left hand corner indicates a high degree of persistence – countries with a given 

(relative) emissions per capita rate in period t are likely to remain at that rate in period 

t+10.  A ridge extending from any point in the axis marked Period t+10 parallel to the 

axis marked Period t indicates convergence in emission per capita rates – starting at any 

rate in period t countries are likely to end up at the same (relative) rate in period t+10. 

Consider Figures 8 and 9.  Axis markings indicate relative emissions per capita – a 2 

therefore, refers to 2 times the average emissions per capita rate.  The stochastic kernel 

graphed in Figures 8 and 9 indicates significant persistence at low relative emission per 

capita rates.  There is a clear ridge that extends close to the 45° line until emission levels 

of around 5 times the average per capita rate. At higher rates the ridge swings around 

indicating some convergence at higher relative rates of emissions per capita. There are, 

however, only a few observations available at these higher rates (see Figure 5) and 

caution is needed when interpreting this last result. (See Pagan and Ullah, 1999, pp58-60, 

for some discussion of the large sample requirements when estimating multivariate 

densities.)   

Figures 10 and 11 indicate a slightly different story, at least at higher rates of emissions 

per capita.  Axis markings in these figures indicate level deviations from the mean – a 2 

therefore, refers to an emissions per capita rate 2 metric tons above the average emissions 

per capita rate.  The main ridge extends all the way along the 45° line that indicates 

persistence.  In relative levels terms, there is no evidence of convergence. 
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The general conclusion from this analysis is that there is little evidence of convergence in 

emission per capita rates.3  Although in terms of proportional deviations from the mean 

there is some evidence of convergence at high relative rates of emissions per capita, this 

result does not hold when deviations from the mean in levels is considered.  Any 

convergence at these higher rates is therefore very weak and dependent on the series 

transformation. 

 

7. Conclusions 

This paper presents the results of an empirical examination of fossil fuel CO2 emissions 

per capita. A descriptive analysis of the key features of the distribution of emissions per 

capita is provided along with an analysis of the dynamics of this distribution over time.  

The distributional analysis is used to discuss the possibility of convergence in emissions 

per capita. Statistical examinations of the convergence hypothesis (that is, those based on 

summary measures) are often inadequate and uninformative and alternative 

transformations of the data can produce inconsistent results. The spread statistics 

considered in this paper suggest that emissions per capita across countries have diverged 

rather than converged.  

The coefficient of variation suggests convergence and is inconsistent with the other 

statistical measures. This inconsistency highlights the difficulty in characterising data set 

properties with a single summary measure. The main conclusions in this paper are 

therefore based on a comprehensive examination of the distribution of emissions and the 

dynamics of this distribution over time.  

Stochastic kernel based estimation techniques are used to estimate the distribution and 

intra-distributional dynamics of cross country emissions per capita over time. Although 

there is some weak evidence for convergence at very high rates of emissions per capita, 

overall there is little evidence for convergence in emissions per capita. The density of 

                                                 
3 To check the robustness of these results to alternative time horizons the analysis is repeated for transitions 
over 20 years.  The results (not presented here, but available on request) are consistent with the discussion 
presented here. 
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cross country emissions per capita appears to flatten over time consistent with the 

summary measures that suggest divergence rather than convergence. 

The dynamic kernel estimates suggest that the cross country distribution of emissions per 

capita is characterised by persistence – countries with relatively low emission per capita 

rates are likely to remain in the lower part of the distribution and countries with relatively 

high emissions per capita are likely to remain in the upper part of the distribution.  

Many climate models include assumptions that generate emission per capita projections 

that exhibit convergence. To be relevant, projection models should be based on some 

consideration of the empirical behaviour of key model variables. An empirical analysis of 

emissions per capita convergence is therefore an important factor in the assessment of 

projection models that generate convergent emission projections. Projections of future 

emissions should not be based on an assumption of convergence in emissions per capita 

because the empirical evidence suggests that there is little tendency towards convergence 

in emissions per capita.  

The empirical evidence presented in this paper is also crucial to the debate over an 

appropriate emissions policy. Distributional features are an important consideration in the 

design of an appropriate policy response and in assessing the possible impacts of a policy 

proposal. A policy proposal that is based on convergence in emissions per capita will be 

more controversial if there is no tendency towards convergence in emissions per capita 

(as is suggested by the analysis in this paper) because the distributional impacts of the 

policy are likely to be significant.  
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Table 1: Countries Included in our analysis 

            

 Greece* 
Grenada 
Guatemala 
Guadeloupe 
Guinea-Bissau 
Guyana 
Haiti 
Honduras 
Hong Kong 
Hungary 
Iceland 
India* 
Ireland 
Israel 
Italy* 
Jamaica 
Japan* 
Jordan 
Kenya 
Lebanon 
Macau 
Madagascar 
Malta 
Mauritius 
Mexico* 
Mongolia 
Morocco 
Mozambique 
Myanmar 
Nepal 
Netherlands* 
New Zealand* 
Nicaragua 
 

Afghanistan 
Albania 
Angola 
Argentina* 
Australia* 
Austria* 
Barbados 
Belgium* 
Belize 
Bolivia 
Brazil 
Bulgaria 
Cameroon 
Canada* 
Chile* 
China* 
Colombia 
Costa Rica 
Cuba 
Cyprus 
Denmark* 
Dominica 
Dominican Republic 
Ecuador 
Egypt 
El Salvador 
Ethiopia 
Fiji 
Finland* 
France* 
Gambia 
Germany* 
Ghana 
 

Nigeria 
Norway 
North Korea 
Papua New Guinea 
Paraguay 
Peru* 
Philippines 
Poland 
Portugal* 
Romania 
Samoa 
Sierra Leone 
Solomon Islands 
South Africa 
South Korea 
Spain 
Sri Lanka 
Sudan 
Suriname 
Sweden* 
Switzerland* 
Taiwan* 
Thailand 
Togo 
Trinidad and Tobago 
Tunisia 
Turkey* 
Uganda 
United Kingdom* 
United States* 
Uruguay 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

* indicates that this country is also included in Sample B.  
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Figure 1: World Fossil Fuel CO2 Emissions  
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Figure 2: World Fossil Fuel CO2 Emissions in 1950 and 1999 
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 Figure 3: Summary Measures of Spread 
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 Figure 4: Summary Measures of Spread 
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Figure 5: The Cross-Sectional Distribution of Emissions per Capita 
Sample A  
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Figure 6: The Cross-Sectional Distribution of Emissions per Capita 
Sample B 
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Figure 8: Relative Emissions per Capita Dynamics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9: Relative Emissions per Capita Dynamics 
Contour Plot 
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 Figure 10: Levels Relative Emissions per Capita Dynamics 

 

Figure 11: Levels Relative Emissions per Capita Dynamics 
Contour Plot 
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