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ABSTRACT

There are both theoretical and empirical reasons for believing that the pa-
rameters of macroeconomic models may vary over time. However, work with
time-varying parameter models has largely involved Vector autoregressions
(VARs), ignoring cointegration. This is despite the fact that cointegration
plays an important role in informing macroeconomists on a range of issues.
In this paper we develop a new time varying parameter model which permits
cointegration. We use a specification which allows for the cointegrating space
to evolve over time in a manner comparable to the random walk variation
used with TVP-VARs. The properties of our approach are investigated be-
fore developing a method of posterior simulation. We use our methods in an
empirical investigation involving the Fisher effect.

Keywords: Bayesian, time varying cointegration, error correction model,
reduced rank regression, Markov Chain Monte Carlo.

JEL Classification: C11, C32, C33



1 Introduction

There is a large amount of empirical evidence of parameter change in many
macroeconomic time series (e.g. Ang and Bekaert, 2002 and Stock and Wat-
son, 1996). When doing econometric modelling, it is important to allow for
such change in order to avoid mis-specification. This raises the issue of how
to appropriately model time-variation in parameters in macroeconomic mod-
els. Especially when dealing with parameter-rich multivariate time series
models, such as VARs, worries about over-parameterization can arise. So
the researcher faces a trade-off. If a constant parameter model is used, then
mis-specification may occur. If the model is too flexible in its treatment of
parameter change, then over-fitting and/or imprecise inferences can occur.

The empirical macroeconomic literature is increasingly using time-varying
parameter (TVP) models which use a particular class of hierarchical priors
to model variation in parameters. The use of hierarchical priors can mitigate
over-parameterization worries. Consider, for instance, Cogley and Sargent
(2005) and Primiceri (2005). These papers use a state space representation
involving a measurement equation:

Yy = LYy + & (1)

and a state equation

Ve = PYe—1 T+ (2)

where 1, is an n x 1 vector of observations on dependent variables, Z; is
an n x m vector of explanatory variables and 7, an m x 1 vector of states.
These papers use time varying vector autoregression (TVP-VAR) methods
and, thus, 7, contains lags of the dependent variables (and appropriate de-
terministic terms such as intercepts). Often p is set to one. From a Bayesian
perspective, (2) defines a hierarchical prior for the parameters.

TVP-VARSs still have a large number of parameters to estimate and some
researchers have argued that there is little evidence that all the VAR pa-
rameters are changing in common empirical contexts. Instead these papers
argue that most evidence of parameter change relates to the error covari-
ance matrix (e.g., Sims and Zha, 2006 and Sims, Waggoner and Zha, 2008).
Accordingly, such papers have stressed the importance of trying to restrict
time-variation to only some parameters. The trouble is that the researcher
rarely knows, a priori, which parameters are changing and which are not.



This suggests a strategy where a model’s parameters are divided into blocks
and the statistical methodology decides which, if any, of these blocks of para-
meters exhibit time-variation. In the case of multivariate time series models
where cointegration may be present, it seems natural to divide the parame-
ters into blocks determining the cointegrating relationships, the coefficients
controlling short-run dynamics and the error covariance matrix. This re-
quires a method for modelling time-varying cointegrating relationships and
helps motivate the present paper.

In addition to the strong empirical motivation for allowing for parameter
change in multivariate time series models, there are also theoretical motiva-
tions. However, with TVP-VARs these tend to be fairly informal (e.g. it is
common to argue informally that financial liberalization or changes in mon-
etary policy can cause the relationships between macroeconomic variables
to alter and, thus, coefficients in a VAR should change). Many macroeco-
nomic theories relate more formally to the concept of cointegration. For
instance, Garratt, Lee, Pesaran and Shin (2003) use the purchasing power
parity relationship, an interest rate parity condition, a neoclassical growth
model, the Fisher hypothesis and a theory of portfolio balance to build a
macroeconometric model involving five cointegrating relationships. Many
macroeconomists find such approaches attractive since they infuse the em-
pirical modelling process with economic theory. Combining this desire for
macroeconomic models influenced by economic theory with the empirical re-
ality of parameter change suggests the need for a time varying parameter
vector error correction model (TVP-VECM) comparable to the TVP-VAR.
After all, it is possible that cointegrating relationships change over time in
a comparable manner to VAR coefficients in a TVP-VAR. Furthermore, a
finding of a time-varying cointegrating relationship will typically shed much
more insight on the underlying economics than a finding that reduced form
VAR coefficients have changed.

There are a large number of theoretical and empirical papers that model
breaks or other forms of nonlinearity in cointegrating relationships, do coin-
tegration work with subsamples of the data or attribute failures of cointe-
gration tests to parameter change (see, among many others, Michael, Nobay
and Peel, 1997, Quintos, 1997, Park and Hahn, 1999, Lettau and Ludvig-
son, 2004, Saikkonen and Choi, 2004, Andrade, Bruneau and Gregoir, 2005,
Beyer, Haug and Dewald, 2009 and Bierens and Martins, 2010). All this work
provides evidence of widespread empirical and theoretical interest in changing
cointegrating spaces in a variety of empirical applications. However, with few
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exceptions (e.g. Martin, 2000, Paap and van Dijk, 2003 and Sugita, 2006),
this work is non-Bayesian. And none of the existing Bayesian work involves
a TVP hierarchical prior, despite the popularity of such approaches when
working with TVP-VARs. The purpose of the present paper is to fill this
gap in the literature and develop Bayesian methods for a TVP-VECM.

With cointegrated models there is a lack of identification. Without fur-
ther restrictions, it is only the cointegrating space (i.e. the space spanned
by the cointegrating vectors) that is identified. This consideration suggests
that we want a model where the cointegrating space evolves over time in a
manner such that the cointegrating space at time ¢ is centered over the coin-
tegrating space at time ¢t — 1 and is allowed to evolve gradually over time.
Furthermore, we want a specification which allows for noninformative and
informative priors with sensible properties.! In this paper we develop such a
model.

From a statistical point of view, the issues involved in allowing for coin-
tegrating spaces to evolve over time are closely related to those considered
in the field of directional statistics (see, e.g., Mardia and Jupp, 2000). That
is, in the two dimensional case, a space can be defined by an angle indi-
cating a direction (in polar coordinates). By extending these ideas to the
higher dimensional case of relevance for cointegration, we can derive analyt-
ical properties of our approach. For instance, we have said that we want the
cointegrating space at time t to be centered over the cointegrating space at
time ¢t — 1. But what does it mean for a space to be “centered over” an-
other space? The directional statistics literature provides us formal answers
to questions such as this. Thus, we can show analytically that our proposed
hierarchical prior has attractive properties.

Next we derive a Markov Chain Monte Carlo (MCMC) algorithm which
allows for Bayesian inference in our time varying cointegration model. This
algorithm combines the Gibbs sampler for the time-invariant VECM derived
in our previous work (Koop, Leén-Gonzdlez and Strachan, 2008, 2010) with
a standard algorithm for state space models (Durbin and Koopman, 2002).

We then apply our methods in an empirical application involving a stan-
dard set of U.K. macroeconomic variables. This application shows how our
methods can accurately estimate time-variation in the cointegration space
and shows the importance of allowing for such time-variation. We relate our

'In this paper, we focus on the noninformative prior. The working paper version,
available at http://personal.strath.ac.uk/gary.koop/, discusses informative priors.



application to debates in the literature on the degree of parameter change
in empirical macroeconomic models. We find that a model which allows for
time-variation in all of the model coefficients does not perform well. The best
model is the one which allows for time-variation only in the error covariance
matrix and the cointegrating relationships.

2 Modelling Issues

2.1 The Time Varying Cointegration Model

In a standard time series framework, cointegration is typically investigated
using a VECM. To investigate cointegration relationships involving an n-
vector, 1;, we write the measurement equation for our time varying cointe-
grating space model as a TVP-VECM for t =1,..,T":

l

Ay, = aufiyi-1 + Z Uy i Aye—p + Ppdy + &4 (3)
h=1

where ¢, are independent N (0, €2;), the n x r matrices o; and 3, are full rank
and d; denotes deterministic terms. The value of » determines the number of
cointegrating relationships. The role of the deterministic terms are not the
main focus of the theoretical derivations in this paper and, hence, we will
leave these unspecified. Our empirical illustration uses just an intercept (i.e.
dy =1).

Researchers in this field (see Koop, Strachan, van Dijk and Villani, 2006,
Strachan, 2003, Strachan and Inder, 2004, Strachan and van Dijk, 2007 and
Villani, 2000, 2005, 2006) point out that it is only the cointegrating space that
is identified (not particular cointegrating vectors). Accordingly, we introduce
notation for the space spanned by (3, p = sp () and present a method for
estimating the space. In this paper, we follow Strachan and Inder (2004)
by achieving identification by specifying 3 to be semi-orthogonal (i.e. 3 =
I). Note that such an identifying restriction does not restrict the estimable
cointegrating space. Another key result from Strachan and Inder (2004) is
that a uniform prior on § will imply a uniform prior on p.

The TVP-VECM in (3) includes ¢ subscripts on each of the parame-
ters, including the cointegrating space. Thus p; = sp (3,) where [, is semi-
orthogonal. In modelling the evolution of p; we adopt some simple principles.



First, the cointegrating space at time ¢ should have a distribution which is
centered over the cointegrating space at time t — 1. Second, the change in
location of p; from p, ; should be small, allowing for a gradual evolution of
the space comparable to the gradual evolution of parameters which occurs
with TVP-VAR models. Third, we should be able to express prior beliefs (in-
cluding total ignorance) about the marginal distribution of the cointegrating
space at time ¢.

The parameters (oy, 1y, ..., T, @) follow a standard state equation
such as (2). No new theoretical or computational issues arise in relation
to them and we will not discuss them in detail in the body of the paper.
With respect to the error covariance matrix, many empirical macroeconomic
papers have found this to be time-varying. Any sort of multivariate sto-
chastic volatility model can be used for €2;. In this paper, we use the same
specification as Primiceri (2005). Details on all these parameters are given
in Appendix A.

As a digression, we note that cointegration is typically thought of as a
long-term property, which might suggest a permanence which is not relevant
when the cointegrating space is changing in every period. Time-varying
cointegration relationships are better thought of as equilibria toward which
the variables are attracted at any particular point in time but not necessarily
at all points in time. These relations are slowly changing. Further details
and motivation can be found in any of the classical econometric papers on
time-varying cointegration such as Martins and Bierens (2010) or Saikkonen
and Choi (2004).

2.2 A Hierarchical Prior for the Cointegrating Space

The question arises as to how we can derive a sensible hierarchical prior with
our desired properties such as “p; is centered over p;_,”. The fact that
we are achieving identification through restricting 3, to be semi-orthogonal
means that we cannot have (3, evolving according to an AR(1) or random
walk process in a conventional normal state space model.? In the directional
statistics literature, strong justifications are provided for not working with
regression-type models (such as the AR(1)) directly involving the polar angle
as the dependent variable. See, for instance, Presnell, Morrison and Littell

2The working paper version of this paper, discusses time-varying cointegration using
other identification schemes.



(1998) and their criticism of such models leading them to conclude they are
“untenable in most situations” (page 1069). Thus, using a standard state
space formulation for the cointegrating vectors identified using the orthogo-
nality restriction is not appropriate.

In general, what we want is a state equation which permits smooth vari-
ation in the cointegrating space, not in the cointegrating vectors. This issue
is important because, while any matrix of cointegrating vectors defines one
unique cointegrating space, any one cointegrating space can be spanned by
an infinite set of cointegrating vectors. Thus it is conceivable that the vectors
could change markedly while the cointegrating space has not moved. In this
case, the vectors have simply rotated within the cointegrating space. It is
more likely, though, that the vectors could move significantly while the space
moves very little. This provides further motivation for our approach in which
we explicitly focus upon the implications for the cointegrating space when
constructing the state equation.

We have so far used notation for identified cointegrating vectors: [, is
identified by imposing 3}, = I,. We will let 3] be the unrestricted matrix of
cointegrating vectors (without identification imposed). These will be related
to the semi-orthogonal 3, as:

By = 62‘(/%)_1 (4)

where "
we = (87 B7) (5)

We shall show how this is a convenient parameterization to express our state
equation for the cointegrating space.

Our preferred state equation for the time-variation in the cointegrating
space is written in terms of b = vec (f3;) for t = 2,..,T as

bi = pbiy+m, (6)
n, ~ N(0,I,)fort=2.,T.
1
b* ~ NOJInr—,
; 0. T =—)

where p is a scalar and |p| < 1. In the case where r = 1, Breckling (1989),
Fisher (1993, Section 7.2) and Fisher and Lee (1994) have proposed this
process to analyze times series of directions when n = 2 and Accardi, Cabrera
and Watson (1987) looked at the case n > 2 (illustrating the properties of the
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process using simulation methods). The directions are given by the projected
vectors (3,. As we shall see in the next section, (6) has some highly desirable
properties and it is this framework (extended to allow for r > 1) that we will
use. In particular, we can formally prove that it implies that p, is centered
over p;_; (as well as having other attractive properties).

It is worth mentioning the importance of the restriction |p| < 1. In the
TVP-VAR model it is common to specify random walk evolution for VAR
parameters since this captures the idea that “the coefficients today have a
distribution that is centered over last period’s coefficients”. This intuition
does not go through to the present case where we want a state equation
with the property: “the cointegrating space today has a distribution that is
centered over last period’s cointegrating space”. As we shall see in the next
section, the restriction |p| < 1 is necessary to ensure this property holds. In
fact, the case where p = 1 has some undesirable properties in our case and,
hence, we rule it out. To be precise, if p = 1, then b could wander far from
the origin. This implies that the variation in p, would shrink until, at the
limit, it imposes p; = p;—1. Note also that we have normalized the error
covariance matrix in the state equation to the identity. As we shall see, it is
p which controls the dispersion of the state equation (and, thus, plays a role
similar to that played by o7, the variance of the error in equation (2)).

The preceding discussion shows how caution must be used when deriving
statistical results when our objective is inference on spaces spanned by ma-
trices. The locations and dispersions of 3, do not always translate directly
to comparable locations and dispersions on the space p;. For example, it is
possible to construct simple cases where a distribution on 3, has its mode
and mean at Et, while the mode or mean of the distribution on p; is in fact
located upon the space orthogonal to the space of Zi. The distributions we
use avoid such inconsistencies.

It is also worth noting that, if we believe that certain vectors in 3 (or
directions in p;) evolve more quickly than others, we can readily accommo-
date this by replacing the scalar p with a diagonal matrix (p ® I,,) where
p = diag{py, py, ..., p,}. Allowing p; # p; will allow the different vectors to
move at different speeds?.

3In this more general case Propositions 1, 2 and 3 continue to hold if we simply write
(/ﬁt_lﬁlet_l) instead of p2/<af_1. The exact formulas in Proposition 4 would need to be
adapted in a slightly different way, but the qualitative properties would remain the same.
For the sake of parsimony and computational simplicity, in our empirical application we
use p as a scalar.



Our hierarchical prior in (6) is written in terms of by, but we are interested
in p;. Accordingly, we work out the implications of (6) for p;. We collect each
of the nrx 1 vectors b} = vec (/37) into a single Tnr x 1 vector b* = (bY, .., b3)".
The conditional distribution in (6) implies that the joint distribution of b* is
normal with zero mean and the standard covariance matrix of a stationary
AR(1) process.

We begin with discussion of the marginal prior distribution of p; =
sp(B;) = sp(B,). To do so, we use some results from Strachan and In-
der (2004), based on derivations in James (1954), on specifying priors on the
cointegrating space. These were derived for the time-invariant VECM, but
are useful here if we treat them as applying to a single point in time. A
key result is that b ~ N (0, cI,,,) implies a uniform distribution for 3, on the
Stiefel manifold and a uniform distribution for p; on the Grassmann manifold
(for any ¢ > 0). It can immediately be seen from the joint distribution of b*
that the marginal distribution of any b; has this form and, thus, the marginal
prior distribution on p; is uniform. The previous literature emphasizes that
this is a sensible noninformative prior for the cointegrating space. Note also
that this prior has a compact support and, hence, even though it is uniform
it is a proper prior. However, we are more interested in the properties of the
distribution of p; conditionally on p, ; and it is to this we now turn.

Our state equation in (6) implies that b given b; ; is multivariate nor-
mal. Thus, the conditional density of 3} given ; ; is matric normal with
mean J;_,p and covariance matrix [,,. From the results in Chikuse (2003,
Theorem 2.4.9), it follows that the distribution for p; (conditional on p; 1)
is the orthogonal projective Gaussian distribution with parameter F; =
By_1p*K 1B, denoted by OPG(F}).

To write the density function of p, = sp(,) first note that the space p,
can be represented with the orthogonal idempotent matrix P, = 3,3, of rank
r (Chikuse 2003, p. 9). Thus, we can think of the density of p, as the density
of P,. The form of the density function for p, is given by

1PIR) = exp (~5triE) ) o (i 53 )

where ,F; is a hypergeometric function of matrix argument (see Muirhead,
1982, p. 258).

Proposition 1 Since p, = sp(B,) follows an OPG(F;) distribution with
F, = B, 1p*k? B}, the density function of p; is maximized at sp(B,_;).
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Proof: See Appendix B.

We have said we want a hierarchical prior which implies that the cointe-
grating space at time ¢ is centered over the cointegrating space at time ¢ — 1.
Proposition 1 establishes that our hierarchical prior has this property, in a
modal sense (i.e. the mode of the conditional distribution of p;|p;—1 is pi—1).
In the directional statistics literature, results are often presented as relating
to modes, rather than means since it is hard to define the “expected value
of a space”. But one way of defining this concept is given in Villani (2006).
Larsson and Villani (2001) provide a strong case that the Frobenius norm
should be used (as opposed to the Euclidean norm) to measure the distance
between cointegrating spaces. Adopting our notation and using | to denote
the orthogonal complement, Larsson and Villani (2001)’s distance between

sp(B,) and sp(B,_,) is

d (B, Brt) = tr (BiBeriBr 118" 8)

Using this measure, Villani (2006) defines a location measure for spaces
such as p; = sp (3;) by first defining

Bt = arg r%inE [d2 (ﬁt,Btﬂ

then defining this location measure (which he refers to as the mean cointe-
grating space) as p, = sp (Bt) Villani proves that p, is the space spanned by
the r eigenvectors associated with the r largest eigenvalues of F (3,3;). See
Villani (2006) and Larsson and Villani (2001) for further properties, expla-
nation and justification. Using the notation F (p;) = p, to denote the mean
cointegrating space, we have the following proposition.

Proposition 2 Since p; follows an OPG(F}) distribution with Fy = 3,_1p*k? 5},
it follows that Ey_1 (p¢) = sp (Bt,l) = Pi-1.

Proof: See Appendix B.

This proposition shows that the expected cointegrating space at time ¢ is
the cointegrating space at t — 1. That is, we have F;_; (p;) = p;—1 where the
expected value is defined using Villani (2006)’s location measure. Proposi-
tions 1 and 2 prove that there are two senses in which (6) satisfies the first of
our desirable principles, that the cointegrating space at time ¢ should have a
distribution which is centered over the cointegrating space at time ¢ — 1.
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The role of the matrix p?s2 | is to control the concentration of the distri-
bution of sp(f3,) around the location sp(3,_;). In line with the literature on
directional statistics (e.g. Mardia and Jupp, 2000, p. 169), we say that one
distribution has a higher concentration than another if the value of the den-
sity function at its mode is higher. As the next proposition shows, the value
of the density function at the mode is controlled solely by the eigenvalues of

2.2 .
PRyt

Proposition 3 Assume p; follows an OPG(F}) distribution with Fy = 3,_1p*k?_15}_,-
Then:

1. The value of the density function of p; at the mode depends only on the
eigenvalues of Ky = p*k? ;.

2. The value of the density function of p; at the mode tends to infinity if
any of the eigenvalues of K; tends to infinity.

Proof: See Appendix B.

The eigenvalues of K; are called concentration parameters because they
alone determine the value of the density at the mode but do not affect where
the mode is. If all of them are zero, which can only happen when p = 0, the
distribution of sp(f3,) conditional on sp(/3,_,) is uniform over the Grassmann
manifold. This is the purely noninformative case. In contrast, if any of
the concentration parameters tends to infinity, then the density value at the
mode also goes to infinity (in the same way as the multivariate normal density
modal value goes to infinity when any of the variances goes to zero).

Thus, K; plays the role of a time-varying concentration parameter. In the
case r = 1 the prior distribution for Kj,..., Kt is the multivariate Gamma
distribution analyzed by Krishnaiah and Rao (1961). The following proposi-
tion summarizes the properties of the prior of (K, ..., K7) in the more general
case r > 1.

Proposition 4 Suppose {5} :t =1,...,T} follows the process described by
(6), with |p| < 1. Then:

1. The marginal distribution of K; is a Wishart distgibution of dimension
r with n degrees of freedom and scale matriz ]T1f7.

2

2. B(K,) = I, 22,

T1,p2
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3. E(Kt‘Kt—la ceey KQ) = pZKt_l + (]. — p2>E(Kt)

4. The correlation between the (i,j) element of K; and the (k,l) element
of Ki_p is 0 unless i =k and j = 1.

5. The correlation between the (i,j) element of K; and the (i,7) element
of K;_, is p*".

Proof See Appendix B

In TVP-VAR models researchers typically use a constant variance for the
error in the state equation. This means that, a priori, the expected change
in the parameters is the same in every time period. This allows for the kind
of constant, gradual evolution of parameters which often occurs in practice.
Proposition 4 implies that such a property holds for our model as well. In
addition, it shows that when p approaches one, the expected value of the
concentration parameters will approach infinity.*

Early on in this section, we set out three desirable qualities that state
equations for the time varying cointegrating space model should have. We
have now established that our proposed state equations do have these prop-
erties. Propositions 1 and 2 establish that (6) implies that the cointegrating
space at time ¢ has a distribution which is centered over the cointegrating
space at time ¢ — 1. Propositions 3 and 4 establish that (6) allows for the
change in location of p; from p, ; to be small, thus allowing for a gradual
evolution of the space comparable to the gradual evolution of parameters
which occurs with TVP-VAR models. We have proved that (6) implies that
the marginal prior distribution of the cointegrating space is noninformative.

2.3 Bayesian Inference in the Time Varying Cointe-
gration Model

In this section we outline our MCMC algorithm for the time varying cointe-
grating space model based on (6). We have specified a state space model for

4QOur prior is not invariant to scale. However, this limitation applies to much of the
existing literature on priors in cointegration models. There do exist invariant priors in the
literature (e.g., Kleibergen and van Dijk, 1994, and Strachan, 2003), however these are
data dependent. Furthermore, they are not in a form that could readily be incorporated
into a state space framework and do not represent the desired prior beliefs for p;. We
considered a range of other priors - specifically those of Geweke (1996), Kleibergen and
Paap (2002), Strachan and Inder (2004), and Villani (2005) - but we found none of these
are invariant to scaling.
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the time varying VECM. Our parameters break into three main blocks: the
error covariance matrices (€, for all ¢), the VECM coefficients apart from
the cointegrating space (i.e. (o, T'4,..., s, @) for all ¢) and the parame-
ters characterizing the cointegrating space (i.e. J; for all t). Our algorithm
draws all parameters in each block jointly from the conditional posterior den-
sity given the other blocks. Standard algorithms exist for providing MCMC
draws from all of the blocks and, hence, we will only briefly describe them
here. We adopt the specification of Primiceri (2005) for €2, and use his al-
gorithm for producing MCMC draws from the posterior of {2; conditional
on the other parameters. For (oy, 1y, ..., T, ®;) standard algorithms for
linear normal state space models exist which can be used to produce MCMC
draws from its conditional posterior. We use the algorithm of Durbin and
Koopman (2002) which is a multi-move sampler. For the third block of para-
meters relating to the cointegrating space, we use the parameter augmented
Gibbs sampler (see van Dyk and Meng, 2001) developed in Koop, Leén-
Gonzélez and Strachan (2010) and the reader is referred to that paper for
further details. The structure of this algorithm can be explained by noting
that we can replace a;3, in (3) by a3} where af = a;x; ' and S} = B,k
where k; is a 7 X r symmetric positive definite matrix. Note that x; is not
identified in the likelihood function but the prior we use for ; implies that
K, has a proper prior distribution® and, thus, is identified under the poste-
rior. Even though £, is semi-orthogonal, Koop, Leén-Gonzdlez and Strachan
(2010) show that the posterior for 5 has a normal distribution (conditional
on the other parameters). Thus, 5] can be drawn using any of the standard
algorithms for linear normal state space models, and we use the algorithm
of Durbin and Koopman (2002). Then, if desired, the draws of 3} can be
transformed into draws of /3, or any feature of the cointegrating space. In
the traditional VECM, Koop, Leén-Gonzdlez and Strachan (2010) provide
evidence that this algorithm is very efficient relative to other methods (e.g.
Metropolis-Hastings algorithms) and significantly simplifies the implementa-
tion of Bayesian cointegration analysis.

Finally, if (6) is treated as a prior then the researcher can simply select
a value for p. However, if it is a hierarchical prior and p is treated as an
unknown parameter, it is simple to add one block to the MCMC algorithm
and draw it. In our empirical work, we use a Metropolis—within-Gibbs step

>The properties of the prior distribution of x; are easily derived from those of the prior
for K; = p2/<t,1, which are described in Proposition 4.
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for this parameter. Further details on the prior distribution and posterior
computations are provided in Appendix A.

3 Application: The Fisher Effect

We illustrate our methods using a bivariate example® (n = 2) involving a
short term interest rate, r;, and inflation rate, 7;, in an investigation of the
Fisher effect. In this case, y; = (r¢, 7;)’. We use quarterly UK data.”

The unrestricted TVP-VECM is given in (3). We allow for multivariate
stochastic volatility and all the parameters in a; (where A; = (o, 'y, ..., Ty, §4)
and a; = vec(A;)) evolve according to random walks. Appendix A provides
complete details.

We consider variants of this model that restrict one of €2, 3, or a; to
be constant. To denote our models, we introduce three indicators (dq, dg,
d,) which take value one whenever the corresponding element of (€2;,53,,a;) is
time-varying, and zero when it is time-invariant. We consider models with
different cointegrating ranks (r = 0, ..,2). The case r = 0 leads to a TVP-
VAR (or VAR) with differenced data and, in this case, we use notation where
dn = 0/1 if the VAR coefficients are constant/time-varying.

We fix the number of lags at 1 (i.e. [ = 1) and d; includes just a constant
(i.e. d; = 1)%. The prior for p is uniform over the interval (0.999,1).° Details
of the priors for other parameters can be found in Appendix A.

We begin with some evidence on the efficiency of our posterior simulation
algorithm. For the model with (dg,ds,d,) = (1,1,1) our computer'® pro-
duces 1000 iterations of the MCMC algorithm in about 45 seconds. As we

In the working paper version we also provide an example with n = 3.

"The raw data covers the period 1957Q4 through 2009Q3. The data were obtained from
the IMF database on International Financial Statistics. The inflation rate is calculated as
the quarterly change in the log CPI, and is annualized by multiplying the change by 400.
The short term rate is a Treasury bill rate (tender rate at which 91-day bills are allotted,
IFS 11260C).

8The BIC criterion applied to time-invariant models of various rank values favored
models with either [ = 1 or [ = 3. For simplicity we report only results corresponding to
=1

9The working paper version of this paper contains a prior simulation results which
show how this interval covers the reasonable range of values (e.g. we showed that p = 0.99
allows for unrealistically huge changes in the cointegrating space).

10We are using GAUSS software in Windows XP with a standard Hewlett- Packard
desktop (E8600 @ 3.33 GHz, 1.96 GHz and 3.46 GB of RAM).
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shall see below, the model with (dg,ds,d,) = (1, 1,0) is our preferred choice
and we use this model to measure the efficiency of our algorithm, using ef-
fective sample size (ESS). ESS is the number of independent draws from the
posterior that would give the same amount of information as one iteration
from the algorithm (e.g. Liu (2001, p. 126)). After a burn-in of a 1000 iter-
ations, we use 36000 consecutive iterations. We find ESS to take a value of
one (maximum efficiency) for most of the linearly normalized coefficients of
the cointegrating vectors (B;)!!, regardless of whether ¢ is at the beginning,
middle or end of the sample. The ESS value for In(det(€2,)) takes values in
the range 0.23 - 0.28. The ESS for (linearly normalized) a; coefficients is in
the range (0.054 — 0.15). In the case of p, ESS is 0.0046. In summary, our
posterior sample is equivalent to at least 166 and at most 36000 independent
draws.

Tables 1 and 2 show for each model the log predictive likelihood for the
last 100 observations'?. A predictive likelihood is a predictive density eval-
uated at the realized outcome (see Geweke, 1996 or Geweke and Amisano
2010). The Fisher hypothesis implies there should be one cointegrating re-
lationship and, under the linear normalization of the cointegrating vectors,
the single cointegrating coefficient is —1 (i.e. if we normalize as (1, B;)’ then
By = —1). The model with the highest predictive likelihood is (dg, dg,
d,) = (1,1,0) with » = 1, which implies that there is time-varying cointegra-
tion and stochastic volatility (i.e. only «y is restricted to be time-invariant).
This is consistent with one implication of the Fisher hypothesis. The fol-
lowing results are based on this model, although we could also have done
Bayesian model averaging (i.e. average across models using predictive likeli-
hoods to construct weights).

Let 5} = (571, B) and define B, = f3},//;,. Figure 1 plots the posterior
median of B; and a 90% credible interval. The interval contains —1, the

1 This parameter is constructed ex post. By that we mean for n = 2, r = 1 we draw

B = (811, 85) from the posterior, and then construct a draw of By as By = 315/}
T

2Tn our case this refers to Z In(p(Ay¢|yi—1,.-,y1)). Each component of
t=T—100+1

this sum was calculated by approximating p(Ay:|lys—1,...,y1) with an average of
P(Aye|Q, By, at, Yt—1, ..., y1) over 7000 draws of the posterior p(Q, B;, at|yt—1,...,y1). We
used our algorithm to obtain 7000 draws from (Q:_1, 3;_1,at—1|yt—1,...,41). For each of
these we generated (2, 58,, a;) using the state equation (4, 8,, at)|(Qi—1,8;_1,a1—1). We
used a burn-in of 1000 iterations each time. Numerical standard errors for each component
of the sum were calculated using the method of Chib (1995).
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value implied by the Fisher hypothesis, 34% of the time. 60% of the time the
90% credible interval lies entirely below —1. This illustrates one important
feature of a time-varying cointegration model such as ours: instead of finding
support for or against an economic hypothesis, we can conclude that it holds
at some points in time, but not others.!?

n =2
(dg,dﬂ,da> r=1 r=2
(1,1,1)  |-397.6 | -423.8
(0.66) | (0.93)
(1,1,0) | -381.6 | -384.1
(0.61) | (0.58)
(0,0,1) |-427.5 | -431.0
(0.14) | (0.97)
(0,1,1) |-424.9 | -434.1
(0.12) | (1.10)
(1,000 | -390.1 | -386.5
(0.86) | (1.11)
(1,0,1) -392.2 | -412.8
(0.72) | (1.21)
(0,1,0) |-421.4|-4233
(0.08) | (0.12)
(0,0,0) | -437.1| -436.9
(0.05) | (0.05)

Table 1: Predictive likelihoods for > 1. Numerical standard errors in brackets.

Finally, note that » = 0 and » = 2 both lead to TVP-VARs. We never
find evidence in favor of either of these cases. For r = 1 there is always
strong evidence that the cointegration space is varying over time. Thus the
extension to the TVP-VECM is empirically warranted.

Note also that one of our main findings (i.e. that the best model allows for
time-variation only in the cointegrating space and error covariance matrix),
is consistent with the findings of papers such as Sims and Zha (2006) and
Sims, Waggoner and Zha (2008). Although the empirical applications are

3 The working paper version of this paper contains additional empirical results, in par-
ticular for a; and p.
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Figure 1: Posterior median and 90% credible interval for B; when n = 2,r = 1
and (dq, dg, d,) = (1,1,0). A horizontal line at -1 has been added to aid
visualization.
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(dg, dn) n =2
(0,0) | -4425
(0.04)

(0,1) | -443.2
(0.05)

(1,0) |-398.0
(0.62)

(1,1) |-403.2
(0.59)

Table 2: Predictive likelihoods for rank equal 0. Numerical standard errors in
brackets.

different, all of these papers suggest the importance of a statistical method-
ology which allows for time-variation only in some important parameters of
the model. In all of these empirical exercises, allowing for time-variation in
the many coefficients controlling the short-run dynamics of the model seems
unimportant.

4 Conclusion

TVP-VARs have become very popular in empirical macroeconomics. In this
paper, we have extended such models to allow for cointegration. However,
we have argued that such an extension cannot simply involve adding an
extra set of random walk or AR(1) state equations for identified cointegrating
vectors. Instead, we have developed a model where the cointegrating space
itself evolves over time in a manner which is analogous to the random walk
variation used with TVP-VARs. That is, we have developed a state space
model which implies that the expected value of the cointegrating space at
time ¢ equals the cointegrating space at time t — 1. Using methods from the
directional statistics literature, we prove this property and other desirable
properties of our time varying cointegrating space model.

Posterior simulation can be carried out in the time varying cointegrating
space model by combining standard state space algorithms with an algorithm
adapted from our previous work with standard (time invariant) VECMs. We
also carry out an empirical investigation on a small system of variables com-
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monly used in studies of inflation and monetary policy. We find strong evi-
dence of time-varying cointegration and illustrate the benefit of our approach
relative to conventional approaches such as the TVP-VAR or the constant-
coefficient VECM.
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Appendix A: Posterior Computation and Prior Dis-
tributions

Drawing from the Conditional Mean Parameters Other Than Those De-
termining the Cointegration Space

Let us define A, = (af, Ty, ..., T4, @) where af = ak; " and a; =
vec(A;) and assume:

where ¢, ~ N(0,Q).!* We can rewrite (3) by defining z; = 5}y, and
7, = (zg,Ayg_l,...,Aygfl,d;)/. Zy is a 1 x (k+ 1) vector where k is the
number of deterministic terms plus n times the number of lags. Thus,

Ayt = AtZt + &4 (10)
Vectorizing this equation gives us the form

Ay, = (Z] @ I,)vec(Ay) + &
or Ay; = xia; + &

where x; = (Z] ® I,,). As we have assumed ¢; is normally distributed, the
above expression gives us the linear normal form for the measurement equa-
tion for a; (conditional on ;). This measurement equation along with the
state equation (9), specify a standard state space model and the method of
Durbin and Koopman (2002) can be used to draw a;.

Drawing the Parameters which Determine the Cointegration Space

As in Koop, Leén-Gonzdlez, and Strachan (2008), we use the transfor-
mations a; = Oét(Ht)_l and [} = [,k where k; is a 7 X r symmetric positive
definite matrix. To show how [} can be drawn, we rewrite (3) by defining

!
y = Ay — Z CrpiAyip — $ody = 0 B yi-1 + &
h=1
or gt = ftb: + &

where we have used the relation o;fy—1 = (y,_; ® aj) b} where b} =
vec(f3;) and the definition 7, = (y,_; ® aj). Again the assumption that

One attractive property of this state equation is that, when combined with (6), it
implies F(II;|T1;_1) = pIl;_; where II; = a;/3;. Moreover, if desired, it is straightforward
to adapt this prior in such a way that E(II;|II;_;) = II;_;, while all calculations would
remain virtually the same.
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¢¢ is normally distributed gives us a linear normal form for the measurement
equation, this time for b;. This measurement equation along with the state
equation, specify a standard state space model and the method of Durbin and
Koopman (2002) can be used to draw b; (conditional on the other parameters
in the model).

Treatment of Multivariate Stochastic Volatility

In the body of the paper, we did not fully explain our treatment of the
measurement error covariance matrix, since it is unimportant for the main
theoretical derivations in the paper. Here we provide details on how this is
modelled.

We follow Primiceri (2005) and use a triangular reduction of the mea-
surement error covariance, {);, such that:

AtQtAQ - Zt E;

or

Qt - At_lxtﬁg (At_l)/, (11)

where ¥; is a diagonal matrix with diagonal elements o;; for j = 1,..,n
and A; is a lower triangular matrix with ones on the diagonal and lower
diagonal elements A;;;. To model evolution in Y, and \; we must specify
additional state equations. For ¥; a stochastic volatility framework can be
used. In particular, if oy = (014, .., 0024) s hix = In(054), he = (hig s h)
then Primiceri uses:

ht = ht—l + Uy, (12)

where u; is N (0, W) and is independent over ¢ and of ;, 1, and (,.
To describe the manner in which A; evolves, we first stack the unrestricted
elements by rows into a @ vector as A\, = ()\21,,5, A3, A324, oy )\n(n_l),t)’.

These are allowed to evolve according to the state equation:
A= A1+ &, (13)

where £, is N (0,C) and is independent over ¢ and of w, &, ¢, and 7,.
Prior Distributions
Our model involves four sets of state equations: two associated with the
measurement error covariance matrix ((12) and (13)), one for the cointegrat-
ing space given in (6) and one for the other conditional mean coefficients (9).
The prior for the initial condition for the cointegrating space is already given
in (6), and implies a uniform for p;. We now describe the prior for initial
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conditions (hg, A\g and ag) and the variances of the errors in the other three
state equations (W, C' and @)). We also require a prior for p which, inspired
by the prior simulation results, we set to being uniform over a range close to
one: p € [0.999,1).

The priors for the initial conditions are A\g ~ N (O,ZIn(n_l) /2), ho ~
N (0,21,) and ay ~ N (0,2V,,), where V,, is the identity matrix except for
those diagonal elements that correspond to o, which are set to be equal to
(1 — p?). By doing this the prior variance of each of the elements of the
product o3y has the desired value of 2.

We select Wishart priors for the inverse of error variances in the state
equations: Q7' ~ W (15, Q") Wl ~ W (1, W) and C~1 ~ W (1, C7Y).
We choose a small number for the degrees of freedom, which is equal to
the dimension of the matrix plus 2 (i.e. v, = dim(a;) + 2, vy = n + 2,
ve =n(n —1)/2+ 2) and we make each of the matrices (Q,W,C) equal to
the identity matrix times 0.0001. Hence the prior mean of these matrices
is small (reflecting that parameters are expected to change slowly), but the
moderately large value of the prior variance (due to small degrees of freedom
and small mean matrix) allows for substantially bigger values.

Remaining Details of Posterior Simulation

The blocks in our algorithm for producing draws of by, a; have already
been provided. Here we discuss the other blocks of our MCMC algorithm.
In particular, we describe how to draw from the full posterior conditionals
for the remaining two sets of state equations, the covariance matrices of the
errors in the state equations and p. Since most of these involve standard
algorithms, we do not provide much detail. As in Primiceri (2005), draws of
A: can be obtained using the algorithm of Durbin and Koopman (2002) and
draws of h; using the algorithm of Kim, Shephard and Chib (1998).

The conditional posteriors for the state equation error variances begin
with:

Q *'|Data ~ W (PQ,@_1>

where
v =T+ Yo

and

T —1
Q = |Q+ Z (ar —a;1) (ar — atl),] :
t=1
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Next we have: .
WY Data ~ W (vw, W )

where
and

W= W+ (he— hoa) (b — htl)’] .

t=1

The posterior for C~! (conditional on the states) is then Wishart:

C~ Y Data ~ W (50,671)
where
ve =T+ Vo
and

T

c+ Z (ar — a—1) (a; — th)I]

-1

6:

The posterior for p is non-standard due to the nonlinear way in which it
enters the distribution for the initial condition for b} in (6). We therefore
draw this scalar using a Metropolis-within-Gibbs step.

Appendix B: Proofs

Proof of Proposition 1: We will show that the density of p; conditional
on (K, B4_1, Ke—1) is maximized at p; = sp(f,_,) for any value of (k;, Ki_1).
This proves that the density of p; conditional on (3,_;, k1) is also maximized
at p, = sp(f5,_,). Clearly, the mode is also the same if we do not condition
on Ki_i.

The state equation in (6) implies that the conditional density of 5} given
f7_; is matric normal with mean 3; ,p and covariance matrix I,.. Thus,
using Lemma 1.5.2 in Chikuse (2003), it can be shown that the implied dis-
tribution for 3,|(k, 8,_;, kt—1) is the matrix Langevin (or von Mises—Fisher)

distribution denoted by L (n, r F ) (Chikuse, 2003, p. 31), where

F= Bi_1pkt = Bi_1Ki—1Pk¢
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The form of the density function for L <n, r F > is given by

Recall that P, = 3,3}. The density function fp,(P;) of P, conditional on F,
can be derived from the density function f3,(5,) of 3, using Theorem 2.4.8
in Chikuse (2003, p. 46):

fe(P) = AL/ exp(trF’'3,Q)[dQ] = Ar OFl(%r; iF’PtF)

where A is a constant not depending on P; (A;' = OFl(%n; }lF’ﬁ’)) and O,
is the orthogonal group of r x r orthogonal matrices (Chikuse (2003), p. 8).
Note that we have used the integral representation of the o F; hypergeometric
function (Muirhead, 1982, p. 262). Khatri and Mardia (1976, p. 96) show
that OFl(%r; }IF/_PtF) is equal to OFl(%r; }th), where Gy = diag(g1, ..., 9,) is
an r x r diagonal matrix containing the singular values of F'P,F. We first
show that o F; 1(%7’; %Gt) is an increasing function of each of the singular values
gi, for each i = 1,...,7. We then show that each of these singular values is
maximized when 3; P8, ; = I.. Note that 3, ,P,3, ; = I. implies that
the distance between sp(/3,) and sp(5,_;), as defined in Larsson and Villani
(2001), is zero and thus p, = sp(S,_;).

We first show that the following standard expression for o 1 (37; 1Gy) (e.g.
Muirhead, 1982, p. 262):

oFigri 60 = [ (> Vil

=1

with @ = {¢;;}, is equivalent to:

oFilyri 3G = [ Tl(eonvaa) +eon(—Vaa)ia@l (1)

Or =1

where O(r) is a subset of O(r) consisting of matrices @ € O(r) whose diagonal
elements are positive. This equivalence can be noted by writing:

/om eXp(i VIi4:)[dQ) = /

i=1 {O(r):q11>0}

exp(Y Vi) [Q+ /{

O(r):q11<0}
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The second integral in the sum can be rewritten by making a change of
variables from () to Z, where Z results from multiplying the first row of
@ by (—1). Note that Z results from pre-multiplying () by an orthogonal
matrix and thus Z still belongs to O(r) and the Jacobian is one (Muirhead,
1982, Theorem 2.1.4). Thus, the second integral in the sum can be written
as:

/ exp(3 Vi) = [ exp(—/Gien) exp(Y VG [dZ)
{O(r):q11<0} i1 {O(r):z11>0} i—2

_ / exp(—/Fiqn) exp( > V/Giii) [dQ)
{O0(r):q11>0} i=2

Thus:

/Om eXp(Zr: V9iii)[dQ] = /

i=1 {O(r):q11>0}

(exp(v/giq11)+exp(—+/giq11)) eXP(Z V9i6i) [dQ)

Doing analogous changes of variables for the other rows, we arrive at equation
(14). Note that the function exp(cz) + exp(—cx) is an increasing function of
2 when both z and ¢ are positive. Thus, from expression (14), oFi(57; 3Gy)
is an increasing function of each of the singular values g;, for each i =1, ..., 7.

Let us now see that each of the singular values of F'P,F is maximized
when 3, ,P,3,_; = I,. Write F = B,_1C, where C' = k;_1pky is a r Xr matrix.
Let (§,, be the orthogonal complement of 5, (i.e. (5,,5,,) is an (n x n)
orthogonal matrix) and P;; = 3, 3}, . Note that P,+ P,; = I,, (because P;+
P = (B0 Bi) (BB ) = L), Thus, C'81_\PB,_,C + '8, P B_,C =
C'C. Let (ay,..,a,) be the singular values of A = '8, ,P,3,_,C, with
(ay > as > ... > a, > 0). Similarly, let (by,..,b,) be the singular values of
B = ("8, P13, ,C (ordered also from high to low). Similarly, let (c1, .., ¢,)
be the singular values of (C'C'). Because A, B, (C'C') are positive semidefinite
and symmetric, eigenvalues and singular values coincide. Thus, Proposition
10.1.1 in Rao and Rao (1998, p. 322) applies, which implies that: a; + b, <
ci,a0 + b, < c9,a3 + b, < c3,..5a, + b, < ¢.. Since b, > 0 this implies
a; < c,a9 < eg,a3 < c3yensay < . Note that if 8, P53, ; = I. then
A = C'C and so a; = c¢1,a9 = ¢y,a3 = Cs,...,a, = ¢.. Thus, each of the
singular values of F'P,F is maximized when 8, P53, | = I,.

Proof of Proposition 2:

We will proof that E(p:|(ke, 81, ki—1)) = sp(B;_1). Note that this
proves that E(p,|(8, 1, ki-1)) = sp(B,_,), because if 3 = 3, , minimizes
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E(d*(B,, B)| (K¢, Bi_1, rit—1)) for every ry, it will also minimize E(d?(5,, 8)|(8,_1, ki—1))-
Similarly, it also proves that E(p;|3,_;) = sp(B,_;)-

Recall that ,|(k, B,_1, ki—1) follows a Langevin distribution L (n, r F ),

with F = Bi_1pkt = By 1ki—1pke. Let G = Kypri—y and write G using
its singular value decomposition as G = OMP’, where O and P are r X
r orthogonal matrices, and M is an r x r diagonal matrix. Hence, F =
B, \PMO'. Write F = 3, ,PMO' =TMO', where I' = 3, ,P. Since P is a
r X r orthogonal matrix, sp(3,_;) = sp(I'). We will prove that E(p;) = sp(T").
In order to prove this, we will prove that E(3,3;) = UDU’, with U = (T',T"}),
where I'; is the orthogonal complement of I', and D = {d,;} is a diagonal
matrix with dy; > dgs > ... > d,,. Define the n x r matrix Z = U'$3,0, so
that E(8,8;) = UE(ZO'OZ"\U' =UE(ZZ\U'. Let Z = {z;}.

The distribution of Z’ is the same as the distribution of the matrix that
Khatri and Mardia (1977) denote as Y at the bottom of page 97 of their
paper. They show, in page 98, that E(z;;z,) = 0 for all 4, j, k, | except when
@) i=k=j=0Li=12,...1;b)i=k j=1G#]j)(c)i=j, k=1
(i#£k);(d)i=1j=k(i#]),1,5=12,..,r. Notethat the (i, k) element
of ZZ"is Y ) zinzkn. Thus, E(ZZ') is a diagonal matrix and we can write
E(B3) =UDU’, where D = E(ZZ').

To finish the proof we need to show that each of the first r values in the
diagonal of D = E(ZZ') is at least as large as any of the other n — r values.
The Jacobian from 3, to Z is one (Muirhead, 1982, Theorem 2.1.4), and
hence the density function of Z is:

T

Ap exp(tr(MZ)) =Ag eXp(Z(mzfu))

=1

where Z = {%;;} consists of the first  rows of Z, M = diag(m,, ..., m,) and
Ay is a normalizing constant. If we let Z = {Z;;} be the other n — r rows,
what needs to be proved can be written as: E(>",_,(Z11)%) > B>, (2x)?)
for any j,psuchthat 1 <j<r, 1 <p<n-—r.

Note that (Y_;_;(Z;)?) is the euclidean norm of the j™ row of Z and
similarly Y ), (2,)? is the norm of the (r + p)™ row of Z. Let S; be defined
as the set of n x r semi-orthogonal matrices whose j row has bigger norm
than the (r + p)™" row. Let Sy be the set of semi-orthogonal matrices where
the opposite happens. Thus, E(} ,_,(%;)?) can be written as the following
sum of integrals:
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T

AL /Sl (Z(Z]l)z) exp {lz:; mléll} [dZ]+AL/ (Z<§]1)2) exp {lzzl:mlfll} [dZ]

=1 2 =1

where [dZ] is the normalized invariant measure on the Stiefel manifold (e.g.
Chikuse, 2003, p. 18). Now note that:

r

AL/S O _(Zn)*) exp {1—21 mlfu} [dZ] = AL /51 (D (Zu)?) exp {mjépj + D mlgll} [dZ]

Lo =1 I=11#j

This equality can be obtained by making a change of variables from Z to @)
where () results from swapping the j* and (r + p)™ rows of Z. Note that Q
is also semi-orthogonal, and that because the transformation involves simply
swapping the position of variables, the Jacobian is one. Thus, F(>;_,(Zj)?)
can be written as:

AL/S (Z(Zjl)2)exp{2ml§”}[dZ]—i—AL/ (Z(gp,)Q)exp{mjzpj+ > mléll}[dZ]

= S1 =1 I=1,1#]

Similarly, E(>",_,(Z,)*) can be written as:

Ap /S (Z(zpl)2>exp{zmlz”}[dZ]+AL / (Z(zﬂ)z)exp{mjzpj+ > mlz”}[dZ]

1 =1 51 =1 I=1,l#j

Thus, E(> ", (Z31)?) — E(X_,(4)?) is equal to:

AL/S (Z(Eﬂ)Q — Z(éﬂ)Q) (exp {Z mléll} — €XpP {mjépj + Z mléll}) [dZ]

L =t =114

Following Chikuse (2003, p. 17), we can make a change of variables Z =
W N, where W is a n X r semi-orthogonal matrix that represents an element
in the Grassmann manifold, and N is an r X r orthogonal matrix. That
is, W is seen as an element of the Grassmann manifold of planes (G, )
and N is an element of the orthogonal group of r x r orthogonal matrices
(O(r)). The measure [dZ] can be written as [dZ] = [dW][dN], where [dN]
is the normalized invariant measure in O(r) and [dWV] is another normalized
measure whose expression can be found in Chikuse (2003, p. 15). Let the
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first 7 rows of T be denoted as W = {1;} and the other rows as W = {1, }.
Note that the norm of a row of Z is equal to the norm of the corresponding
row of W, because N is orthogonal (e.g. > ,_,(Z;)* = >, (w;)?, which is
a consequence of ZZ' = WW'). Define W as a matrix that is equal to W
for all rows except for the j™ one. Let the j* row of W be equal to the
(r + p)" row of W. Note that m;2,; + > 7_, .. mZy = tr(MWN). Thus,

E(Y " (Za)?) — E(3°_,(24)?) can be written as:

Ap fy, (1 @30 = 20 ()?) (exp {r(MWN) } = exp {tr(MIWN)} ) [dW][dN] =

Ar fg (Ca(@0)* = S0 ()?) (0F1 (573 gMWWM) = o Fy (375 fMWW'M

(15)
where we have used the integral representation of the hypergeometric func-
tion (e.g. Muirhead, 1982, p. 262). As noted by Khatri and Mardia (1979, p.
96), o F1 (373 M WW’ M) is a function only of the singular values of MW W’M.
In addltlon, as we argued when we found the mode of the distribution,
o1 (3r; LMW' M) increases with each of the singular values of MTWIW'M.
Let A = MWW'M and B = MWW'M. Let the singular values of A be
(ay, ..., a,) with (a; > a;11) and let the singular values of B be (b1, ..., b,), with
b; > biy1. From now we will show that in the region S1, a; > b, i =1,...,1
Note that this implies oFy (37 2A) > oFi(37; 1 B) in Sy, and thus the integral
in (15) is not negative, so that E(3",_,(2;1)%) > E(Q_; (2)?)-

Define the matrix C = A — B = M(WW’' — WW')M. Note that all
elements in C' are zero except for those that are either in the j** row or in the
4" column. Thus, C' has rank equal to one. Hence, all its singular values are
zero, except for one. Because C'is symmetric, the sum of its singular values is
equal to the trace. Because C' has only one non-zero diagonal element, we get
that the only non-zero singular value of C' is equal to the (j, j) element of C.
Note that this element is equal to ¢; = m?;(3-,_ (0;1)* — >_,_; (y)?) which
is positive in S;. Let the singular values of C, ordered from high to low, be
(¢1y ..y ¢), with (¢; = 0 for 2 < ¢ < r). Note that A and B are positive definite
and symmetric, and thus their singular values are equal to their eigenvalues.
Note also that C'is positive semidefinite in S;. Thus, we can write B+C' = A
and apply Proposition 10.1.1 in Rao and Rao (1998, p. 322), which implies
that: by + ¢, < ay,by + ¢, < ag, bz +c¢, <as,...b, +c, < ar Since ¢, = 0 this
implies b; < ay, by < ag, b3 < as,...,b, < a,. Thus, o Fy(3r;3A) > oFi(3r; 1B)
in S, and integral (15) is not negative.

Proof of Proposition 3: The density function of P, = 3,3} given by ex-

2’4 2’4
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pression (7) depends on 1 F} ( 1535 lFtPt) which is equal to: 1 F} (%, % %pnt_lﬁgflﬂﬁt_lﬁt_lp).
To see that these two hypergeometric functions are equal, we can write
1F1 (2, 5; QFtPt) in terms of zonal polynomials as (e.g. Muirhead, 1982, p

258):
nor 1 (n/2),
P25 -FP
' 1(2’2 27! t) ZZ (r/2).

k=0 kK

Ftpt)

where k is a partition of k£ into as many terms as the dimension of F;P,.
That is, & = (k1,....,kn), k = k1 + ... + kn, k1 > ... > k, > 0. Y denotes
summation over all possible partitions x of k. C is a zonal polynomial and
(n/2)x, (r/2), are generalized hypergeometric coefficients whose definition
can be found in Muirhead (1982, p. 258, expression 2). The zonal polynomial
C\..(F,P,) depends on F, P, only through its nonzero eigenvalues (James, 1964,
pp. 478-479). Zonal polynomials are usually expressed in terms of symmetric
matrices, so that C,(F;P;) can be written as C,(S), where S is a n x n
symmetric matrix with the same eigenvalues as F;P,. Note that for any
two matrices A : r xn, B :n xr, (AB) and (BA) have the same nonzero
eigenvalues with the same multiplicities (e.g. Godsil and Royle, 2001, Lemma
8.2.4). Thus, C(FiP;) = Cy(pri_18;,_ 1 PiB,_1ki-1p) for k = (ky, ..., k). Note
that because the matrix (pri_10}_; P53, 1ki—1p) has dimension r and full
rank, Cy(pri_ 18, 1 PiBy_1ki-1p) = 0 if kyy # 0 (James (1964), p. 478).
This shows:

nr 1 nr 1l
111 (2 2’ 2Ftpt) =15 (2 57 gPhit= 1B 1Py ki 1P>

Thus, the density function of P, = 3,3, evaluated at the mode P, = 3, 1} _,

1s:
1 nr 1l
exp (_itT(Ft)) 1F1 (57 5 5—&)

Since F; = (3,_,p*k}_,B8;_1, from the properties of the trace function, tr(F;) =
tr(p?k? 1 8,_1B,_1) = tr(p*k?_,) = tr(K,), which depends only on the eigen-
values of K;. In addition, as argued before, a hypergeometric function of
matrix argument K; depends on K; only via its eigenvalues. Thus, the value
of the density at the mode depends on K; only through its eigenvalues.

Let D = diag(dy, ..., d,) be a diagonal matrix containing the eigenvalues of
K, so the value of the mode can be written as: exp(—3tr(D)) Fy(n/2;7/2;1/2D).
Following the result in Chikuse (2003, p. 317), when d; is large, 1 F} (n/2;7/2;1/2D)
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can be written as:

(n—r)

where I'(.) is the Gamma function and D_; is a (r — 1) x (r — 1) diagonal
matrix containing the diagonal elements of D except for d;. Thus, the limit
of the mode when d; tends to infinity is the same as the limit of the following
expression:

LU/2) (-2 AR s NGl VIS N
T(n/2) eXp<_§tT’(D7i>) <§> 1B ( 5 ,§D,i) [1+0(d;") + O(d;?)]

This expression tends to infinity as d; tends to infinity.

Proof of Proposition 4: Noting that K; = (6;_,p) (8;_,p) and that
vec(B;_1p) ~ N (O, I—%IT ® I,), the first property follows from the definition
of Wishart distribution (e.g. Muirhead, 1982, p. 82). The second follows
from the properties of the Wishart distribution (e.g. Muirhead, 1982, p.
90). To prove the third property, let us first write (6) in matrix form as:
By = Bi_1p + €, where vec(e;) = n,.

Ko = p(B7) (B7)p = p(Bi_1p+ &) (Bi_1p +e)p

And thus:
K1 = P’ Ky + pPeter + p° B 1e + pPeiB1 (16)

By the law of iterated expectations, E(p?S;_je|ki—1) = E(E(p*ki_10,_1elB, 1. Fi-1)).
Since E(p k10, 1€ B, 1, ki—1) = 0 we obtain E(p*S; €|ki_1) = 0. Thus,
taking conditional expectations on both sides of (16), and noting that E(eje;| Ky, ..., K») =
nl, we get E(K;1|Ky, ..., K3) = p*K; + p*nl,. Combining this with the sec-
ond property, the third property is obtained.

Let k;; be the (4, j) element of K;. Note that the third property implies
E(ktij|K(t—1)7 ...,KQ) = ka(t—l)ij + np25ij, where 61] =1ifi = ] and is 0
otherwise. By the law of iterated expectations, this implies:

h
E(kui| K (1—py, - K2) = p™k_nyij + ndyy Y _ p* (17)

c=1
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Note that cov(kiij, ku—nr) = El(kij — E(kuij))ka-nml = E((kijke—nym)) —
E(kyij) E(k—nyr)- Thus, cov(kyj, kg—nyr) can be obtained by multiplying
both sides of (17) times kq_pyw, subtracting E(k;)E(kg—nw) and taking
expectations:

h
cov(kuij, k—np) = (0)*" E (k-nyika—ny) +0i;E (kg—nyw)n Z(,0)2C_E(k(t—h)kl)E(ktij)

c=1
(18)
From the properties of the Wishart distribution, all expectations in the right
side of equation (18) are known. In particular, since K, follows a Wishart
with diagonal parameter matrix, it follows that E(k;) = 0 for ¢ # j. Thus,
for i # j we have:

COU(’%;‘, k(t-h)kl) = (P)QhE<k(t—h)ijk(t—h)kl) - E(k(t—h)kl)E(ktﬁ) -
(0" E(kq—nyijk—ny) = (p)*"cov(k@—-nyij, ke-mp) — (19)
From the properties of the Wishart distribution with diagonal parameter
matrix, (19) is zero unless ¢ = k and j = [. When ¢ = k and j = [,
cov(k@—nyij, ka—nye1) = var(kg—py;), so that the correlation (i.e. covariance

over square root of product of variances) between k;;; and k—py;; is | for
i# j. When i = j =k =1, (18) can be written as:

cov(kuis, kg—nyii) = P IE(kG i) — (B(k—nyii))?] +

h
(0*" = DE(kg-nyii))* + E(kq-nyii)n »_ p* (20)
c=1

Noting that E(kq_nyi;) = np®/(1 — p*) and Zlgzl % = p?(1 — p*M) /(1 — p?),
we get that:

(0*" = D(E(k-nyi))* + E(k-nyi)n Zp%— (21)

Thus, (20) implies cov(kuii, k—nyi) = thvar(k(Qtfh)ii), and hence the correla-
tion between ky; and k(—py; is p?". Finally, in the case (i = j,k = [,i # k),
using (21) and noting that E(ku_pnyi) = E(Kk@—nykk), it can be shown that
(18) is equal to zero.
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