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Abstract

We propose a methodology to gauge the uncertainty in output gap nowcasts
across a large number of commonly-deployed vector autoregressions in US inflation
and various measures of the output gap. Our approach constructs ensemble nowcast
densities using a linear opinion pool. This yields well-calibrated nowcasts for US
inflation in real time from 1991q2 to 2010q1, in contrast to those from a univariate
autoregressive benchmark. The ensemble nowcast densities for the output gap are
considerably more complex than for a single VAR specification. They cannot be
described adequately by the first two moments of the forecast densities. To illustrate
the usefulness of our approach, we calculate the probability of a negative output gap
at around 45 percent between 2004 and 2007. Despite the Greenspan policy regime,
and some large point estimates of the output gap, there remained a substantial risk
that output was below potential in real time. Our ensemble approach also facilitates
probabilistic assessments of “alternative scenarios”. A “dove” scenario (based on
distinct output gap measurements) typically raises substantially the probability of a
negative output gap (including 2004 through 2007) but has little impact in slumps,
in our illustrative example.
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1 Introduction

Although the formulation of monetary policy in many central banks gives prominence to
the output gap, conventional wisdom has it that there is considerable uncertainty about
contemporaneous gap measurements. For example, Orphanides and van Norden (2002)
document the large variation and the unreliability of real-time point estimates of the
output gap for several commonly-used filters or detrending methods.
Unfortunately, the extant literature on output gaps does not permit a policymaker,

or a researcher, to quantify the uncertainty across different detrending methods. This
presents a considerable impediment to monetary policy in practice. Policymakers rou-
tinely combine the evidence across many specifications to perform probabilistic assess-
ments of aggregate behavior; see, for example, Greenspan (2004), and the discussions by
Feinstein, King, and Yellen (2004). In the absence of formal methods accounting for spec-
ification uncertainty, monetary policy based on probabilistic assessments must be based
on informal judgements.
This paper proposes a methodology to gauge the uncertainty in output gap nowcasts

across a large number of empirical specifications. Spurred by the analyses of output gaps
and inflation by Orphanides and van Norden (2002, 2005), we use their US real-time
data (supplied by the Federal Reserve Bank of Philadelphia; see Croushore and Stark,
2001) and a model space comprising many linear Gaussian vector autoregressive (VAR)
models. We explore the model uncertainties in a baseline VAR by varying the “auxiliary
assumptions”regarding the detrending method used to construct the output gap, the lag
lengths in the VAR, and the timing of a single structural break. For simplicity, the
detrending methods considered are a selection of commonly-used univariate filters. (In
principle, our methodology could also be applied to multivariate detrending methods,
and models with optimizing behavior.) Each VAR specification in our system produces
one quarter ahead forecasts for inflation and a single output gap. Given the time lag
in the release of real-time macro data, these forecasts indicate the current state of the
macro economy. (Hereafter, we use the terms nowcast and one quarter ahead forecast,
interchangeably.)
Whereas a conventional econometric analysis based on our VAR model space would

report many nowcasts of inflation and the output gap, or perhaps use regression diagnos-
tics to select a single forecast vector, our aim is to build forecast densities that reflect
the uncertainty across the many specifications considered. To achieve this, we utilize a
linear mixture of experts framework, also known as the “linear opinion pool” (LOP), to
construct ensemble forecast densities for the variables of interest. For each VAR specifi-
cation we measure the Kullback-Leibler “distance” between the real-time out of sample
inflation forecast density and the “true” but unknown density using the logarithmic score.
We use this information to construct the weights on the various specifications to build the
ensemble forecast density vector. In this way, our output gap predictive densities reflect
the ability of the many VAR specifications to predict inflation. The idea of using the
Phillips curve to inform analysis of real-time output gaps is used (in larger systems) by
Laubach and Williams (2003) and Weidner and Williams (2011).
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A key insight of this paper is that probability forecasts for latent macro variables,
accommodating a wide variety of model uncertainties, can be constructed by utilizing
a form of “ensemble” forecasting. By this approach, the researcher considers a model
space comprising a large number of forecasting models, generated by varying measure-
ments and/or model features. Gneiting and Thorarinsdottir (2010) provide an example
based on forecasting inflation with survey information and discuss the related literature in
meteorology. In our analysis, we vary the auxiliary assumptions in our baseline VAR spec-
ification. Regardless of the technology utilized to produce the ensemble forecast densities
(here LOP), the aim of ensemble forecasting is to approximate the unknown process with
a large number of misspecified forecasting models. Although the focus is on model uncer-
tainty and using misspecified models to construct predictive densities, concepts which are
often associated with Bayesian analysis, the individual models can be estimated by either
frequentist or Bayesian techniques. The linear and Gaussian VARs are estimated by fre-
quentist methods in our empirical work. Nevertheless, the ensemble nowcast densities for
each macro variable need not be symmetric and can accommodate multi-modality.
Turning to our results, we find that a baseline ensemble, based on seven commonly-

used output gap measures (derived from univariate filters), and allowing for VAR model
uncertainty (regarding lag length and the breakdate), produces well-calibrated (unimodal
and symmetric) nowcast densities for US inflation. In contrast, a simple autoregressive
benchmark (without the output gap) produces poorly calibrated densities, as does an
integrated moving average model for inflation. Both of these commonly-utilized univariate
time series models also have a weaker point forecasting performance (in terms of root
mean squared forecast error) than our baseline ensemble. Our baseline ensemble typically
produces a multi-modal nowcast density for the (latent) output gap. Hence, the nowcast
density for the current output gap cannot be described adequately by a point (conditional
mean) estimate, together with a conventional measure of dispersion, such as the forecast
variance.
To illustrate the usefulness of our output gap nowcasts to monetary policymakers, we

calculate the one step ahead probability that output is below trend from our baseline
ensemble. We find that the policymaker is almost never certain of the sign of the output
gap throughout our evaluation. For example, we calculate the probability of a negative
output gap at around 45 percent between 2004 and 2007. Therefore despite the Greenspan
policy regime, and some large positive point estimates of the output gap, there remained
a substantial risk that real output was below potential in real time.
Since monetary policy is often concerned with the probabilistic impacts of “alternative

scenarios”, we repeat our analysis assuming that potential output can be captured by a
linear time trend (allowing for breaks in the trend). We label our alternative scenario a
“dove” to reflect that the output gap measures often imply that output is less than poten-
tial. (The linear trends approach fails to match the productivity slowdown apparent in
revised US data.) We consider an ensemble of the dove scenario ensemble and our original
baseline ensemble. This “Grand Ensemble” produces well-calibrated nowcasts for infla-
tion. But consideration of our alternative scenario dramatically changes the assessment
of the output gap. The inclusion of our dove scenario raises the probability of a negative
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output gap considerably over the 2004-2007 period in our illustrative example. But it has
very modest impacts on the probability of interest during the recent slump–when all our
output gap measurements assess real output to be less than potential.
The remainder of this paper is structured as follows. In section 2, we describe our

model space, based on Orphanides and van Norden (2002, 2005). In section 3, we present
and discuss our methodology for ensemble forecasting using the LOP. In section 4, we
report our results for forecasting inflation and describe our predictive densities for the
latent output gap. We draw some conclusions in the final section.

2 Model space

A bivariate VAR model space is common to many analyses of inflation determination. For
example, Rudebusch and Svensson (2002) and Laubach and Williams (2003) start with
bivariate VARs, and add additional explanatory relationships and restrictions.1

To illustrate our ideas, we begin with a VAR model space for inflation, πt, and the
output gap, yt, of the type explored by Orphanides and van Norden (2002, 2005):∙

πt
yjt

¸
= Aj

∙
πt−1
yjt−1

¸
+ ²jt , t = 1, . . . , T, ²jt ∼ i.i.d. N(0,Σj). (1)

That is, we consider a baseline VAR specification in which the measure of interest for
the output gap has been varied to give J linear and Gaussian VAR models, indexed
j = 1, . . . , J . For expositional ease, we ignore the intercept and restrict the lag order of
the J VARs to one. The conformable coefficient matrix is denoted Aj.
Our baseline VAR setup uses seven output gap measures, J = 7, derived from uni-

variate filters and deployed by Orphanides and van Norden (2002, 2005).2 We define the
output gap as the difference between observed output and unobserved potential (or trend)
output. Let qt denote the (logarithm of) actual output in period t, and μjt be its trend
using definition j, where j = 1, . . . , J . Then the output gap, yjt , is defined as the difference
between actual output and its jth trend measure. We assume the following trend-cycle
decomposition:

qt = μjt + yjt . (2)

The seven methods of univariate trend extraction in our baseline VAR are: quadratic,
Hodrick-Prescott (HP), forecast-augmented HP, Christiano and Fitzgerald, Baxter-King,
Beveridge-Nelson, and Unobserved Components. Since we are interested in real-time
prediction, we estimate the trends at every vintage date. That is, estimation is recursive
for all VAR specifications; each recursion uses a different vintage of data as well as an

1Although additional equations and identifying conditions pose no conceptual problems for our
methodology, the computational burden would increase. We prefer to restrict our attention to a two-
equation model space which, as Sims (2008) notes, lies at the heart of many explanations of inflation
determination.

2Marcellino and Musso (2009) provide a recent analysis of univariate and multivariate real-time output
gap measures using Euro-area data.
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additional observation. We summarize the seven well-known univariate filters in Appendix
1.
We vary two other assumptions in our baseline VAR specification. First, following

(among others) Stock and Watson (1999), we allow for shifts in relationships between
inflation and output gaps during the transition from (what is often referred to as) the
US Great Inflation to the Great Moderation. We consider every feasible single break
date, assuming a single coincident break in the conditional mean and variance for both
variables. This raises the potential number of models considerably since, in effect, each
candidate break date defines a new VAR.
The second auxiliary assumption we vary is the lag length in the VAR (which for ease

of exposition we fixed at one in equation (1)). If we have J output gap measures, and for
any given yjt , we have K different variants defined over different values of the maximum
lag length and the location of the break date, then in total we have N = J ×K models,
and N associated forecasts of inflation and the output gap from the entire system.
We emphasize that even though univariate filters have received considerable attention

in the literature, there is no particular reason to restrict policymakers to this approach.
Since policymakers often disagree strongly over their assessments of the output gap, we
repeat our ensemble analysis with an alternative scenario. We construct our alternative
measures of the output gap using a linear time trend (allowing for breaks in the trend)
to approximate potential output. Many applications of “Taylor rules” use similar time-
trend based measures; see Taylor (1993). Orphanides and van Norden (2002) discuss
the real-time properties of linear time trend based measures of the output gap, noting
that typically output is less than potential by this approach in recent years. The linear
time trend is not sufficiently flexible to capture the productivity downturn (even when,
following common practice, trend breaks are admitted in the 1970s and 1980s). We label
our alternative scenario a “dove” to reflect this feature.
More precisely, we explore alternative specifications with the output gap defined as

the estimated residual, bυt, from the ordinary least squares regression of:

qt = a+ b1t + b2D73,tt + b3D84,tt + υt, t = 1, . . . , T, υt ∼ i.i.d. N(0, σ2). (3)

A linear time trend without breaks is defined by D73,t = D84,t = 0. We also consider two
further specifications with one breakdate, and two breakdates. The breaks are 1973q4
(following Orphanides and van Norden, 2002), and 1973q4 and 1984q1, respectively. Like
the baseline case, we vary the lag length and the break date in the dove VAR ensemble,
for each of the three types of linear detrending considered.

3 Ensemble forecasting

Armed with our many VAR specifications, it is straightforward to produce forecast den-
sities for both variables of interest. Given non-informative priors, the predictive densities
for both inflation and the output gap, for a given VAR specification, (1), are multivariate
Student-t; see Zellner (1971), pp. 233-236 and, for a more recent application, Garratt et
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al. (2009). Appendix 2 provides details of how the predictive densities are constructed
from our VARs.
A key insight of this paper is that by interpreting the N VAR specifications as a

“perturbed” ensemble model space, probabilistic forecasts can be constructed using the
entire set of specifications. In ensemble forecasting applications, researchers consider
perturbations to a single basic misspecified model.3 The perturbations might be to the
measurements and/or the model space; see (among others) Raftery et al. (2005), Doblas-
Reyes et al. (2009) Bao et al. (2010) and Gneiting and Thorarinsdottir (2010). A common
feature of the ensemble methodology is the aim to approximate a non-linear and/or non-
Gaussian process with a combination of specifications based on an incomplete model
space.
We utilize a linear opinion pool (LOP) to construct the ensemble forecast densities.

The opinion pool approach has a long tradition in management science, where the focus
is on combining the evidence supplied by a number of experts to a decision-maker, or a
policymaker. As emphasised by Wallis (2005), the approach is particularly useful for the
combination of survey information since the only information required is the out of sample
forecast provided by each expert (VAR); see also Hall and Mitchell (2007).4 Sometimes
the application of opinion pools in economic forecasting is referred to as “density com-
bination”. Jore et al.(2010) utilize linear opinion pools with VAR forecasts but do not
consider the issues of measuring, or forecasting, the output gap. Geweke (2010) discusses
the differences between opinion pools and mixture models, providing specific empirical
examples with small numbers of models.
Our methodology is motivated by the situation faced by policymakers in central banks.

The policymakers concerned discuss the forecast densities provided by experts on their
staff. Typically, these many experts utilize linear (or linearized) and Gaussian models
which the policymaker believes to be false.5

With monetary policy practice in mind, we approximate the unknown forecast densi-
ties for inflation and the output gap by using (time-varying) aggregates of the individual
VAR forecasts, with each VAR being both linear and Gaussian. We assume that a policy-
maker would believe that the various output gap measures differ from the “true” output
gap by more than conventional (Gaussian) white noise measurement error and that the
policymaker believes also that the true output gap is never observed, even ex post.6 In
this paper, we construct the policy maker’s implied forecast densities for the output gap
using the out of sample density forecasting performance for inflation.
More formally, we consider a monetary policymaker seeking to aggregate forecasts

from the VARs in the model space. Given i = 1, . . . , N VAR specifications, the ensemble

3Bache et al (2010) note that the technologies for ensemble density construction differ across applied
statistics fields.

4Kascha and Ravazzolo (2010) contrast the properties of linear and logarithmic opinion pools.
5Currently, the aggregation of these expert opinions is conducted informally in monetary policy insti-

tutions.
6Since the forecast density refers to an unobserved variable, y, it would be inconsistent for the policy-

maker to use any single imperfectly measured output gap, yj0, as the true outturn to gauge the fit of the
density.
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density for inflation is defined by the LOP:

p(πτ ) =
NX
i=1

wi,τ g(πτ | Ii,τ ), τ = τ , . . . , τ , (4)

where g(πτ | Ii,τ ) are the one step ahead forecast densities from model i, i = 1, . . . , N
for inflation πτ , conditional on the information set Ii,τ . The publication delay in the
production of real-time data ensures that this information set contains lagged variables,
here assumed to be dated τ − 1 and earlier. The non-negative weights, wi,τ , in this finite
mixture sum to unity.7 Furthermore, the weights may change with each recursion in the
evaluation period τ = τ , . . . , τ .
We then construct the ensemble nowcast density for the output gap using:

q(yτ ) =
NX
i=1

wi,τ h(y
j
τ | Ii,τ ), τ = τ , . . . , τ , (5)

where h(yjτ | Ii,τ ) is a forecast density from model i for the output gap, and the weights
are exactly the same as in the previous equation–that is, we use the inflation densities
and outturns to derive the weights for the output gap ensemble.
We utilize weights based on the fit of the individual component forecast densities.

Following Amisano and Giacomini (2007), Hall and Mitchell (2007) and Jore et al.(2010),
the logarithmic score measures density fit for each component through the evaluation
period. The logarithmic scoring rule is intuitively appealing as it gives a high score to
a density forecast that assigns a high probability to the realized value. The logarithmic
score of the ith density forecast, ln g(π0τ | Ii,τ ), is the logarithm of the probability density
function g(. | Ii,τ ), evaluated at the outturn, π0τ . Specifically, the recursive weights for the
one step ahead densities take the form:

wi,τ =
exp

hPτ−1
τ−κ ln g(π

0
τ | Ii,τ )

i
PN

i=1 exp
hPτ−1

τ−κ ln g(π
0
τ | Ii,τ )

i , τ = τ , . . . , τ (6)

where τ − κ to τ − 1 comprises the training period used to initialize the weights. It is
important to note that the weight on the various specifications varies through time. Hence,
the ensemble exhibits greater flexibility than any single linear VAR specification (in which
the individual model parameters are recursively updated). In this sense the ensemble
approach approximates a non-linear data generating process. We also reiterate that the
ensemble forecast densities can accommodate non-Gaussian behavior. For example, the
predictive densities for the output gap are not restricted to be symmetric. This feature
reflects the properties of the LOP approach; see the discussion in Timmermann (2006).
In this sense, our approach is applicable even if the policymaker believes that the true
model is non-Gaussian and non-linear.

7The restriction that each weight is positive could be relaxed; for discussion see Genest and Zidek
(1986).
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4 Nowcast densities for inflation and the output gap
in the US

We turn now to the details of our empirical exercise. We begin this section by describ-
ing the sample data and the specifics of our VAR model space. We present the density
forecasting results for US inflation using our baseline ensemble and contrast the perfor-
mance with two conventional forecasting models: a second-order autoregressive bench-
mark (AR2) and an integrated moving average (IMA) specification for inflation. We
repeat our analysis with our alternative (dove) scenario (using linear time trend measures
of potential output but allowing for breaks in the trend). Then, we consider an ensemble
of the two ensembles, which we term a “Grand Ensemble” (GE), and analyze the behavior
of the forecast densities for inflation and the output gap. To illustrate the implications
of our analysis for policymaking, we plot and discuss the time series of probabilities the
event that output is below trend in the current period–an event of interest to central
bankers.

4.1 Data and model space details

Our US sample spans the Great Inflation, the Great Moderation and the Great Recession.
We use the same real-time US data set as Clark and McCracken (2010), extended to
include more recent data. The quarterly real-time data comprise real GDP and the GDP
price deflator, with 180 vintages (data observed at a specific point in time, known as
the vintage date), starting in 1965q4, and ending in 2010q3. The data for each vintage,
avoiding the Korean War, are for 1954q3, . . . , τ−1. Data for output and the price deflator
are released with a one quarter lag.
The raw data for GDP (in practice, GNP for some vintages) are taken from the

Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists. This is
a collection of vintages of National Income and Product Accounts; each vintage reflects the
information available around the middle of the respective quarter. Croushore and Stark
(2001) provide a description of the database. We define inflation as the first difference in
the logarithm of the price deflator, multiplied by 100.
Our out of sample evaluation period is: τ = τ , . . . , τ where τ = 1991q2 and τ = 2010q1

(76 observations). In order to implement ensemble methodology through the evaluation
period requires an additional assumption about which measurement is to be forecast.
Following Clark and McCracken (2010) and others, we use the second estimate as the
“final” data to be forecast. For consistency, we report results for the same definition of
“final” data for all forecast evaluations; see the discussion in Corradi et al.(2009).
For each VAR, we allow for a single structural break of unknown timing. In order to

reduce the computational burden, the break date is restricted to occur before the start
of the evaluation period, τ , with at least 15 percent of the sample used for post-break
in-sample estimation of each VAR. The break occurs in the conditional mean and the
variance for both equations in the bivariate VARs.
In every VAR considered, we vary the maximum lag length between one and four. In
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total, accounting for our variations in lag length and break dates we consider K = 368
VAR models for each measure of the output gap. With seven measures of the output
gap based on univariate filters, the predictive densities for the baseline ensemble utilize
N = 2576 specifications for each observation in the evaluation period. For the dove case,
with the linear time trend model space, there are 1104 models.
Recall that we construct the weights based on the fit of the individual VAR forecast

densities for inflation. We use the logarithmic score to measure density fit for inflation
through the evaluation period. Given the relatively large number of quarterly observations
available in our data set, we set κ = 20, allowing a training period of five years. Given
the one quarter lag in the release of real-time data measurements, the forecast density for
inflation and the output gap are density nowcasts.

4.2 Inflation nowcasts

We begin our results with an assessment of the calibration of the ensemble predictive
densities for inflation. A common approach to forecast density evaluation provides statis-
tics suitable for one-shot tests of (absolute) forecast accuracy, relative to the “true” but
unobserved density. Following Rosenblatt (1952), Dawid (1984) and Diebold et al.(1998),
evaluation can use the probability integral transforms (pits) of the realization of the vari-
able with respect to the forecast densities. We gauge calibration by examining whether
the pits zτ , where:

zτ =

Z π0τ

−∞
p(u)du, (7)

are uniform and, for our one step ahead forecasts, independently and identically dis-
tributed; see Diebold et al. (1998). In practice, therefore, density evaluation with the
pits requires application of tests for goodness of fit and independence at the end of the
evaluation period.8

The goodness of fit tests employed include the Likelihood Ratio (LR) test proposed by
Berkowitz (2001); we use a three degrees of freedom variant with a test for independence,
where under the alternative zτ follows an AR(1) process. In addition, we consider the
Anderson-Darling (AD) test for uniformity, a modification of the Kolmogorov-Smirnov
test, intended to give more weight to the tails (and advocated by Noceti et al, 2003).
Finally, following Wallis (2003), we employ a Pearson chi-squared test (χ2) which divides
the range of the zτ into eight equiprobable classes and tests for uniformity in the histogram.
Turning to the test for independence of the pits, we use a Ljung-Box (LB) test, based on
(up to) fourth-order autocorrelation.
We also investigate relative predictive accuracy by considering a Kullback-Leibler in-

formation criterion (KLIC)-based test, utilizing the expected difference in the log scores of
candidate densities; see Bao et al. (2007), Mitchell and Hall (2005) and Amisano and Gi-
acomini (2007). Suppose there are two forecast densities, p(πτ | I1,τ) and p(πτ | I2,τ), so

8Given the large number of component densities under consideration in the ensemble, we do not allow
for estimation uncertainty in the components when evaluating the pits. Corradi and Swanson (2006)
review pits tests computationally feasible for small N .

9



that the KLIC differential between them is the expected difference in their log scores:
dτ = ln p(π0τ | I1,τ) − ln p(π0τ | I2,τ). The null hypothesis of equal forecast perfor-
mance is H0 : E(dτ ) = 0. A test can then be constructed since the mean of dτ over
the evaluation period, dτ , under appropriate assumptions, has the limiting distribution:√
Tdτ → N(0,Ω), where Ω is a consistent estimator of the asymptotic variance of dτ .9

Mitchell and Wallis (2011) discuss the value of information-based methods for evaluating
forecast densities that look well-calibrated from the perspective of the pits.
Examining the goodness of fit and independence pits tests presented in the first row

of the top panel of Table 1, we see that the real-time inflation ensemble forecast densities
from the baseline VAR specifications are well calibrated at a 90 percent confidence level.
(Instances of appropriate calibration are marked in boldface.10) The two rows in the
bottom panel of Table 1 show the pits-based tests for our two univariate time series
models: the AR2 and the IMA. The AR2 fails the LR and LB tests at a 90 percent
confidence level; and the IMA fails the LR.11 The final column of Table 1 shows the
average log score over the evaluation period. The KLIC-based tests for the baseline VAR
ensemble relative to the AR2 (IMA) give a p-value of 0.00 (0.02). The baseline ensemble
outperforms the univariate benchmarks.12

The densities constructed using our dove scenario (based on linear time trend measures
of the output gap) are shown in the second row of the top panel of Table 1. This ensemble
does not produce well-calibrated inflation forecast densities, failing both the LR and AD
tests at a 90 percent confidence level. The dove ensemble betters the univariate time series
models, but not by much: the KLIC-based tests using the log scores (last column) reveal
an insignificant improvement relative to the AR2 (IMA) with a p-value of 0.22 (0.82).13

Even though the inflation nowcast densities from the dove ensemble are not particu-
larly well calibrated, the policymaker might wish to make use of both the dove and baseline
specifications. Prominent members of the Federal Open Market Committee could insist,
for example, on consideration of an alternative scenario. Hence, we examine the Grand
Ensemble (GE) of the two, presented in the third row of the top panel of Table 1.14 We

9When evaluating the forecast densities we abstract from the method used to produce them. Amisano
and Giacomini (2007) and Giacomini and White (2006) discuss more generally the limiting distribution
of related test statistics.
10To control the joint size of the four evaluation tests applied would require the use of a stricter p-value.

For example, the Bonferroni correction indicates a p-value threshold, for a 90 percent confidence level, of
(100− 90)/4 = 2.5 percent, rather than 10 percent.
11We also examined (but do not report) AR benchmarks with lag order 1,3 and 4, with no qualitative

differences in the results. The IMA model for inflation takes the form: ∆πt = α+ εt + θεt−1.
12A companion paper, Garratt et al (2011), describes the forecasting performance for inflation of this

VAR ensemble using US, Australian, Norwegian and New Zealand data. In all cases, the ensemble out-
performs simple autoregressive benchmarks for density forecasting. And, for the longer US and Australia
samples, the ensembles outperform simple equal-weighted density averages.
13The KLIC-based test of forecast density performance of the baseline ensemble relative to the linear

time trend ensemble has a p-value of 0.14.
14The weights on each ensemble were recursively computed using equation (6). An alternative approach,

described by Hall and Mitchell (2007) and Geweke (2010), selects the weights by optimization. We found
this alternative approach yields weights, pits-based tests and average log scores that were qualitatively
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observe well-calibrated inflation forecast densities from the GE at a 90 percent confidence
level on the basis of each individual pits test. Furthermore, the log score is somewhat
lower than for the baseline ensemble.15 The similarity between the performance of the
baseline and GE inflation density forecasts reflects the high degree of linear dependence
between them. Both yield approximately symmetric and unimodal densities throughout
the evaluation; and both appear to be well-calibrated.16

These results, which show that the univariate time series benchmarks can be bettered
in forecasting performance, are noteworthy given the well-known result in the macro
forecasting literature that parsimonious autoregressive specifications are “hard to beat”;
e.g., see Stock and Watson (2007). This view is based on measures of relative point
forecasting performance in general, and root mean square forecast error (RMSFE) in
particular. As Jore et al.(2010) explain, these benchmarks are not particularly tough to
beat at density forecasting. It is interesting to note, however, that the point forecast
from the baseline ensemble (the conditional mean of the densities) has a RMSFE ratio of
0.9106 (0.9606), relative to the AR2 (IMA) benchmark. The corresponding ratio for the
GE ensemble is 0.9155 (0.9658). Our VAR ensembles perform quite well in terms of point
forecasting.

Table 1: Forecast Density Evaluation for Inflation, 1991q2-2010q1

LR AD χ2 LB Log Score
Baseline Ensemble 0.16 0.54 0.68 0.39 -1.391
Dove Ensemble 0.04 0.03 0.31 0.36 -1.434
Grand Ensemble 0.27 0.61 0.80 0.52 -1.375
AR2 0.04 0.13 0.16 0.04 -1.473
IMA 0.08 0.22 0.11 0.18 -1.441

Notes: LR is the p-value for the Likelihood Ratio test of zero mean, unit variance and zero
first order autocorrelation of the inverse normal cumulative distribution function transformed
pits, with a maintained assumption of normality for the transformed pits; AD is the small-
sample (simulated) p-value from the Anderson-Darling test for uniformity of the pits assuming
independence of the pits. χ2 is the p-value for the Pearson chi-squared test of uniformity of
the pits histogram in eight equiprobable classes. LB is the p-value from a Ljung-Box test for
independence of the pits based on autocorrelation coefficients up to four. Log Score is the average
logarithmic score over the evaluation period. The Grand Ensemble statistics are computed over a
shorter evaluation period, reflecting the need for an extra training period (here set to 9 quarters).

similar.
15The KLIC-based log score tests of the GE relative to the AR2 (IMA) benchmark have a p-value of

0.00 (0.02).
16We experimented with modelling the dependence using a Gaussian copula. The copula opinion pool

yielded very similar calibration properties and a similar average log score to the GE.
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4.3 Output gap nowcasts

Since our approach is based on the idea that none of the output gap measures correspond
to the true output gap, and density evaluation requires an “outturn”, we do not report
pits-based tests for the output gap. Instead, in Figure 1, we focus on characterizing
the forecast densities from the GE output gap.17 The dates to which the nowcast refers
are provided along the x-axis in Figure 1, and the size of the output gap is along the
y-axis. The nowcasts for the GE are from 1993q3 to 2010q1 (reflecting the additional
9 observations used as a training period to initialize the weights). The shades of the
forecast densities indicate probability mass, with highest mass represented by white, and
lowest mass represented by black. For many observations “twin peaks” (or more) are
discernible, often with one peak close to zero (from the baseline case) and another almost
always substantially below zero (from the dove scenario). It is also noteworthy that
the business cycle is slightly asymmetric in so far as the upswings of the economy are
of long duration but contractionary spells are relatively short; see the discussion of the
asymmetric business cycle in Morley and Piger (2011).
Reporting a central measure of the output gap, even augmented with a single measure

of dispersion (such as the forecast error variance), would not give an accurate representa-
tion of the nowcast uncertainty in the presence of this multi-modality. Perhaps with this
in mind, central banks often focus on the probability of particular events of interest, such
as the sign of the output gap. In Figure 2, we plot the probability of a negative output
gap Pr(yt < 0), using both our baseline ensemble (solid line), and the GE (broken line);
the difference between the two reflects the impact of the dove alternative scenario.
We make two observations about the time series of probabilities displayed in Figure

2 and the impact of the alternative scenario. First, the dove scenario tends to raise
the probability of a negative output gap. For example, for the 1993 to 1999 period,
the probability of a negative output gap generally fluctuates in the range of 30 to 70
percent for the baseline ensemble. But for the GE the probability varies between 55 and
90 percent, and always exceeds the baseline probability. Similarly, the probability of a
negative output gap fluctuates around 45 percent between 2004 and 2007 for the baseline
case. But the GE has the risk fluctuating between approximately 60 and 80 percent over
the same period. Although the baseline ensemble implies that through this sub-period
of the Greenspan monetary policy regime there was a substantial risk that real output
was below potential, the risk is assessed to be much greater with the addition of the
dove scenario. Second, during the periods in which the ex post data suggest that the US
economy contracted during 2000 and 2001, the probability of a negative output gap rises
very sharply, regardless of whether we look at the baseline ensemble or the GE. The two
ensembles are again very close from 2007 onwards, with the probability of output being
below potential rising progressively until late 2009. Overall we conclude that, in general,
consideration of the alternative scenario (in the GE) raises the probability of a negative
output gap considerably. But it has very modest impacts on the probability of interest

17Recall that the GE nowcasts for the output gap are based on equation (5) with the weights given by
equation (6), and that the GE inflation nowcasts based on equation (4) do not exhibit calibration failure.
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during a slump–when there is less disagreement between our various specifications about
the output gap.
Although, as we have noted, point estimates of the output gap can be misleading with

non-Gaussian predictive densities, it is interesting to compare the 5th and 95th percentiles
from our baseline ensemble with the (ex post) Congressional Budget Office (CBO) point
estimates, and the Laubach-Williams (LW) point estimates reported by Weidner and
Williams (2011).18 Figure 3 shows that the (revised) CBO measure often lies within the
confidence bounds of the baseline ensemble, particularly from 2001 to 2006.19 However,
the CBO estimates show a very marked drop with the recent slump from 2008, giving a
number of observations below the 5th percentile. The CBO estimates are also outside our
confidence bands during the late 1990s and suggest a stronger boom. In contrast to both
the CBO approach and our baseline ensemble, the LW estimates indicate a considerable
boom between 2003 and 2007, followed by a rapid decline during 2008, and then sit
comfortably within the confidence bounds until 2010. It is worth repeating that the
ensemble forecast densities for the latent output gap are “nowcasts”: one step ahead
forecasts from macro data arriving with a one-period lag. That is, they are more timely
than the CBO and LW measure shown; and our approach is based on real-time data.

5 Conclusions

We propose a methodology to gauge the uncertainty in output gap nowcsats across a
large number of commonly-deployed VARs (vector autoregessions) in US inflation and
output gap measures. We construct ensemble nowcast densities for the output gap and
inflation with a linear opinion pool. Our approach yields well-calibrated forecast densities
for inflation in real time, in contrast to those from simple univariate models which ignore
the output gap. The ensemble forecast densities for the output gap indicate considerable
uncertainty and admit multi-modality, allowing the researcher to distinguish between the
impacts of baseline and alternative scenarios on nowcast probabilities. Our “dove” sce-
nario (which uses alternative output gap measurements) on average raises the probability
of a negative output gap during our evaluation period. But the alternative scenario has
little impact in slumps, when there is more agreement about the sign of the output gap
nowcast across our VAR specifications.

18We are grateful to Justin Weidner and John Williams for supplying the point estimates used in this
plot. Details of the CBO approach can be found CBO (2001).
19The GE, which allows for the dove scenario, gives more diffuse predictive densities for the output

gap, with much higher probability mass below zero; see Figure 1.
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Appendix 1: Output trend definitions

We summarize the seven detrending specifications below.

1. For the quadratic trend based measure of the output gap we use the residuals from a
regression (estimated recursively) of output on a constant and a squared time trend.

2. Following Hodrick and Prescott (1997, HP), we set the smoothing parameter to be
1600 for our quarterly US data.20 This two-sided filter relates the time-t value of the
trend to future and past observations. Moving towards the end of a finite sample
of data, it becomes progressively one-sided, and its properties deteriorate; see Mise,
Kim and Newbold (2005).

3. To address the one-sided problem resulting from the HP trend, we use a forecast-
augmented HP trend (again, with smoothing parameter 1600), with forecasts gener-
ated from an univariate AR(8) model in output growth (estimated recursively using
the appropriate vintage of data). The implementation of forecast augmentation
when constructing real-time output gap measures for the US is discussed at length
in Garratt, Lee, Mise and Shields (2008).

4. Christiano and Fitzgerald (2003) propose an optimal finite-sample approximation
to the band-pass filter, without explicit modelling of the data. Their approach
implicitly assumes that the series is captured reasonably well by a random walk
model and that, if there is drift present, this can be proxied by the average growth
rate over the sample.

5. We also consider the band-pass filter suggested by Baxter and King (1999). We
define the cyclical component to be fluctuations lasting no fewer than six, and no
more than thirty two quarters–the business cycle frequencies indicated by Baxter
and King (1999). Watson (2007) reviews band-pass filtering methods.

6. The Beveridge and Nelson (1981) decomposition relies on a priori assumptions about
the correlation between permanent and transitory innovations. The approach im-
poses the restriction that shocks to the transitory component and shocks to the
stochastic permanent component have a unit correlation. We assume the ARIMA
process for output growth is an AR(8), the same as that used in our forecast aug-
mentation.

7. Finally, our Unobserved Components model assumes qt is decomposed into trend,
cyclical and irregular components

qt = μ7t + y7t + ξt, ξt ∼ i.i.d. N(0, σ2ξ), t = 1, . . . , T (A1.1)

20We could, of course, allow for uncertainty in the smoothing parameter. We reduce the computational
burden in this application by fixing this parameter at 1600.
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where the stochastic trend is specified as

μ7t = μ7t−1 + βt−1 + ηt, ηt ∼ i.i.d. N(0, σ2η) (A1.2)

βt = βt−1 + ζt, ζt ∼ i.i.d. N(0, σ2ζ). (A1.3)

Letting σ2ζ > 0 but setting σ2η = 0, gives an integrated random walk, which when
estimated tends to be smooth. The cyclical component is assumed to follow a
stochastic trigonometric process:∙

y7t
y7∗t

¸
= ρ

∙
cosλ sinλ
− sinλ cosλ

¸ ∙
y7t−1
y7∗t−1

¸
+

∙
κt
κ∗t

¸
(A1.4)

where λ is the frequency in radians, ρ is a damping factor and κt and κ∗t are two
independent white noise Gaussian disturbances with common variance σ2κ. We esti-
mate this model by maximum likelihood, exploiting the Kalman filter, and estimates
of the trend and cyclical components are obtained using the Kalman smoother.
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Appendix 2: Predictive densities from the VAR model

This appendix provides the formula for the predictive density from the VAR models
with non-informative priors. For related discussion see Zellner (1971), pp. 233-236.21

Stack the VAR model, (1), as

Yj= ZjAj+Ej, (A2.2)

where

Yj=

⎡⎢⎢⎣
yj1
yj2

yjT

⎤⎥⎥⎦ , yjt = £
πt y

j
t

¤
, zjt = yjt−1, Z

j=

⎡⎢⎢⎣
zj1
zj2

zjT

⎤⎥⎥⎦ with Ej defined from ²jt con-

formably.
Denote the usual Ordinary Least Squares coefficient estimators as bAj and bΣj. Integrat-

ing out the coefficients, as in Zellner, the one step ahead posterior predictive density for
yjT+1 follows a multivariate t with mean z

j
T+1

bAj, covariance
£
1 + zjT+1(Z

j0Zj)−1zj0T+1
¤ bΣj,

with T degrees of freedom.
We note that h-step ahead densities (h > 1) could also be produced in a similar manner

utilizing the direct forecast methodology; see Marcellino, Stock and Watson (2006).

21In what follows, we use Z0 to denote the transpose of Z.
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Figure 2: Probability of a Negative Output Gap, Baseline and Grand Ensemble

 

 

Baseline
Grand Ensemble



1994 1996 1998 2000 2002 2004 2006 2008 2010
-8

-6

-4

-2

0

2

4
Figure 3: Baseline Ensemble Confidence Bands for the Output Gap, with Selected Point Estimates
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