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Abstract

This paper employs concepts from information theory to choosing the
dimension of a data set. We propose a relative information measure
connected to Kullback-Leibler numbers. By ordering the series of the
data set according to the measure, we are able to obtain a subset of
a data set that is most informative. The method can be used as a
first step in the construction of a dynamic factor model or a leading
index, as illustrated with a Monte Carlo study and with the U.S.
macroeconomic data set of Stock and Watson [22].
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1 Introduction

With the proliferation of huge data sets a natural question to ask is how

much information there is in a data set. Is there an ‘optimal’ size of the data

set in relation to some variable(s) of interest, in other words can we confine

attention to a subset of the series instead of having to monitor all series in

a data set? The question seems especially relevant for factor models, which

exploit the idea that movements in a large number of series are driven by a

limited number of common ‘factors’. For a recent overview see Bai and Ng

[4].

Although convergence of factor estimates requires large cross-sections and

large time dimensions, see e.g. Forni and Lippi [10] and Bai [1], the data

set need not be very large to obtain reasonably precise factor estimates.

Boivin and Ng [7] and Inklaar, Jacobs, and Romp [14] find that some 40

variables are sufficient using Monte Carlo simulations and a comparison to

conventional NBER-type business cycle indicators, respectively. Bai and Ng

[2] also conclude that the number of series need not be very large to get

precise factor estimates. The question whether we can confine attention to a

subset of the variables is also relevant for the construction of leading indexes,

which aims at selecting indicators with predictive power out of a large number

of candidates too.1

Building upon Otter and Jacobs [19], the paper exploits concepts from

information theory, in particular Kullback-Leibler numbers, to analyse infor-

1Another issue in the construction of (dynamic) factor models is the determination of
the number of factors. For a discussion of the literature and a criterion for the determi-
nation of the number of factors see Otter, Jacobs and den Reijer [20].

1



mation in the data.2 We propose a relative information measure based on

Gaussian distributed data with a clear link to Kullback-Leibler numbers. The

measure is discussed in more detail assuming an approximate factor struc-

ture in the data. A recursive procedure including a test is given whether

an additional variable adds information. Ordering the series of the data set

according to the measure enables us to identify a subset of a data set that is

most informative. The method can be used as a first step in the construction

of a dynamic factor model or a leading index.

Our paper is related to Bai and Ng [5], who study ‘hard’ and ‘soft’ thresh-

olding to reduce the influence of uninformative predictors for a variable from

the point of view of factor forecasting. Hard thresholding involves some

pretest procedure, while under soft thresholding the top ranked predictors

according to some soft-thresholding rule are kept. Our paper fits into the

category of soft thresholding; we also seek to identify a subset of a larger

data set that is most informative. However, in contrast with the penalized

regression models studied by Bai and Ng [5], the Least Absolute Shrinkage

Selection Operator (LASSO) model of Tibshirani [23] and the elastic net

rule of Zou and Hastie [25], our method is based on a quantitative measure

of information adopting a factor model framework and does not rely on an

external regression method.

We illustrate the concepts with a Monte Carlo simulation and with the

macroeconomic data set of Stock and Watson [22], which consists of 132

monthly U.S. variables and runs from 1959–2003. We find that relative in-

2Jacobs and Otter [15] apply similar information concepts to derive a formal test for
the number of common factors and the lag order in a dynamic factor model.
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formation is indeed maximized for a limited number of series. In the Stock

and Watson data set relative information is maximized for 40–50 series, if we

are interested in modelling industrial production and CPI inflation.

The paper is structured as follows. Section 2 discusses our relative infor-

mation measure, how it works out assuming an approximate factor structure

in the data, and presents a test procedure. After a Monte Carlo study in

Section 3, we apply our method to the U.S. data set of Stock and Watson

[22] in Section 4. Section 5 concludes.

2 Information in data

2.1 Kullback-Leibler numbers and information

Let f1(x̃) : x̃ ∼ NN (0,Γ = CΛC ′) be the density function of an N -

dimensional data vector x (time index suppressed), then f1(x) : x ∼ NN (0,Λ)

where x = C ′x̃. Let f2(x̃) : x̃ ∼ NN (0, IN). Then f2(x) : x ∼ NN (0, IN)

with x = C ′x̃. The so-called Kullback-Leibler numbers are defined as

G1 = Ef1

(
log

(
f1(x)

f2(x)

))
and G2 = Ef2

(
log

(
f2(x)

f1(x)

))
, (1)

and G = G1 + G2 is the measure of information for discriminating between

the two density functions with G = 0 in case f1(x) = f2(x) and G = ∞ in

case of perfect discrimination, see Young and Calver [24], p245. For a general

background see Burnham and Anderson [8].

For tr (Γ ) = tr(Λ) = N we have G1 = −logdet(Λ), where G1 is the mean

information in x for discriminating between f1(x) and f2(x), see Kullback
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and Leibler [16], and G2 = logdet(Λ) + 1
2

(tr(Λ−1)−N). Therefore

2G = tr(Λ−1)−N = tr(Λ−1)− tr(Λ) =
N∑
j=1

(1− λ2j)
λj

=
N∑
j=1

(1− λj)(1 + λj)

λj
,

(2)

from which it can be seen that G is small (not discriminating) if the eigenval-

ues λj are close to 1, but becomes large (discriminating) for “small” eigen-

values.

We can also use the entropy measure. Let xt again be an N -dimensional

vector of observed data at time t, t = 1, . . . , T . The data is demeaned and

normalized, and normally distributed with mean zero and variance E(xtx
′
t) =

Γ , i.e. xt ∼ N(0,Γ ), where diag(Γ ) = (1, 1, . . . , 1) and tr(Γ ) = N . Here

we make the additional assumption that all eigenvalues are positive. The

entropy as measure of disorder for a stationary, normally distributed vector

is given by

2Hx = −2 Ex [log f(x)] = cN + logdet(Γ ),

where c ≡ log(2π) + 1 ≈ 2.84, with 2Hx,max = cN in case Γ = IN , see e.g.

Goodwin and Payne (1977) [11]. The information or negentropy is defined

as

2Infx ≡ 2(Hx,max −Hx) = −logdet(Γ ) ≥ 0, (3)

which is zero in case Γ = IN . This measure coincides with Kullback-Leibler

information G1. We define the relative information as

InfRN =
2Hmax − 2Hx(N)

2Hmax

=
2InfN
2Hmax

=
2InfN
cN

. (4)
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If Hx(N) is equal to Hmax then InfRN = 0; if Hx(N) = 0 then InfRN = 1. The

relative information equals the weighted mean information per variable in

the data vector xt, where the weight is 1/c.

2.2 Relative information measure InfRn in the approxi-

mate factor model

In this section we consider the relative information measure in more detail

assuming an approximate factor structure in the data. Let the n-dimensional

data vector xt be driven by k factors

xt = BnFt + εt, xt ∈ Rn, Ft ∼ Nk (0, Ik) , εt ∼ Nn(0,Ψ11), (5)

whereBn ∈ Rn×k is the matrix of factor loadings, and the idiosyncratic errors

εt are allowed to be ‘weakly’ correlated across n and t. Since a dynamic factor

model with q factors and p lags can be written as a static factor models with

r = q(p + 1) factors (see e.g. Bai and Ng [4], Section 2), the approximate

factor model of Equation 5 is sufficiently general to cover the static and the

dynamic case. The generalized dynamic factor structure of Forni and Lippi

[10] and Forni et al. [9] can be dealt with too.

The variance between the n elements of xt is equal to Γ (n) = BnB
′
n+Ψ11.

Adding a variable xn+1,t we have

 xt

xn+1,t

 =

 Bn

bn+1

Ft +

 εt

εn+1,t

 , (6)
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with covariance Γ (n+1) =

 Γ (n) Γ12

Γ21 1

, where Γ12 = Bnb
′
n+1+Ψ12 with

Ψ12 = E(εtεn+1,t). Because of the normalisation we have bn+1b
′
n+1+σ2

n+1 = 1,

where σ2
n+1 = E(ε2n+1,t). Variable xn+1,t adds information if E(xn+1,tx

′
t) =

(bn+1B
′
n + Ψ ′12) = Γ ′12 6= 0. This condition can be tested by means of the

procedure described in Section 2.3 below.

Using the rule of determinants for partitioned matrices we get

det(Γ (n+ 1)) = det(Γ (n))(1− an+1), (7)

with an+1 ≡ (bn+1B
′
n + Ψ ′12)Γ

−1(n)(Bnb
′
n+1 + Ψ12) and 0 ≤ (1− an+1) ≤ 1.

After some calculations the following relation between the relative informa-

tion measures InfRn+1 and InfRn can be established:

InfRn+1 = InfRn −
1

n+ 1

(
log(1− an+1)

c
+ InfRn

)
. (8)

Therefore a variable xn+1,t adds relative information, i.e. InfRn+1 > InfRn , if

− log(1−an+1) > cInfRn . The second term on the right-hand side of Equation

(8) serves as a threshold.

2.3 A recursive procedure

From the foregoing we have 2Infn = − log det(Γ (n)) and InfRn = 2Infn/cn.

(i) Let the first variable, i.e. the target variable, be x1,t and a collection of

variables {xi,t, i = 2, . . . , N} with Γ (2) = E


 x1,t

xi,t

( x1,t xi,t

) =
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 1 r1,i

r1,i 1

, where r1,i is the correlation between x1,t and xi,t. Choose

{xi,t, i = 2, . . . , N} such that 2Inf2 = − log det(Γ (2)) = − log(1− r21,i)

is maximum.

(ii) From Equation (7) we have for n = 2, 3, . . .

2Infn+1 = 2Infn − log(1− an+1).

Choose the variable {xj,t, j = n+1, . . . , N} such that an+1 is maximum.

Then we have from Equation (8)

InfR,max
n+1 = InfR,max

n − 1

n+ 1

(
log(1− amax

n+1)

c
+ InfR,max

n

)
,

with increasing relative information if amax
n+1 > 1− exp(−cInfR,max

n ).

(iii) The procedure is related to Canonical Correlation (CC) and can be sim-

plified as follows. Let Γ (n + 1) = E


 xt

xn+1,t

( xt xn+1,t

) =

 Γ (n) Γ12

Γ21 1

. Consider the linear transformation

 x̃t

x̃n+1,t

 =

 L1 0

0 v−1


 xt

xn+1,t

 ,

with Γ (n) = CΛC ′ regular and L1 = U ′Λ−1/2C ′ with U orthogonal,

i.e. U ′U = UU ′ = In and v2 = 1 obtained by the SVD: Λ−1/2C ′Γ12 =
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UΣv with Σ = (φ1,n+1 0 . . . 0)′, where φ1,n+1 is the CC-coefficient

with 0 ≤ φ1,n+1 < 1. The covariance of

 x̃t

x̃n+1,t

 is Γ̃ (n + 1) =

 In Σ

Σ′ 1

. Then 2 ˜Infn+1 = − log(1−φ2
1,n+1) which is maximized by

choosing (xj,t, j = n+1, . . . , N) such that φ1,n+1 is maximum, assumed

to be less than one. The eigenvalues of Γ̃ (n + 1) are λ̃1 = 1 + φ1,n+1,

λ̃j = 1 for j = 2, . . . , n and λ̃n+1 = 1−φ1,n+1 and 2 ˜Infn+1 is maximized

by minimizing the smallest eigenvalue of Γ̃ (n+ 1) for n = 3, 4, . . ..

The eigenvalues can be related to the Kullback-Leibler (KL) measure 2G, see

Equation (2). For Γ (n+ 1) with eigenvalues {λj, j = 1, . . . , n+ 1} we have

Infn+1 = −
∑n+1

j=1 log λj ≤
∑n+1

j=1
1
λj
− (n+ 1) = G, because log(x) ≤ x− 1 for

all positive x, and for Γ̃ (n+ 1) we have ˜Infn+1 ≤
φ21,n+1

1−φ21,n+1
, from which it can

be seen that the upper bound is maximized by choosing φ2
1,n+1 maximum.

Infn+1 and ˜Infn+1 are related as follows. Taking determinants from

Γ̃ (n+ 1) =

 L1 0

0 v−1


 Γ (n) Γ12

Γ21 1


 L′1 0

0 v−1

 ,
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we have after some calculations

det(Γ̃ (n+ 1)) = det(Λ−1) det(Γ (n+ 1)), so

2Infn+1 =2Infn − log(1− φ2
1,n+1) and

2Infn+1 =2Inf2 −
n+1∑
j=3

log(1− φ2
1,j),

with starting value 2Inf2 = − log(1 − r21,i) introduced above. Define δ ≡

(1− φ2
1,n+1) exp(cInfRn ) we have from Equation (8) with an+1 = φ2

1,n+1

InfRn+1 − InfRn = − 1

c(n+ 1)
log δ

which is positive if δ < 1, negative if δ > 1, and zero if δ = 1. (iv) Replacing

Γ̃ (n + 1) by a consistent estimate ˆ̃Γ (n + 1) and applying the same SVD

procedure yields ˆ̃Infn+1 = − log(1− φ̂
2

1)/2. Under H0 : φ1 = 0, the Bartlett

test statistic

−[T − 1/2(n+ 2)] log(1− φ̂
2

1) = [T − 1/2(n+ 2)]2 ˆ̃Infn+1

follows asymptotically a χ2-distribution with n degrees of freedom, see e.g.

Muirhead [17]. Testing the hypothesis φ1 = 0 is basically testing whether

the transformed vector (x̃′t x̃n+1,t)
′ has maximum entropy, i.e. no correlation

at all.
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2.4 MSE-prediction

From the foregoing we have x̃t = L1xt with L1 = U ′Λ−1/2C ′. Given

a realization x̃n+1,t = v−1xn+1,t the conditional mean (predictor) of x̃t is

x̃Pt = Σx̃n+1,t with conditional variance var{x̃Pt } = I −ΣΣ′ = diag((1 −

φ2
1), 1, . . . , 1) and information − log(1 − φ2

1)/2. Hence if φ1 = 0 implying

Σ = 0 the vector x̃Pt has maximum entropy and no information.

The conditional MSE-predictor of xt itself is

xPt = L−11 x̃
P
t = φ1CΛ

1/2u1x̃n+1,t,

where u1 is the first column of the orthonormal matrix U . The conditional

variance of xPt is

var{xPt } = L−11

(
L−11

)′ −L−11 ΣΣ
′ (L−11

)′
= Γ (n)−L−11 ΣΣ

′ (L−11

)′
,

from which it can be seen that Γ (n) exceeds var{xPt } by a positive definite

matrix if φ1 > 0. Therefore adding a variable in case φ1 > 0 increases the

MSE prediction quality measured as a decrease in the variance of xPt .

2.5 Comparison to standard information criterion-based

measures

Let X =

[
x1 X∗

]
∈ RT×N with x1 ∈ RT the time series of the target vari-

able x1,t and X∗ the ordered data set according to the procedure described
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above. Apply a Singular Value Decomposition (SVD)

X = USC ′ = U1S1C
′
1 +U2S2C

′
2 = X̂ +E, (9)

where U1 ∈ RT×k consists of the first k principal components (PC) of X.

This procedure is identical to Stock and Watson [21], who propose prin-

cipal components as an estimator for unobserved factors F SW and, sub-

sequently, employ a linear projection of the data on the factors to esti-

mate the factor loadings. The largest k eigenvectors of the sample covari-

ance matrix 1
T
X ′X can be obtained as 1√

T
X ′ 1√

T
X ′ = C1S̄

2
1C
′
1 and so,

in matrix notation, F̂ SW = XC1. Let the factor loadings matrix BSW

be obtained by the linear projection of X on F̂ SW . So, X = F̂ SWBSW

and B̂SW =
(
F̂ SW

′
F̂ SW

)
F̂ SW

′
X that leads to B̂SW = C

′
1 and X̂SW =

XC1C
′
1. To see the equivalence, employ Equation (9) for X, which leads

to X̂SW=
[
U1S1C

′
1 +U2S2C

′
2

]
C1C

′
1 = U1S1C

′
1, or equivalently, F̂ SW =

XC1 = U1S1.

We partition

X̂ =

[
x̂1 X̂∗

]
= U1S1

[
c̄11 C̄12

]
and

E =

[
ex̂1 EX̂∗

]
= U2S2

[
c̄21 C̄22

]
.

The PC estimate of x1 is x̂1 = U1S1c̄11 with error ex̂1 = U2S2c̄21 and

x̂′1x̂1 =
∑k

j=1 s
2
j c̄

2
11,j and e′x̂1ex̂1 =

∑N
j=k+1 s

2
j c̄

2
21,j−k. Since x1 is standardized,

it holds that (x̂′1x̂1+e′x̂1ex̂1)/T = 1 and so, we can interpret the commonality
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ratio x̂′1x̂1/T as the part of the variance that can be approximated by using

the factor basis U1S1.

The Akaike information criterion (AIC) for this model (see e.g. Greene

[12] Section 7.4) becomes

AIC(k) = log

(
N∑

j=k+1

λ̂j c̄
2
21,j−k

)
+

2k

T
, (10)

where X ′X/T = CΛ̂C ′ with s2j/T = λ̂j and T > N . The quality of

the selection procedure can be judged with the AIC of Equation (10) for

increasing number of variables n.

3 Monte Carlo experiment

We generate data from the generalized dynamic factor structure

xit = Bi1 (L)F1t + ...+Bk1 (L)Fkt + eit, (11)

where Bi1 (L) =
∑∞

i=0B
(u)
ij L

u with lag operator L, factor loadings B
(u)
ij , fac-

tors Fjt and idiosyncratic term eit. We replicate Onatski’s [18] modification

of Hallin and Lǐska’s [13] Monte Carlo experiment and generate data from

model (11) as follows:

1. the k-dimensional factor vectors Fjt are i.i.d. N(0, Ik).

2. the filters Bik (L) , (i = 1, ..., n; k = 1, ..., q) are randomly gener-

ated independently from the Fjt’s by the AR loadings: Bik (L) =

12



b
(0)
ij

(
1− b(1)ij L

)−1 (
1− b(2)ij L

)−1
with i.i.d. and mutually independent

coefficients b
(0)
ij ∼ N (0, 1) , b

(1)
ij ∼ U [.8, .9] and b

(2)
ij ∼ U [.5, .6]

3. the idiosyncratic components eit follow AR (1) processes both cross-

sectionally and over time: eit = ρieit−1 + vit and vit = ρvi−1t + uit,

with i.i.d coefficients ρi ∼ U [−.8, .8] , ρ = 0.2 and uit ∼ N (0, 1) i.i.d.

and independently generated from Bik (L) and Fjt, cf. Onatski [18].

The support [−.8, .8] of the uniform distribution has been chosen to

match the range of the first-order autocorrelations of the estimated

idiosyncratic components of the Stock and Watson [22] dataset.

4. For each i, the variance of eit and that of the common components∑k
j=1Bij (L)Fjt are normalized such that their variances equal 0.4 +

0.05k and 1 − (0.4 + 0.05k), respectively. Hence, a 2−factor model

explains 50% of the data variation and a 7−factor model 75% for σ = 1.

As a final step, the idiosyncratic part is magnified by σ ≥ 1.

We calibrate the Monte Carlo simulation with T = 500, N = 200, k = 3,

σ = 3, ρ = 0.2 and finally, we magnify the idiosyncratic part by i/N and

the common part by (N − i) /N for i = 1, ..., N . Then, we implement the

recursive procedure of Section 2.3 using the first generated variable of the

simulation as the target variable. Figure 1 shows the relative information

criterion and the p-values of the variable addition test statistic. Figure 2

shows the corresponding commonality ratio x̂′1x̂1/T and the AIC criterion

of Section 2.5. For both figures, the ordered data set runs from n = 4, ..., N

to ensure that the number of variables is larger than the number of factors

k = 3.
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Figure 1: Relative information
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The p-value of the variable addition test in Figure 2 indicates that a lot

of series are informative, whereas the relative information—measured by the

ratio of information, InfN , and maximum entropy cN —is maximized for

around 20 series. The latter observation also holds for the commonality ratio

and the AIC of Figure 1. More than this number of series add information

to the ordered data set, i.e. InfN+1 > InfN , but apparently the additional

information does not exceed the increase in entropy in these series, InfN+1−

InfN < c(N + 1)− cN = c, and therefore InfRn+1 < InfRn .

4 Application

In the application below, we use the relative information measure introduced

above to order a macroeconomic data set. Plots of the relative informa-
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Figure 2: AIC and commonality ratio
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tion measures against the number of variables indicate which subset is most

informative for factor modelling.

4.1 The Stock and Watson data set

In this section we evaluate the performance of the suggested approach on the

Stock and Watson (2005) U.S. macroeconomic data set, which consists of

monthly observations on N = 132 macroeconomic time series from 1960M1

up to and including 2003M12 (T = 528). The series cover 14 categories: real

output and income; employment and hours; real retail, manufacturing and

trade sales; consumption; housing starts and sales; real inventories; orders;

stock prices; exchange rates; interest rates and spreads; money and credit

quantity aggregates; price indexes; average hourly earnings; and miscella-
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neous. The series are transformed by taking logarithms and/or differencing

when necessary to assure approximate stationarity. In general, first differ-

ences of logarithms (growth rates) are used for real quantity variables, first

differences are used for nominal interest rates, and second differences of loga-

rithms for price series (changes in inflation). Moreover, the series are adjusted

for outliers by replacing the observations of the transformed variables with

absolute median deviations larger than 6 times the interquartile range with

the median value of the preceding 5 observations. The specific transforma-

tions and the list of series are given in Appendix A of Stock and Watson

[22].

Concerning the number of factors to represent the data set, different test

procedures are proposed and employed. For instance, Hallin and Lǐska [13]

find k̂ = 1 factor for the whole sample, but k̂ = 3 factors for the period 1960–

1982. Onatski [18] restricts the analysis to business cycle frequencies and

explicitly excludes cycle longer than 10 years. Employing his test procedure

as an algorithm procedure results in k̂ = 1 factors. Bai and Ng [3] estimate

k̂ = 4 factors, but point out that there is substantial variation over the

sample. Finally, Otter, Jacobs and den Reijer [20] also find k̂ = 1 for the

whole sample and substantial variation for the first part. In the computation

of the AIC and the commonality ratio below, the number of factors is set to

k̂ = 3. This choice does not affect the relative information outcomes which

are based on the recursive procedure of Section 2.3.
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4.2 Information in the data set

Using the recursive procedure described in Section 2.3, we order the data

set according to the relative information measure with respect to two target

variables: the first difference of the log of total industrial production (IP

hereafter) and the second difference of the log of the consumer price index

(CPI hereafter)The full data set consists of N = 132 time series variables,

with T = 540 observations covering the sample 1959M1–2003M12. Since the

number of observations T is much larger than the number of series N , all

eigenvalues of the covariance matrix of xt differ from zero and our relative

information measure is computationally stable.

Table 1 presents the orders of the first 50 variables according to the two

relative information criteria for both target variables. The table allows the

following observations. The first ten series that are included in the subset for

IP belong to the group of Industrial Production; the first ten series for CPI

are price indices. Second, price indices are generally speaking not informative

for IP (the exception is series # 114: NAPM commodity price index), while

production series do not appear in the first fifty variables of the ordered

data subset for CPI (with one exception series # 19: NAPM production).

Finally, variables enter the ordered data sets in clusters. For IP, the relative

information measure first selects a group of industrial production variables,

followed by employment series, interest rates and spreads, and housing starts

and sales. With CPI as target variable, the relative information measure

starts with picking price indices, followed by employment, orders, interest

rates and spreads, housing starts and sales, and employment.
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Table 1: Ranking of series according to relative information

IP CPI
order series # series #

1 6 115
2 16 124
3 20 123
4 7 119
5 8 125
6 13 127
7 14 122
8 9 117
9 12 128
10 11 121
11 19 39
12 62 37
13 61 38
14 50 34
15 64 33
16 37 40
17 38 41
18 34 43
19 33 50
20 40 61
21 41 19
22 43 62
23 42 64
24 63 42
25 114 63
26 39 114
27 102 102
28 101 101
29 100 100
30 99 99
31 97 98
32 96 97
33 98 96
34 95 95
35 59 59
36 54 54
37 56 56
38 51 51
39 60 60
40 55 55
41 58 58
42 53 53
43 57 57
44 52 52
45 49 49
46 47 47
47 44 44
48 36 36
49 74 74
50 68 68

Notes. See the table in the appendix for the description of the variables.
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Figure 3 shows the evolution in relative information if we order the data

set according to the target variables IP (top panel) and CPI (bottom panel).

The figure reveals that sometimes relative information, or weighted mean

information per variable, decreases with the addition of a single series, but

increases if a batch of variables is added. For both target variables relative

information attains a global maximum if we take between 40 and 50 series

in line with the findings of Boivin and Ng [6] and Inklaar et al. [14]. This

conclusion is supported by the AIC and commonality ratio in Figure 4.

Figure 3 also shows p-values of the test described in Section 2.3 whether

an additional variable adds information. The null hypothesis is that an ad-

ditional variable is not correlated with the variables already included in the

set. Hence, low p-values indicate that an additional variable adds infor-

mation. We note that the outcomes of the test are not sensitive to the

initial condition, i.e. the choice of the target variable. The figure sug-

gest that some 120 series are informative. This finding does not contra-

dict our conclusion that relative information, or weighted mean information

per variable, measured by the ratio of information, InfN , and maximum en-

tropy cN , is maximized for 40–50 series. More than this number of series

add absolute information to the ordered data set, i.e. InfN+1 > InfN for

40 < N < 120, because log(1 − aN+1) < 0 for 0 < aN+1 < 1, see Equation

(7). However, for 40 < N < 120 we have for the relative information measure

cInfRN > | log(1 − aN+1)|, see Equation (8), cf the discussion at the end of

Section 3.
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Figure 3: Relative information of ordered data set
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Figure 4: AIC and commonality ratio

Target variable: IP
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5 Conclusion

This paper fruitfully applied concepts from information theory in the anal-

ysis of large data sets. We defined a relative information measure linked to

Kullback-Leibler numbers. The application of the measures enabled us to

order a data set and to identify a subset of the data that is most informative.

We illustrated our methods with a Monte Carlo study and the Stock and

Watson U.S. macroeconomic data set consisting of 132 times series variables

with 540 observations. Both analyses show that relative information is max-

imized for a limited number of series. In the Stock and Watson data set

relative information is maximized for around 40–50 series if we are interested

in modelling industrial production and CPI inflation. We conclude that our

method can indeed produce a considerable reduction in the dimension of a

data set, which implies less series that have to be monitored.

Our relative information measure is based on the eigenvalues of the covari-

ance matrix of the data, which is only defined if the number of observations

T exceeds the number of series N . Future research will deal with the mirror

situation of N > T .
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Appendix A: The Stock and Watson U.S.

macroeconomic data set

Table A.1 lists the 132 series of the Stock and Watson [22] U.S. data set,

with number, mnemonic, and description of the variable. For details like

the transformation applied to the series and sources see Stock and Wat-

son [22] Appendix A. As is required for factor estimation, the variables are

standardized by subtracting their mean and then dividing by their standard

deviation. This standardization is necessary to avoid overweighting of large

variance series in the factor estimation.

23



Table A.1: Description of the Stock and Watson data set

# Short name Mnemonic Description

1 PI A0M052 Personal income (AR, bil. chain 2000 $)
2 PI less transfers A0M051 Personal income less transfer payments (AR, bil. chain 2000 $)
3 Consumption A0M224 R Real Consumption (AC) A0m224/gmdc
4 M&T sales A0M057 Manufacturing and trade sales (mil. Chain 1996 $)
5 Retail sales A0M059 Sales of retail stores (mil. Chain 2000 $)
6 IP: total IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX
7 IP: products IPS11 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL
8 IP: final prod IPS299 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS
9 IP: cons gds IPS12 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS

10 IP: cons dble IPS13 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS
11 iIP:cons nondble IPS18 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS
12 IP:bus eqpt IPS25 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT
13 IP: matls IPS32 INDUSTRIAL PRODUCTION INDEX - MATERIALS
14 IP: dble mats IPS34 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS
15 IP:nondble mats IPS38 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS
16 IP: mfg IPS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC)
17 IP: res util IPS307 INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES
18 IP: fuels IPS306 INDUSTRIAL PRODUCTION INDEX - FUELS
19 NAPM prodn PMP NAPM PRODUCTION INDEX (PERCENT)
20 Cap util A0M082 Capacity Utilization (Mfg)
21 Help wanted indx LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
22 Help wanted/emp LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF
23 Emp CPS total LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)
24 Emp CPS nonag LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)
25 U: all LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
26 U: mean duration LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
27 U ¡ 5 wks LHU5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
28 U 5-14 wks LHU14 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
29 U 15+ wks LHU15 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
30 U 15-26 wks LHU26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
31 U 27+ wks LHU27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)
32 UI claims A0M005 Average weekly initial claims, unemploy. insurance (thous.)
33 Emp: total CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE
34 Emp: gds prod CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING
35 Emp: mining CES006 EMPLOYEES ON NONFARM PAYROLLS - MINING
36 Emp: const CES011 EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION
37 Emp: mfg CES015 EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING
38 Emp: dble gds CES017 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS
39 Emp: nondbles CES033 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS
40 Emp: services CES046 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING
41 Emp: TTU CES048 EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES
42 Emp: wholesale CES049 EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE
43 Emp: retail CES053 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE
44 Emp: FIRE CES088 EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES
45 Emp: Govt CES140 EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT
46 Emp-hrs nonag A0M048 Employee hours in nonag. establishments (AR, bil. hours)
47 Avg hrs CES151 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS

ON PRIVATE NONFARM PAYROLLS - GOODS-PRODUCING
48 Overtime: mfg CES155 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS

ON PRIVATE NONFARM PAYROLLS - MFG OVERTIME HOURS
49 Avg hrs: mfg AOM001 Average weekly hours, mfg. (hours)
50 NAPM empl PMEMP NAPM EMPLOYMENT INDEX (PERCENT)
51 HStarts: Total HSFR HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SAAR)
52 HStarts: NE HSNE HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.
53 HStarts: MW HSMW HOUSING STARTS:MIDWEST(THOUS.U.)S.A.
54 HStarts: South HSSOU HOUSING STARTS:SOUTH (THOUS.U.)S.A.
55 HStarts: West HSWST HOUSING STARTS:WEST (THOUS.U.)S.A.
56 BP: total HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)
57 BP: NE HSBNE HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A
58 BP: MW HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A.
59 BP: South HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A.
60 BP: West HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A.
61 PMI PMI PURCHASING MANAGERS’ INDEX (SA)
62 NAPM new ordrs PMNO NAPM NEW ORDERS INDEX (PERCENT)
63 NAPM vendor del PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT)
64 NAPM Invent PMNV NAPM INVENTORIES INDEX (PERCENT)
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# Short name Mnemonic Description

65 Orders: cons gds A0M008 Mfrs’ new orders, consumer goods and materials (bil. chain 1982 $)
66 Orders: dble gds A0M007 Mfrs’ new orders, durable goods industries (bil. chain 2000 $)
67 Orders: cap gds A0M027 Mfrs’ new orders, nondefense capital goods (mil. chain 1982 $)
68 Unf orders: dble A1M092 Mfrs’ unfilled orders, durable goods indus. (bil. chain 2000 $)
69 M&T invent A0M070 Manufacturing and trade inventories (bil. chain 2000 $)
70 M&T invent/sales A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $)
71 M1 FM1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA)
72 M2 FM2 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,SA)
73 M3 FM3 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA)
74 M2 (real) FM2DQ MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI)
75 MB FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)
76 Reserves tot FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)
77 Reserves nonbor FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA)
78 C&I loans FCLNQ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI)
79 C&I loans FCLBMC WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR)
80 Cons credit CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)
81 Inst cred/PI A0M095 Ratio, consumer installment credit to personal income (pct.)
82 S&P 500 FSPCOM S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
83 S&P: indust FSPIN S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
84 S&P div yield FSDXP S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
85 S&P PE ratio FSPXE S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)
86 FedFunds FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
87 Commpaper CP90 Commercial Paper Rate (AC)
88 3 mo T-bill FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)
89 6 mo T-bill FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
90 1 yr T-bond FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)
91 5 yr T-bond FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)
92 10 yr T-bond FYGT10 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)
93 Aaabond FYAAAC BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM)
94 Baa bond FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)
95 CP-FF spread SCP90 cp90-fyff
96 3 mo-FF spread SFYGM3 fygm3-fyff
97 6 mo-FF spread SFYGM6 fygm6-fyff
98 1 yr-FF spread SFYGT1 fygt1-fyff
99 5 yr-FFspread SFYGT5 fygt5-fyff

100 10yr-FF spread SFYGT10 fygt10-fyff
101 Aaa-FF spread SFYAAAC fyaaac-fyff
102 Baa-FF spread SFYBAAC fybaac-fyff
103 Ex rate: avg EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
104 Ex rate: Switz EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)
105 Ex rate: Japan EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)
106 Ex rate: UK EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
107 EX rate: Canada EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
108 PPI: fin gds PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)
109 PPI: cons gds PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA)
110 PPI: int matls PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA)
111 PPI: crude matls PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA)
112 Commod: spot price PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100)
113 Sens matls price PSM99Q INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A)
114 NAPM com price PMCP NAPM COMMODITY PRICES INDEX (PERCENT)
115 CPI-U: all PUNEW CPI-U: ALL ITEMS (82-84=100,SA)
116 CPI-U: apparel PU83 CPI-U: APPAREL & UPKEEP (82-84=100,SA)
117 CPI-U: transp PU84 CPI-U: TRANSPORTATION (82-84=100,SA)
118 CPI-U: medical PU85 CPI-U: MEDICAL CARE (82-84=100,SA)
119 CPI-U: comm. PUC CPI-U: COMMODITIES (82-84=100,SA)
120 CPI-U: dbles PUCD CPI-U: DURABLES (82-84=100,SA)
121 CPI-U: services PUS CPI-U: SERVICES (82-84=100,SA)
122 CPI-U: ex food PUXF CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)
123 CPI-U: ex shelter PUXHS CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)
124 CPI-U: ex med PUXM CPI-U: ALL ITEMS LESS MEDICAL CARE (82-84=100,SA)
125 PCE defl GMDC PCE,IMPL PR DEFL:PCE (1987=100)
126 PCE defl: dlbes GMDCD PCE,IMPL PR DEFL:PCE; DURABLES (1987=100)
127 PCE defl: nondble GMDCN PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100)
128 PCE defl: services GMDCS PCE,IMPL PR DEFL:PCE; SERVICES (1987=100)
129 AHE: goods CES275 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS

ON PRIVATE NONFARM PAYROLLS - GOODS PRODUCING
130 AHE: const CES277 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS

ON PRIVATE NONFARM PAYROLLS - CONSTRUCTION
131 AHE: mfg CES278 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS

ON PRIVATE NONFARM PAYROLLS - MANUFACTURING
132 Consumer expect HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
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