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Abstract: This paper introduces a new model of trend (or underlying)
in�ation. In contrast to many earlier approaches, which allow for trend
in�ation to evolve according to a random walk, ours is a bounded model
which ensures that trend in�ation is constrained to lie in an interval. The
bounds of this interval can either be �xed or estimated from the data. Our
model also allows for a time-varying degree of persistence in the transitory
component of in�ation. The bounds placed on trend in�ation mean that
standard econometric methods for estimating linear Gaussian state space
models cannot be used and we develop a posterior simulation algorithm for
estimating the bounded trend in�ation model. In an empirical exercise with
CPI in�ation we �nd the model to work well, yielding more sensible measures
of trend in�ation and forecasting better than popular alternatives such as the
unobserved components stochastic volatility model.
Keywords: Constrained in�ation, non-linear state space model, under-

lying in�ation, in�ation targeting, in�ation forecasting, Bayesian

�The views expressed in this paper are those of the authors and do not necessarily
re�ect the views of the Federal Reserve Bank of New York or the Federal Reserve System.
Gary Koop is a Fellow of the Rimini Center for Economic Analysis.



1 Introduction

There are numerous studies analyzing the behavior of in�ation over the last
few decades. There seems to be agreement that the persistence and volatility
of in�ation have changed over time (see, among many others, Cogley and
Sargent, 2005, Stock and Watson, 2007, 2010, Koop and Potter, 2007 and
Cogley, Primiceri and Sargent, 2010). This literature has highlighted the
importance of the appropriate econometric modeling of the in�ation process.
One key �nding of many researchers is that the persistence of in�ation

was reduced after around 1990. This �nding may be partially explained by
the fact that many central banks, reacting to the great in�ation of the 1970s,
introduced some type of in�ation targeting regime. In such regimes the cen-
tral bank either announces a point target or a target range for the rate of
in�ation so as to �x long-term in�ation expectations. Other central banks
do not have o¢ cial in�ation targeting regimes but behave in similar ways
to in�ation targeting central banks, particularly in their focus on long term
in�ation expectations. Successful monetary policy that stabilizes long run in-
�ation expectations is implicitly a¤ecting trend in�ation and the persistence
of in�ation.
This has led to a great policy interest in in�ation expectations and mea-

sures of trend (or underlying) in�ation constructed using time series meth-
ods.1 A large literature has emerged on estimating trend in�ation (see Clark
and Doh, 2011 as an example of a recent paper which discusses various ap-
proaches to modeling trend in�ation and surveys much of the related liter-
ature). Much of this literature models trend in�ation as a driftless random
walk either in a univariate times series model or as an assumption embedded
in a multivariate time series model (e.g., among many others, Smets and
Wouters, 2003, Cogley and Sargent, 2005, Ireland, 2007, Stock and Watson,
2007, Cogley and Sbordone, 2008 and Cogley, Primiceri and Sargent, 2010).2

The use of a random walk speci�cation has the counter-intuitive implication
that trend in�ation (and long term in�ation expectations) can grow in an
unbounded fashion. There are few models of the in�ation process that re-
strict the variation of trend in�ation and long term in�ation expectations.

1There is also a literature using direct estimates of in�ation expectations (e.g. using
the Survey of Professional Forecasters) as proxies for trend in�ation (e.g. Clark and Davig,
2008 or Williams, 2009). In this paper, we do not consider such sources of information
about trend in�ation.

2In this paper, we use univariate time series methods, estimating trend in�ation using
only information in observed in�ation. As noted in Stock and Watson (2010), it is often
hard to improve upon univariate forecasting procedures with in�ation. However, the basic
issues discussed, involving imposing constraints on trend in�ation, will hold in multivariate
models such as TVP-VARs.
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The purpose of the present paper is to �ll this gap; to develop methods for
bounding trend in�ation in a manner consistent with the implicit in�ation
target ranges of central banks.
We develop a new model for in�ation which restricts trend in�ation to

lie within bounds. These bounds can either be �xed or estimated from the
data and we investigate both approaches as well as the sensitivity to choice
of bounds. In our empirical work, involving quarterly CPI in�ation, we
�nd that inclusion of bounds is important in developing models with sensible
properties and obtaining reasonable estimates of trend in�ation. It also leads
to improved forecast performance, particularly at longer horizons.
A further contribution of this paper is to introduce a computational al-

gorithm, based on Chan and Strachan (2012), which allows for the e¢ cient
estimation of state space models involving inequality restrictions such as the
ones in our model. Many models used for estimating trend in�ation (e.g.
the unobserved components stochastic volatility, UC-SV, model of Stock and
Watson, 2007 or the time-varying parameter vector autoregressive model,
TVP-VAR) are state space models and trend in�ation is based on a vector
of states. An advantage of this is that standard methods for statistical infer-
ence, involving the Kalman �lter and state smoother, exist. However, when
the states are subject to inequality constraints (such as occurs when trend in-
�ation is bounded to lie in an interval), these methods are no longer valid and
the obvious extensions of these methods to deal with inequality constraints
can be computationally ine¢ cient or even infeasible. These points are dis-
cussed in Koop and Potter (2011) who �nd the extension of the multi-move
sampler proposed by Cogley and Sargent (2005) to be computationally infea-
sible unless the inequality constraints rarely bind. Koop and Potter (2011)
propose an extension of a single-move sampler which is found to work when
constraints are often binding, but this algorithm can be computationally de-
manding. The algorithm used in the present paper is not based on Kalman
�ltering and state smoothing, but rather uses a fast and simple Gaussian ap-
proximation to the posterior of the state vector. This approximation is then
used to derive a proposal density for an accept-reject Metropolis-Hastings
algorithm. We �nd this algorithm to work very well, providing accurate
estimates of trend in�ation in computationally e¢ cient fashion.
This paper is organized as follows. In the next section, we discuss models

for trend in�ation and introduce our bounded model. The third section
carries out a prior predictive analysis using these models in order to illustrate
the properties of these models and show the importance of bounding trend
in�ation. The fourth section describes a posterior simulation algorithm. The
�fth section presents empirical results and the sixth section concludes.
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2 Models for Trend In�ation

A wide variety of models for in�ation can be placed into the following unob-
served components framework:

�t = � t + ct;

where �t is an observed measure of in�ation, � t is the in�ation trend with
the property that

lim
j!1

Et [�t+j] = Et[� t+j] with probability 1 (1)

and ct is the in�ation gap with the property that:

lim
j!1

Et [ct+j] = 0 with probability 1: (2)

A simple constant parameter model in this framework would be

� t = �
ct = �1ct�1 � � � � � �pct�p + "t,

with "t � N (0; �2c). Indeed much of the early literature on in�ation fore-
casting used such a framework where the information set was extended to
include a measure of resource utilization. In this paper, following much of
the recent literature, we focus on univariate modeling and impose that any
unit root behavior is in the trend in�ation component.
The simplest case we examine is a local trend model with stochastic

volatility in the in�ation gap:

� t = � t�1 + "�t
ct = "t exp(

ht
2
)

ht = ht�1 + "ht

; (3)

where "�t � N (0; �2� ) ; "t � N (0; 1) and "ht � N (0; �2h). These errors are
assumed to be independent of one another and at all leads and lags.
Under the assumption that the information set is f� t; ct; � t�1; ct�1; : : :g

then
lim
j!1

Et [�t+j] = Et[� t+j] = � t

In this speci�cation trend in�ation is a driftless random walk. Thus, trend
in�ation and long-term in�ation expectations must evolve in an unbounded
fashion. This is inconsistent with the idea that central banks may, implic-
itly or explicitly, be targeting in�ation and acting decisively when in�ation
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moves outside of a desirable range. Of course, if �� is small and � 0 is a
�reasonable�number it might take a very long time for this model to pro-
duce unusual behavior. Furthermore, if the actual in�ation trend is bounded
then this unbounded model could still provide a good approximation to in-
�ation dynamics. As discussed in Stock and Watson (2007), this particular
unobserved components model is equivalent to an integrated moving average
representation for the in�ation process where the moving average coe¢ cient
and innovation variance are time-varying.
Stock and Watson (2007) further generalize this model by allowing for

stochastic volatility in the innovation to the in�ation trend

"�t � N (0; exp(gt)) (4)

gt = gt�1 + "gt
"gt � N

�
0; �2g

�
:

This version allows for the in�ation trend to change at varying rates at dif-
ferent points in time. Speci�cally, they �nd that gt was high in the late 1970s
but more recently it has been very low. Thus, if gt is low and �2g is small, the
unbounded nature of the martingale trend might not become apparent over
long periods.
Cogley and Sargent, in a number of papers, take a di¤erent approach

to time variation in the in�ation process. They do not use an unobserved
components framework, instead they model in�ation as

�t = �0t�1 + �1t�1�t�1 + "t exp

�
ht
2

�
ht = ht�1 + "ht
�t = �t�1 + "�t ;

where in Cogley, Primiceri and Sargent (2010, CPS hereafter) they also allow
for stochastic volatility in the state equation for the vector of coe¢ cients �t:

3

Their approach to de�ning trend in�ation can be illustrated using a �rst order
autoregression of order 1: They impose that the autoregressive parameter is
inside the unit circle, thus the ratio

�0t
1� �1t

= � t

3We follow the working paper version which is Cogley, Primiceri and Sargent (2008).
While CPS focus mainly on the vector autoregressive model it is more direct to just
consider the univariate case for the points we are making.
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is the long-run mean (trend) of the in�ation process if future values of the
vector "�t are equal to zero. Thus, they de�ne the in�ation gap as

ct = �t+1 �
�0t

1� �1t

with associated model speci�cation:

ct+1 = �1t

�
�t �

�0t
1� �1t

�
+ "t+1 exp

�
ht+1
2

�
:

As CPS discuss, this formulation allows the modeler to separately investigate
in�ation gap persistence from variations in trend in�ation.
An unobserved components model with an autoregression in the transi-

tory component is a more direct way of producing this decomposition and
we adopt such a framework in this paper. We will focus on the �rst order
autogression case:

(�t � � t) = �t (�t�1 � � t�1) + "t exp(
ht
2
)

� t = � t�1 + "�t
ht = ht�1 + "ht
�t = �t�1 + "�t

; (5)

where "t � N (0; 1) and "ht � N (0; �2h). One primary goal of the present
paper is to examine the implications of bounding the behavior of � t and �t
such that the in�ation trend and gap satisfy the criteria given above without
imposing unit root behavior on in�ation.
Consider �rst the question of bounding trend in�ation. We assume that

the innovation in the state equation has the following form

"�t � TN(a� � t�1; b� � t�1; 0; �
2
� );

where TN(a; b;�; �2) denotes the Gaussian distribution with mean � and
variance �2 truncated to the interval (a; b).
Some properties of this bounded process follow immediately. First, using

the symmetry of the Gaussian distribution, the unconditional mean is b�a
2

and the conditional expectation is

Et [� t+1] = � t + ��

"
�(a�� t

��
)� �( b�� t

��
)

�( b�� t
��
)� �(a�� t

��
)

#
if a � � t � b

Note that for small values of �� relative to (b�a) the process has a conditional
expectation that is almost identical to its current value if j� t� aj > 2�� and
j� t � bj > 2�� :
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Next consider the question of bounding �t. We assume "
�
t � TN(a� �

�t�1; b� � �t�1; 0; �
2
�). Similar features will apply to the bounded process for

�t as for trend in�ation. For instance, we have

Et
�
�t+1

�
= �t + ��

"
�(a���t

��
)� �( b���t

��
)

�( b���t
��
)� �(a���t

��
)

#
if a� � �t � b�: (6)

The bounds in this case are determined by the requirement that the
conditional expectation of the in�ation gap process converges to zero as the
forecast horizon increases. The simplest restriction is to limit �t to be inside
the unit circle or some other interval with constant limits (e.g. our empirical
results use the interval 0 < �t < 1).
Our bounded model for trend in�ation has the advantage that it satis�es

the conditions (1) and (2), which other popular models of trend in�ation do
not. It also incorporates the implicit target bounds that central bankers may
have. A drawback is that most central banks do not have explicit target
ranges for in�ation and, thus, the researcher does not know a and b. In this
paper, we investigate two di¤erent treatments of this issue. First, we set a
and b to constants that are subjectively selected so as to be reasonable. The
research can try various choices for a and b and investigate how estimates of
trend in�ation change. Secondly, we treat a and b as unknown parameters
which are estimated from the data.
A simple extension of the model above would be to allow for the bounds

to vary over time. We do not pursue this extension, �nding no compelling
reason for thinking that, even in high in�ation times it is likely that central
bankers desired high trend in�ation. Experiences such as the high in�ation
period of the 1970s are better thought of as times where deviations from the
desired trend level of in�ation were quite persistent. That is, central bankers
were temporarily more tolerant of higher-than-desired trend in�ation in these
periods or less con�dent in their ability to quickly bring back in�ation to the
desired level).

3 Properties of Models of Trend In�ation

In order to further understand the properties of our model of bounded trend
in�ation relative to other options, we carry out a prior predictive analysis
(see, e.g., Geweke, 2010). A prior predictive analysis involves simulating from
the prior distribution and then, for each set of parameter values drawn from
the prior, simulating an arti�cial data set. The properties of these arti�cial
data sets can be compared to the properties of the actual data to see if the
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model is capable of generating the kinds of behavior observed in the data.
The data consist of U.S. quarterly CPI from 1947Q1 to 2011Q3. Speci�cally,
given the quarterly CPI �gures zt, we compute yt = 400(log(zt)� log(zt�1)),
and use it as the in�ation rate.
To do a prior predictive analysis, we must �rst specify the set of models

being compared and their priors. The next two sub-sections describe our
choices.

3.1 Competing Models

Our bounded in�ation model is given in (5). Since it speci�es an AR process
for deviations of in�ation from trend, but places bounds on both trend in�a-
tion and the time-varying AR process, we refer to it as theAR-trend-bound
model. We bound the time-varying AR coe¢ cient to lie in the interval (0; 1),
but consider di¤erent treatments of the bounds for trend in�ation (as out-
lined below).
In addition to this speci�cation, we consider four other models. AR-

trend is the same as theAR-trend-bound model, but without the bounds.
That is, it speci�es that all the innovations are Gaussian (instead of trun-
cated Gaussian). Trend is the version of the UC-SV model given in (3) with
a constant error variance in the state equation for trend in�ation. That is,
it assumes "�t � N (0; �2� ) : Trend-SV is the version of the UC-SV model
used in Stock and Watson (2007). Speci�cally, it replaces the assumption
that "�t � N (0; �2� ) with (4). Note that adding stochastic volatility as in (4)
can lead to a model which is di¢ cult to estimate (even without adding an
AR process with time-varying coe¢ cient). Stock and Watson (2007) do not
independently estimate �2h and �

2
g but place a restriction on them. In our

model, adding this third latent process adds little and we omit this extension
in our most general bounded in�ation model for the sake of simplicity. Nev-
ertheless, we include it in our set of competing models since it is a popular
speci�cation in the literature.
Lastly, Trend-bound has the same setup as Trend, but bounds trend

in�ation. That is, � t lies within (a; b) and we set a = 0 and b = 5. We
summarize all �ve speci�cations in Table 1.
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Table 1: A list of competing models.
Model Description
Trend-SV in�ation trend model as in Stock and Watson (2007)
Trend same as Trend-SV but the variance of state equation

for � t is time-invariant
Trend-bound same as Trend but � t 2 (a; b):
AR-trend autoregressive in�ation trend model without any bounds
AR-trend-bound autoregressive in�ation trend model where � t 2 (a; b) and

�t 2 (0; 1)

3.2 The Prior

The model given in (5) involves three state equations which must be initial-
ized. The state equations for � t, �t and ht are initialized with

� 1 � TN(a; b; � 0; !
2
� );

�1 � TN(0; 1; �0; !
2
�);

h1 � N(h0; !
2
h);

where � 0, !2� , h0, !
2
h, �0 and !

2
� are known constants. In particular we set

� 0 = h0 = �0 = 0, !
2
� = !2h = 5 and !

2
� = 1. The prior variances are set to

be relatively large, so that the initial distributions for the states are proper
yet relatively non-informative.
We denote the remaining parameters in the model by � = (a; b; �2h; �

2
�; �

2
� )

and specify their prior as p(�) = p(a; b)p(�2h)p(�
2
�)p(�

2
� ) where:

1. For the prior predictive analysis we �x a and b to the constants speci�ed
below;

2. �2� � IG(�� ; S� );

3. �2� � IG(��; S�);

4. �2h � IG(�h; Sh);

and IG(�; �) denotes the inverse-Gamma distribution.
For the prior hyper-parameters we choose relatively small (and, thus,

relatively non-informative) values for the degrees of freedom parameters: �� =
�� = �h = 10. We next set S� = 0:18; S� = 0:009 and Sh = 0:45. These

values imply
p
E (�2� ) = 0:141,

q
E
�
�2�
�
= 0:0316, and

p
E (�2h) = 0:224.

The degree of freedom parameters are chosen to be small so that the prior
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variances of �2� , �
2
� and �

2
h are large. As for the values of the prior means,

they re�ect the desired smoothness of the corresponding state transition. For
example, we have

p
E (�2� ) = 0:141, which implies that with high probability

the di¤erence between consecutive trend in�ation, � t � � t�1, lies within the
values �0:3 and 0:3. This is calibrated for quarterly data, and we deem this
range appropriate. We also note that

p
E (�2h) = 0:224, which is similar to

the value 0.2 used in Stock and Watson (2007).
AR-trend, Trend and Trend-bound are all restricted versions of the

AR-trend-bound model and we use the same priors for parameters which
are present in both models. For Trend-SV, we assume �2g � IG(�g; Sg),
and �2h � IG(�h; Sh), where �g = �h = 10; and Sg = Sh = 0:45 (so thatp
E (�2h) =

q
E
�
�2g
�
= 0:224). This prior is in line with the priors used for

other models and similar to the one used in Stock and Watson (2007).
The results of the prior predictive analysis presented below suggests that

these priors are sensible.

3.3 Results of Prior Predictive Analysis

3.3.1 Properties of Trend In�ation

Before doing a prior predictive analysis involving the data itself, we ini-
tially investigate the properties of di¤erent trend in�ation speci�cations. We
compare results using the AR-trend-bound model to Trend and Trend-
SV. We compute the predictive densities for future trend in�ation, �T+k,
with k = 20 under each speci�cation. To compute the predictive densities,
we �rst �x �� at its prior mean (i.e., �� = 0:141) and �x �T as described
below. For Trend-SV, we additionally set �g = 0:224 and gT = �3 (ap-
proximately the value of the posterior mean for gT ). Then given �T , we
generate �T+1; : : : ; �T+k�1 (and gT+1; : : : ; gT+k where appropriate) according
to the relevant trend speci�cation. Conditional on these draws, the density
for �T+k (which is truncated Gaussian or Gaussian) can be calculated over a
�ne grid. We repeat this R = 104 times and compute the average.
ForAR-trend-bound, we consider two bounded in�ation speci�cations.

In each � t follows a random walk with constant variance, but � t 2 (a; b) �
where a = 0; b = 5 and a = 1; b = 4:5. We denote the two speci�cations as
Bound-1 and Bound-2, respectively.
The results are reported in Figure 1 for various initial values of trend

in�ation. By de�nition, the models with bounds on trend in�ation keep it
within the bounds. If �T lies near the middle of the bounds, then Bound-
1 and Bound-2 yield very similar predictive densities for trend in�ation.
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However, if �T lies near the edges of the interval, then the choice of a and b
can have a substantial impact on future trend in�ation.

­2 0 2 4
0

0.5

1

1.5
τT = 1

­2 0 2 4 6
0

0.2

0.4

0.6

0.8
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0.4
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0.8
τT = 3

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
τT = 4

Trend­SV
Trend
Bound­1
Bound­2

Figure 1: Predictive densities for �T+k under various trend in�ation
speci�cations where k = 20.

However, the most important feature of Figure 1 is that the predictive
densities for either of the unbounded UC-SVmodels (Trend andTrend-SV)
are very dispersed, containing a wide range of implausible values for trend
in�ation. The inclusion of stochastic volatility in the state equation for trend
in�ation increases dispersion further still relative to the UC-SV model with
homoskedastic errors in this state equation.
This �gure clearly illustrates the impact of allowing for random walk

behavior of trend in�ation. With such an unbounded speci�cation, even
at medium-term horizons like k = 20, trend in�ation can wander far from
reasonable values. We stress that the results of this exercise are not simply
an artifact of using relatively noninformative priors. In this sub-section, we
are producing medium term forecasts of trend in�ation such as would be
made by a forecaster who knew precisely what trend in�ation was and the
parameter values were at time � . If we had allowed for parameter uncertainty
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or uncertainty over what current trend in�ation was, the predictive densities
would be even more disperse using the unbounded formulations.

3.3.2 Prior Predictive Analysis for Data Features of Interest

We next perform a prior predictive analysis as suggested in Geweke (2010).
Speci�cally, for each model, Mj, we �rst take a draw of its parameters from
the prior and then simulate states from the state equations that are present
in Mj. Given the drawn parameters, states and an initial value y0 (which is
�xed at 5.6739 � the CPI in�ation rate in 1947Q2), we generate a dataset
according to the measurement equation for Mj. Then, given the generated
series, we compute various features of interest such as quantiles, variance,
autocorrelations, etc. We repeat this exercise for R = 104 times (each time
with a new draw from the prior and the state equations), and construct the
prior cumulative distribution function (cdf) for each of these features. That
is, for each given feature zi, we construct its empirical cdf under the model
using the R draws z(1)i ; : : : ; z

(R)
i generated as described above.

In this sub-section, we present results for all the models in Table 1. For
models which bound trend in�ation, we set a = 0 and b = 5.
The results are reported in Table 2 for 9 di¤erent features of interest. In

each row we report the relevant �gures of the stated feature of interest. The
last row, labelled �MA coe¢ cient�, is the estimated moving average coe¢ -
cient in an integrated MA(1) model. That is, it is the maximum likelihood
estimate for  in the model: �yt = ut+ ut�1; where ut � N(0; �2). Columns
2�6 contain the prior cdf evaluated at the observed data under each of the
models, i.e., Fi(zoi jMj) = P(zi � zoi jMj) the probability that the feature
under the prior and the model is less than the observed value.

Table 2: Prior cdfs of features.
Feature Trend- Trend Trend- AR- AR-trend-

SV bound trend bound
16%-tilde 0.833 0.856 0.734 0.767 0.757
median 0.678 0.889 0.816 0.754 0.801
84%-tilde 0.503 0.827 0.815 0.499 0.753
variance 0.205 0.690 0.707 0.348 0.635
fraction of yt < 0 0.133 0.175 0.423 0.246 0.370
fraction of yt > 10 0.464 0.812 0.794 0.465 0.731
lag 1 autocorrelation 0.315 0.771 0.814 0.615 0.540
lag 4 autocorrelation 0.227 0.638 0.687 0.300 0.550
MA coe¢ cient 0.497 0.941 0.949 0.648 0.492
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Values near zero or one indicate that the model is failing to mimic the
relevant data feature well. It can be seen that all of the models are capable
of �tting CPI in�ation, although models with bounds on trend in�ation do
somewhat better (in the sense, that we are obtaining values of closer to 0.5).
This is as might be expected for reasonably �exible models with relatively
noninformative priors.
Table 2 shows that the problem with any of these models is not neces-

sarily that they are too restrictive, but that they may be too �exible (in the
sense of accommodating very unreasonable behavior as well as reasonable
behavior). To gain more insight on this issue and quantitatively compare the
di¤erent models, we carry out another prior predictive exercise. First, we ap-
proximate the joint prior density of the features p(z jMj) = p(z1; : : : ; zq jMj)
using the arti�cially generated data and a Gaussian kernel (as detailed in
Geweke, 2010, p. 84�85). We then evaluate the prior density at the observed
value p(z = zo jMj). To compare models Mj and Mk, one can simply com-
pute the Bayes factor p(z = zo jMj)=p(z = zo jMk) relating to a particular
feature of interest (or combination of various features of interest). In Table 3
we report the results of this comparison exercise. Speci�cally, we divide the
features into three groups: �Quantile�includes the �rst three features of in-
terest (16%-tilde, median and 84%-tilde), �Spread and Drift�includes the
next three (variance, fraction of yt < 0, and fraction of yt > 10 ), and �Dy-
namics�include the last three features of interest (lag 1 autocorrelation, lag
4 autocorrelation and MA coe¢ cient). The second column reports the log
prior densities at the observed values under the Trend-SV model. Columns
3-6 report the log Bayes factors in favor of each model over the Trend-SV
model.

Table 3: Log Bayes factors in favor of each model over the trend model.
Feature Trend- Trend Trend- AR- AR-trend-

SV bound trend bound
Quantile -12.640 6.008 6.820 -654.581 6.832
Spread and Drift -11.474 3.027 2.876 -1 4.881
Dynamics -0.319 -2.957 -2.414 -0.709 2.083
All -23.584 4.308 2.713 -1 13.307

Table 3 provides strong evidence in favor of our proposed AR-trend-
bound model. That is, if we use all 9 features of interest, we �nd the Bayes
factor comparing the AR-trend-bound model to the Trend-SV model to
be about 6� 105. Remember that the Trend-SV model is a UC-SV model
of a standard sort. Clearly, the prior predictive analysis is providing strong
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evidence in favor of our bounded in�ation model relative to this common
benchmark.
The Bayes factor (using all 9 features of interest) comparing the AR-

trend-bound model to the Trend-bound in�ation is about 40000, indi-
cating that the addition of the AR lag is providing substantial bene�ts (i.e.
bounding trend in�ation yields great improvements, but adding AR lags pro-
vides additional improvements beyond this).
However, simply adding a time-varying AR lag to a standard UC-SV

speci�cation (without bounding trend in�ation or the AR coe¢ cient) does
not seem to be a good way to go. That is, AR-trend (without bounds)
performs very poorly in Table 3. The reason for this is that the AR-trend
model, with our relatively noninformative prior, ends up generating many
explosive series. One response to this might be to consider a tighter prior
on parameters to lessen or eliminate these explosive draws. However, many
researchers may prefer a strategy of bounding the AR coe¢ cient to lie in
the stationary region at each point in time, rather than spending more e¤ort
(and risking criticism of other researchers) in choosing a more informative
subjective prior.
The preceding comments are based on a Bayes factor involving all 9 fea-

tures of interest. The reader may be interested in the dimension in which
the AR-trend-bound model performs better (i.e. is it better at picking up
the dynamics of in�ation? Or issues relating to dispersion and tails?). The
remaining rows in Table 3 suggest that the AR-trend-bound model has
advantages in all of these directions.

4 Posterior Simulation Methods

In the preceding section, we used prior predictive simulation methods to in-
vestigate the properties of our model of bounded trend in�ation given in (5).
In our posterior analysis, we use the same prior as in the prior predictive
analysis plus one additional degree of �exibility. To describe this new as-
pect, note that in the prior predictive results we simply set a and b to �xed
constants. In our empirical section, we present results treating a and b as
unknown parameters. In this case, we need priors for a and b and we assume
these to be uniform on the intervals (a; a) and (b; b) respectively, where a = 0,
a = 1:5, b = 3:5 and b = 5.
We develop an MCMC algorithm which sequentially draws from:

1. p(� j y; h; �; �)

2. p(h j y; � ; �; �)
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3. p(� j y; � ; h; �)

4. p(a j y; � ; h; �; �2h; �2�; �2� ; b)

5. p(b j y; � ; h; �; �2h; �2�; �2� ; a)

6. p(�2h; �
2
�; �

2
� j y; � ; h; �; a; b) = p(�2h j y; � ; h; �; a; b)p(�2� j y; � ; h; �; a; b)p(�2� j y; � ; h; �; a; b)

where y = (y1; : : : ; yT )
0, h = (h1; : : : ; hT )

0, � = (� 1; : : : ; �T )
0 and � =

(�1; : : : ; �T )
0. Complete details are given in the Appendix. Here we describe

the outlines of the algorithm.
Due to the presence of the inequality constraints, p(� j y; h; �; �) and

p(� j y; � ; h; �) are non-standard and conventional methods of inference in
state space models cannot be used. Instead we use an approach developed
in Chan and Strachan (2012) for posterior sampling in nonlinear state space
models. An essential element of this algorithm is a Gaussian approxima-
tion to the conditional density p(� j y; h; �; �). This uses a precision based
algorithm which builds upon results derived for the linear Gaussian state-
space model by Chan and Jeliazkov (2009). The Gaussian approximation
is then used as a proposal density for an accept-reject Metropolis-Hasting
(ARMH) step. We also use this algorithm to draw from p(� j y; � ; h; �) and
p(h j y; � ; �; �).
Both p(a j y; � ; h; �; �2h; �2�; �2� ; b) and p(b j y; � ; h; �; �2h; �2�; �2� ; a) are one-

dimensional non-standard densities, and draws from each of which can be ob-
tained using the Griddy-Gibbs algorithm. To sample from p(�2� j y; � ; h; �; a; b)
and p(�2� j y; � ; h; �; a; b), both of which are non-standard densities, we use an
independence-chain MH algorithm. Finally, p(�2h j y; � ; h; a; b) is an inverse-
Gamma density.

5 Empirical Results

In this section, we present empirical results for the models listed in Table 1
using the prior given in Section 3.2 and a and b treated as unknown pa-
rameters with prior given in Section 4. We use quarterly CPI in�ation as
described at the beginning of Section 3. All results below are based on 50,000
draws from our MCMC algorithm (after a burnin period of 5000).
We divide our results into three sub-sections. The �rst shows that our

MCMC algorithm is e¢ cient. The second presents empirical results for trend
in�ation and other features of interest. The third investigates the forecasting
performance of our bounded in�ation model.
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5.1 Evidence on E¢ ciency of the MCMC Algorithm

A common diagnostic of MCMC e¢ ciency is the ine¢ ciency factor, de�ned
as:

1 + 2
LX
l=1

�l;

where �l is the sample autocorrelation at lag length l, and L is chosen large
enough so that the autocorrelation tapers o¤. To interpret it, note that
independent draws from the posterior would give an ine¢ ciency factor of
1. Ine¢ ciency factors indicate how many extra draws need to be taken to
give results equivalent to independent draws. For instance, if we take 50,000
draws of a parameter and �nd an ine¢ ciency factor of 100, then these draws
are equivalent to 500 independent draws from the posterior.
We report the ine¢ ciency factors for the parameters and states for the �ve

models in Table 4. Note that, for example, there are a total of T ine¢ ciency
factors associated with � (one for each � t) and, hence, there are too many
states for us to present ine¢ ciency factors for all of them. Instead, we sort
the ine¢ ciency factors for � , and report the 25th, 50th and 75th percentiles,
denoted as � (25%), � (50%) and � (75%) respectively. We adopt a similar strategy
for the other states.
It is also worth noting that when we bound trend in�ation and the time-

varying AR coe¢ cients, we no longer have a Gaussian linear state space mod-
els and, hence, computation is potentially much slower (e.g. the algorithm of
Koop and Potter, 2011 is very ine¢ cient relative to that of an unrestricted
state space model). A sensible measure of performance is how much more
ine¢ cient an algorithm is than its unbounded variant. For instance, if we
compare results for AR-trend-bound to AR-trend, we �nd the former to
have higher ine¢ ciency factors for the states which are bounded. However,
the ine¢ ciency factors tend to be only roughly 10 times higher than for the
unbounded version of the model. Hence, to achieve a desired degree of accu-
racy, the bounded algorithm takes roughly 10 times as long as the unbounded
variant. This is an appreciable increase in computation time. But, in the
context of low-dimensional models such as the ones we are working with in
this paper, this increase is not a substantial burden. Our algorithm is fast
and e¢ cient enough for easy use.
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Table 4: Ine¢ ciency factors of selected parameters.
Parameter Trend- Trend Trend- AR- AR-trend-

SV bound trend bound
� (25%) 1.1 1.0 87.9 1.2 24.4
� (50%) 2.0 1.8 125.3 2.3 34.6
� (75%) 10.8 12.2 166.5 2.6 98.5
h(25%) 16.9 5.9 4.3 1.9 2.3
h(50%) 38.6 9.0 6.1 2.1 2.7
h(75%) 85.8 24.4 9.9 2.3 3.0
�(25%) � � � 1.5 16.2
�(50%) � � � 1.6 19.4
�(75%) � � � 1.8 24.2
g(25%) 45.6 � � � �
g(50%) 69.7 � � � �
g(75%) 201.2 � � � �
�2� � 120.9 586.0 28.8 188.5
�2h 74.9 30.7 33.6 26.0 24.6
�2� � � � 25.2 62.9
�2g 67.4 � � � �
a � � � � 65.9
b � � � � 49.7

5.2 Estimates of Trend In�ation, Persistence and Volatil-
ity

Figure 2 presents estimates (posterior means) of trend in�ation for the �ve
models. It can be seen that large di¤erences exist between the unbounded
UC-SV models (Trend-SV and Trend) and the other models. The former
are much more erratic and yield more extreme results than the latter. Trend
in�ation estimates from the unbounded UC-SV models tend to track actual
in�ation fairly closely. Especially for the Trend-SV model of Stock and
Watson (2007) we are �nding very high values of trend in�ation (over 10% in
some periods). Furthermore, trend in�ation is far from being smooth in the
unbounded UC-SV models, exhibiting rapid changes over short periods. We
�nd these properties of unbounded UC-SV models to be counter-intuitive.
As we have argued previously, the high in�ation in the 1970s is better inter-
preted as re�ecting large and persistent deviations from a fairly low trend
rather than large increases in trend. Furthermore, abrupt changes in trend
in�ation seem inconsistent with theoretical or common-sense ideas of what
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trend in�ation is.
Figure 2 also indicates the role played by the time-varying AR coe¢ -

cients. Results for AR-trend indicate that, even without bounds, allowing
for a time-varying AR coe¢ cient has a large impact on estimates of trend in-
�ation. AR-trend allows for estimation of a random walk in trend in�ation
and time variation in persistence of deviations from trend. In high in�ation
periods, this model attributes much of the in�ation increase as re�ecting
the latter rather than the former. That is, given the choice, the econometric
model estimates trend in�ation as being fairly constant and allocates most of
the change in in�ation to the transitory component. We should stress, how-
ever, that in Section 3.3 we found the AR-trend model to have undesirable
properties that were not present with the AR-trend-bound model.
It is also worth noting that the Trend-bound model (which assumes

�t = 0) is yielding estimates of trend in�ation which are very di¤erent than
the unbounded UC-SV models. This shows that it is not simply the inclusion
of a time-varying AR component that is important in achieving sensible
measures of trend in�ation, the bounding is also playing an important role.
Figure 3 plots the posterior mean of trend in�ation along with a credi-

ble interval for our AR-trend-bound model. The credible interval is not
that wide, indicating our preferred model is estimating trend in�ation fairly
precisely.

1950 1960 1970 1980 1990 2000 2010
­4

0

4

8

12

16
Trend­SV
Trend
Trend­bound
AR­trend
AR­trend­bound

Figure 2: Posterior means of � for various models.
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Figure 3: Posterior mean and quantiles of � under the
AR-trend-bound model.

Figures 4 and 5 are comparable in format as Figures 2 and 3, except for
volatilities (ht) instead of trend in�ation. Figure 4 shows that AR-trend
and AR-trend-bound are producing volatility estimates which are similar
to one another. However, the three UC-SV models without an autoregressive
structure (Trend, Trend-SV and Trend-bound) are producing volatility
estimates which exhibit some di¤erences from the AR-trend models and from
each other. Trend-SV (and to some extent Trend) are leading to lower
volatilities than the other models since it is allocating much of the variation
in the data to trend in�ation (and, in the case of Trend-SV to gt). Trend-
bound is �nding a much higher increase in volatility in the late 1970s and
early 1980s than the other models. This is due to the fact that this model
is producing a very stable estimate of trend in�ation and does not allow
for time-varying persistence in the transitory component. Thus, much of
variability in the data is ascribed to ht.
Figure 4 illustrates the sensitivity of volatility estimates to modeling as-

sumptions. We argue that working with anAR-trendmodel is more sensible
since it allows the data to decide whether variation is due to changes in trend
in�ation, persistence in the transitory component or volatility. Our previous
results show the importance of bounding and, hence, argues for AR-trend-
bound. Figure 5 shows that this model is estimating the volatilities in a
precise fashion.
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Figure 4: Posterior means of h under various models.
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Figure 5: Posterior mean and quantiles of h under the
AR-trend-bound model.
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Figure 6: Posterior means of �t under the AR-trend
and AR-trend-bound models.
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Figure 7: Posterior mean and quantiles of �t under
the AR-trend-bound model.

Figure 6 plots the estimates of �t for the models which allow for time-
varying persistence in deviations of in�ation from trend. We are �nding
substantial changes in �t over time. A fair degree of persistence (around 0:6
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to 0:7) is found in the 1960s. This increases gradually through the 1960s and
1970s before peaking at around 0:9 in the late 1970s and early 1980s. Sub-
sequently, during the time of the Great Moderation, persistence fell steadily.
After the �nancial crisis there is some evidence that it began to increase
slightly. The AR-trend and AR-trend-bound models are producing simi-
lar results. However, it is worth noting that, especially during the late 1970s,
the estimate of �t is closer to one with AR-trend and the posterior includes
values greater than one. AR-trend-bound rules out this explosive region of
the parameter space. Figure 7 indicates that �t is estimated fairly precisely
by our model.
Finally, Figure 8 presents the posteriors for the bounds of the interval for

trend in�ation in the AR-trend-bound model. It can be seen that they are
relatively �at over the ranges we allow for in the prior. We have found our
results to be quite robust to treatment of a and b and Figure 8 shows why
this is so. It is not the precise choice of values for a or b which is leading to
the smooth and reasonable estimates of trend in�ation we are �nding.
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Figure 8: Kernel density estimates for p(a j y) (left panel and p(b j y)
(right panel) under the AR-trend-bound model.

5.3 Forecasting

We now evaluate the forecast performance of six models for forecasting the
quarterly CPI in�ation rate at di¤erent horizons. The �rst �ve models are
the ones we considered previously: Trend-SV, Trend, Trend-bound,AR-
trend and AR-trend-bound. We also add one another model which was
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used by Clark and Doh (2011). This is the time-varying-parameter autore-
gressive model, referred to as TVP-AR, speci�ed as:

yt = �0t + �1tyt�1 + � � �+ �ptyt�p + "t;

�t = �t�1 + "�t ;

ht = ht�1 + "ht ;

where "t � N(0; eht); "�t � N(0;
), "ht � N(0; �2h), �t = (�0t; �1t; : : : ; �pt)
0

and 
 = diag(!0; !1; : : : ; !p). We �x p = 2 and evaluate our forecasts
over the period 1975Q1 to 2011Q3 using root mean squared forecast error
(RMSFE) and the average of log predictive likelihoods evaluated at the ob-
served value.4 We consider �ve di¤erent forecast horizons: k = 1; 4; 8; 12; 16.
We use iterated forecasts calculated with predictive simulation. To be pre-
cise, when forecasting using information through time t, predictive simulation
is done of future values of the states and the dependent variable.

Table 5: RMSFEs for forecasting quarterly CPI in�ation
k = 1 k = 4 k = 8 k = 12 k = 16

Trend-SV 2.168 2.644 3.290 3.592 3.636
Trend 2.332 2.703 3.112 3.354 3.412
Trend-bound 3.032 3.067 3.079 3.148 3.140
AR-Trend 2.139 2.866 4.686 10.536 26.945
AR-trend-bound 2.089 2.430 2.916 3.116 3.168
TVP-AR 2.156 2.826 4.464 6.761 11.637

Tables 5 and 6 present these forecast metrics. Regardless of forecast
horizon or metric, with one exception our AR-trend-bound is exhibiting
the best forecast performance. The one exception occurs at k = 16 where the
RMSFE of the trend-bound model is slightly lower. We take these results
as suggesting that bounding is useful for improving forecast performance.
This is particularly true at longer horizons where RMSFEs for some of the
models which do not bound trend in�ation are very high due to the random

4The only data revisions in the CPI are produced by changing seasonal factors. Thus,
our exercise is e¤ectively a pseudo real time one. It should also be noted that one source
of time variation in the parameters will be the various methodological changes in the CPI
that have taken place over the last 60 years. Studies that use the latest vintage of PCE
in�ation or the GDP de�ator will not have variation due to methodology changes.
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Table 6: Average log predictive likelihood for forecasting quarterly CPI in-
�ation

k = 1 k = 4 k = 8 k = 12 k = 16
Trend-SV -2.052 -2.323 -2.494 -2.562 -2.624
Trend -2.088 -2.332 -2.490 -2.548 -2.592
Trend-bound -2.221 -2.341 -2.395 -2.434 -2.425
AR-Trend -2.041 -2.264 -2.426 -2.471 -2.531
AR-trend-bound -2.025 -2.214 -2.339 -2.358 -2.404
TVP-AR -2.040 -2.250 -2.394 -2.413 -2.472

walk behavior of trend in�ation (or, in the case of the TVP-AR model,
some explosive draws in the AR process). However, even with relatively
short forecast horizons such as k = 4, substantial bene�ts of bounding trend
in�ation are appearing.

6 Conclusions

In this paper, we have introduced a new model that restricts trend in�ation
to lie in bounds. We have argued that this is a reasonable property in that
central banks have implicit ranges for trend in�ation which are deemed to be
desirable and that these ranges are fairly constant over time. The most pop-
ular models of trend in�ation used in the literature allow for trend in�ation
to follow a random walk. In theory, such models allow for trend in�ation to
grow in a counter-intuitively unbounded fashion. In practice, such models
tend to yield trend estimates which follow actual in�ation fairly closely lead-
ing to erratic estimates of trend in�ation (e.g. estimating trend in�ation as
being very large in the 1970s).
A concern with our bounded trend in�ation model is that it can no longer

be estimated using methods for linear Gaussian state space models. Accord-
ingly, we have investigated the use of an alternative algorithm for nonlinear
state space models proposed by Chan and Strachan (2012) and found it to
work well.
Our empirical results, based on quarterly CPI in�ation, show the ad-

vantages of the bounded in�ation model. Most importantly, it is yielding
estimates of trend in�ation which are very di¤erent from the popular UC-SV
model of Stock and Watson (2007). We argue that our estimates are more
sensible. A second �nding is the importance of allowing for time-varying per-
sistence in the transitory component of in�ation where we �nd results similar
to CPS but using a more reliable model of trend in�ation. A �nal �nding is
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that bounding trend in�ation leads to improvements in in�ation forecasting,
particularly at longer horizons.
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Appendix: MCMC Algorithm

This appendix develops a posterior simulation algorithm for AR-trend-
bound: the bounded in�ation model given in (5). The other models are
restricted special cases of this model and, thus, the MCMC algorithm is re-
stricted in the obvious manner in each case. The one exception of this is
the UC-SV model of Stock and Watson (2007), which we label Trend-SV in
the paper. This involves one extra state equation for the stochastic volatility
in the in�ation de�ning trend in�ation. This is drawn using the stochastic
volatility described in this appendix.
Except for the parameters a and b, the prior is described in Section 3.2.

The priors for a and b are assumed to be uniform on the intervals (a; a) and
(b; b) respectively, where a = 0, a = 1:5, b = 3:5 and b = 5.
The MCMC algorithm sequentially draw from (we suppress the depen-

dence on y0):

1. p(� j y; �; h; �);

2. p(� j y; � ; h; �);

3. p(h j y; � ; �; �);

4. p(a j y; � ; �; h; �2� ; �2�; �2h; b);

5. p(b j y; � ; �; h; �2� ; �2�; �2h; a);

6. p(�2� ; �
2
�; �

2
h j y; � ; �; h; a; b) = p(�2� j y; � ; �; h; a; b)p(�2� j y; � ; �; h; a; b)p(�2h j y; � ; �; h; a; b).

In order to derive the above conditional densities, we �rst rewrite the
measurement equation in (5) as

Ky = �0 +K� + "; " � N(0;
y);

where 
y = diag(eh1 ; : : : ; ehT ) and

�0 =

0BBBBB@
�1y0
0
0
...
0

1CCCCCA ; K =

0BBBBBBB@

1 0 0 � � � 0
��2 1 0 � � � 0
0 ��3 1 � � � 0
...

. . .
...

0 0 � � � ��T 1

1CCCCCCCA
:

Since jKj = 1 for any �, K is invertible. Therefore, we have

(y j �; h; y0) � N(K�1�0 + � ; (K 0
�1y K)�1);
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i.e.,

log p(y j �; h; y0) / �
1

2
�0Th�

1

2
(y�K�1�0� �)0K 0
�1y K(y�K�1�0� �); (7)

where �T is a T � 1 column of ones. It is important to note that both K and

�1y are sparse, i.e., they contain only a small number of non-zero elements.
As such, computational bene�ts of working with sparse matrix algorithms can
be exploited in this setting. In fact, (7) can be evaluated quickly without the
need of inverting any large matrices (i.e., one needs not compute K�1). We
refer the readers to Chan and Jeliazkov (2009) for details. Similarly, we can
write

H� = "� ;

where

H =

0BBBBBBB@

1 0 0 � � � 0
�1 1 0 � � � 0
0 �1 1 � � � 0
...

. . .
...

0 0 � � � �1 1

1CCCCCCCA
:

That is, the prior density for � is given by

log p(� j�2� ; a; b) / �
1

2
� 0H 0
�1� H� + g� (� ; a; b; �

2
� ); (8)

where a < � t < b for t = 1; : : : ; T , 
� = diag(!2� ; �
2
� ; : : : ; �

2
� ) and

g� (� ; a; b; �
2
� ) = � log

�
�

�
b

!�

�
� �

�
a

!�

��
�

TX
t=2

log

�
�

�
b� � t�1
��

�
� �

�
a� � t�1
��

��
:

Combining the previous prior and likelihood for � , we obtain the log
conditional density log p(� j y; �; h; �) as follows:

log p(� j y; �; h; �) /� 1
2
(y �K�1�0 � �)0K 0
�1y K(y �K�1�0 � �)

� 1
2
� 0H 0
�1� H� + g� (� ; a; b; �

2
� )

/� 1
2
(� � �̂)0D�1

� (� � �̂) + g� (� ; a; b; �
2
� );

where a < � t < b for t = 1; : : : ; T , and

D� =
�
H 0
�1� H +K 0
�1y K

��1
; �̂ = D�K

0
�1y K(y �K�1�0):
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Since the conditional density is non-standard, we sample � via an independence-
chain Metropolis-Hasting (MH) step. Speci�cally, candidate draws are �rst
obtained from the N(�̂ ; D� ) distribution with the precision-based algorithm
in Chan and Jeliazkov (2009), and they are accepted or rejected via an
acceptance-rejection Metropolis-Hasting (ARMH) step.
To draw from p(� j y; � ; h; �), rewrite the measurement equation as

y� = X�+ ";

where X = diag(y�0; : : : ; y
�
T�1), y

� = (y�1; : : : ; y
�
T )
0 and y�t = yt � � t. From the

state equation we also have
H� = "�:

Therefore, the log conditional density log p(� j y; � ; h; �) is given by:

log p(� j y; �; h; �) / �1
2
(�� �̂)0D�1

� (�� �̂) + g�(�; �
2
�);

where 0 < �t < 1 for t = 1; : : : ; T , and

g�(�; �
2
�) = �

TX
t=2

log

�
�

�
1� �t�1
��

�
� �

�
��t�1
��

��
;

D� =
�
H 0
�1� H +X 0
�1y X

��1
; �̂ = D�X

0
�1y y�; 
� = diag(!2�; �
2
�; : : : ; �

2
�):

As before, we implement an ARMH step with approximating densityN(�̂; D�).
For p(h j y; � ; �; �), we directly use the algorithm in Chan and Strachan
(2012).
To draw from the bounds of the interval trend in�ation is restricted to lie

in, note that the log conditional densities for a and b are given by

log p(a j y; � ; �; h; �2� ; �2�; �2h; b) / g� (� ; a; b; �
2
� )

log p(b j y; � ; �; h; �2� ; �2�; �2h; a) / g� (� ; a; b; �
2
� )

with supports a < a < minfa;minf� tgg and maxfb;maxf� tgg < b < b,
respectively. Since each conditional density is one-dimensional with bounded
support, draws from each density can be obtained via a Griddy-Gibbs step
(using a uniform grid with 300 grid points, accurate up to at least 2 decimal
places).
To draw from the error variances, note that p(�2� ; �

2
�; �

2
h j y; � ; �; h; a; b) is

the product of three densities. Hence, we can sample �2� , �
2
� and �

2
h sequen-

tially without a¤ecting the e¢ ciency of the sampler. The log conditional
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density log p(�2� j y; � ; �; h; a; b) is given by

log p(�2� j y; � ; �; h; a; b) /� (�� + 1) log �2� �
S�
�2�
� T � 1

2
log �2�

� 1

2�2�

TX
t=2

(� t � � t�1)
2 + g� (� ; a; b; �

2
� );

which is a non-standard density. We therefore implement an MH step with
the proposal density

IG

 
�� +

T � 1
2

; S� +
1

2

TX
t=2

(� t � � t�1)
2

!
:

Similarly, the log conditional density log p(�2� j y; � ; �; h; a; b) is given by

log p(�2� j y; � ; �; h; a; b) /� (�� + 1) log �2� �
S�
�2�
� T � 1

2
log �2�

� 1

2�2�

TX
t=2

(�t � �t�1)
2 + g�(�; �

2
�):

Again, a draw from p(�2� j y; � ; �; h; a; b) is obtained via an MH step with the
proposal density

IG

 
�� +

T � 1
2

; S� +
1

2

TX
t=2

(�t � �t�1)
2

!
:

Finally, p(�2h j y; � ; �; h; a; b) is a standard inverse-Gamma density

IG

 
�h +

T � 1
2

; Sh +
1

2

TX
t=2

(ht � ht�1)
2

!
:
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