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Abstract

We evaluate the performance of an open economy DSGE-VAR model for New
Zealand along both forecasting and policy dimensions. We show that forecasts
from a DSGE-VAR and a ‘vanilla’ DSGE model are competitive with, and in
some dimensions superior to, the Reserve Bank of New Zealand’s official fore-
casts. We also use the estimated DSGE-VAR structure to identify optimal policy
rules that are consistent with the Reserve Bank’s Policy Targets Agreement. Opti-
mal policy rules under parameter uncertainty prove to be relatively similar to the
certainty case. The optimal policies react aggressively to inflation and contain a
large degree of interest rate smoothing, but place a low weight on responding to
output or the change in the nominal exchange rate.
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1 Introduction

We apply the DSGE-VAR methodology developed by Del Negro and Schorfheide
(2004) to model a small open economy with an explicit inflation target – New
Zealand. We assess the DSGE-VAR’s forecasting performance and we use the
structural model to investigate optimal policy rules.

Forecasting performance is a key criterion for evaluating model performance within
central banks; models are typically required to forecast well before they become
an established part of the policy process. Since the Reserve Bank’s forecasts are
predicated on endogenous policy, the published forecasts of the Reserve Bank of
New Zealand provide a unique benchmark against which to compare our DSGE-
VAR forecasts. We go head-to-head with these official forecasts using real-time
data.

One of the advantages of the DSGE-VAR technology over reduced form statis-
tical models is that the policy-maker learns about the structure of the economy
(Del Negro and Schorfheide 2004). We adopt the model estimated by Lubik and
Schorfheide (2005), which serves as a minimal set of theory for a small open
economy model. This structure enables us to conduct policy experiments: we ap-
ply the DSGE-VAR model to identify how effective different policy rules are at
achieving the inflation targeting objectives specified in the Reserve Bank’s Policy
Targets Agreement (PTA).1

The rest of the paper proceeds as follows. Section 2 discusses the DSGE-VAR
technology and outlines the Del Negro-Schorfheide algorithm we adopt as our
estimation procedure. Section 3 outlines the Lubik and Schorfheide model, our
parameter estimates, and the impulse responses implied by the model. Section
4 compares out-of-sample forecasts of the DSGE-VAR to other VAR alternatives
and to the official forecasts of the Reserve Bank of New Zealand. Section 5 details
our policy experiment and concluding comments are made in section 6.

1 The Reserve Bank of New Zealand Act (1989) specifies price stability as the primary objective
of the Bank. The PTA, negotiated agreement between the Minister of Finance and the Governor
of the Reserve Bank of New Zealand, clarifies the Reserve Bank’s objective.
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2 DSGE-VARs

Developing plausible empirical models of the macroeconomy has been a focus of
policy research ever since national accounts data became available in the 1940s.
Considerable progress in this endeavour was made in the 1950s and 1960s un-
der the auspices of the Cowles Commission research programme. The Cowles
Commission developed techniques to identify and estimate simultaneous equa-
tion models (SEMs). Unfortunately, subsequent theoretical developments called
into question the assumptions used to identify SEMs, and their performance as
forecasting tools was also subject to criticism.

Empirical research bifurcated following the decline in popularity of the Cowles
Commission approach (Heckman 1999). One strand of the literature focused on
developing structural DSGE models of the macroeconomy that were tightly de-
fined by theory, while another strand placed emphasis on statistical models, often
VARs, that were tightly tied to the data.

While unrestricted VARs largely avoid false parameter restrictions that bias pa-
rameter estimates, the parameters in macroeconomic VAR models are often not
very precisely estimated. In principle, it is of course highly desirable to allow the
data to guide views regarding the data generating process. In practice, however,
the data often do not speak very clearly because of comparatively small data sam-
ples, collinearity in the lagged data, and a tendency to overfit the data due to the
proliferation of parameters.

In response to this latter problem, Bayesian techniques have been applied to VAR
models. These Bayesian techniques seek to shrink the parameters towards par-
ticular parts of the parameter space. The application of such restrictions helps to
sharpen inference, and has led to improved forecasting performance in practice.

The original Bayesian VARs (BVARs) were motivated by statistical prior beliefs
regarding the unpredictability of data. The Minnesota prior associated with Doan,
Litterman, and Sims (1984) and Litterman (1986), for example, shrinks the para-
meter values on higher lags towards zero. With the Minnesota prior, the further
into the past one goes, the tighter is the prior that the associated coefficients are
near zero.2

Rather than use statistical priors, Del Negro and Schorfheide (2004) develop an
estimation methodology that uses DSGE theory to motivate one’s prior beliefs
over the VAR parameters. Their methodology thus enables researchers to reunite

2 See chapter 12 of Hamilton (1994) for a more elaborate discussion.
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the two literatures that evolved in the wake of the Cowles Commission SEMs.
Ideally, this framework yields models that can be used both for forecasting and
for policy experiments.

2.1 Estimating a DSGE-VAR

Wold (1938) demonstrated that covariance-stationary processes have an infinite
order moving average (MA) representation. If suitable restrictions prevail, infi-
nite order MA processes can be represented using either autoregressive moving
average models (ARMAs) or indeed autoregressions (ARs). Multivariate ana-
logues for vector-valued stochastic processes parallel the univariate relationships
between MAs, ARMAs, and ARs.

It has long been realised that theoretical models simply imply restricted forms for
statistical models such as vector autoregressions or vector autoregressive-moving
average (VARMA) models. The correspondence between theoretical and statis-
tical models has prompted interest in using theoretical models as the source of
priors for their statistical counterparts. Ingram and Whiteman (1994) show that
the prior from an RBC model can help forecast key US macroeconomic variables.
DeJong, Ingram, and Whiteman (2000) emphasize that Bayesian methods can be
used to learn about the theoretical model.

Working in this vein, Del Negro and Schorfheide (2004) develop an estimation
methodology that allows researchers to learn about theoretical models from sta-
tistical counterparts.3 Specifically, Del Negro and Schorfheide (2004) use a small
dynamic stochastic general equilibrium (DSGE) model to provide priors for a
VAR. The DSGE model incorporates rational, forward-looking agents who max-
imise their welfare subject to the constraints they face. By confronting the DSGE
prior with the VAR, one can obtain a posterior distribution for the parameters of
the DSGE model.

Del Negro and Schorfheide’s approach can be thought of as generating artificial
data using the DSGE model to extend the sample of actual data. The VAR is
then applied to this augmented data sample. The number of data observations
generated by the DSGE model determines the influence that the DSGE model
will have on the VAR. If more data is simulated from the DSGE model, then it
will have greater influence on the parameter estimates obtained from the VAR.

3 See Del Negro and Schorfheide (2003) for an overview of the methods, and an application to
US data.
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As Del Negro and Schorfheide (2004) describe, one can envisage a hierarchical
process that begins by generating a prior for the DSGE parameter vector, denoted
θ . Conditional on the DSGE prior one forms a prior for the VAR parameters.
The prior for the VAR parameters can then be confronted with the data to form a
posterior for the parameters of the VAR and the DSGE model.

Suppose that we have the following VAR model:

yt = Φ0 +Φ1yt−1 + ...+Φpyt−p +ut (1)

where yt is an n×1 vector of variables at time t, Φi are coefficients for i = 0,1, ...p,
and ut ∼ N(0,Σu). Such a system can be represented more parsimoniously as:

Y = XΦ+U (2)

where y′t is the tth row of Y , [y′t−1 ... y′t−p] is the tth row of X , Φ = [Φ′
0 ...Φ′

p]
′ and

u′t is the tth row of U . Conditional on some initial values, the likelihood function
for this sample of data is:

Pr(Y |Φ,Σu) ∝ |Σu|−T/2 exp
(
−1

2
tr

[
Σ
−1
u (Y −XΦ)′(Y −XΦ)

])
(3)

where tr[.] denotes the trace of a matrix.

Suppose that λT artificial observations are generated, and let these artificial ob-
servations be denoted with superscript ∗. Del Negro and Schorfheide (2004) show
that the likelihood of this artificial sample is:

Pr(Y (θ)∗|Φ,Σu) ∝ |Σu|−λT/2 exp
(
−1

2
tr

[
Σ
−1
u (Y ∗−X∗

Φ)′(Y ∗−X∗
Φ)

])
(4)

The joint likelihood of the sample of actual and artificial data is then:

Pr(Y ∗(θ),Y |Φ,Σu) ∝ Pr(Y |Φ,Σu)Pr(Y (θ)∗|Φ,Σu) (5)

The usual Bayesian approach is to specify a prior and to update that prior with
the likelihood of the data using Bayes’ rule to obtain the posterior. Applying such
an interpretation to equation (5), one can regard Pr(Y ∗(θ)|Φ,Σu) as representing
Pr(Φ,Σu|θ), ie as a prior for Φ and Σu.

Del Negro and Schorfheide (2004) make a slight modification to this probability.
Pr(Φ,Σu|θ) is equated to

Pr(Y ∗(θ)|Φ,Σu)Pr(Φ,Σu) (6)
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For analytical convenience, let Pr(Φ,Σu) ∝ |Σu|−(n+1)/2; this is an improper prior
for θ and Σu. The probability Pr(Φ,Σu|θ) can then be calculated as:

Pr(Φ,Σu|θ) = c−1(θ)|Σu|−
λT+n+1

2 × (7)

exp
(
−1

2
tr

[
λT Σ

−1
u (Γ∗

yy(θ)−Φ
′
Γ
∗
xy−Γ

∗
yxΦ+Φ

′
Γ
∗
xx(θ)Φ)

])
where Γ∗

yy, Γ∗
xy, Γ∗

yx, Γ∗
xx are the implied population moments from the DSGE

model.

Given two conditions, the above process yields a proper prior for the VAR parame-
ters after suitable normalisation. Conditional on the vector of DSGE parameters
(θ ), the VAR parameters have a conjugate, inverted-Wishart-Normal prior. That
is, the variance covariance matrix Σu conditional on θ has an inverted Wishart dis-
tribution and Φ conditional on Σu and θ has a normal distribution. The conjugate
prior reduces the computational burden of the algorithm significantly.

To fully specify this in Bayesian terms, the prior Pr(Φ,Σu,θ) is formed hierarchi-
cally: one forms a prior for the DSGE model and then conditional on that prior
one forms a prior view for the VAR parameters. For example,

Pr(Φ,Σu,θ) = Pr(Φ,Σu|θ)Pr(θ) (8)

In its entirety, we have

Pr(Y,Φ,Σu,θ) = Pr(Y |Φ,Σu,θ)Pr(Φ,Σu|θ)Pr(θ) (9)

But Pr(Y |Φ,Σu,θ) is simply Pr(Y |Φ,Σu), and Pr(Φ,Σu|θ) is as in equation (7),
which harks back to (4). The probability of the intersection of data and parameters
is of course proportional to the posterior probability of the parameters given the
data, that is:

Pr(Φ,Σu,θ |Y ) =
Pr(Y,Φ,Σu,θ)

Pr(Y )
(10)

Thus, one can maximise the right hand side of (9) to find the parameters that
maximise the posterior probability, since Pr(Y ) is a constant.

The posterior distribution of the parameters is explored by using the following
factorisation:

Pr(Φ,Σu,θ |Y ) = Pr(Φ,Σu|Y,θ)Pr(θ |Y ) (11)
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Conditional on θ , the posterior distributions of Φ and Σu are once again conjugate
inverted-Wishart-Normal.

Rather than literally simulating the artificial data, the expected moments of the
DSGE model are used instead of moments from simulated data to avoid sampling
variation. The algorithm used to weight a VAR together with a DSGE model thus
rests on appropriately weighting the moments of the two models, rather than on
generating simulated data samples.

Thus,

Pr(Y ∗(θ),Y (θ),Φ,Σu) ∝ Pr(Y |Φ,Σu)Pr(Y ∗|Φ,Σu)Pr(Φ,Σu) (12)

2.2 The Del Negro-Schorfheide algorithm

The exposition thus far implicitly conditions on the choice of the hyper-parameter
λ . The hyper-parameter λ is chosen to maximise the marginal data density:

max
λ

Prλ (Y ) =
∫

Pr(Y |Φ,Σu)Prλ (Φ,Σu|θ)Pr(θ)dθ (13)

As Del Negro and Schorfheide (2004) note, it is conceptually possible to average
results over the λ hyper-parameter, but they (and we) instead concentrate on the
value of λ that maximises the function. As can be seen in equation (13), the
marginal data density reflects both the likelihood and the prior, and the choice of
hyper-parameter.

Here we briefly summarise the Del Negro-Schorfheide algorithm used to obtain
the DSGE-VAR results.

1. The first step is to specify the prior for the DSGE model parameters. This in-
volves determining the prior distributions of the DSGE parameters and key para-
meters of those distributions (such as measures of location and dispersion).

2. Once the DSGE prior has been specified, the model needs to be transformed
into a state space form, linking the theoretical model to the observation equa-
tions. Restrictions on the admissible parameter space for the estimation also need
to be specified. Using the csminwel procedure from Chris Sims, one estimates
the DSGE parameters with the highest posterior probability. The rational expec-
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tations solution from csminwel provides the (DSGE-restricted) reduced form for
the rational expectations model.

3. Once the posterior mode is available for the DSGE parameters, the Metropolis-
Hastings algorithm can be used to explore the posterior distribution of θ . Since
the VAR parameters – conditional on both θ and λ – are conjugate, it is straight-
forward to determine the posterior distribution of the VAR parameters.4

4. The VAR parameters that maximise the posterior distribution are a weighted
function of the expected moments from the DSGE model and the moments of
the unrestricted VAR. The VAR parameters at the posterior mode are thus readily
obtainable from these DSGE and unrestricted VAR moments.

5. Searching over a grid of λ values, one can find the optimal λ value that max-
imises the marginal data density Prλ (Y ). This step requires integration of the
expression:

∫
Pr(Y |Φ,Σu)d(Φ,Σu). The integral can be approximated using the

simulated observations for Φ and Σu.

6. Once the optimal value of λ is determined one can examine the properties of
the DSGE-VAR model, including the impulse responses, variance decompositions
and other summary statistics.

7. The DSGE-VAR model can also be used to forecast future realisations of the
variables of interest.

3 The model

We use the model of Lubik and Schorfheide (2005), for which the primary an-
tecedent is Gali and Monacelli (2005). Both papers build on the ‘new open econ-
omy macroeconomics’ (NOEM) literature. The new Keynesian models in the
NOEM literature are natural points of reference for policy institutions, since the
rigidities in these models mean that there is a substantive stabilisation role for
policy. Understanding how policy operates in such models and identifying good
policies are natural objectives for central banks. The behaviour of actual and op-
timal policy in these models has thus been a key focus of papers, such as Gali

4 The joint posterior for θ , Φ, and Σu can be estimated by using the Metropolis-Hastings algo-
rithm to simulate a data sample from the posterior of θ , and then for each θ realisation drawing
from the conditional distributions for Σu and then Φ. See Koop (2003) or Geweke (2005) for
introductions to the Metropolis-Hastings algorithm.
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and Monacelli (2005), Lubik and Schorfheide (2005), Del Negro and Schorfheide
(2004), Benigno (2004), and many others.

In many ways, Lubik and Schorfheide (2005) can be regarded as a minimal set of
theory for modelling an inflation targeting open economy. The model sacrifices
complexity in the interests of tractability.

The model has a continuum of countries with a continuum of firms producing
differentiated goods. Each firm operates in a monopolistically competitive en-
vironment. Firms set prices according to Calvo staggered pricing. The produc-
tion function is linear in labour, and abstracts from capital accumulation entirely.
Technology is assumed to follow a unit root process and is common to both the
domestic and world economies.

Consumers have constant relative risk aversion preferences and they aggregate
consumption goods using Dixit-Stiglitz aggregation. Consumers also have a pref-
erence for home-produced goods, or at least this is an estimable quantity.

Monetary policy is specified by a flexible Taylor rule, with the lagged interest rate,
inflation, output, and the change in the exchange rate as arguments in the policy
rule.

International financial markets are assumed to be perfect, enabling risk-sharing
between domestic and foreign consumers. World output reflects production in
both the international and domestic economies. The exchange rate is introduced
into the model via purchasing power parity (PPP). Terms of trade effects also have
an effect on output. The model treats the terms of trade, world output, and world
inflation as exogenous AR(1) processes.

The linearised version of the model has a forward-looking IS curve (reflecting
consumers’ intertemporal optimisation) and a Phillips curve governing inflation
behaviour. The latter relates inflation to a notion of marginal cost.
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The linearised equations are provided below.

ỹt = Et ỹt+1−χ(R̃t −Et π̃t+1)−ρzz̃t

−αχEt∆q̃t+1 +α(2−α)
1− τ

τ
Et∆ỹ∗t+1 (14)

π̃t = βEt π̃t+1 +αβEt∆q̃t+1−α∆q̃t +
κ

χ
(ỹt − ˜̄yt) (15)

R̃t = ρRR̃t−1 +(1−ρR)[ψπ π̃t +ψyỹt +ψ∆e∆ẽt ]+ ε
R
t (16)

At = At−1 + εz,t (17)

∆q̃t = ρq∆q̃t−1 + εq,t (18)

ỹ∗t = ρy∗ ỹ∗t−1 + εy∗t (19)

π̃
∗
t = ρπ∗ π̃

∗
t−1 + επ∗

t
(20)

∆ẽt = π̃t − (1−α)∆q̃t − π̃
∗
t (21)

where χ = [τ +α(2−α)(1−τ)]; ˜̄yt =−α(2−α)1−τ

τ
ỹ∗t ; and zt = lnAt − lnAt−1.

Output is denoted yt ; inflation πt ; the nominal interest rate Rt ; technological
growth zt ; potential output in the absence of nominal rigidities is ȳt ; et is the
nominal exchange rate; and qt is the terms of trade. Tildes denote deviations from
steady state values and asterisks denote foreign variables.

The policy parameters ψπ , ψy, ψ∆e, and ρR indicate the strength of the response
to inflation, deviations of output from steady-state, the change in the nominal
exchange rate and the lag of the interest rate respectively. α is the import share of
domestic consumption, β is the discount factor, τ is the intertemporal elastisticy
of substitution and κ gives the output slope in the Phillips curve. The coefficients
ρq, ρz, ρy∗ , ρπ∗ , drive the AR(1) processes for the terms of trade, technology,
foreign output and foreign inflation respectively. The magnitudes of the shocks
are parameterized by σR, σq, σz, σy∗ , and σπ∗ , the standard deviations of the
shocks to the interest rate, terms of trade, technology, foreign output, and foreign
inflation respectively.

The model is specified in terms of stationary variables to enable the Kalman filter
to be used to estimate the state space form of the model. Since technology is the
integrated process that drives the trending behaviour of series such as output and
consumption, the model is made stationary by taking the ratio of the key variables
to the level of technology.

The observed variables are output growth, annualised inflation, interest rates, the
change in the terms of trade and the change in the exchange rate (defined ac-
cording to the US convention that an appreciation of the domestic currency corre-
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sponds to a decline in magnitude). The foreign variables and the level of technol-
ogy are not observed directly but are inferred using the Kalman filter.

3.1 Data

We use New Zealand quarterly data for real output growth, inflation, the nominal
interest rate, exchange rate changes, and terms of trade changes. The sample is
from 1990Q1 to 2005Q4. Real output growth is computed as the log first differ-
ence in seasonally-adjusted (production) real gross domestic product and is scaled
by 100 to convert it into percentage changes. Inflation is defined as the log first
difference in the consumers price index and is scaled by 400 to convert it into an-
nualised percentage changes. The nominal interest rate is the level of the 90 day
bank bill yield. Exchange rate changes are defined to be 100 times the log first dif-
ferences in the trade-weighted nominal exchange rate index (TWI), but inverted
so that an increase reflects a depreciation. The terms of trade is 100 times the
log first difference of the merchandise terms of trade (export prices over import
prices).

3.2 Estimated model

We iterate over a grid that contains the values of λ=0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8,
2.0, 2.5, 3.0, 5.0, 101 and find the optimal λ is 1.0, implying a weight of 50
percent on the DSGE model and 50 percent on the VAR. Figure 2 below shows
that the likelihood is relatively flat in a region near the optimal lambda.

Before presenting draws from the posterior, we test that the Markov chain Monte
Carlo has converged. The appendix presents results that indicate convergence
based on three sets of tests for convergence in the literature. We draw 4,000,000
draws from the posterior with λ = 1.0, burn the first 3,500,000 and test whether
the parameters have converged. We also thin the post-burn set of parameters, re-
taining every 20th draw to leave 25,000 draws from the posterior.5 The parameter
estimates based on the simulated posterior are presented in table 1 below.

The policy parameters are presented in the first four rows of the table. The data
shifts the response to inflation to 3.719. To compare this with traditional empirical
Taylor rule coefficients one needs to multiply 1− ρR by ψπ , which yields 2.29.

5 We work with a thinned posterior simply for computational reasons.
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Figure 1
Marginal data density as a function of the λ hyperparameters
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Table 1
Prior and posterior distributions: New Zealand 1990Q1 – 2005Q4

Prior Posterior
Para. Dist. Mean Stdev ci(L) ci(H) Mean Stdev ci(L) ci(H)
ψπ G 1.500 0.5 0.784 2.396 3.719 0.597 2.792 4.729
ψy G 0.250 0.125 0.087 0.485 0.189 0.074 0.081 0.323
ψ∆e G 0.250 0.125 0.087 0.485 0.075 0.037 0.027 0.138
ρR B 0.500 0.2 0.168 0.824 0.383 0.121 0.164 0.573
α B 0.300 0.05 0.221 0.386 0.211 0.036 0.157 0.274
ρ∗ G 0.500 0.25 0.171 0.968 0.670 0.322 0.231 1.262
κ G 0.500 0.25 0.171 0.968 1.578 0.450 0.881 2.370
τ B 0.500 0.2 0.178 0.826 0.531 0.088 0.387 0.679
ρq B 0.500 0.2 0.175 0.825 0.203 0.099 0.064 0.386
ρa B 0.200 0.1 0.061 0.382 0.312 0.059 0.220 0.413
ρy∗ B 0.900 0.05 0.806 0.968 0.907 0.039 0.840 0.965
ρπ∗ B 0.800 0.1 0.615 0.940 0.619 0.108 0.441 0.801
π̃ G 2.000 0.5 1.252 2.893 2.144 0.301 1.638 2.645
γ̃ N 0.500 0.2 0.172 0.827 0.781 0.096 0.616 0.936
σq G−1 2.000 4 1.278 4.757 0.857 0.130 0.680 1.100
σz G−1 2.000 4 1.286 4.620 1.647 0.206 1.346 2.019
σr G−1 2.000 4 1.308 4.801 0.838 0.105 0.685 1.019
σy∗ G−1 2.000 4 1.301 4.743 2.339 0.868 1.323 3.814
σπ∗ G−1 2.000 4 1.285 4.796 2.376 0.302 1.904 2.900

B, denotes the Beta distribution, G denotes the Gamma distribution, and G−1

denotes the Inverse Gamma distribution. Stdev denotes standard deviation. The
Inverse Gamma priors are of the form p(σ |ν ,s) ∝ σ−ν−1e−s/2σ2

. For the Inverse
Gamma priors, we report the parameters s and ν . The priors are truncated at the
boundary of the indeterminacy region of the parameter space.
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This estimate is somewhat higher than the standard Taylor coefficient of 1.5, but is
fairly comparable to the estimate in Justiniano and Preston (2006). The response
to the deviation of output from steady-state, ψy falls slightly to 0.189, somewhat
below the parameter estimate of ψy = 0.25 that Lubik and Schorfheide (2005) find
over a longer sample period, but close to the coefficient estimated by Justiniano
and Preston (2006), though Justiniano and Preston include output growth as an
additional argument in their policy rule. The posterior draws suggest a small
coefficient on the response to the change in the nominal exchange rate, consistent
with Lubik and Schorfheide’s conclusion that central banks do not respond to the
change in the nominal exchange rate.

In addition, the data shrinks the dispersion on the interest rate smoothing para-
meter returning a coefficient of 0.383, lower than the corresponding value 0.63 in
Lubik and Schorfheide (2005) but similar to the coefficient 0.364 reported in San-
tacreu (2005). In general, the literature suggests much lower interest rate smooth-
ing in New Zealand than in other countries, though Justiniano and Preston (2006)
are a NZ exception. For the United States Lubik and Schorfheide (2004) report
a parameter of 0.84 in post-1982 data, close to the parameter of 0.91 that Dennis
(2005) reports. In the euro area Adolfson, Lindé, and Villani (2005) report 0.874
for the period 1994Q1 to 2002Q4, while Lubik and Schorfheide (2005) report
coefficients of 0.76 and 0.74 for Australia and the United Kingdom respectively.

With regard to the structural parameters, the import share α falls from the prior
0.3 to the posterior 0.211. In contrast, the coefficient κ on deviations of output
from steady state increases markedly, although the confidence interval shows wide
dispersion. The intertemporal elasticity of substitution τ is relatively tightly esti-
mated with a mean of 0.531; much higher than the 0.31 Lubik and Schorfheide
(2005) report for Canadian data, for example. Finally, foreign output appears par-
ticularly persistent with 95 percent of the draws from the posterior falling above
0.840. The data return a relatively tightly defined steady-state annualised inflation
rate of 2.144 and steady-state quarter on quarter growth of 0.781. The steady-state
real interest rate r̃ is 4× γ̃ +ρ∗ = 4×0.781+0.670 = 3.794.

To provide a cross-check on the system estimation methods and on the impor-
tance of the priors in generating posterior results, Fukač, Pagan, and Pavlov (2006)
suggest using single equation methods to estimate model parameters, when such
methods are consistent with the assumptions of the model. In the Lubik and
Schorfheide model, Fukač, Pagan, and Pavlov note that it is possible to estimate
α , ρπ∗ , and ρq in single equations.

As for the UK results presented by Fukač et al, our single equation estimate sug-
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gests that the growth rate of the NZ terms of trade is actually slightly negatively
correlated. This result contrasts with our Bayesian posterior, which implies that
this correlation is positive (reflecting the beta prior which places zero probability
on negative values). Somewhat similarly, the persistence in foreign inflation from
a single equation regression is only about 0.29, so it is apparent that the prior mean
of 0.8 used in systems estimation has a fairly sizeable effect on the posterior mode
estimate 0.619. Lastly, single equation methods imply that α = 0.92, much higher
than the posterior estimate from the Bayesian estimation. These single equation
estimates suggest to us that the relationship between domestic and foreign prices
in Lubik and Schorfheide’s model should be revisited in future work, to improve
the match to the data.

Figure 2 shows the match of the model to key selected moments in the data. The
first column of figure 2 shows that the model matches the data mean of the growth
rate of output, inflation, the change in the exchange rate, and the change in the
terms of trade. However, the model understates the standard deviation of the
nominal interest rate. Nominal interest rates were double digit for the first six
quarters of the data sample, in part because inflation was between 4− 5 percent
but the neutral real rate for New Zealand may also have been higher at this point
in time (Basdevant, Björksten, and Karagedikli 2004). Subsequent interest rates
are lower: the ninety interest rate averaged 7.5 percent in March 2006 with several
analysts suggesting rates had reached the top of the cycle. The posterior appears
– appropriately – to have difficulty matching the volatility of interest rates that
arises from the earliest quarters in the sample period.

The second column of figure 2 shows the distributions of the population standard
deviations of the model variables relative to their respective sample counterparts.
The model concentrates most of the mass of the distribution of the standard de-
viation of output growth between 0.95 and 1.2, slightly higher than the standard
deviation of output growth in the data. The model matches the standard devia-
tion of inflation but underestimates the standard deviations for interest rates, the
change in the exchange rate, and the terms of trade.

The distribution of the first order autocorrelation statistics for the model is dis-
played relative to the sample autocorrelations in the third column of the table.
The model matches the data autocorrelations, with the exception of the nominal
interest rate. This is clearly associated with the surprisingly low degree of inter-
est rate smoothing (0.383) in the estimated policy rule. Fukač and Pagan (2006)
compare correlations in UK data to correlations implied by 20,000 draws from
the posterior of parameter estimates of the Lubik and Schorfheide (2005) model.
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Figure 2
Matching selected moments: New Zealand 1990Q1 - 2005Q4

The distributions are the implied moment distributions from the DSGE-VAR; the
vertical lines represent the moments in the data.
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In marked contrast to our results, they report too little autocorrelation in output
growth and too much correlation in exchange rates.

3.3 Identifying impulses from structural shocks

Equation (1) can be thought of as a reduced form of the ‘structural’ VAR:

B0yt = Bc +B1yt−1 + ...+Bpyt−p + εt (22)

⇒ yt = Φ0 +Φ1yt−1 + ...+Φpyt−p +ut

where Φi = B−1
0 Bi for i = c,1, ...p and ut = B−1

0 εt .

If the elements in the vector of structural shocks εt are orthogonal to each other,
one can think of identifying the individual effects of each structural shock. If one
knows B0 (and hence its inverse assuming B0 is non-singular), then it is straight-
forward to establish the impact of structural shocks. However, B0 or B−1

0 cannot
simply be backed out from the reduced form regression; additional restrictions
need to be imposed to identify B0.

In principle, the QR decomposition can be applied to the unknown B−1
0 . This

implies there exists an orthonormal basis Ω and a lower triangular matrix Σtr such
that ΣtrΩ = B−1

0 . The contemporaneous effect of a structural shock εt on yt is(
∂yt

∂ε ′t

)
= ΣtrΩ = B−1

0 (23)

Σtr can be identified from the variance-covariance matrix of the reduced form
errors using the Cholesky decomposition, since ΣtrΣ

′
tr = Σu, where Σu is the

variance-covariance matrix of ut . However, to identify the impact of the struc-
tural shocks one also needs to know Ω. Unfortunately, the likelihood function
(or the variance-covariance matrix of the reduced form residuals) cannot by itself
identify Ω, since ΩΩ′ = In, where In is the identity matrix. (The orthonormal-
ity of Ω implies that ΣtrΩΩ′Σ′tr = Σu.) Consequently, additional prior or external
information must be applied to the model to identify Ω.

Following Del Negro and Schorfheide (2004), it is natural to use the theoretical
DSGE model to provide the prior information that enables the identification of
Ω. Equivalently, one could think of the DSGE model as providing information
about the matrix B0. In essence, Del Negro and Schorfheide (2004) replace Ω

with Ω(θ ∗) from the DSGE model.
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For a given θ , the posterior and prior distribution will be the same (since the re-
duced form variance-covariance matrix Σu which determines Σtr is invariant with
respect to θ ). However, θ is updated in light of the data, and so the impulse re-
sponses will also change a posteriori. The degree to which the impulse responses
will evolve depends on the weight that is being applied to the data in the DSGE-
VAR.

3.4 The estimated structural IRFs

Figure 3 shows the impulse response functions from λ̂ estimated with data up to
2005Q3. The plot shows the DSGE impulse responses (solid lines) and the DSGE-
VAR impulse responses (dashed lines), along with the corresponding 90 percent
confidence bands. Notice that the sign and magnitude of the DSGE and DSGE-
VAR impulse responses are quite similar. However, along some dimensions, such
as the impact of technology shocks on inflation, there is substantial uncertainty
both about the initial impact of the shock and about how it propagates through the
system.

Nevertheless, the model dynamics can be broadly described using the estimated
impulse responses. A contraction in monetary policy initially reduces output
growth and appreciates the exchange rate, lowering inflation. A terms of trade
shock lowers inflation and increases output via an appreciation of the currency.
Since technology is assumed to be difference stationary, productivity shocks in-
crease output permanently. This leads to a fall in inflation and an easing in mon-
etary policy. While there is an appreciation of the exchange rate predicted by
the model, this is subject to much uncertainty according to the impulse responses
from the DSGE-VAR. A shock to foreign output leads to a fall in domestic po-
tential output. The subsequent excess demand is met by rising inflation and a
contraction in monetary policy. Again, the overall impact on the exchange rate is
quite uncertain according to the impulse responses from the DSGE-VAR.

4 Evaluating forecasting performance

Forecast accuracy is typically viewed as a metric to assess both the credibility of a
model and the credibility of the policy-makers who use it. Forecasting the macro-
economy as accurately as possible is an important policy task, since it helps to
explain and justify current policy actions.
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Figure 3
Impulse responses, DSGE and DSGE-VAR (̂λ )

NB DSGE posterior mean (solid), DSGE-VAR posterior mean (dashed) and 90 percent probability bands
(dotted).



19

Following Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004),
we test whether forecasts from the DSGE-VAR are competitive with forecasts
from an unrestricted VAR and a VAR with a Minnesota prior (which shrinks the
VAR coefficients towards a random walk).6 However, we provide two extensions
to the previous literature by comparing the forecasting performance of the DSGE-
VAR with the real-time published forecasts of a central bank, and by considering
the DSGE-VAR in the context of a small open economy. The central bank fore-
casts are the forecasts in the Reserve Bank’s quarterly Monetary Policy Statements
(MPS).

To simulate the forecasting performance of our models, we de-mean all data and
estimate all equations recursively for 20 quarters from 1998Q4 to 2003Q3. The
out-of-sample forecasting performance of the models is then evaluated at horizons
h of 1 to 8 quarters ahead using ex-post data. The forecast errors are computed for
the variables and are cumulated from quarters 1 to h, except interest rates which
are forecast errors for the levels.7

Our forecasting experiment uses the data that were actually available in real time,
making the forecasts directly comparable. Effectively, we have one data set for
each quarter of our out-of-sample period, where each data set has one more obser-
vation of revised historical data compared with the previous data set. While finan-
cial data (exchange rates and interest rates) are typically available every minute in
real time, most other data are only available at a monthly or quarterly frequency
and are published with a (sometimes substantial) lag. Thus, in order to estimate
a model on a symmetric data set with, say, T observations on each of the vari-
ables, the overall size of the data set that can be used in estimation is limited by
the arrival of the least timely series. It may be the case that T + 1 observations
are available for some series when the T th observation arrives for the least timely
series, so that the most up-to-date information must be discarded to achieve the
same number of observations for all of the series.

The Reserve Bank forecasts each of the inputs in its macroeconomic model, the
Forecasting and Policy System (FPS), to fill gaps caused by publication lags. For

6 The Minnesota prior is implemented in the same way as in Del Negro and Schorfheide (2004),
where the prior mean for the first lag of log GDP, log CPI, the log exchange rate and the log
terms of trade is one (implying that the prior mean for the growth rates of these variables
is zero). The prior mean for the level of the interest rate is one. There is a hyperparameter
ι (analogous to λ ) that controls the weight of the Minnesota prior. The hyperparameter is
chosen to maximise the log data density ex-ante, using a modification of the procedure used to
determine λ .

7 The results are qualitatively similar when the errors on the growth rates are not cumulated.
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example, when the MPS forecasts are finalised each quarter (period T ), the Re-
serve Bank has all but one month of financial data (two thirds of period T ), the
CPI observation for the previous quarter (period T − 1), and GDP data from the
quarter before that (period T − 2). To balance the data set, sectoral experts use
indicator models and judgement to forecast the key macroeconomic series up to
period T , which serves as the start point for FPS forecasts.8

Rather than truncate our data sets in real time we use the real-time Reserve Bank
forecasts to fill in the gaps in our real-time data sets caused by publication lags.
We use exactly the same data as the Reserve Bank used in real time up to period
T . In this way, we ensure that our models have the same information to forecast
at horizons beyond period T and make the forecasting models conditional on the
same information.

We begin by documenting how the performance of the DSGE-VAR changes with
λ . Figure 4 displays the percentage improvement (or loss, if negative) in mean
squared forecast error (MSFE) from the DSGE-VAR relative to an unrestricted
VAR.

The panel in the bottom right of the figure marked ‘Multivariate’ shows the per-
centage gain in the multivariate log-determinant statistic of the DSGE-VAR over
the unrestricted VAR.9

The grid for λ ranges from 0 to ∞, where λ = ∞ means that there is a weight of
100 percent on the data simulated from the DSGE and λ = 0 means that there is
no weight on data simulated from the DSGE (the model is an unrestricted VAR).

With the exception of some mixed results for inflation and the exchange rate, the
DSGE-VAR produces forecasting gains over the unrestricted VAR. These gains
are reflected in a positive multivariate statistic for all horizons and λ’s considered.
Interestingly, the results for the multivariate statistic are similar to Del Negro and
Schorfheide 2004’s results for the United States: the relative statistic has an in-
verted U-shape as a function of the weight on the DSGE model. Likewise, Del

8 The near-term forecasts that are used to complete the data set will not always be correct, mean-
ing that there will be ‘starting point’ errors at the beginning of the forecast period. However,
the Reserve Bank has determined that the cost of these starting point measurement errors is out-
weighed by the informational advantage that can be gained by using all available information
to forecast.

9 The log-determinant statistic is defined to be the negative of the natural logarithm of the deter-
minant of the forecast error variance matrix, divided by 2 times the number of variables. The
gain in this statistic can be thought of as the average gain over all variables being forecast, after
accounting for the cross-correlation in the errors.
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Figure 4
Percentage gain (loss) in MSFE for the DSGE-VAR over an unrestricted VAR
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Negro and Schorfheide’s (2004) forecasting results for GDP growth and inflation
are broadly mirrored in New Zealand, where we find forecasting gains with higher
values of λ at most horizons.

Indeed, the gains for the DSGE-VAR over the unrestricted VAR appear to be larger
for New Zealand than Del Negro and Schorfheide (2004) find for the United
States. This is likely because the VAR is estimated on fewer observations here
than in Del Negro and Schorfheide’s study.10 The sampling variance of our esti-
mates is reduced dramatically by increasing the weight on the prior, and it is not
until the weight on the prior is large that the variance reduction is dominated by
increased bias and the forecasting accuracy begins to deteriorate. This deteriora-
tion does not materialise in the terms of trade, where the DSGE-VAR improves
on the unrestricted VAR regardless of the size of the artificial sample.

Del Negro and Schorfheide (2004) choose the ex-ante optimal value of λ̂ to max-
imise the marginal data density Prλ (Y ). Using this criterion, the optimal value of
λ decreases over our out-of-sample period, beginning at around 3 in 1998Q4 and
ending at around 2 in 2003Q3. The decreasing weight on the prior over our sam-
ple most likely reflects the decreasing sampling variance of the VAR estimates as
the VAR is estimated with more data.

Table 2 details the percentage gain in MSFE over the real-time forecasts of the
Reserve Bank from the VAR with the Minnesota prior (MVAR), the unrestricted
VAR (UNR), the DSGE-VAR (DVAR) and the pure DSGE model with no VAR
correction. In each case, we test whether the gain in the MSFE over the Reserve
Bank forecasts is significant using the Diebold and Mariano (1995) test.

The variance of the mean difference in squared forecast errors is estimated using
the Newey and West (1987) heteroskedasticity and autocorrelation consistent esti-
mator, with a truncation lag of (h−1). We compare the test statistic to a Student-t
distribution with (T − 1) degrees of freedom. Note we cannot test for statistical
significance of the relative multivariate statistics using the Diebold and Mariano
(1995) test, so these statistics should be viewed as descriptive only.

For GDP growth the unrestricted VAR performs poorly relative to the Monetary
Policy Statement published growth forecasts. The one quarter ahead forecast from
the unrestricted VAR is 33.7 percent lower than the MSFE from the published
MPS and in addition the performance of the unrestricted VAR deteriorates at

10 Del Negro and Schorfheide (2004) estimate their VAR using a rolling sample of 80 quarters.
Our VAR is estimated recursively beginning with 36 quarters of data and ending with 64 quar-
ters.
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Table 2
Percentage gain (loss) in MSFE over the real-time RBNZ forecasts

GDP growth Inflation
h UNR MVAR DVAR DSGE UNR MVAR DVAR DSGE
1 -33.7 5.6 19.6 6.4 -19.0 0.9 -10.0 -40.1
2 12.8 23.0 36.0 18.3 -49.2 -4.7 -26.3 -83.4
3 17.0 30.2 29.1 18.3 -43.1 4.0 -9.0 -75.0
4 8.5 42.5∗ 29.0 28.1 -17.2 15.5 2.1 -78.4
5 -10.3 43.2∗ 3.7 25.2∗ -9.7 21.6∗ 10.1 -86.3
6 -22.2 42.2 -16.3 17.0 4.0 23.9∗ 13.8 -110.2
7 -27.4 47.6 -26.3 2.2 10.0 24.9 15.7 -106.8
8 -20.2 43.0∗ -24.4 -20.5 12.5 22.9 13.3 -114.3

Interest rate Exchange rate
h UNR MVAR DVAR DSGE UNR MVAR DVAR DSGE
1 -289.5 -74.9 -165.9 -144.7 -24.9 4.7 -10.0 -3.8
2 -274.2 -21.0 -47.1 -64.0 -32.9 -0.6 -22.0 -21.8
3 -119.0 5.7 13.2 -7.6 -14.8 1.4 -0.4 1.5
4 -31.1 33.8∗ 14.9 24.8 -14.4 0.7 4.6 15.9
5 -23.6 43.3∗∗ 23.5 26.0 -21.0 -9.9 -9.6 4.4
6 -47.4 39.6∗ 32.3 29.8 -21.8 -18.9 -24.2 -8.2
7 -86.8 33.8 33.6 17.7 -19.6 -26.7 -23.3 -6.7
8 -139.6 23.9 33.3 20.5 -22.6 -38.7 -30.3 -10.4

Terms of trade Multivariate
h UNR MVAR DVAR DSGE UNR MVAR DVAR DSGE
1 -10.8 46.5∗∗ 37.4∗ 47.8∗∗ -19.2 -0.8 -4.9 -2.1
2 -19.8 47.8∗∗ 38.6∗∗ 49.5∗∗ -20.8 4.0 3.2 2.9
3 -22.3 32.1∗ 21.5 34.8∗ -16.9 3.3 2.5 3.7
4 -28.8 21.9 13.8 24.8 -11.9 10.8 8.8 10.2
5 -12.5 23.4 18.1 26.0 -11.3 11.4 8.4 12.9
6 -7.1 27.2 23.8 29.8 -12.8 10.9 5.9 12.3
7 -20.9 14.1 13.1 17.7 -18.6 7.5 3.1 11.1
8 -13.2 17.1 19.5∗ 20.5 -23.0 3.9 0.6 5.5

The numbers in the table reflect the percentage gain in MSFE over the real-time forecasts of the Reserve
Bank: a positive number represents a gain and a negative number represents a loss. Minnesota prior (MVAR);
Unrestricted VAR (UNR); VAR with DSGE prior (DVAR) and the DSGE model with no VAR correction
(DSGE). The forecasts for the MVAR and DVAR are based on values of ι and λ that have highest posterior
probability in each quarter. ** denotes a significant gain at the 5 per cent level. * denotes significant gain at
the 10 per cent level. The relative multivariate statistics are not tested for statistical significance. All models
estimated recursively in simulated real-time for 20 quarters from 1998Q4 to 2003Q3.
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longer horizons. The Bayesian VAR with Minnesota prior forecasts better than
the published growth forecasts across all horizons, and returns statistically signif-
icant improvements at forecast horizons four, five and eight quarters ahead.

The DSGE-VAR also forecasts well relative to the MPS forecasts, returning fore-
casting gains at all but longer horizons. Interestingly, the vanilla DSGE model
without the VAR correction also forecasts well, returning statistically significant
forecast improvement at five quarters ahead. However, this model performs poorly
for forecasting inflation – forecast deterioration is reported across all horizons. In
contrast, the DSGE-VAR returns forecast improvements of 10-15 percent at longer
horizons while the BVAR with Minnesota prior again returns good performance.

While the unrestricted VAR returns inferior forecasts relative to MPS, the other
forecasting models all return improvement in interest rate forecasts at longer hori-
zons. The DSGE-VAR forecasts are better than the MPS forecasts at horizons
three to eight quarters ahead while the DSGE model produces double digit per-
centage improvements, though these improvements are not statistically signifi-
cant.

Both the exchange rate and the terms of trade are modelled as autoregressive
processes in differences under the DSGE model. This approach returns good fore-
casting performance for the terms of trade.

The multivariate statistic sums the gains in forecasting performance across vari-
ables but weights the forecasts according to the variance-covariance matrix of
forecast errors and allows for serial correlation in forecasts errors. The multi-
variate statistics show that there are overall gains from the BVAR with Minnesota
prior, the DSGE-VAR and the DSGE. At longer horizons the DSGE model returns
gains in forecast accuracy of 10-12 percent. The DSGE-VAR model performance
is slightly worse than the DSGE model. For this data sample, the out-of-sample
forecasting performance of the DSGE model is not improved with the VAR cor-
rection. However, if the central bank places significant weight on forecasting
inflation over other key macroeconomic variables, the VAR correction may well
be appropriate.
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5 Optimal policy

5.1 Policy objectives

Forecasting the consequences of current policy behaviour is an important pol-
icy objective. However, policy-makers also need to assess how changes in their
behaviour affect the economy, and to identify the welfare consequences of alter-
native macroeconomic policies.

As Del Negro and Schorfheide (2004) point out, policymakers may be conflicted
about choosing between a pure DSGE model that may not forecast well and a
VAR that forecasts well but that is not invariant to the policy regime to be consid-
ered. The DSGE-VAR framework enables policymakers to explore the trade-off
between the DSGE model (which protects against the Lucas critique) and the VAR
(which respects the dynamic properties of the data) by varying the weight on the
DSGE model.

Our DSGE model is founded on structural parameters that describe the optimal
consumption decisions of households and the optimal pricing decisions of firms.
These parameters can be considered to be independent of the policy regime. Hav-
ing structural models enables us to consider policy regimes as alternative rules,
shifting attention away from specific interest paths tailored to a given context and
towards the efficient use of the available information set (see Lucas 1976).

We direct our DSGE-VAR model to find policies that address the flexible inflation
targeting objectives contained within recent Policy Targets Agreements. The PTA
is the heart of the contract between the Governor of the Reserve Bank of New
Zealand and the Minister of Finance. While price stability is enshrined as the
primary objective of monetary policy in the Reserve Bank of New Zealand Act
(1989), the 2002 PTA requires the Reserve Bank to meet the following objectives:

4b) In pursuing its price stability objective, the Bank shall implement
monetary policy in a sustainable, consistent and transparent manner
and shall seek to avoid unnecessary instability in output, interest rates
and the exchange rate.

The PTA thus suggests the Reserve Bank should be flexible with respect to its
inflation targeting objectives. To capture this flexibility, we include the variance
of deviations of output from steady-state and the variance of the change in the
nominal interest rate, as goal variables alongside the variance of annual inflation
in the the Reserve Bank’s loss function. This loss function can be represented
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with the expression:
min

ψ
{tr[W V(θ ,ψ)],B} (24)

where ψ contains the policy parameters ψπ ,ψy,ψ∆e,ρR; V is the variance-covariance
matrix of the steady-state variables and W is a diagonal matrix that selects and
weights variances across the goal variables (such as inflation and the change in
the nominal interest rate, for example). As before tr[·] denotes the trace of a ma-
trix. Since we draw from the distribution of our structural parameters, some of
which have peculiar properties, we set an upper bound of 50 on our loss, B. This
bound occasionally binds for variances that are not well defined.

Since the PTA offers little direction with regard to weighting volatilities across
goal variables, we consider four alternative weighting schemes. Our four weight-
ing schemes consider permutations over two arguments: (i) inflation volatility is
either equally as costly as output volatility or twice as costly; and (ii) annual in-
flation is either twice, or four times as costly as volatility in the change in the
nominal interest rate. These schemes imply the following period loss functions:

(i) Lt = π
2
t + y2

t +0.5(it − it−1)2

(ii) Lt = π
2
t +0.5y2

t +0.5(it − it−1)2

(iii) Lt = π
2
t + y2

t +0.25(it − it−1)2

(iv) Lt = π
2
t +0.5y2

t +0.25(it − it−1)2

We assume the central bank does not discount future periods, such that minimising
the period loss function is equivalent to minimising the intertemporal loss function
over an infinite horizon.

Rather than conduct a computational search over the entire set of possible policy
parameters, we restrict our search to a predefined grid of possible policy rules. In
particular, we allow the following grid:

ρR ∈ 0.383,0.99,0.95,0.9,0.8,0.7,0.6,0.5,0.4,0.3

ψπ ∈ 3.713,12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.5,2.0,1.5,1.25

ψy ∈ 0.189,0.5,0.4,0.3,0.2,0.1,0.05,0.04,0.03,0.02,0.01,0.00

ψ∆e ∈ 0.075,0.5,0.4,0.3,0.2,0.1,0.05,0.04,0.03,0.02,0.01,0.00

where the estimated policy parameters are in bold.
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Table 3
Macroeconomic volatility of alternative rules

Min. loss Est. loss σ2
y σ2

π̄
σ2

∆i ψπ ψy ψ∆e ρR

Parameter certainty case (posterior mode)
(i) 3.060 9.890 1.793 1.090 0.353 4.00 0.01 0.01 0.95
(ii) 2.150 8.746 1.821 0.986 0.506 5.00 0.00 0.01 0.95
(iii) 2.904 6.456 1.866 0.826 0.846 7.00 0.00 0.01 0.95
(iv) 1.962 5.312 1.906 0.705 1.215 9.00 0.00 0.01 0.95

Parameter uncertainty case (posterior distribution)
(i) 2.960 9.858 1.701 1.194 0.131 12.00 0.04 0.02 0.99
(ii) 2.100 8.738 1.757 0.974 0.495 5.00 0.00 0.01 0.95
(iii) 2.823 6.438 1.801 0.815 0.829 7.00 0.00 0.01 0.95
(iv) 1.913 5.319 1.839 0.696 1.191 9.00 0.00 0.01 0.95
NB. "Est. loss" gives the loss under the estimated rule with ψπ = 3.719,

ψy = 0.189,ψ∆e = 0.075,ρR = 0.383. The four loss functions considered are:
(i) Lt = π

2
t + y2

t +0.5(it − it−1)2; (ii) Lt = π
2
t +0.5y2

t +0.5(it − it−1)2

(iii) Lt = π
2
t + y2

t +0.25(it − it−1)2; and (iv) Lt = π
2
t +0.5y2

t +0.25(it − it−1)2

5.2 Optimal policy

We consider two cases for identifying the optimal policy rule. First, we ignore
parameter uncertainty and work from the posterior mode of the model. The second
case encapsulates parameter uncertainty by applying each candidate policy rule to
10,000 draws from the posterior distribution of the non-policy parameters. In
the latter case, we report the mean loss for each optimal policy reaction function,
where the mean loss is calculated across draws of the structural parameters. The
losses are evaluated according to the four alternative weighting schemes in loss
functions (i-iv).

Table 3 shows the results of the grid searches for the optimal policy rule. The first
column, labelled ‘Min. Loss’, shows the minimum losses that can be achieved
when the policy reaction function is tailored to minimise the three loss functions.
The second column, ‘Est. loss’, shows the loss that results from the estimated
policy reaction function. The remaining columns show the volatilities that result
from the optimal policies, and the parameters of the optimal policies.

The first four rows of the table present the ‘certainty case’ that uses the posterior
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Table 4
Macroeconomic volatilities from estimated rule

σ2
y σ2

π̄
σ2

∆i ψπ ψy ψ∆e ρR
Parameter certainty 2.288 0.731 13.746 0.383 3.719 0.189 0.075
Parameter uncertainty 2.217 0.769 13.686 0.383 3.719 0.189 0.075

mode. In each of the first three rows the optimal rule produces marked reductions
in macroeconomic loss compared with the loss produced by the estimated rule.
The optimal rule results in losses that are only 25−45 percent of the loss incurred
from the estimated rule.

Table 4 reports the macro volatilities that result from the estimated rule. The
estimated rule results in slightly higher output volatility than the optimal rules,
but has lower inflation volatility than the optimal rules from loss functions (i)-
(iii). Interestingly, the deterioration in loss performance, from the estimated rule
relative to the optimal rules, is driven by the greater interest rate volatility under
the estimated rule.

Across all four loss functions, the optimal rules place a large weight on the lag
of the nominal interest rate (ρR = 0.99) and a high response to inflation (ψπ ∈
{4.00,5.00,7.00,9.00}). Furthermore, the response to deviations of output from
steady-state is essentially zero and the response to the change in the nominal ex-
change rate is very low across all four loss function parameterisations (ψ∆e =
0.01). Lubik and Schorfheide (2005) find for a range of central banks that there is
little response to the exchange rate when setting policy. For our model and speci-
fication of central banks objectives, it appears that a low response to the exchange
rate is close to the optimal policy. In addition, the coefficients of the optimal rules
are quite different to the prototypical Taylor rule coefficients of 1.5 on inflation
and 0.5 on the output gap.

The second loss function (ii) can be thought of as a less flexible inflation-targeting
regime in comparison to loss function (i). Given loss function (ii) the optimal
central bank attaches less importance to stability in output, interest rates and the
exchange rate. Comparing the results of these two weighting schemes in the first
two rows of table 3 indicates that the optimal policy from loss function (ii) reduces
inflation volatility in return for increased volatility in both output and the change
in the nominal interest rate. This is achieved by responding more aggressively
toward inflation.
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Relative to the baseline case, loss function (iii) places a lower weight on inter-
est rate smoothing. The optimal policy under this case generates lower inflation
volatility at the expense of increased variability in the change in the nominal in-
terest rate. Output volatility increases. The optimal rule responds even more
aggressively towards inflation.

The final loss function, (iv), lowers the loss coefficients on both output volatility
and the change in the nominal interest rate, in a sense combining loss functions (ii)
and (iii). This loss function generates lower inflation through a more aggressive
response to inflation, though at the cost of higher output and interest rate volatility.
The output and interest rate volatilities appears to increase approximately linearly
across the four loss function reported in each row of the table.

The second half of table 3 gives the results for the case of parameter uncertainty
where we choose to work with 10,000 draws from the posterior distribution. The
optimal rules produce losses similar to, or slightly smaller than, the certainty case,
suggesting the parameter uncertainty embodied in the model is not particularly
detrimental for monetary policy. Furthermore, the gains from employing an opti-
mal rule rather than the estimated rule, are similar to the certainty case.

The coefficients on the optimal rule for loss function (i) look fairly different to
the certainty case: the response coefficients on inflation is three times as large,
there is more interest rate smoothing and stronger responses to output deviations
from steady-state and the change in the nominal exchange rate not apparent in
other optimal rules. However, it is unclear whether implementing the certainty
rule from the first row of the table would generate large increases in loss. To this
end, we map out losses from deviating from the optimal rule for loss function (i),
under uncertainty, in figure 5 below.

Figure 5 contains four three-dimensional plots that maps out the change in loss
that results from (possibly joint) deviations from the optimal policy parameters
of loss function (i). The cell in the top left figure depicts how deviating from
the optimal interest rate smoothing response and inflation response translates into
higher losses for the Reserve Bank. The x-axis shows alternative inflation re-
sponse setting, and alternative interest rate smoothing parameters are given on the
y-axis. The vertical axis gives the loss. Dark areas on the surface correspond to
areas where macroeconomic volatility is low. What is clear from the top left cell
is that the model favours a high degree of interest rate smoothing. Furthermore,
when interest rate smoothing is high the surface is relatively flat across the in-
flation response dimension, with only very low responses to inflation (ψpi = 2)
being penalised. For example, implementing the optimal certainty equivalent rule
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Figure 5
Loss accrued from deviations from the optimal rule under uncertainty

NB The figure uses loss function (i): Lt = π
2
t + y2

t +0.5(it − it−1)2;

(from the first row of the table) under uncertainty generates a loss of 2.981 – only
one percent larger than the loss under the rule optimised for the case of uncer-
tainty. This suggests the differences in rules for loss function (i) are not partic-
ularly marked and one could implement either the certainty or uncertainty case
without large difference in volatilities.

Figure 5 also shows the types of policies that generate particularly bad outcomes
under the model. Across the cells low degrees of interest rate smoothing result in
higher losses for the central bank while the picture in the top right of the figure
shows that a strong response to deviation of output from steady-state is detrimental
to the central bank’s loss function. The figure in the bottom right of the figure
retains the optimal responses to the change in the nominal exchange rate and the
lag of the interest rate, but varies the output and inflation responses. Strong output
responses combined with relatively low inflation responses generate particularly
poor outcomes.

The similarity in optimal rules under both the certainty and uncertainty cases is
borne out across the other loss function parameterisations. Returning to table 3,
the rightmost columns of the table show that our grid search method settles on
identical rules for loss functions (ii) to (iv) irrespective of parameter uncertainty.
Thus a policymaker need not adjust the the optimal certainty equivalent rule to
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incorporate the parameter uncertainty encapsulated in the posterior distribution
from the DSGE model.

6 Conclusion

This paper shows the benefits of utilizing DSGE-VAR models along two dimen-
sions: forecasting and optimal policy under uncertainty. A VAR informed by
Lubik and Schorfheide’s (2006) small open economy model produces forecasts
comparable with, and in the case of output growth superior to, the Reserve Bank
of New Zealand’s judgement-adjusted published forecasts. In addition, the fore-
casting performance of the DSGE model with no VAR correction is competitive.
At longer horizons, where monetary policy is conventionally thought to have its
greatest influence, both the DSGE-VAR and the DSGE model outperform the fore-
casts from the Reserve Bank of New Zealand’s Monetary Policy Statement.

The DSGE and DSGE-VAR models get close to, but do not attain, the perfor-
mance of the Bayesian VAR with the Minnesota prior. However, the DSGE-VAR
is informative about the structure of the economy. The DSGE structure should be
robust to the Lucas critique; a policymaker that fears the Lucas critique can work
with a model that places higher weight on the DSGE than is suggested by the data.

We use the DSGE-VAR to uncover the optimal policy under alternative parame-
terisations of flexible inflation targeting. We contrast the case of ‘parameter cer-
tainty’ (basing our analysis on the model defined by the posterior mode) with the
case of parameter uncertainty (which uses the entire posterior distribution). We
find that the optimal rules across are very similar under uncertainty and for the
certainty case. The optimal rules respond aggressively to inflation and place very
low weights on responding to the deviations of output from steady-state and the
change in the nominal exchange rate. The optimal rules show a high degree of
interest rate smoothing.

We think the DSGE-VAR is a useful modelling technology for central banks. In
addition to the competitive forecasting performance reported by Del Negro and
Schorfheide (2004) for the US, the DSGE-VAR produces good forecasting perfor-
mance for New Zealand, a small open economy with an inflation-targeting central
bank. The ability to forecast well and yet obtain economic structure suggests that
the DSGE-VAR may also be a useful forecasting and policy analysis tool for other
central banks.
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Appendix

A Markov chain Monte Carlo convergence
Bayesian inference relies on accurate characterisation of the posterior. In our
model we cannot derive the posterior analytically and hence numerically simu-
late the posterior distribution using the Metropolis-Hastings Markov chain Monte
Carlo simulator (see Geweke 2005 and Gelman, Carlin, Stern, and Rubin 2004
for discussion). The table below reports the results from two tests of chain con-
vergence, applied to 500,000 draws, having burned off an initial 3.5 million.11

Column 2 uses the Heidelberger-Welch test to assess whether each parameter in
the chain has converged to a stationary distribution. The test uses the Cramer-
von-Mises statistic. If the entire chain does not satisfy the test then it is repeated
discarding the first 10,20,30, . . . ,50 percent of the observations in the chain. If
the latter 50 percent of the chain is not stationary, the chain fails the test.

Column 5 indicates whether the chain passes the half-width test, again based on
the work of Heidelberger and Welch (1983). This test takes the length of chain
that passes the convergence test in column 2 and calculates a 95 percent confidence
interval for the mean of the parameter. Half the width of the interval is divided by
the estimated of the mean. If this results in a value lower than epsilon, the chain
is sufficiently long to estimate the parameter with the required accuracy. We set
epsilon to 0.05 and all but the parameter ρ∗ pass this test.

Finally, the right-most column of the table reports z-scores based on the conver-
gence diagnostic proposed by Geweke (1992). This is a test based on equality of
means of the first and last part of the Markov chain. We define the first part of the
chain to be the initial 25 percent of the chain and the last part of the chain to be the
last 50 percent of the chain. The z-scores are asymptotically standard normal and
are simply the difference in the two sample means divided by the standard error
(calculated using spectral methods). According to Geweke’s (1992) convergence
criterion, α has not converged at the 5 percent level of significance, although the
parameter is similar to parameter estimates reported in other studies (see Lubik
and Schorfheide 2005, for example). While some doubt remains about the poste-
rior reported for this parameter, overall, we think the tests indicate chain conver-
gence such that the numerically simulated posterior is a good approximation.

11 These statistics were obtained using the CODA library in the statistical package R. See R
Development Core Team (2006).
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Table 5
Prior and posterior distributions: New Zealand 1990Q1 – 2005Q4

Para HW-test 1 p-value HW test 2 Mean Halfwidth z-score
ψπ pass 0.450 pass 3.790 0.013 0.582
ψy pass 0.403 pass 0.187 0.002 -0.652
ψ∆e pass 0.505 pass 0.075 0.001 0.730
ρR pass 0.955 pass 0.378 0.002 0.114
α pass 0.634 pass 0.208 0.001 -0.657
ρ∗ pass 0.292 pass 0.668 0.009 -0.573
κ pass 0.492 pass 1.563 0.009 -0.747
τ pass 0.690 pass 0.545 0.004 -0.207
ρq pass 0.236 pass 0.202 0.002 -0.845
ρa pass 0.581 pass 0.312 0.002 -0.142
ρy∗ pass 0.098 pass 0.910 0.001 2.000
ρπ∗ pass 0.589 pass 0.619 0.002 1.290
π̃ pass 0.808 pass 2.140 0.009 0.247
γ̃ pass 0.462 pass 0.777 0.002 -0.869
σq pass 0.053 pass 0.869 0.005 0.248
σz pass 0.664 pass 1.640 0.002 1.803
σr pass 0.852 pass 0.831 0.004 1.024
σy∗ pass 0.664 pass 2.540 0.082 0.133
σπ∗ pass 0.876 pass 2.378 0.006 0.230

HW-test 1 is the Heidelberger-Welch (1983) test that the sample parameter values origi-
nate from a stationary distribution; HW-test 2 is the Heidelberger-Welch (1983) test that
the sample parameters values have converged to a sufficient tolerance level.
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