
CENTRE FOR APPLIED MACROECONOMIC ANALYSIS 
 

The Australian National University 
 

 

 
 
___________________________________________________________________ 
 
CAMA Working Paper Series                    September, 2004 
 
___________________________________________________________________ 
 
 

 
“A THEORY OF PRODUCTION” THE ESTIMATION OF THE 
COBB-DOUGLAS FUNCTION: A RETROSPECTIVE VIEW  
 
 
 
Jesus Felipe 
Asian Development Bank 
Manila 
Philippines 
 
F. Gerard Adams 
Northeastern University 
______________________________________________________________________________ 
 
 

 
CAMA Working Paper 11/2004 

http://cama.anu.edu.au

http://cama.anu.edu.au/


 1

 “A THEORY OF PRODUCTION”1 

The Estimation of the Cobb-Douglas Function: A Retrospective View 
 

“As Solow once remarked to me, we would not now be concerned with the question [the existence 
of the aggregate production function] had Paul Douglas found labor’s share of American output 
to be twenty-five per cent and capital’s share seventy-five instead of the other way around” 
[Fisher, 1969, 572] 
 

“I hope that someone skilled in econometrics and labor will audit and evaluate my critical 
findings” [Samuelson, 1979, 934] 
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INTRODUCTION 

Despite honoring Douglas’s important contributions to economics, to the point of arguing 

that “If Nobel Prizes had been awarded in economics […] Paul H. Douglas would probably have 

received one before WWII for his pioneering econometric attempts to measure marginal 

productivities and quantify the demands for factor inputs” [Samuelson, 1979, 923], Samuelson 

[1979] offered a grave assessment of the empirical significance of the Cobb-Douglas production 

function and the associated marginal productivities. The argument that Samuelson sketched is 

that the parameters of what is believed to be an aggregate production function may be no more 

than the outcome of an income distribution identity.2  

The Cobb-Douglas production function is still today the most ubiquitous form in 

theoretical and empirical analyses of growth and productivity. The estimation of the parameters 

of aggregate production functions is central to much of today’s work on growth, technological 

change, productivity, and labor. Empirical estimates of aggregate production functions are a tool 

of analysis essential in macroeconomics, and important theoretical constructs, such as potential  
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output, technical change, or the demand for labor, are based on them. 

This paper takes up Paul Samuelson’s invitation (quoted above) to evaluate empirically 

his arguments; and it does so by using the original data set of Cobb and Douglas [1928]. 

The origins of the Cobb-Douglas form date back to the seminal work of Cobb and 

Douglas [1928], who used data for the U.S. manufacturing sector for 1899-1922 (although, as 

Brown [1966, 31], Sandelin [1976] and Samuelson [1979] indicate, Wicksell should have taken 

the credit for its “discovery”, for he had been working with this form in the 19th century). 

At the time, Douglas was studying the elasticities of supply of labor and capital, and how 

their variations affected the distribution of income [Douglas, 1934]. To make sense and interpret 

the numbers obtained, Douglas needed a theory of production. He began by plotting the series of 

output (Day index of physical production), labor (workers employed), and fixed capital on a log 

scale. He noted that the output curve lay between the two curves for the factors, and tended to be 

approximately one quarter of the distance between the curves of the two factors (Figure 1). 

 

   [FIGURE 1 ABOUT HERE] 
 

With the help of Cobb, Douglas estimated econometrically what is known today as the 

“Cobb-Douglas” production function. This seminal paper plays a paramount role in the history of 

economics, since it was the first time that an aggregate production function was estimated 

econometrically and the results presented to the economics profession, although as Levinsohn and 

Petrin [2000] note, economists had been relating output to inputs since the early 1800’s. The 

estimated OLS regression ( ) ( )βα= ttt KL BQ , where tQ , tL , and tK  represent (aggregate) 

output, labor, and capital, respectively, and B is a constant, showed that the elasticities came 

remarkably close to the observed factor shares in the American economy, i.e., α=0.75 for labor 

and β=0.25 for capital (Cobb and Douglas estimated the regression imposing constant returns to 

scale -in per capita terms. Standard errors and R2 were not reported). These results were taken, 

implicitly, as empirical support for the existence of the aggregate production function, as well as 

for the validity of the marginal productivity theory of distribution. 

Douglas [1967] documents that the Cobb-Douglas production function was received with 

great hostility. The attacks were from both the conceptual and econometric points of view. At the 

time, many economists criticized any statistical work as futile (it was argued that the neoclassical 

theory was not quantifiable). Others launched an econometric critique against this work, noticing 

problems of multicollinearity, the presence of outliers, the absence of technical progress, and the 

aggregation of physical capital. These issues were raised and discussed by Samuelson [1979].  



 3

In this paper we fully develop Samuelson’s [1979] argument that all the estimation of the 

Cobb-Douglas function does is to reproduce the income accounting identity that distributes value 

added between wages and profits. If this is the case, one must seriously question not only Cobb 

and Douglas’s original results, but the plethora of estimations carried out during the last seven 

decades. 

To begin, one must remember that two strands of the literature questioned long ago the 

notion of an aggregate production function from a theoretical point of view. These are 

summarized and discussed by Felipe and Fisher [2003]. One strand is the so-called Cambridge 

(UK) – Cambridge (USA) capital debates. In a seminal paper, Joan Robinson [1953-1954] asked 

the question that triggered such debate: “In what unit is “capital” to be measured? Robinson was 

referring to the use of “capital” as a factor of production in aggregate production functions. 

Because capital goods are a series of heterogeneous commodities (investment goods), each 

having specific technical characteristics, it is impossible to express the stock of capital goods as a 

homogeneous physical entity. Robinson claimed that only their values can be aggregated. 

Therefore, it is impossible to get any notion of capital as a measurable quantity independent of 

distribution and prices.3 

The second strand of the literature that questions the notion of aggregate production 

function is known as the aggregation literature. This one studies the conditions under which 

neoclassical micro production functions can be aggregated into a neoclassical aggregate 

production function. The best exponent of this work is Franklin Fisher, whose extensive work 

began in the mid 1960s, and was compiled in Fisher [1993]. Fisher concluded that the conditions 

for successful aggregation of micro production functions into an aggregate production function 

with neoclassical properties are so stringent that one should not expect any real economy to 

satisfy them. The conclusions of the Cambridge debates and the aggregation literature are so 

damaging for the notion of an aggregate production function that one wonders why it continues 

being used. The answer of the defenders of the use of aggregate production functions, as Cohen 

and Harcourt [2003, 209] note, is that “these ‘lowbrow’ models remain heuristically important for 

the intuition they provide, as well as the basis for empirical work, that can be tractable, fruitful 

and policy-relevant.” However, if Samuelson [1979] was correct, this instrumentalist position is 

problematic and indefensible. 

The rest of the paper is structured as follows. In the next section we re-estimate the Cobb-

Douglas function with the original Cobb-Douglas [1928] data set, taken from Pesaran and 

Pesaran [1997; data file CD.FIT] and reproduced in Table 1.  

   [TABLE 1 ABOUT HERE] 
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 We point out a series of problems, in particular the poor results obtained once an 

exponential time trend is introduced in the regression in order to capture the evolution of 

technical progress. Most likely, if Cobb and Douglas had introduced the trend in their function, 

their results would not have been published, and, as Solow pointed out, we would not now be 

discussing aggregate production functions. We then provide a simple interpretation of what the 

estimated parameters of the aggregate Cobb-Douglas production function are. As Samuelson 

[1979] conjectured, this explanation is that all the aggregate Cobb-Douglas function regression 

captures is the path of the value added accounting identity according to which value added equals 

the sum of the wage bill plus total profits. In this section, the Cobb-Douglas form is simply 

derived as an algebraic transformation of the identity. This transformation embodies the result 

that the estimated parameters must be the factor shares. Then we take a second look at the Cobb-

Douglas [1928] data set in the light of the discussion in the previous section and solve the 

conundrum regarding the time trend. We continue by asking whether the aggregate production 

function provides an adequate framework to test for constant returns to scale and competitive 

markets through the marginal productivities. This is an important question because Douglas was 

convinced that the coincidence of the estimated coefficients with the actual factor shares received 

by labor and capital corroborated the neoclassical theory of income distribution. This issue is 

relevant for today’s work. 

 

A FIRST LOOK AT THE EMPIRICAL EVIDENCE 

Table 2 reports several regressions and results very similar to those Cobb and Douglas 

obtained.4 These results will help us highlight some of the initial criticisms their work faced. The 

first regression reports unrestricted estimates of the regression ( ) ( )βα= ttt KL BQ in logarithms. 

The results indicate that the constant returns to scale restriction is not rejected by the data. These 

results are sufficiently good to validate Cobb and Douglas’s point. In particular, the two 

elasticities are relatively close to the observed factor shares in output, and thus add up to one, 

indicating constant returns to scale (chi-square test). The second regression shows the estimates 

of the regression in per capita terms and imposing the constant returns to scale restriction, as 

Cobb and Douglas estimated it initially. The implicit elasticity of labor is 0.751 with a t-value of 

16.15. 

 

   [TABLE 2 ABOUT HERE] 
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These estimates, however, soon ran into the criticism that Cobb and Douglas had not 

included a measure of technical progress in their equation. Samuelson [1979, 924] claims that 

Schumpeter was shocked that the Cobb-Douglas formula did not allow for technical progress.5 

The solution proposed was to add an exponential time trend to the regression. We therefore re-

estimated it including an exponential time trend (T), that is, ( ) ( )βαλ= tt
T

t KLe BQ , in logarithms 

and unrestricted. The results, shown in the third regression of Table 2, are somewhat surprising in 

that now the coefficient of the index of capital is negative and insignificant. Nevertheless, despite 

these results, the regression displays a fit of 0.966. The negative sign of the capital coefficient 

remains in the fourth regression, when the equation is estimated in growth rates (and worse, the 

coefficient now is statistically significant). Although the fit is lower, it is still a not negligible 

0.80. Finally, to test for stability, the fifth regression was estimated for 1899-1920. One might 

argue that the years 1921-1922 could be taken to be outliers since output dropped by almost a 

quarter and then recovered. Although the results are very poor (see elasticities), the fit continues 

to be very high. And the recursive and rolling estimations of this regression (not shown but 

available upon request) prove its fragility. Only the regression with the complete period yields 

sensible results. We thus conclude that if the computer technology of the late 1920s had allowed 

Cobb and Douglas to perform the analysis carried out here, their results would have been 

dismissed. 

We must note that the result of a negative capital coefficient is not news to those who 

have estimated Cobb-Douglas production functions. In fact, it is a standard finding [Lucas, 1970; 

Romer, 1987; Klette and Griliches, 1996; Griliches and Mairesse, 1998]. How can these results 

be interpreted if one insists that a production function has been estimated? Why does the 

regression work better without a time trend, which proxies the evolution of technical progress? 

Do we have to open the econometrics and data-mining toolkits and “torture” the data until more 

acceptable results appear (e.g., endogeneity of the regressors, unit roots and possible 

cointegration issues, lack of adjustment of the stock of capital for utilization capacity)? Or, do we 

need to develop a new growth model to justify a negative (or zero) elasticity for capital? We 

believe a more parsimonious explanation can be provided. 

 

THE INCOME ACCOUNTING IDENTITY AND THE AGGREGATE PRODUCTION 

FUNCTION 

To begin, let us write the income accounting identity for real value added (Q) i.e., 

difference between gross output and intermediate materials, at time t, which equals the sum of the 

total wage bill (W) plus total profits (Π) [Samuelson, 1979]. This is: 
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ttttttt KrLwWQ +=Π+=     (1) 

where w is the average real wage rate, L is total employment, r is the observed real profit rate (not 

the rental price of capital), and K is the stock of capital. This expression is simply an accounting 

identity that expresses how value added is divided between wages and total profits (the latter 

includes both pure profits and the imputed cost of capital), and does not require any assumption 

(e.g., economic profits are zero, constant returns). In the words of Samuelson: “No one can stop 

us from labeling this last vector [residually computed profit returns to “property” or to the 

nonlabor factor] as (RCj), as J.B. Clark’s model would permit –even though we have no warrant 

for believing that noncompetitive industries have a common profit rate R and use leets capital (Cj) 

in proportion to the (Pjqj – WjLj) elements!” [Samuelson, 1979, 932].6 

To continue with the argument, totally differentiate the identity (1) with respect to time 

and express it in growth rates. This yields: 

tttttttttttttt k)a1(ak)a1(ar̂)a1(ŵaq −++ϕ=−++−+= λλ   (2) 

where lowercase letters denote the growth rates of the corresponding variables (and with ^ for the 

wage and profit rates), ttttt r̂)a-(1 ŵ a +=ϕ , 
t

tt
t Q

Lw
a = is the labor share, and 

t

tt
t Q

Kr
a1 =−  is 

the capital share, respectively.  

Now suppose that in this economy the factor shares are constant (i.e., )aa t = , and that 

the wage and profit rates grow at constant exponential rates, i.e., )t ŵ(
t ew =  and )t r̂(

t er = , 

where ‘t’ denotes time, and ŵ and r̂  denote the constant growth rates of the wage and profit 

rates, respectively.7 This implies that the identity equation (2), under these two assumptions, 

becomes: 

ttttt k)a1(ak)a1(ar̂ )a1(ŵ aq −++ϕ=−++−+= λλ   (3) 

where r̂a)-(1ŵa +=ϕ  is a constant. Now integrate (3). This yields: 

( ) ( ) a1
t

a
t

t
t KLe AQ −ϕ=      (4) 

where A is the constant of integration.  

What is equation (4)? Given what we have done (i.e., differentiate and integrate an 

identity), expression (4) must be the identity equation (1) rewritten under the two assumptions 

that the observed factor shares are constant and that the wage and profit rates grow at constant 

rates (i.e., equation (4) is an identity if and only if the two assumptions about the shares are 

correct). Of course, the interesting point is that (4) resembles the Cobb-Douglas production 

function with elasticities equal to the observed factor shares, and a neutral time shift. 
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This argument has several implications.8 First, if the assumptions about the observed 

factor shares and the wage and profit rates are correct, and if one estimates an equation like (4) 

unrestricted, it will yield a (suspicious) perfect fit with elasticities equal to the factor shares (and 

thus “constant returns”). On the other hand, if the assumptions are incorrect, estimation of 

equation (4) will not yield perfect results (how good they are will depend on how far the two 

assumptions are from the reality). If this is the case, it must be because one or both assumptions 

are empirically wrong (and thus we fitted an incorrect functional form).9 But this does not 

invalidate the argument. It simply means that we need other assumptions about the paths of the 

factor shares and wage and profit rates, thus potentially leading to other functional forms, such as 

the CES or the translog (i.e., other “aggregate production functions” which are no more than 

particular cases of the income accounting identity. See Felipe and McCombie [2001; 2003]). In 

other words, the identity Q=wL+rK can always be transformed into the form Q=F(L, K, t), where 

‘t’ is a suitable function of time –not necessarily an exponential time trend. The estimated 

function F(•) will have all the properties of a neoclassical production function. 

Second, since what has been estimated is simply an identity, or a very good 

approximation to it, nothing can be inferred. And from the econometric point of view, issues such 

as endogeneity problems and the possible inconsistency of the estimates [Levinsohn and Petrin, 

2000], the presence of unit roots (and cointegration), or the estimation method, are irrelevant. It is 

an identity! 

Finally, expressions (3) and (4) indicate that the putative elasticities must add up to one 

(i.e., “constant returns to scale”), and that they must be equal to the factor shares (i.e., “perfect 

competition”). No other result is possible. But is this the result of Euler’s theorem? Does this 

imply that the economy is characterized by constant returns and competitive markets? 

“Nonsense”, Samuelson [1979, 933] claimed. This is purely the result of the accounting identity. 

We will return to this issue in a later section. 

This analysis also leads us to questioning the standard interpretation of the coefficient of 

the time trend as a proxy for the rate of technological progress. If the aggregate production 

function does not exist because of the aggregation problems, on what grounds is such coefficient 

a measure of the rate of technical progress? What we know with certainty, because it follows 

from the identity equation (4), is that the said coefficient equals r̂ a)-(1 ŵ a +=ϕ=λ  (under the 

assumptions stated). This magnitude is simply a weighted average of the growth rates of the wage 

and profit rates, where the weights are the observed factor shares. This is a measure of 

distributional changes [Shaikh, 1980], although not necessarily in a zero-sum sense. 
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Alternatively, suppose that instead of fitting econometrically the aggregate production 

function, one carries out a growth accounting exercise. For this, one would assume that a flexible 

aggregate production function )K ,L(F )t(AQ ttt = exists, where A(t) is the level of technology 

(in general it need not be neutral). Expressing it in growth rates and further assuming profit 

maximization and perfectly competitive markets it yields tttttt k)a1(aq −++λ= λ , where tλ  

is the growth rate of technical progress [Solow, 1957]. Assume, for example, that in the economy 

under study the growth accounting exercise leads to 0k)a1(aq tttttt =−−−=λ λ . Note, 

however, that this expression is identical with equation (2), the identity in growth rates, which 

was derived without making any assumption and any reference to a production function. Overall, 

this analysis supports Samuelson’s [1979, 935-36] critical evaluation of the “residual” studies.10 

After acknowledging the criticisms for his time series work, in particular that the 

regressions were fragile after dropping a number of years, Douglas moved on to cross-section 

estimation. He thought that his results were much more robust: “It is hard to believe that these 

estimates can be purely accidental…” [Douglas, 1948, 40-1]. However, Samuelson concluded 

that they also followed purely as a cross-sectional tautology based on the residual computation of 

the nonwage share [Samuelson 1979, 932-34]. It is easy to show that a Taylor series 

approximation of the value added accounting identity written for a cross-section, and assuming 

low dispersion of factor shares, yields a form that resembles a Cobb-Douglas production function 

[Felipe, 2001a]. In this case, the transformation of the cross-section value-added identity 

iiiii KrLwQ +=  yields: 

iiiii Kln)a1(Llnarln)a1(wlnaBQln −++−++≅   (5) 

where Kln)a1(Llnarln)a1(wlnaQlnB −−−−−−=  is a constant, and a bar over the 

corresponding variable indicates the average of the cross-section. 

The Cobb-Douglas for a cross-section is: 
 

βα= iii KL A Q      (6) 
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If one now estimates a logarithmic regression of output on labor and capital for a cross-

section of industries, regions or countries, it is obvious that if ii rln)a1(wlnaBN −++=  in 

equation (5) is approximately constant (i.e., if wi and ri do not vary too much), the regression, which 

takes the form of (6), will work econometrically; and if that is the case, one will find α= a , β=(1- a ). 

As we have argued before, since there is no reference to a production function in the derivation of 

equation (5), the econometric results should not be interpreted as those stemming from any such 

function. 

 

A REEVALUTAION OF THE EMPIRICAL EVIDENCE AND A PARSIMONIOUS 

EXPLANATION 

The second step in answering the questions posed at the end of the second section is to 

provide empirical evidence. First, one must realize that, as shown above, the equations estimated 

in Table 2 can be derived from the income identity. In order to derive equation (4) from the 

identity we made two assumptions about the data. First, that the observed factor shares are 

constant; and second, that wage and profit rates grow at constant rates. If we had data on factor 

shares, both hypotheses could be tested. Since we do not, the most we can do is conjecture. Most 

likely, the first assumption is correct. Although factor shares were not exactly constant for the 

period of estimation, probably they were sufficiently constant for regression purposes.11 The 

second assumption is the one that is, most likely, incorrect, and the one that makes the regression 

with the time trend turn out with such “inexplicable” results. It is not true that wage and profit 

rates increased at a constant rate. This implies that the exponential time trend provides a poor 

approximation to the evolution of tϕ  and its inclusion in the regression biases the estimates of 

the elasticities. 
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The path of tϕ  is simply an empirical issue. Once we approximate it, we would plug it 

into equation (2) and proceed as above. We have graphed ttttt r̂ )a-(1 ŵ a +=ϕ  for a series of 

plausible values. It displays a saw-tooth shape around zero. Thus, for example, a trigonometric 

function with sines and cosines should provide a much better approximation than that provided by 

the simple linear time trend (nothing in neoclassical economics says that ‘technical progress’ 

must be approximated through a linear time trend). Through trial and error we fitted the first 

regression in Table 3, which includes as a regressor the variable 

A(t)= )]Tsin()Tcos()Tcos()T[sin( 2245 −−+  (where T denotes time, “sin” is the sine function, 

and “cos” is the cosine function), with estimated coefficient λ=0.032, statistically significant. 

Surely this approximation can still be improved. 

 

    [TABLE 3 ABOUT HERE] 

 

 Why does A(t) work? Assume in equation (2) above that the factor shares ta  and ( ta1− ) 

are constant and integrate it. This leads to a1
t

a
t

a1
t

a
tt )K()L()r( )w(Q −−= . If indeed factor 

shares were exactly constant, this expression would be the identity, and so all A(t) in the first 

regression in Table 3 does is approximate the term a1
t

a
t )r( )w( − . Therefore, we can compute the 

value of a1
t

a
t )r( )w( −  through the ratio a1

t
a

tt )K()L( /Q − . The graph of this ratio is shown in 

Figure 2, and the approximation through A(t)= )]Tsin()Tcos()Tcos()T[sin( 2245 −−+   is given 

in Figure 3. Although the approximation is not perfect (the correlation between A(t) and 

a1
t

a
tt )K()L( /Q −  is 0.588), it is certainly much better than that provided by the exponential time 

trend, and as argued above, it suggests that finding the exact path is simply a matter of trial and 

error, and a dose of patience in front of a computer. 12 

 

   [FIGURES 2 AND 3 ABOUT HERE] 
 

Summing up: what was the problem with the regression with the linear trend? While it 

appears that the factor shares were sufficiently constant for the Cobb-Douglas form to work as a 

way to approximate an accounting identity, the linear trend was a bad choice to approximate the 

weighted average of the wage and profit rates. 

Regarding the equation in growth rates, the second equation in Table 3 shows a good 

approximation to equation (2) (note the increase in fit with respect to the regression in growth 
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rates in Table 2). Notice that this is a dynamic regression. The interesting aspect of this regression 

is that it can be easily derived as a dynamic parameterization of a Cobb-Douglas production 

function in levels with two lags [Bårdsen, 1989]. The “long-run” output elasticities of labor and 

capital are given by )/( 67L γγ−=θ  and )/( 68K γγ−=θ , respectively.13 Their values (with the t-

values in parenthesis) are provided in the following row, together with the summary statistics. Once 

again, they equal the factor shares. And notice that the negative sign of the stock of capital has 

disappeared. Pesaran et al. [1999] have proposed a framework to test whether there exists a long-

run relationship among a number of variables within the current framework, irrespective of 

whether the variables are integrated of order zero, I(0), or of order one, I(1). The test is an F-

statistic for the significance of the lagged levels of the variables in the autoregressive distributed 

lag, i.e., H0: 0876 =γ=γ=γ . Pesaran et al. [1999] have tabulated the appropriate critical values 

for different numbers of regressors, and have provided a band of critical values assuming that the 

variables are I(0) or I(1). The result of the test yields F(3, 14)=5.16. In our case, the 

corresponding band of critical values for a significance level of 0.05 is 3.79 to 4.85 [Pesaran et 

al., 1999, Table C1.iii]. Since our calculated F-test exceeds the upper bound of the band, we 

reject the null hypothesis of no long-run relationship between output, labor and capital. These 

results, from the strict econometric point of view, imply that a long-run relationship exists among 

the three variables. However, in the context of an approximation to an accounting identity, this 

result does not have any deep any economic interpretation: it is the accounting identity in disguise. 

The importance of the above results can be further appreciated by recalling the poor 

estimates obtained in the fifth regression in Table 2, when the original Cobb-Douglas equation 

was estimated for 1899-1920. However, estimating the third regression in Table 3 with the 

variable A(t) for 1899-1920 does not yield fragile results. This result is corroborated by the 

forward and backward recursive estimation of this equation, shown in Tables 4 and 5, 

respectively. This is, of course, precisely what we should expect, as the specification of the 

putative production function is now a close approximation to the underlying identity. 

 

   [TABLES 4 AND 5 ABOUT HERE] 
 

 We have also estimated the Cobb-Douglas form in per capita terms including the 

trigonometric variable. The fourth regression in Table 3 shows the significant improvement after 

its inclusion in the regression (compare it with the second regression in Table 2). The estimate of 

labor provides a direct test for the null hypothesis of constant returns, which cannot be rejected. 
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 Finally, we estimated the regression using non-linear least squares, as in Pesaran and 

Pesaran [1997, 251-253]. These results are shown at the bottom of Table 3. The results are very 

similar to those using ordinary least squares, indicating that the estimation method is not issue. 

 

A TEST OF CONSTANT RETURNS TO SCALE AND PERFECTLY COMPETITIVE 

MARKETS? 

Douglas was so convinced of the importance of his analysis that towards the end of his 

life he concluded that a “considerable body of independent work tends to corroborate the original 

Cobb-Douglas formula, but, more important, the approximate coincidence of the estimated 

coefficients with the actual shares received also strengthens the competitive theory of distribution 

and disproves the Marxian” [Douglas 1976, 914]. In this vein, Solow pointed out that: “When 

someone claims that aggregate production functions work, he means (a) that they give a god fit to 

input-output data without the intervention of factor shares and (b) that the function so fitted has 

partial derivatives that closely mimic observed factor shares” [Solow 1974, 121].14 It is thus 

implicit that it is possible to test whether the partial derivatives, i.e., the first-order conditions, 

closely approximate the factor shares. 

We pose the following question: Is there any way that estimation of the aggregate 

production function or the marginal productivity conditions can indicate the existence of 

imperfect markets and returns to scale different from constant? The answer is clearly no. At the 

expense of laboring the obvious, if one runs the putative production function regression of output 

( tq ) on the growth rates of labor ( tλ ) and capital ( tk ), and the correct approximation to tϕ , 

equation (2) indicates that the estimated coefficients of tλ  and tk  must be the factor shares 

(same argument with the equation in levels). The only way not to obtain this result is if the 

approximation to tϕ  is incorrect, e.g., if it is a trigonometric function and one chooses a constant 

(as we saw above). In the case at hand, the Cobb-Douglas form works because factor shares must 

be sufficiently constant. All the ‘correct’ production-function regressions that we have estimated 

indicate constant returns to scale and perfectly competitive markets, including countries like 

Singapore [Felipe, 2000; Felipe and McCombie, 2003] or China [Felipe and McCombie, 2002a]. 

What if instead of estimating the production function we estimate the first-order 

conditions? This analysis also implies that these conditions cannot be rejected. Under the 

assumptions of profit maximization and competitive markets, the production function, together 

with the assumption that firms are profit maximizers, gives rise to the marginal theory of factor 

pricing. This analysis, which is strictly microeconomic [Fisher, 1971b] has been equally applied 
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to the macro level in the form of a distribution theory. The first-order condition for labor states 

that the wage rate equals the marginal product of labor, i.e., 
L
Qw
∂
∂

=  (recall that at the aggregate 

level the measure of output is value added). And the labor share equals the elasticity of labor, i.e., 

L
Q

Q
L

Q
wL

∂
∂

= .15  

Consider again the identity Q=wL+rK. It follows that 
L
Qw
∂
∂

≡ . How can this be posed as 

a testable proposition? For the Cobb-Douglas production function, the first-order condition for 

labor is )L/Q( w ttt α= . Although we do not have the wage rate data for the Cobb-Douglas 

[1928] data set, we know that this “hypothesis” cannot be rejected. The reason is that the last 

relation cannot be distinguished statistically from the definition of the labor share 

tttt Q/)Lw(a ≡  if at=a. Since we have argued that for this data set factor shares must be 

(sufficiently) constant, it is obvious that estimation of the regression )L/Q( w tt1t γ=  must yield 

γ1=a. But this does not provide evidence in favor of the competitive theory of distribution. It is a 

tautology! We have checked this using data for the U.S. manufacturing sector for 1960-94 

(OECD database). The regression of the wage rate (wt) on labor productivity )L/Q( tt  yields a 

coefficient of 0.688 (with a t-statistic of 168.00), statistically not different from the average labor 

share ( 692.0a = ).16 

If the exercise of estimating an aggregate production function (or the first-order 

conditions) is correctly performed, one should always be led to believe that the evidence indicates 

that markets are perfectly competitive, and that the production function is homogeneous of degree 

one. Consequently, constant returns to scale and perfect competition are non-refutable 

hypotheses.17  

 

CONCLUSIONS 

This paper has taken up Samuelson’s [1979] invitation to verify empirically his claim that 

all the regression of the Cobb-Douglas [1928] production function does is to reproduce the 

income accounting identity according to which value added equals the sum of the wage bill plus 

total profits. We conclude that Samuelson was right, and believe that this argument has very 

serious implications for today’s work in macroeconomics. 

We have shown that since the data on output and inputs used at the aggregate level are 

linked through the accounting identity that relates value added and factor payments, aggregate 

production functions approximate this income accounting identity. An algebraic transformation of 
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the identity, under the appropriate assumptions about the data, yields a form that resembles a 

production function. This implies that if the correct form of the identity, written as a production 

function, were fitted, one should always conclude that the aggregate production function exhibits 

constant returns to scale, and that factor markets are competitive. Surely this would be a 

suspicious result. The important aspect of this argument is that it can parsimoniously explain 

why, despite that aggregate production functions do not have a sound theoretical basis, they 

appear to yield meaningful results at times. And likewise, the poor results that quite often appear 

(e.g., when a linear time trend is added) are no more than the result of a poor approximation to the 

income accounting identity.  

The conclusion is that neither the existence of the aggregate production function, nor the 

standard neoclassical hypotheses of constant returns to scale or competitive markets, can be tested 

empirically since they cannot be refuted. As an implication of the analysis, it has been argued that 

the “residual” total factor productivity growth derived from an aggregate production function is 

not unambiguously a measure of technical progress; rather, it is a measure of distributional 

changes.  
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TABLE 1 
OUTPUT, LABOR AND CAPITAL 

YEAR OUTPUT LABOR CAPITAL 
1899 100 100 100 
1900 101 105 107 
1901 112 110 114 
1902 122 118 122 
1903 124 123 131 
1904 122 116 138 
1905 143 125 149 
1906 152 133 163 
1907 151 138 176 
1908 126 121 185 
1909 155 140 198 
1910 159 144 208 
1911 153 145 216 
1912 177 152 226 
1913 184 154 236 
1914 169 149 244 
1915 189 154 266 
1916 225 182 298 
1917 227 196 335 
1918 223 200 366 
1919 218 193 387 
1920 231 193 407 
1921 179 147 417 
1922 240 161 431 

Data set taken from Pesaran and Pesaran [1997; data file CD.FIT] 



TABLE 2 
Cobb-Douglas Regression, I (1899-1922 under otherwise indicated; OLS estimates). 

1. ttt KlnLlncQln β+α+=  
 Constant α β 
 -0.18 

(-0.41) 
0.807 
(5.56) 

0.233 
(3.67) 

2R =0.975; D.W.=1.52; 2
1χ =0.19 

2. IN PER CAPITA TERMS: )
L
K

ln(Lln)1()
L
Q

ln(
t

t
t

t

t β+−β+α=  

 Constant 1- α -β β 
 -0.18 

(-0.41) 
0.04 

(0.44) 
0.233 
(3.67) 

2R =0.636; D.W.=1.52 
3. ttt KlnLlnTcQln β+α+λ+=  

Constant λ α β 
2.81 

(2.03) 
0.0468 
(2.26) 

0.906 
(4.48) 

-0.526 
(-1.54) 

2R =0.966; D.W.=1.63 
4. ttt kq β+α+λ= λ  

 λ α β 
 0.10 

(2.77) 
1.39 

(8.53) 
-1.51 

(-2.53) 
2R =0.80; D.W.=1.67; 2

1χ =4.59 

5. ESTIMATION PERIOD: 1899-1920: ttt KlnLlncQln β+α+=  
 Constant α β 
 -0.79 

(-1.42) 
1.09 

(4.88) 
0.08 

(0.73) 
2R =0.972; D.W.=1.21; 2

1χ =2.13 

Chi-square test ( 2
1χ ): H0: α+β=1 (critical value 5% significance level: 3.84). t-statistics in parenthesis. 



TABLE 3 
Cobb-Douglas Regression, II (1899-1922 unless otherwise indicated; OLS estimates 

unless otherwise indicated) 
1. ttt KlnLln)t(A Qln β+α+λ=  

 λ α β 
 0.032 

(3.48) 
0.726 

(18.83) 
0.274 
(7.71) 

2R =0.973; D.W.=1.95; 2
1χ =0.02 

2. 1t81t71t61t51t41t3t2t1t KlnLlnVAlnkqkq −−−−−− γ+γ+γ+γ+γ+γ+γ+γ= λλ  

1γ  2γ  3γ  4γ  5γ  6γ  7γ  8γ  
1.00 

(8.18) 
0.98 

(1.70) 
0.31 

(1.65) 
-0.56 

(-2.19) 
-0.95 

(-1.72) 
-0.78 

(-3.24) 
0.59 

(3.24) 
0.19 

(2.76) 
)30.5( 249.0 );95.14( 758.0 KL =θ=θ ; 2R =0.952; D.W.=2.31; 2

1χ =0.56 

3. ESTIMATION PERIOD 1899-1920: ttt KlnLln)t(A Qln β+α+λ=  
 λ α β 
 0.023 

(2.50) 
0.756 

(15.84) 
0.246 
(5.52) 

2R =0.977; D.W.=1.76; 2
1χ =0.43 

4. IN PER CAPITA TERMS: )
L
K

ln(Lln)1()t(A )
L
Q

ln(
t

t
t

t

t β+−β+α+λ=  

 λ α+β-1 β 
 0.029 

(2.39) 
0.001 
(0.43) 

0.259 
(6.64) 

2R =0.768; D.W.=1.95 

5. NON-LINEAR LEAST SQUARES: ttt
)t(A 

t u)K()L( eQ += βαλ  
 λ α β 
 
 

0.033 
(3.65) 

0.722 
(16.12) 

0.277 
(6.80) 

2R =0.964; D.W.=1.90; 2
1χ =0.00012 

Data taken from Pesaran and Pesaran (1997; data file CD.FIT). Chi-square test ( 2
1χ ): H0: α+β=1 (critical 

value 5% significance level: 3.84). t-statistics in parenthesis. 
Initial values for non-linear least squares: λ=0.03; α=0.75; β=0.25. 



TABLE 4 
Forward Recursive estimation of the Equation 

tt
2245

t KlnLln)]Tsin()Tcos()Tcos()T[sin(Qln β+α+−−+λ=  
PERIOD λ α β H0:α+β=1 R2; D.W. 

1899-1903 0.0025 
(0.10) 

0.525 
(0.57) 

0.472 
(0.51) 

0.09 0.938; 
2.54 

1899-1904 0.0005 
(0.03) 

0.665 
(3.09) 

0.333 
(1.57) 

0.12 0.946; 
2.40 

1899-1905 0.008 
(0.40) 

0.405 
(1.83) 

0.591 
(2.71) 

0.52 0.938; 
2.51 

1899-1906 0.007 
(0.40) 

0.340 
(2.00) 

0.656 
(3.94) 

0.81 0.955; 
2.48 

1899-1907 0.014 
(0.79) 

0.433 
(3.05) 

0.563 
(4.06) 

0.63 0.962; 
2.47 

1899-1908 0.033 
(1.45) 

0.674 
(4.59) 

0.324 
(2.28) 

0.007 0.919; 
1.66 

1899-1909 0.033 
(1.56) 

0.677 
(5.47) 

0.322 
(2.69) 

0.007 0.934; 
1.81 

1899-1910 0.031 
(1.59) 

0.668 
(5.77) 

0.331 
(2.97) 

0.006 0.943; 
1.80 

1899-1911 0.026 
(1.29) 

0.736 
(6.70) 

0.265 
(2.51) 

0.051 0.937; 
1.59 

1899-1912 0.030 
(1.67) 

0.705 
(7.46) 

0.295 
(3.25) 

0.004 0.948; 
1.98 

1899-1913 0.029 
(2.26) 

0.707 
(9.33) 

0.293 
(4.06) 

0.007 0.958; 
2.00 

1899-1914 0.027 
(2.15) 

0.733 
(10.79) 

0.267 
(4.14) 

0.09 0.959; 
1.88 

1899-1915 0.028 
(2.23) 

0.705 
(11.36) 

0.294 
(5.00) 

0.007 0.962; 
2.05 

1899-1916 0.031 
(2.53) 

0.689 
(11.72) 

0.310 
(5.58) 

0.002 0.970; 
2.00 

1899-1917 0.025 
(2.16) 

0.713 
(12.43) 

0.287 
(5.31) 

0.038 0.973; 
2.01 

1899-1918 0.023 
(1.85) 

0.749 
(12.92) 

0.252 
(4.62) 

0.27 0.971; 
1.62 

1899-1919 0.023 
(2.45) 

0.749 
(14.12) 

0.253 
(5.09) 

0.29 0.974; 
1.77 

1899-1920 0.023 
(2.50) 

0.756 
(15.84) 

0.246 
(5.52) 

0.43 0.977; 
1.26 

1899-1921 0.024 
(2.65) 

0.775 
(19.15) 

0.228 
(6.08) 

0.98 0.976; 
1.71 

1899-1922 0.032 
(3.48) 

0.726 
(18.83) 

0.274 
(7.71) 

0.02 0.973; 
1.95 

Chi-square test ( 2
1χ ): H0: α+β=1 (critical value 5% significance level: 3.84). t-statistics in parenthesis. 



TABLE 5 
Backward Recursive Estimation of the Equation 

tt
2245

t KlnLln)]Tsin()Tcos()Tcos()T[sin(Qln β+α+−−+λ=  
PERIOD λ α β H0:α+β=1 R2; D.W. 

1918-1922 0.035 
(1.42) 

0.591 
(2.60) 

0.389 
(1.98) 

0.37 0.738; 
2.50 

1917-1922 0.034 
(1.88) 

0.582 
(3.69) 

0.396 
(2.88) 

0.99 0.746; 
2.64 

1916-1922 0.037 
(1.99) 

0.659 
(4.45) 

0.331 
(2.55) 

0.23 0.639; 
2.21 

1915-1922 0.036 
(2.05) 

0.690 
(5.02) 

0.300 
(2.52) 

0.05 0.693; 
1.85 

1914-1922 0.036 
(2.19) 

0.677 
(5.52) 

0.317 
(2.93) 

0.17 0.816; 
2.07 

1913-1922 0.037 
(2.50) 

0.681 
(6.20) 

0.313 
(3.22) 

0.17 0.835; 
2.12 

1912-1922 0.036 
(2.53) 

0.701 
(7.18) 

0.290 
(3.31) 

0.03 0.849; 
1.99 

1911-1922 0.038 
(2.84) 

0.683 
(7.63) 

0.311 
(3.90) 

0.26 0.890; 
2.17 

1910-1922 0.033 
(2.76) 

0.712 
(8.75) 

0.285 
(3.92) 

0.02 0.900; 
2.17 

1909-1922 0.033 
(2.87) 

0.719 
(9.70) 

0.279 
(4.21) 

0.00 0.915; 
2.16 

1908-1922 0.035 
(3.30) 

0.710 
(10.05) 

0.287 
(4.52) 

0.05 0.941; 
2.21 

1907-1922 0.034 
(3.31) 

0.729 
(11.33) 

0.271 
(4.66) 

0.00 0.943; 
2.22 

1906-1922 0.035 
(3.33) 

0.755 
(12.41) 

0.248 
(4.50) 

0.33 0.942; 
2.01 

1905-1922 0.036 
(3.50) 

0.771 
(13.55) 

0.233 
(4.52) 

0.91 0.944; 
1.91 

1904-1922 0.036 
(3.54) 

0.760 
(12.24) 

0.243 
(5.01) 

0.63 0.953; 
2.00 

1903-1922 0.035 
(3.73) 

0.765 
(16.15) 

0.239 
(5.54) 

1.04 0.959; 
2.03 

1902-1922 0.034 
(3.73) 

0.754 
(12.22) 

0.49 
(6.21) 

0.71 0.963; 
2.03 

1901-1922 0.034 
(3.81) 

0.748 
(18.42) 

0.254 
(6.82) 

0.57 0.968; 
2.02 

1900-1922 0.032 
(3.39) 

0.726 
(17.53) 

0.273 
(7.17) 

0.02 0.968; 
1.82 

1899-1922 0.032 
(3.48) 

0.726 
(18.83) 

0.274 
(7.71) 

0.02 0.973; 
1.95 

Chi-square test ( 2
1χ ): H0: α+β=1 (critical value 5% significance level: 3.84). t-statistics in parenthesis. 



 

FI GURE 1
Cobb- Doug l as ( 1928) Da t a Set ( Logar i t hmi c Sc a l e )
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FI GURE 2
Q/ [ ( L^ 0 . 75 ) * ( K^ 0. 25) ]
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FI GURE 3
A( t ) = Si n( T^ 5) +Cos ( T^ 4) - Cos ( T^ 2) - Si n( T^ 2)
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1 This is the title of Cobb and Douglas’s original article in 1928. 
2  The same argument had previously been made by Phelps Brown [1957], Simon and Levy [1963], 
Shaikh [1974, 1980] and Simon [1979]. 
3  For a recent review of the Cambridge debates see Cohen and Harcourt [2003]. 
4  The data set was taken from Pesaran and Pesaran [1997; file CD.FIT]. The series are available 
upon request. 
5  Some of the same points made in this section were previously made by McCombie [1998]. 
6 LEETS is simply the word STEEL spelled backwards. This is how Joan Robinson did it, in honor 
of J.E. Meade. 
7  The assumption of constant factor shares need not imply a Cobb-Douglas production function. 
Fisher [1971a], in a simulation study, showed that a very close statistical fit could be obtained by 
estimating an aggregate Cobb-Douglas production function, even though the data were such that the 
conditions for successful aggregation of the underlying micro Cobb-Douglas production functions were 
deliberately violated. He showed that, in these circumstances, the constancy of the factor shares gave rise to 
the success of the aggregate Cobb-Douglas production function, rather than vice versa. He concluded: “the 
view that constancy of labor’s share is due to the presence of and aggregate Cobb-Douglas production 
function is mistaken. Causation runs the other way and the apparent success of aggregate Cobb-Douglas 
production functions is due to the relative constancy of labor’s share” [Fisher 1971a, 306]. And Samuelson 
wrote: “A follower of Douglas might wish to derive the comfort from the fact that, in many different times, 
a Bowley will report pretty much the same relative wage share for a particular country like the United 
States or the United Kingdom. But why cannot such a fact, or alleged fact, stand on its own bottom, gaining 
and losing nothing from being coupled with an aggregate neoclassical production function?” [Samuelson 
1979, 931]. 
8  The same derivation applies if the measure of output is gross output. In this case we have to write 
the identity for gross output, and proceed with a similar derivation. It leads to a production function with 
gross output on the left-hand-side, and labor, capital, and intermediate materials on the right-hand-side, 
with the shares of labor, capital and intermediate materials in gross output as elasticities. 
9  Naturally, in this case it will make a difference whether the regression is estimated in levels or in 
growth rates, as well as the estimation method. These are, nevertheless, secondary problems and do not 
affect the generality of the argument. 
10  It must be emphasized that these results stem from the fact that we are dealing with aggregates, 
which can only be expressed in value terms (certainly quantity indices as defined above are not physical 
volumes, but the ratio of two values). The argument above does not apply if output and inputs were 
measured in physical units. See Felipe and McCombie [2005] in this issue. 
11  This assumption could be tested easily by fitting the left-hand side of equation (2) unrestricted, 
that is, t4t3t2t1t kr̂ ŵ q γ+γ+γ+γ= λ  and testing whether the coefficients equal the average factor 
shares (i.e., H0: γ1=a; γ2=1-a; γ3=a; γ4=1-a). 
12 Still at this point one may argue that all we are doing is inserting back into the equation the 
“Solow residual” and, therefore, we should expect a perfect fit. This argument faces two objections. First, 
what we are inserting is not the Solow residual itself, but a function of sines and cosines that tracks such 
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residual better than the linear time trend that is usually introduced. Second, the exercise shows that once 
this function is found, we recover the identity and, by implication, the elasticities equal the factor shares 
(always!). 
13  This dynamic Cobb-Douglas is:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 32132121
2t1tt2t1tt2t1tt KKKLLLQQAQ β

−
β

−
βα

−
α

−
αδ

−
δ

−= , where the long-run 

output elasticities are given by 
)1(

)(

21

321

6

7
L −δ+δ

α+α+α
−=

γ
γ

−=θ  and 
)1(
)(

21
321

6
8

K −δ+δ
β+β+β

−=
γ
γ

−=θ . And 

the dynamic regression rewritten with the error correction term is: 
 ]KlnLlnQ[lnkqkcq 1tK1tL1t61t51t41t3t2t1t −−−−−− θ−θ−γ+γ+γ+γ+γ+γ+= λλ . The 

long-run solution is )1/()(
t

)1/()(
tt

2132121321 )(K )L( Q δ−δ−β+β+βδ−δ−α+α+αΨ=  where Ψ is a constant. 
Compare this expression now to the identity equation (2) under the assumption of constant factor shares. 
This is (integrating): a1

t
a

t
a1

t
a

tt )K()L()r( )w(Q −−= . If the term a1
t

a
t )r̂( )ŵ( −  happens to be a 

constant A, this becomes a1
t

a
tt )K()L(AQ −= . If, as discussed above, this constant works empirically, 

no wonder one will find a
1 21

321 ≅
δ−δ−
α+α+α

 , and )a1(
1 21

321 −≅
δ−δ−
β+β+β

. 

14  This paper is a severe criticism and dismissal of Shaikh [1974]. We ask the reader to see Shaikh 
[1980] for a full reply to Solow. 
15  On this see also Felipe [2001b] and Felipe and McCombie [2002b]. 
16  It is far from surprising that recent time series work does find the existence of a long-run 
relationship between the wage rate and labor productivity based on the regression 

)L/VAln(cwln ttt δ+= with δ=1 [Darby and Wren-Lewis, 1993]. That is exactly the coefficient in 
the labor share identity, and thus it means nothing. 
17 Dhrymes [1965] proposed to estimate the degree of homogeneity parameter from the equation 

γβ= LAQw  (estimated in logarithms), where w is the wage rate, Q is output, and L is labor (the equation 
is derived from a CES production function). The degree of homogeneity h is calculated from the estimates 
as )1/()1(h β−γ+= . However, this equation suffers from exactly the same problems discussed above, 
namely, that it can be derived from an identity. To see this, note that the definition of the labor share is 

tttt Q/)Lw(a = , where, as before, ‘a’ is the labor share. Assume that in this economy the labor share is 

constant. This expression can then be rewritten as 1
ttt LaQw −= , which is identical to Dhrymes’s 

regression. What this result indicates is that the regression of the log wage rate on log output and log labor 
must yield coefficients β=1 and γ= –1, unless the labor share has a large variation, in which case the 
regression results will be poor. But with these theoretical values for β and γ, the degree of homogeneity 
implied by this regression is 0/0)1/()1(h =β−γ+= , indeterminate. 


