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1 Introduction

Discretionary policymakers can fall foul of expectations traps and coordination failures. When

private agents are forward-looking their expectations, including those they hold about future

policy, can influence importantly how policy today is conducted. The discretionary policy-

maker’s Achilles heel is that when formulating policy it is unable to manage private sector

expectations, and this inability, although essential for time-consistent policymaking, leaves

ajar the door to multiple equilibria. When expectations cannot be managed, private agents

can form expectations that, although unwelcome from the policymaker’s perspective, lead pri-

vate agents to react in a manner that traps the policymaker into implementing a policy that

validates those expectations. The trap is closed when a policy that renders those unwelcome

expectations without foundation is more costly and hence less attractive to the discretionary

policymaker than a policy that accommodates them.

The fact that multiple equilibria produces by expectations traps and coordination failures

can beset discretionary control problems is troublesome, yet hugely important. Troublesome,

because efforts to solve or mitigate the time-consistency problem rely invariably on there be-

ing a unique discretionary equilibrium. A Rogoff-style (Rogoff, 1985) approach of delegating

objectives to a discretionary policymaker (as per Jensen (2002) and Walsh (2003), among

others) is unlikely to be successful unless it also solves the coordination problem. Similarly,

to the extent that an optimal contract (Walsh, 1995) can successfully overcome the time-

consistency problem, it too should address the coordination problem. Important, because it

means that discretionary policy behavior can be considerably richer and more varied than is

commonly appreciated. Moreover, because the mechanisms that lead to expectations traps

and coordination failures involve strategic interactions between agents, they are not precluded

by linear constraints and quadratic objectives. As a consequence, much research analyzing

discretionary policymaking since Kydland and Prescott (1977) may have inadvertently con-

sidered only one of several equilibria, potentially overlooking essential aspects of discretionary

policy behavior.

It is not unusual for economies to transition between periods of high and low inflation,

a phenomenon that expectations traps have the potential to explain (Albanesi, Chari, and

Christiano, 2003). Similarly, transitions from one equilibrium to another offers an explanation

for policy regime changes, like those analyzed by Davig and Leeper (2006). Accordingly, an

explanation for the change in U. S. inflation behavior between the 1970s and the 1980s could
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be that Volcker’s appointment to Federal Reserve Chairman served to coordinate expectations

and behavior, switching the economy from one discretionary equilibrium to another. However,

in order to utilize the explanatory power of multiple equilibria it is necessary to first consider

how an economy arrives at a particular equilibrium. In the words of Benhabib and Farmer

(1999, pp. 438), “in any model with multiple equilibria one must address the issue of how an

equilibrium comes about”.

In this paper, we study multiple equilibria in infinite-horizon linear-quadratic discretionary

control problems (Blake and Kirsanova, 2007). We describe the control problem facing the

discretionary policymaker and, drawing on Oudiz and Sachs (1985) and Currie and Levine

(1985, 1993), reinterpret the control problem as a dynamic game between policymakers at

different points in time. An important aspect of this game is that, within a period, the

policymaker is a Stackelberg leader with respect to private agents. Feedback equilibria to the

discretionary control problem correspond to Markov-perfect Stackelberg-Nash equilibria to the

dynamic game. We show how strategic interaction among current and future policymakers,

operating through endogenous state variables and private sector expectations, leads to a form

of strategic complementarity (Cooper and John, 1988) and makes expectations traps and

coordination failures possible.

We approach the coordination problem inherent in equilibrium selection from three angles.

First, in the spirit of Hansen and Sargent (2008), we consider the discretionary policymaker to

be a robust agent that seeks to guard against a malignant nature that coordinates adversely

the actions of all future policymakers and private agents. This angle of approach, leads us

to examine minimax loss and minimax regret (Savage, 1951) as equilibrium selection criteria.

Second, we consider learning as a coordinating mechanism for equilibrium selection (Evans,

1986), drawing on the large literature that employs learning to analyze coordination in ra-

tional expectations models.1 With agents learning eductively, and allowing private agents

and/or the policymaker to be learning, we develop three expectational stability conditions

whose satisfaction determines whether private agents and/or the policymaker might reason-

ably learn and coordinate on a particular equilibrium. Among these three sets of stability

conditions, we show that the key conditions are those indicating whether an equilibrium is

learnable by private agents in isolation and by private agents and the policymaker jointly.

Third, we consider whether a form of trembling-hand errors (Selten, 1975) might permit poli-

1See Guesnerie and Woodford (1992), Evans and Guesnerie (1993, 2003, 2005), and Evans and Honkapohja
(2001), among others.
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cymakers to coordinate on the Pareto-preferred equilibrium. Pursuing this idea, we examine

whether the perception that policymakers in subsequent periods could make a sequence of

(correlated) policy errors might induce the current-period policymaker to pursue the Pareto-

preferred policy. Intuitively, if the required number of errors is “small”, then coordination on

the Pareto-preferred equilibrium might be feasible.

To illustrate equilibrium multiplicity and the equilibrium selection methods, we analyze two

New Keynesian models. The first model is the government-debt model developed by Blake and

Kirsanova (2007). The second model is a simplified version of the dynamic stochastic general

equilibrium models developed by Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2007). In each model, the task confronting the policymaker is to stabilize inflation

without impacting unduly the real economy. Inflation, in these models, is determined by the

expected path of real marginal costs, so the policy challenge is to generate an appropriate path

for real marginal costs. Since inflation depends on the entire expected path for real marginal

costs while the discretionary policymaker can choose only today’s policy, the policy chosen

today depends necessarily on expected future policy. At the same time, the decisions that

future policymakers make depend materially on the economic circumstances that they find

themselves in, and hence on the choices previous policymakers have made. This interaction

between policymakers over time produces coordination failure.

In the first model, the equilibrium selection criteria suggest that policymakers might rea-

sonably coordinate on the Pareto-preferred equilibrium. In the second model, however, the

message is very different. Here, the equilibrium selection criteria suggest that policymakers

will likely coordinate on the Pareto-worst equilibrium, an equilibrium in which the conduct of

monetary policy is highly unattractive. Instead of responding to an adverse cost-push shock

by raising the interest rate, and thereby lowering real marginal costs today, because it reasons

that future policymakers will raise interest rates in response to a higher capital stock, today’s

policymaker actually lowers the interest rate in order to stimulate investment. This policy

stabilizes inflation, even though higher investment raises real marginal costs today, because it

increases the capital stock and thereby lowers real marginal costs in the future.

Our research is related to several other papers. Like Blake and Kirsanova (2007), we

analyze multiple equilibria in the linear-quadratic context, however where they focus on the

existence of multiple equilibria, we focus on equilibrium characteristics and on equilibrium

selection. This paper is also related to Albanesi, Chari, and Christiano (2003), who show

that a modified version of the Lucas and Stokey (1983) cash-credit model can have multiple
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discretionary equilibria when some firms have sticky prices, and to King and Wolman (2004),

who show how multiple discretionary equilibria can arise with strategic-complementarity in

firms’pricing. Although similar strategic interactions are at work, in contrast to Albanesi,

Chari, and Christiano (2003) and King and Wolman (2004), in which non-linearity is necessary

for multiplicity to occur, the multiplicity that we analyze survives linearization. Where the

Stackelberg player in each of these models is a central bank, Ortigueira and Pereira (2009)

analyze time-consistent policymaking when the Stackelberg player is a fiscal authority and

also find multiple discretionary equilibria.

The remainder of this paper is structured as follows. In Section 2, we describe the linear-

quadratic discretionary control problem, provide a game theoretic interpretation, define a

symmetric Markov-perfect Stackelberg-Nash equilibrium, and show how such equilibria can

be obtained. In Section 3, we outline how expectational stability criteria associated with

learning, notions of trembling-hand errors, and robustness, in the form of minimax loss and

minimax regret, can be used to select among multiple equilibria. In Section 4, we analyze two

New Keynesian policy models, show that they each possess multiple equilibria, and illustrate

how the selection criteria can be employed. Section 5 concludes.

2 The discretionary control problem

In this section, we outline the control problem facing a discretionary policymaker. We then

reinterpret this control problem as a non-cooperative dynamic game and show that the stan-

dard optimal discretionary policy is a symmetric Markov-perfect Nash equilibrium of a dy-

namic game in which the policymaker is a Stackelberg leader and private agents are follow-

ers. To make explicit the game’s leadership structure, we call this equilibrium a symmetric

Markov-perfect Stackelberg-Nash equilibrium. Finally, we show that solving for a symmet-

ric Markov-perfect Stackelberg-Nash equilibrium in this game requires solving a particular

fix-point problem, and we discuss two iterative numerical methods for doing this.

2.1 Constraints and objectives

The economic environment is one in which n1 predetermined variables, xt, and n2 nonprede-

termined variables, yt, t = 0, 1, ...,∞, evolve over time according to

xt+1 = A11xt +A12yt +B1ut + vxt+1, (1)

Etyt+1 = A21xt +A22yt +B2ut, (2)
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where ut is a p×1 vector of control variables, vxt ∼ i.i.d. [0,Σ] is an v×1 (1 ≤ v ≤ n1) vector
of white-noise innovations, and Et is the mathematical expectations operator conditional upon

period t information. Equations (1) and (2) capture aggregate constraints and technologies

and the behavior (aggregate first-order conditions) of private agents. For their part, private

agents are comprised of households and firms who are ex ante identical, respectively, infinitely

lived, and atomistic. The matrices A11, A12, A21, A22, B1, and B2 are conformable with

xt, yt, and ut as necessary and contain the structural parameters that govern preferences and

technologies. Importantly, the matrix A22 is assumed to have full rank.

In addition to private agents, the economy is populated by a large player, a policymaker.

For each period t, the period-t policymaker’s objectives are described by the loss function

Lt = Et
∞∑
k=t

β(k−t)
[
z
′
kWzk + 2z

′
kUuk + u

′
kQuk

]
, (3)

where β ∈ (0, 1) is the discount factor and zk =
[

x
′
k y

′
k

]′
. We assume that the weighting

matrices W and Q are symmetric and, to ensure that the loss function is convex, that the

matrix
[

W U

U
′

Q

]
is positive semi-definite.2 We assume that the policymaker is a Stackelberg

leader and that private agents are followers; we further assume that the policymaker does not

have access to a commitment technology and that policy is conducted under discretion.3 With

policy conducted under discretion, each period the policymaker sets its control variables, ut,

to minimize equation (3), taking the state, xt, and the decision rules for all future agents as

given. Since the policymaker is a Stackelberg leader, the period-t policy decision is formulated

taking equation (2) as well as equation (1) into account.

The control problem described above has many of the characteristics of an infinite horizon

non-cooperative dynamic game, and is commonly viewed as such. Following Oudiz and Sachs

(1985), Currie and Levine (1985), and Cohen and Michel (1988), the strategic players in the

game are the (infinite) sequence of policymakers with private agents behaving competitively.

Although private agents are not strategic players they are not inconsequential. Private agents

are important because private-sector expectations are the conduit through which strategic

2 It is standard to assume that the weighting matrices, W and Q, are symmetric positive semi-definite
and symmetric positive definite, respectively (see Anderson, Hansen, McGrattan, and Sargent (1996), for
example). However, since many economic applications involve a loss function that places no penalty on the
control variables, we note that the requirement of Q being positive definite can be weakened to Q being positive
semi-definite if additional assumptions about other system matrices are met (Clements and Wimmer, 2003).

3Events within a period occur as follows. After observing the state, xt, decisions are made first by the
incumbent policymaker and subsequently by private agents. At the end of the period the shocks vxt+1 are
realized.
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interaction between current and future policymakers occurs. In this decision problem, policy

behavior is described by a policy strategy, private-agent behavior is described by a private

sector strategy, the expectations operator (Et) and policy loss (payoff) are induced by the

policy and private sector strategies, and the equilibrium that we seek to analyze is a symmetric

Markov-perfect Stackelberg-Nash equilibrium.

2.2 Some useful definitions and equilibrium concepts

In the previous section we emphasized that the discretionary control problem can be modeled

as a non-cooperative dynamic game, with the decisions of the policymaker and of private

agents taking the form of strategies. Further, we noted that because the policymaker is

assumed to be a Stackelberg leader the discretionary equilibrium that we are interested in is a

symmetric Markov-perfect Stackelberg-Nash equilibrium. We now make these terms precise.

Definition 1 A policy strategy S is a sequence of policy rules {Ft}∞0 , where Ft is a function

that maps {xt}t0 to ut. A policy strategy is said to be a Markov policy strategy if and only if

each policy rule Ft is a function that maps xt to ut. We denote by S−t the sequence of policy

rules {Fs}∞0 excluding Ft.

Definition 2 A private sector strategy T is a sequence of decision rules {Ht}∞0 , where Ht is

a function that maps {xt}t0 to yt. A private sector strategy is said to be a Markov private

sector strategy if and only if each decision rule Ht is a function that maps xt to yt. We

denote by T−t the sequence of decision rules {Hs}∞0 excluding Ht.

Definition 3 A policy strategy S is a Stackelberg-Nash equilibrium if for every decision period

t: i) Ft minimizes equation (3) subject to equations (1) and (2) and xt known, taking S−t and

T−t as given; and ii) Ht satisfies equations (1) and (2), taking S and T−t, as given.

Definition 4 A policy strategy S is a perfect Stackelberg-Nash equilibrium if for every decision

period t and any history {Fs,Hs}t−10 : i) Ft minimizes equation (3) subject to equations (1)

and (2) and xt known, taking S−t and T−t as given; and ii) Ht satisfies equations (1) and

(2), taking S and T−t as given.

A perfect Stackelberg-Nash equilibrium is time-consistent because it is subgame perfect.

However, the strategies that characterize equilibrium are not necessarily Markov strategies

and, as a consequence, trigger-strategy equilibria, and other equilibria supported by threats
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and punishments are not ruled out. The sustainable equilibria studied by Chari and Kehoe

(1990), Ireland (1997), and Kurozumi (2008) as well as the “reputational”equilibria examined

by Barro and Gordon (1983) are all examples of perfect Stackelberg-Nash equilibria.

Definition 5 A policy strategy S is a Markov-perfect Stackelberg-Nash equilibrium if restrict-

ing S to be a Markov policy strategy and T to be a Markov private sector strategy, for every

time period t and any history of Markov policy and decision rules {Fs,Hs}t−10 : i) Ft minimizes

equation (3) subject to equations (1) and (2) and xt known, taking S−t and T−t as given; and

ii) Ht satisfies equations (1) and (2), taking S and T−t as given.

Definition 6 A policy strategy S is a symmetric Markov-perfect Stackelberg-Nash equilibrium

if and only if: i) S is a Markov-perfect Stackelberg-Nash equilibrium in which Ft = F, ∀ t;
and ii) T is a Markov private sector strategy in which Ht = H, ∀ t.

Although the discretionary control problem described in section 2.1 is standard in the

monetary policy literature, there are other notions of discretion in the literature. These

different notions of discretion are associated either with different dynamic games or with dif-

ferent equilibrium concepts. For example, Cohen and Michel (1988) define and describe both

the Stackelberg game, in which the policymaker leads private agents and an alternative game

in which the policymaker and private agents choose simultaneously. de Zeeuw and van der

Ploeg (1991) analyze open-loop, closed-loop, and feedback equilibria for non-cooperative dy-

namic games, considering both simultaneous-move and sequential-move games. Blake (2004)

shows how to solve for open-loop time-consistent equilibria when the policymaker leads private

agents. Ortigueira and Pereira (2009) analyze time-consistent fiscal policy in a model where

the government is a Stackelberg leader with respect to private agents when setting taxes, but

not when issuing debt. Judd (1998, chapter 16) analyzes time-consistent fiscal policy as-

suming that the private sector and the government move simultaneously; see also Ortigueira

(2006) and Ortigueira and Pereira (2009). In these applications, the government plays against

a coalition of private agents while sharing the same objective function, making the game a

cooperative one. An alternative, non-cooperative, formulation would posit different objectives

for the private sector and the government (Chow, 1997, chapter 6).

2.3 Characterizing equilibrium

For the decision problem summarized by equations (1)– (3), we now describe the equilib-

rium conditions that characterize a symmetric Markov-perfect Stackelberg-Nash equilibrium,
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focusing on equilibria for which the decision rules are linear in the state vector.

First, if a symmetric Markov-perfect Stackelberg-Nash equilibrium exists, then in this

equilibrium the behavior of the policymaker and private agents in all states, xt, and in all

decision periods, t = 0, ...,∞, is described by the linear rules

ut = Fxt, (4)

yt = Hxt, (5)

respectively. In this equilibrium, the law-of-motion for the predetermined variables is given

by

xt+1 = Mxt + vxt+1,

where the spectral radius of M is less than β−
1
2 . Further, since the loss function is quadratic

and the constraints are linear, the payoff to the policymaker in period t that corresponds to

these rules is summarized by the quadratic state-contingent value function

V (xt) = x
′
tVxt + d,

where V is symmetric positive semi-definite. Importantly, because the policy rule, F, and

the decision rule, H, in a symmetric Markov-perfect Stackelberg-Nash equilibrium apply in

all states, the subgames one needs to consider when solving for a symmetric Markov-perfect

Stackelberg-Nash equilibrium are those indexed only by time.

Second, if a symmetric Markov-perfect Stackelberg-Nash equilibrium exists for the subgame

beginning in period t+1, then one can condition the subgame beginning in period t on the H,

F, M, V, and d that characterize the equilibrium of the subgame beginning in period t + 1.

Thus, the decision problem facing the policymaker in the subgame beginning in period t is to

choose a rule for setting ut in order to minimize

x
′
tVxt + d = x

′
tW11xt + x

′
tW12yt + y

′
tW21xt + y

′
tW22yt + 2x

′
tU1ut + 2y

′
tU2ut + u

′
tQut

+βEt
(
x
′
t+1Vxt+1 + d

)
, (6)

subject to equations (1) and (2) and

ut+1 = Fxt+1, (7)

yt+1 = Hxt+1, (8)

and xt known. Importantly, although H and V are functions of F, the problem’s structure

means that F does not have a separate, explicit, effect on the current period payoff, V (xt) =
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x
′
tVxt + d. Consequently, as this decision problem is formulated, equation (7) does not bind

as a separate constraint.

Using equation (8) to form Etyt+1, substituting the resulting expression into equation (2),

and exploiting equation (1), we obtain the aggregate private sector reaction function

yt = Jxt +Kut, (9)

where

J =
(
A22 −HA12

)−1 (
HA11 −A21

)
, (10)

K =
(
A22 −HA12

)−1 (
HB1 −B2

)
. (11)

Provided rank (K) 6= 0, equation (9) implies that the period-t policymaker is a Stackelberg

leader with respect to the period-t private sector. Then, substituting equation (9) into

equations (6) and (1), the decision problem facing the policymaker in the subgame beginning

in period t is to choose a rule for setting ut in order to minimize

x
′
tVxt + d = x

′
tŴxt + 2x

′
tÛut + u

′
tQ̂ut + βEt

(
x
′
t+1Vxt+1 + d

)
, (12)

subject to

xt+1 = Âxt + B̂ut + vxt+1, (13)

where

Ŵ = W11 +W12J+ J
′
W21 + J

′
W22J, (14)

Û = W12K+ J
′
W22K+U1 + J

′
U2, (15)

Q̂ = Q+K
′
W22K+ 2K

′
U2, (16)

Â = A11 +A12J, (17)

B̂ = B1 +A12K. (18)

Conditional on H and V (and F), equations (12) and (13) describe a standard linear-

quadratic dynamic programming problem. To guarantee existence of a solution, we need(
Â, B̂

)
to be a controllable pair and

(
Â,Ŵ

)
to be a detectable pair (Laub, 1979; Anderson,

Hansen, McGrattan, and Sargent, 1996). Suppose that, for a given J and K,
(
Â, B̂

)
is a

controllable pair and
(
Â,Ŵ

)
is a detectable pair, then the solution to the subgame beginning
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in period t has the form of rules (4) and (5), with

F = −
(
Q̂+ βB̂

′
VB̂

)−1 (
Û
′
+ βB̂

′
VÂ

)
, (19)

0 = HA12H−A22H+H (A11 +B1F)−A21 −B2F, (20)

V = Ŵ + 2ÛF+ F
′
Q̂F+β

(
Â+ B̂F

)′
V
(
Â+ B̂F

)
, (21)

d = βtr (VΣ) + βd. (22)

From F and H, the matrix M in the law-of-motion for the predetermined variables is then

given by

M = A11 +A12H+B1F. (23)

Because H, F, M, V, and d represent a symmetric Markov-perfect Stackelberg-Nash

equilibrium for the subgame beginning in period t+1, any fix-point of equations (19)– (23) in

which H = H, F = F, M = M, V = V, and d = d, such that V is symmetric positive semi-

definite and
(
Q̂+ βB̂

′
VB̂

)
has full rank, is a symmetric Markov-perfect Stackelberg-Nash

equilibrium for the subgame beginning in period t.

Before leaving this section is it worthwhile revisiting the relationship between the period-t

and period-t+1 policymakers, a relationship that is obscured by the presence ofV in equations

(6) and (12). By substituting equations (1) and (9) into equation (7) we obtain the reaction

function for the period-t+ 1 policymaker

ut+1 = F [(A11 +A12J)xt + (A12K+B1)ut + vxt+1] , (24)

= F
(
Âxt + B̂ut + vxt+1

)
which, provided rank

(
B̂
)
6= 0, implies that the period-t policymaker is a Stackelberg leader

with respect to the period-t+1 policymaker. Although equation (24) does not appear explicitly

as a constraint in equations (12)– (18) its role and importance is contained within equation

(21).

2.4 A standard iterative solution method

Although an array of root-solving methods could be used to solve equations (19)– (23), eco-

nomic applications invariably employ the Backus and Driffi ll (1986) iterative method, which

can be summarized as follows.

1. Guess values for H and V (and F)
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2. Given H and V (and F), obtain values for F and V using equations (19) and (21),

respectively, and a value for H using H = J+KF.

3. If {H,F,V} are suffi ciently close to
{
H,F,V

}
, then move to step 4. Otherwise set

H← H, F← F, and V← V (possibly with damping) and return to step 2.

4. Obtain M using equation (23) and d using d = β
1−β tr (VΣ) .

Because the private sector decision rule H that satisfies the equation H = J +KF also

satisfies equation (20) any fix-point found by this iterative method will be a symmetric Markov-

perfect Stackelberg-Nash equilibrium.

2.5 Another iterative solution method

An alternative to the Backus and Driffi ll (1986) method is to use the previously developed

Oudiz and Sachs (1985) method. The Oudiz and Sachs (1985) method requires solving a

“finite-horizon”problem and then taking the solution of this problem in the limit as T ↑ ∞ as

the solution to the infinite-horizon problem. In practice, the Oudiz and Sachs (1985) approach

is equivalent to the Backus and Driffi ll (1986) method described above, with the exception

that it dictates particular values for F, H, and V in step 1, values obtained by solving a

terminal-period problem. Specifically, in step 1 the Oudiz and Sachs (1985) method suggests

the initialization

F = −
(
Q+K

′
W22K+ 2U2K

)−1 (
K
′
W21 +K

′
W22J+U

′
1 +U

′
2J
)
,

H = J+KF,

V = W11 + 2H
′
W21 +H

′
W22H+ 2U1F+ 2H

′
U2F+ F

′
QF,

d = 0,

where

J = (I−A22)
−1A21,

K = (I−A22)
−1B2.

By construction, the fix-point found by this iterative method will be a symmetric Markov-

perfect Stackelberg-Nash equilibrium.
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3 Equilibrium selection

The previous section characterized the conditions that must be satisfied in a symmetric

Markov-perfect Stackelberg-Nash equilibrium. These conditions do not speak to the issues of

existence and uniqueness of equilibrium, however. Indeed, although Svensson (2000), Dennis

and Söderström (2006) and Dennis (2007) find that non-existence can arise when Q is not

positive definite, the literature is largely silent on the question of existance.4 On the ques-

tion of uniqueness, the literature has essentially assumed that uniqueness would follow from

the linear-quadratic nature of the optimization problem (Oudiz and Sachs, 1985; Söderlind,

1999). However, Blake and Kirsanova (2007) show via counter-example that this assumption

is incorrect.

If a model has multiple symmetric Markov-perfect Stackelberg-Nash equilibria, then an

obvious and important question is whether the set of equilibria can be reduced and possibly

made unique. In some cases one or more equilibria may seem implausible, counter-intuitive,

or nonsensical, and one may want to discard those equilibria on these grounds. We do not

employ this approach as a selection criterion because it is diffi cult, if not impossible, to know

and specify in a universally accepted way what constitutes implausible, counter-intuitive,

behavior. In other cases, one equilibrium may deliver superior performance (measured by

loss), and one may want to choose that equilibrium on welfare grounds. However, using

welfare, or loss, to select a particular equilibrium requires that agents be able to coordinate

on that equilibrium.

In this section, we identify and discuss characteristics that may indicate whether a par-

ticular equilibrium is a likely candidate for coordination. We focus on three coordinating

mechanisms: robustness, learning, and equilibrium-perturbations associated with trembling-

hand errors. Of course there are many other approaches to equilibrium selection that one

could take. For example, we acknowledge, but, for the reasons explained in Guesnerie and

Woodford (1992), do not pursue the “minimum state variable”criterion (McCallum, 1983) or

the “minimum variance”criterion (Taylor, 1977).5

4Suffi cient conditions for the existence of a unique stabilizing equilibrium in the (related) optimal linear
regulator problem can be found in Lancaster and Rodman (1995). However, these conditions do not translate
automatically to the case in which some constraints are forward looking.

5Although linear-quadratic control problems are invariably approximations to non-linear counterparts, to
keep our analysis general we tie our hands and do not exploit characteristics of the non-linear formulations to
select among solutions to the linear-quadratic approximation.
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3.1 Minimax loss and minimax regret

Unlike Hansen and Sargent (2008), who focus on guarding against adverse distortions to

an approximating model, here we envisage the robust policymaker as one who wishes to

guard against a malignant nature that coordinates mischievously the actions of all future

policymakers and private agents. We envisage all policymakers as being robust decisionmakers

and assume that each policymaker’s desire for robustness is common knowledge. In this

environment, the policy that the period-t policymaker finds robust will be the same as the

policy that all other policymakers find robust, directing all policymakers to coordinate on the

same (robust) policy.

Assume that the model has N symmetric Markov-perfect Stackelberg-Nash equilibria. Be-

cause the economic environment is one in which there is complete and perfect information, the

existence and nature of all N equilibria is known to all agents. Moreover, the N equilibria

can (invariably) be welfare ranked and, as a consequence, agents are not indifferent to which

equilibrium prevails.

Let the policy rules associated with theN equilibria constitute the set of policy actions. We

consider the expected loss to the period-t policymaker of choosing policy action Fi, i = 1, ..., N ,

when private agents in period s = t respond according to their reaction function and nature

has coordinated private agents and policymakers in periods s = t+1, ...,∞ on decision rule Hj

and policy action Fj , j = 1, ..., N , respectively. Because private agents respond according to

their reaction function in period t, H and M in period t are given by (see equations (9)– (11)

and (23))

H =
(
HjA12 −A22

)−1 [
A21 +B2Fi −Hj (A11 +B1Fi)

]
,

M = A11 +A12H+B1Fi,

from which it follows that the state-contingent loss incurred by the period-t policymaker for

each i and j, is

Lij
(
Fi,Fj

)
= x

′
t

(
Ŵ + 2ÛFi + F

′
iQ̂Fi + βM

′
VjM

)
xt +

β

1− β tr
[
VjΣ

]
.

Using the probability density function for xt in equilibrium j to average over the period-t state
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vector, the average loss incurred by the period-t policymaker is6

ELij
(
Fi,Fj

)
= Ej

[
Lij
(
Fi,Fj

)]
= tr

[(
Ŵi + 2ÛiFi + F

′
iQ̂iFi + βM

′
iVjMi

)
Ωj

]
+

β

1− β tr
[
VjΣ

]
,

where Ωj is the unconditional variance-covariance matrix of the state vector, xt, in equilibrium

j.

The minimax loss policy action is the policy action F∗ ∈ {F1, ...,FN} that solves

F∗ = argmin
i

{
argmax

j

[
ELij

(
Fi,Fj

)]}
.

An alternative criterion to minimax loss is minimax regret (Savage, 1951). According

to the minimax regret criterion, a decisionmaker is thought to evaluate the opportunity cost

(regret) of its actions and to choose the action that minimizes the maximum opportunity

cost. From the expected payoffs associated with each policy action Fi, when current-period

private agents respond according to their reaction functions and nature has coordinated all

future private agents on decision rule Hj and all future policymakers on policy action Fj , we

calculate expected regret

ERij
(
Fi,Fj

)
= ELij

(
Fi,Fj

)
− ELjj

(
Fj ,Fj

)
,

where, by construction, ERij
(
Fi,Fj

)
is non-negative ∀ i, j.

The minimax regret policy action is the policy action F̂ ∈ {F1, ...,FN} that solves

F̂ = argmin
i

{
argmax

j

[
ERij

(
Fi,Fj

)]}
.

3.2 Expectational stability

Evans (1986) motivates expectational stability as a selection criterion in rational expectations

models with multiple equilibria. Loosely speaking, a rational expectations equilibrium is

expectationally stable if, following small deviations to the expectation formation process, the

system returns to that equilibrium under a “natural revision rule”. The relevant revision

rule emerges naturally from the thought process whereby agents undertake to revise how they

form expectations based on how those expectations would effect the actual economy, seeking
6Although the period-t optimization is performed conditional on period t information, rather than evaluate

loss for every xt we instead integrate out (average over) the state vector, xt, and evaluate average loss so that the
analysis is not contingent on any particular realization of the state vector. The integration is performed using
the probability density function for xt in equilibrium j because the analysis envisages a unilateral deviation by
the period-t policymaker from equilibrium j.
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to rationalize, or equate, a perceived law-of-motion with the actual law-of-motion. Although

the revisions occur in meta-time, there is a close connection between expectational stability

and real-time least-squares learnability of a rational expectations equilibrium (Marcet and

Sargent, 1989; Evans and Honkapohja, 2001).

Like Evans (1986) and Evans and Guesnerie (2003, 2005), we view learning as a mechanism

through which agents may coordinate on an equilibrium. Unlike these studies, however, the

models we analyze are populated by both private agents and a policymaker, one or both of

which may be learning. As a consequence, we analyze three learning problems and derive

three expectational stability related conditions. In each case, the learning that we entertain

is eductive in nature with agents revising their behavior in meta-time based on the outcomes

of thought experiments. The notion of stability under learning that we consider is iterative

expectational stability (IE-stability).7

Recall that a symmetric Markov-perfect Stackelberg-Nash equilibrium is characterized by

{H,F,M,V, d}. Because M and d follow immediately and uniquely from F, H, and V,

we implement the partitioning {{H,F,V} , {M, d}} and focus on {H,F,V} in what follows.
Specifically, we consider:

1. Private sector learning, where we analyze whether private agents can learnH, conditional

on {F,V}.

2. Policymaker learning, where we analyze whether the policymaker can learn {F,V},
conditional on {H}.

3. Joint learning, where we analyze whether private agents and the policymaker can learn

{H,F,V} jointly.

3.2.1 Preliminaries

To place the three learning problems in a unified framework, let us denote by Φ the object(s)

to be learned. Thus, in the case where only private agents are learning Φ = {H}. Then, to
determine whetherΦ is learnable we construct and analyze the T-map that relates a perception

of Φ, denoted Φ, to an actual Φ, Φ = T
(
Φ
)
.

Definition 7 A fix-point, Φ∗, of the T-map, Φ = T
(
Φ
)
, is said to be IE-stable if

lim
k↑∞

T k
(
Φ
)
= Φ∗,

7See Evans (2001) for a very useful discussion of adaptive versus eductive learning and of expectational
stability (E-stability) versus iterative expectational stability (IE-stability).
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for all Φ 6= Φ∗.

It follows that Φ∗ is IE-stable if and only if it is a stable fix-point of the difference equation

Φk+1 = T (Φk) , (25)

where index k denotes the step of the updating process. Similarly,

Definition 8 A fix-point, Φ∗, of the T-map, Φ = T
(
Φ
)
, is said to be locally IE-stable if

lim
k↑∞

T k
(
Φ
)
= Φ∗,

for all Φ about a neighborhood of Φ∗.

Let the derivative of the T-map be denoted DT (Φ∗), then it is straightforward to prove

the following Lemma.

Lemma 1 Assume that the derivative map, DT (Φ∗), has no eigenvalues with modulus equal

to 1. A fix-point, Φ∗, of the T-map, Φ = T
(
Φ
)
, is locally IE-stable if and only if all

eigenvalues of the derivative map, DT (Φ∗), have modulus less than 1.

Proof. Following Evans (1985), to analyze the local stability of equation (25) we linearize the

equation about Φ∗. Using matrix calculus results from Magnus and Neudecker (1988, chapter

9) we obtain

d (vec (Φk+1)) = DT (Φ∗) d (vec (Φk))

where DT (Φ∗) = ∂ (vec (T (Φ∗))) /∂ (vec (Φ))′. Applying standard results for linear differ-

ence equations, if all of the eigenvalues of DT (Φ∗) have modulus less than one, then Φ∗ is

locally stable. In contrast, if one or more of the eigenvalues of DT (Φ∗) have modulus greater

than one, then Φ∗ is not locally stable.

3.2.2 Eductive learning by private agents

We begin with the case in which only private agents are learning and examine whether private

agents can learn H, given {F,V}. For a given policy rule, ut = Fxt, and a postulated private

sector decision rule

yt = Hxt,

the actual private sector decision rule takes the form

yt = Hxt,
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where

H =
(
HA12 −A22

)−1 [
A21 +B2F−H (A11 +B1F)

]
. (26)

Equation (26) describes the T-map, T (H), fromH toH; it is, of course, equivalent to equation

(20).

Lemma 2 A symmetric Markov-perfect Stackelberg-Nash equilibrium is locally IE-stable un-

der private sector learning if and only if all eigenvalues of

− [I⊗ (HA12 −A22)]
−1
[
(A11+A12H+B1F)

′
⊗ I
]

have modulus less than 1.

Proof. Applying standard matrix calculus rules to equation (26), the total differential can be

written as

(HA12 −A22) d (H) + d
(
H
)
A12H+ d

(
H
)
(A11 +B1F) = 0,

which after vectorizing can be rearranged to give

vec [d (H)] = − [I⊗ (HA12 −A22)]
−1
[
(A11+A12H+B1F)

′
⊗ I
]
vec

[
d
(
H
)]
.

We apply Lemma 1 to obtain the required result. Note that invertability of (HA12 −A22) is

virtually ensured by the assumption that A22 has full rank.

Because the eigenvalues of M = A11+A12H+B1F are all strictly less than β−
1
2 , equilibria

that are not locally IE-stable under private sector learning are those for which (HA12 −A22)

is close to equaling the null matrix.

3.2.3 Eductive learning by the leader

We now turn to the case where the policymaker is learning, but private agents are not. Here

we examine whether the policymaker can learn {F,V}, given {H}. We show that although

learning by policymakers is interesting and important in many contexts, here this local IE-

stability criterion cannot discriminate among equilibria.

For a given private sector decision rule, yt = Hxt, and a postulated policy rule

ut = Fxt,

and a postulated value function matrix V, the T-map T (F,V), from
{
F,V

}
to {F,V} is

described by the following updating relationships

F = −
(
Q̂+ βB̂

′
VB̂

)−1 (
Û
′
+ βB̂

′
VÂ

)
, (27)

V = Ŵ + 2ÛF+ F
′
Q̂F+β

(
Â+ B̂F

)′
V
(
Â+ B̂F

)
, (28)
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where Ŵ, Û, Q̂, Â, and B̂ are defined by equations (14)– (18) and do not depend on F or V

(or on F or V). Notice, that F, given H, is uniquely determined by V, so the key to learning

F is to learn V. As a consequence, without loss of generality we can substitute equation

(27) into equation (28) and analyze the the learning problem using the concentrated T-map

T (V) = V.

Lemma 3 All symmetric Markov-perfect Stackelberg-Nash equilibria are locally IE-stable un-

der policymaker learning.

Proof. Applying standard matrix calculus rules to equations (27) and (28), total differentials

are given by (
Q̂+ βB̂

′
VB̂

)
d (F) + βB̂

′
d
(
V
) (

Â+ B̂F
)

= 0, (29)

2

[
Û+ F

′
Q̂+ β

(
Â+ B̂F

)′
VB̂

]
d (F) + β

(
Â+ B̂F

)′
d
(
V
) (

Â+ B̂F
)

= Id (V) ,(30)

Using equation (29) to solve for d (F) and substituting the resulting expression into equation

(30) yields, upon rearranging,

β

[
−2
(
Û+ βÂ

′
VB

)(
Q̂+ βB̂

′
VB̂

)−1
B̂
′ − 2F′B̂′ +

(
Â+ B̂F

)′]
d
(
V
) (

Â+ B̂F
)
= Id (V) ,

which, given equation (27), collapses to

β
(
Â+ B̂F

)′
d
(
V
) (

Â+ B̂F
)
= Id (V) . (31)

After vectorizing and recognizing that M = Â+ B̂F, equation (31) can be written as

vec [d (V)] = β
(
M
′ ⊗M

′
)
vec

[
d
(
V
)]
.

The matrix β
(
M
′ ⊗M

′
)
defines the derivative map DT (V). Applying Lemma 1, a sym-

metric Markov-perfect Stackelberg-Nash equilibria {H,F,M,V, d} is a local IE-stable policy
equilibrium if and only if all of the eigenvalues of DT (V) have modulus less than 1. Be-

cause the eigenvalues of M all have modulus less than β−
1
2 in all symmetric Markov-perfect

Stackelberg-Nash equilibria the result follows.

3.2.4 Joint eductive learning

Finally, we analyze the case in which both private agents and the policymaker are learning.

The postulated policy and decision rules are

yt = Hxt,

ut = Fxt,
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and the postulated value function matrix is V. Then the actual policy and decision rules are

given by

H = J+KF, (32)

F = −
(
Q̂+ βB̂

′
VB̂

)−1 (
Û+ βB̂

′
VÂ

)
, (33)

V = Ŵ + 2ÛF+ F
′
Q̂F+ β

(
Â+ B̂F

)′
V
(
Â+ B̂F

)
, (34)

where

J =
(
A22 −HA12

)−1 (
HA11 −A21

)
, (35)

K =
(
A22 −HA12

)−1 (
HB1 −B2

)
, (36)

and Ŵ, Û, Q̂, Â, and B̂ are defined by equations (14)– (18) and are functions of J and K.

Given equations (35) and (36), equations (32)– (34) describe the T-map, T
(
H,F,V

)
,

from
{
H,F,V

}
, to {H,F,V}.

Lemma 4 A symmetric Markov-perfect Stackelberg-Nash equilibrium is locally IE-stable un-

der joint learning if and only if all eigenvalues of the matrix P−1L in

vec [d (G)] = P−1 Lvec
[
d
(
G
)]
,

where vec [d (G)] =
[
vec [d (H)]

′
vec [d (F)]

′
vec [d (V)]

′
]′
and P and L are characterized

below, have modulus less than 1.

Proof. Total differentials of equations (32)– (36) about the point {H,F,V,J,K} are given
by

0 = d (J) + d (K)F+Kd (F)− d (H) , (37)

0 = d
(
H
)
Â− (A22 −HA12) d (J) , (38)

0 = d
(
H
)
B̂− (A22 −HA12) d (K) , (39)

0 = βB̂
′
d
(
V
)
M+

(
Q̂+ βB̂

′
VB̂

)
d (F) + 2

(
K
′
W22 +U

′
2 + βB̂

′
VA12

)
d (K)F

+
(
W12 + J

′
W22 + βÂ

′
VA12

)
d (K) +

(
K
′
W22 +U

′
2 + βB̂

′
VA12

)
d (J) , (40)

0 = 2
(
Û+ F

′
Q̂+ βM

′
VB̂

)
d (F) + 2

(
W12 +H

′
W22 + F

′
U
′
2 + βM

′
VA12

)
d (J)

+2
(
W12 +H

′
W22 + F

′
U
′
2 + βM

′
VA12

)
d (K)F+ βM

′
d
(
V
)
M− d (V) . (41)
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Now, using equations (38) and (39) to solve for d (J) and d (K), respectively, and substituting

these expressions into equations (37), (40), and (41) produces

0 = Kd (F) + (A22 −HA12)
−1 d

(
H
)
M−d (H) , (42)

0 = βB̂
′
d
(
V
)
M+

(
Q̂+ βB̂

′
VB̂

)
d (F)

+
(
W12 + J

′
W22 + βÂ

′
VA12

)
(A22 −HA12)

−1 d
(
H
)
B̂

+2
(
K
′
W22 +U

′
2 + βB̂

′
VA12

)
(A22 −HA12)

−1 d
(
H
)
B̂F

+
(
K
′
W22 +U

′
2 + βB̂

′
VA12

)
(A22 −HA12)

−1 d
(
H
)
Â (43)

0 = 2
(
Û+ F

′
Q̂+ βM

′
VB̂

)
d (F) + βM

′
d
(
V
)
M−d (V)

+2
(
W12 +H

′
W22 + F

′
U
′
2 + βM

′
VA12

)
(A22 −HA12)

−1 d
(
H
)
M, (44)

where, again, the invertability of (A22 −HA12) is virtually ensured by the assumption that

A22 has full rank. By vectorizing and stacking equations (42)– (44) they can be written in

the form

Pvec [d (G)] = Lvec
[
d
(
G
)]
,

where

P =


I −K 0

0 −
(
Q̂+ βB̂

′
VB̂

)
0

0 −2
(
Û+ F

′
Q̂+ βM

′
VB̂

)
I

 ,
and L is defined implicitly by equations (42)– (44). Because

(
Q̂+ βB̂

′
VB̂

)
has full rank in

any symmetric Markov-perfect Stackelberg-Nash equilibrium, P too has full rank. The result

follows.

Lemma 5 The equilibrium identified by Oudiz and Sachs (1985) and all equilibria identified

by Backus and Driffi ll (1986) are IE-stable under joint learning.

Proof. The iterative numerical schemes employed by the Backus and Driffi ll (1986) and

Oudiz and Sachs (1985) solution methods coincide with the learning scheme described by

the T-map (32)– (34). As a consequence, these numerical solution methods apply direct

numerical iterations on the non-linear T-map. If these numerical solution methods converge

to a fix-point, then, by construction, the resulting equilibrium is IE-stable under joint learning.
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Before leaving this section, we wish to emphasize that the IE-stability criteria associated

with private sector learning and joint learning, although connected, are distinct. Joint learn-

ability of an equilibrium neither implies nor is implied by private sector learnability of that

equilibrium.

3.3 Trembling-hand errors

Building on sections 3.1 and 3.2, we now consider whether policymakers might be able to

coordinate on the Pareto-preferred equilibrium. As earlier, assume that the model has N

symmetric Markov-perfect Stackelberg-Nash equilibria that can be welfare ranked and whose

existence and nature is known to all agents. Treating the policy rules associated with the

N equilibria as a set of policy actions, because the equilibria are Nash, if policymakers in

periods s = t+ 1, ...,∞ are predicted to play Fj , j = 1, ..., N , then the period-t policymaker’s

best response is to also play Fj . However, although it is never beneficial for the period-t

policymaker to unilaterally deviate from Nash play, outside of the Pareto-preferred equilib-

rium the period-t policymaker can potentially benefit from deviations that involve multiple

policymakers. With this in mind, we introduce a sequence of “trembling-hand” deviations

from Nash play. Intuitively, the policy action in the Pareto-preferred equilibrium can be more

easily coordinated upon if it can be supported by a relatively small group (or coalition) of

deviating policymakers, a relatively small number of trembling-hand errors,8 against all other

policy actions.

Let equilibrium N represent the Pareto-preferred equilibrium. Consider the period-t poli-

cymaker’s best response where the predicted future play is {Ft+1
N , ...,F

t+pj
N ,F

t+pj+1
j ,F

t+pj+2
j , ...},

j 6= N , with private agents in periods s = t, ...,∞ responding according to their reaction func-

tion. In this scenario, during periods s = t + pj + 1, ...,∞ the policy rule and private-sector

decision rules are given by Fj and Hj , respectively. However, during periods s = t, ..., t+ pj

the policy rule is given by FN and private agents respond according to their reaction function,

Hs =
(
Hs+1A12 −A22

)−1 [
A21 +B2FN −Hs+1 (A11 +B1FN )

]
. (45)

Given equation (45), the law-of-motion for the state vector during periods s = t, ..., t+ pj

is

Ms = A11 +A12H
s +B1FN .

8One might view the group of deviating policymakers to be small if it numbers less than a policymaker’s
average tenure. In the U. S., Federal Reserve chairmen are appointed to a four year term, but the average
tenure is somewhat longer. In the U. K., monetary policy committee members have three-year contracts that
overlap to prevent members from retiring simultaneously.
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We know that if pj = 0, then the period-t policymaker’s best response is to play Fj .

However, as pj increases, the period-t policymaker’s best response can switch from Fj to FN .

For each Fj , we calculate the number of periods of multilateral deviation pj required to switch

the period-t policymaker’s best response from Fj to FN . If pj is relatively small for all

j 6= N , then the Pareto-preferred equilibrium can be supported by a relatively small group

of deviating policymakers, raising the likelihood that coordination on the Pareto-preferred

equilibrium could occur.

Although the period-t policymaker’s best response may switch from Fj to FN as pj in-

creases, it need not. In fact, whether the period-t policymaker’s best response switches from

Fj to FN as pj increases turns on whether the Pareto-preferred equilibrium is locally IE-stable

under private sector learning.

Lemma 6 The period-t policymakers best response will switch from Fj to FN in the limit as

pj ↑ ∞ if and only if the Pareto-preferred equilibrium is locally IE-stable under private sector

learning.

Proof. Consider equation (45). If equilibrium N is locally IE-stable under private sector

learning, then, Hs → HN in the limit as pj ↑ ∞, which implies Ms → MN and Vs → VN .

Because equilibrium N Pareto-dominates all other symmetric Markov-perfect Stackelberg-

Nash equilibria, the period-t policymaker’s best response must switch from Fj to FN . On

the contrary, if equilibrium N is not locally IE-stable under private sector learning, then

although Hs may converge to H̃ 6= HN in the limit as pj ↑ ∞, because H̃ 6= HN the period-t

policymaker’s best response cannot be FN .

3.4 A comment on the Oudiz and Sachs (1985) solution method

As we noted earlier, the Oudiz and Sachs (1985) solution method identifies at most a single

equilibrium. Uniqueness arises because a terminal period is imposed and the solution method

is initialized from the solution to the terminal-period problem, which (because the problem is

linear-quadratic) is unique under quite general regularity conditions. From the perspective of

the agents that reside in the model, the terminal period operates very much like a coordination

device– even if it resides in the far distant future– because its presence removes all ambiguity

regarding the actions of other players. Interestingly, when a model has multiple symmetric

Markov-perfect Stackelberg-Nash equilibria, our experience has been that the Oudiz and Sachs

solution method identifies the Pareto-preferred equilibrium. To understand why the Oudiz
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and Sachs (1985) solution method tends to isolate the Pareto-preferred equilibrium, consider

the finite horizon performance of the infinite-horizon policies. Over any finite interval, s =

t, ..., T , the Oudiz and Sachs (1985) solution, which exploits the presence of a terminal period,

invariably performs as well as or better than the best performing among the infinite-horizon

policies.9 Provided the Oudiz and Sachs (1985) solution does out-perform the infinite-horizon

policies over any finite interval s = t, ..., T , then in the limit as T ↑ ∞, the Oudiz and Sachs
(1985) solution will converge to the equilibrium that is Pareto-preferred in the infinite horizon

problem.

4 Examples of multiple equilibria

In this section we analyze two New Keynesian models that exhibit multiple symmetric Markov-

perfect Stackelberg-Nash equilibria. The first is the sticky price model with government debt

presented in Blake and Kirsanova (2007). The second is a sticky price New Keynesian model

in the spirit of Woodford (2003, Chapter 5) and Sveen and Weinke (2007), but with partial

inflation indexation. This second model is notable because it resides at the core of many New

Keynesian models; the fact that it possesses multiple equilibria raises the prospect that other

related New Keynesian models may also possess multiple equilibria.

4.1 A model with government debt

The economy is populated by a representative household, by a unit-continuum of monopolis-

tically competitive firms, and by a single large government that conducts separately monetary

policy and fiscal policy. Fiscal policy is conducted via a rule that relates government spend-

ing, gt, inversely to the stock of real government debt, bt. Monetary policy, in contrast, is

conducted by choosing a setting for the nominal interest rate on a one-period nominal bond,

rt, optimally, but under discretion. Importantly, when formulating monetary policy the cen-

tral bank takes the fiscal rule into account. Monopolistically competitive firms produce via a

production function that depends only on labor and these goods are combined via a Dixit and

Stiglitz (1977) technology to produce aggregate output, yt, which is allocated to either private

consumption, ct, or government spending. Households choose their consumption and leisure,

1 − lt, and can transfer income through time through their holdings of government bonds.

9The Oudiz and Sachs (1985) solution method is not actually derived from decision problems for agents in
which their planning horizon is finite. Instead, it is constructed by imposing a terminal condition on what
are otherwise infinite-horizon planning problems. As a consequence, it is not unambiguously clear that it will
necessarily out-perform the best performing infinite horizon policy over any finite interval s = t, ..., T .
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The government issues debt period-by-period in order to pay the principle and interest on

its existing debt and to fund any discrepancy between its spending and its tax revenues, τyt,

where τ ∈ (0, 1) is the tax rate on income. Firms set prices subject to a Calvo (1983) nominal
price rigidity and aggregation across prices leads to a New Keynesian Phillips curve relating

inflation, πt, to the expected future inflation, real marginal costs, and a serially correlated

markup shock, vt.

When log-linearized about a zero-inflation nonstochastic steady state the equations that

constrain the monetary policy decision problem can be written as

πt = βEtπt+1 +
(1− γβ) (1− γ)
σγ (ε+ ψ)

(ψct + yt) + vt,

ct = Etct+1 − σ (rt − Etπt+1) ,

yt = (1− θ) gt + θct,

bt+1 = χrt +
1

β
(bt − χπt + (1− θ) gt − τyt) ,

gt = −λbt,

with the monetary policy objective function, a second-order accurate approximation10 to

household utility, taking the form (Blake and Kirsanova, 2007)

Lt = (1− β)Et
∞∑
k=t

β(k−t)
[
π2k +

ψ(1− γβ) (1− γ)
(ε+ ψ) γε

(
1

ψ
y2k +

θ

σ
c2k +

(1− θ)
σ

g2k

)]
.

The parameter λ, which reflects the response of government spending to real debt, plays a

crucial role in the analysis. If the fiscal response parameter is “relatively large” then fiscal

policy bears the burden of stabilizing the stock of debt and there is unique symmetric Markov-

perfect Stackelberg-Nash equilibrium. In this equilibrium, following an adverse markup shock,

fiscal policy returns the real government debt quickly to its steady state level while monetary

policy stabilizes inflation and output by raising the nominal interest rate in order to lower

real marginal costs. If the fiscal control is “relatively small”, then again there is a unique

equilibrium in which monetary policy bears the burden of stabilizing the stock of debt. In

the spirit of Leeper (1991), the former case can be thought of as one it which fiscal policy is

passive and monetary policy is active and the latter case as one in which fiscal policy is active

and monetary policy is passive.11 For an “intermediate”strength of fiscal control, however,
10When deriving this approximation, Blake and Kirsanova (2007) assume the presence of an effi cient produc-

tion/employment subsidy, funded by a lump-sum tax, that offsets the output distortion caused by monopolistic
competition.
11Notice that here the discretionary central bank makes its policy decision taking the fiscal spending equation

into consideration and can be viewed, as a consequence, a Stackelberg leader with respect to the fiscal authority
(c.f. Leeper, 1991).
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we find three equilibria.12
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Figure 1: Government debt model

Figure 1 panel A shows the relationship between Fb and F b, varying F b between −4.5 and
0. Over most of this space, each value of F b is associated with two values of Fb with this

multiplicity arising from the fact that the policy allows multiple private sector equilibria to

exist at each point in time, which is to say that equation (20) has two solutions for H for

which, given F b, the spectral radius of the state transition matrix,
∣∣M∣∣, is less then one. The

first solution (determined to be the one that minimizes
∣∣M∣∣, given F b) corresponds to the

solution branch depicted by the dashed line. The second solution corresponds to the solution

branch depicted by the dash-dotted line. Where the dashed line and the dash-dotted lines

overlap, F b generates a unique private sector equilibrium. Although the dash-dotted line

does not intersect the 45 degree line, the dashed line intersects three times and these points

12We parameterize the model as follows. We set the discount factor, β, to 0.99, the elasticity of intertemporal
substitution, σ, to 0.5, the consumption-output ratio, θ, to 0.75, the steady-state debt-to-output ratio, χ, to
0.1, the elasticity of substitution between goods, ε, to 11, the Calvo price-rigidity, γ, to 0.75, the labor supply
elasticity, ψ, to 2, the income tax rate, τ , to (1− β)χ+ (1− θ) and the fiscal policy parameter, λ, to 1.1. We
set the AR(1) coeffi cient in the markup shock process to 0.3.
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of intersection, denoted by A, B, and C, respectively, and shown in greater detail in panel B,

represent the three equilibria in this model. By separating the two solution branches and

tracking the relationship between Fb and F b, Figure 1 allows us to distinguish multiplicities

arising through the interaction between private agents and the policymaker from multiplicities

arising through the interaction between policymakers over time. In this example, only one

solution arm crosses the 45 degree line, implying that the multiplicity is due to the interaction

between policymakers over time.13

In Table 1, we report the policy rule, F, the private-sector decision rules, H, and the

spectral radius of the transition matrix, |M|, for all three equilibria.

Table 1: Policy rules in equilibrium

Eqm F =
[
Fv Fb

]
H =

[
Hcv Hcb

Hπv Hπb

]
|M|

A
[
−5.1657 −0.8476

] [
2.4392 0.9401
1.4385 0.0585

]
0.5326

B
[
7.7386 −0.2414

] [
−4.3044 0.4334
1.3073 0.0374

]
0.6917

C
[
13.5114 −0.1066

] [
−8.3962 0.2392
1.1339 0.0216

]
0.7437

The three policy rules presented in Table 1 are qualitatively and quantitatively quite

different. Specifically, monetary policy can be thought of as being passive in equilibrium A and

active in equilibria B and C.14 Thus, characterizing equilibrium A as “passive”, equilibrium

B as “moderately active”, and equilibrium C as “active”, Table 1 reveals a trade-off between

the response to government debt and the response to the markup shock: the more active the

policy the more aggressively interest rates are raised in response to the markup shock. Table

1 also reveals a relationship between the response to government debt and the speed with

13Because Figure 1 has been constructed for a particular parameterization of the model, it is useful to consider
how the set of equilibria is affected by parameter variation. Focusing on Panel B for ease of exposition, some
parameter variations lower F 1(b) causing equilibrium A to be the unique equilibrium; other parameter variations
raise F 1(b) causing equilibrium C to be the unique equilibrium. Although the model has a unique equilibrium
for many parameterizations, it is not the case that most parameterizations lead to one particular equilibrium
prevailing.
14To this point, consider the monetary policy rule in equilibrium A. It is useful to express this policy rule

as a relationship whereby the nominal interest rate responds to inflation and real debt. When written in this
form the policy rule is

rt = −3.59103πt − 0.637409bt.
In contrast, the policy rule in equilibrium C is

rt = 11.9156πt − 0.363488bt.

In the spirit of Leeper (1991), the policy rule in equilibrium A can be thought of as being passive because it
suggests that the interest rate be lowered in response to a rise in inflation.
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which government debt is stabilized: the more passive is monetary policy the more quickly is

government debt stabilized.

To understand why multiple equilibria arise in this model, recognize that following a

markup shock the challenge facing the central bank is to bring inflation down without creat-

ing too large of a recession. According to the Phillips curve, in any stationary equilibrium

inflation depends on the entire expected future path of real marginal costs,

πt = Et
∞∑
k=t

β(k−t)
[
(1− γβ) (1− γ)
σγ (ε+ ψ)

mck + vk

]
,

where real marginal costs are given by

mct = ψct + yt. (46)

Notice that when the discount factor, β, is large mct and mct+1 are highly substitutable

in terms of their effect on period-t inflation. Clearly, if inflation is above target, then there

are multiple paths for real marginal costs that will return inflation to target. Each of these

paths for real marginal costs is associated with a different monetary policy and each has a

different cost in terms of loss. The policymaker might choose a policy that involves lower

future real marginal costs if that policy allows the costs of bringing inflation back to target to

be deferred, even if that policy means tolerating slightly higher inflation today.

Consider the case where future policymakers are expected to employ a policy rule that

responds only weakly to bt. In this case a monetary policy that seeks to counter the markup

shock by raising the real interest rate will be attractive. The higher real interest rate induces

households to defer consumption, which, from equation (46), achieves the goal of lowering

real marginal costs today and placing downward pressure on inflation. Of course, the higher

interest rate also raises the cost of financing the government debt, which together with the

fact that the decline in consumption lowers output and government tax revenues, leads to a

rise in bt. Where the success of this policy would be undone if future policymakers were to

cut interest rates aggressively in response to the rise in bt, because this would cause future

real marginal costs to rise, it is sustained on the expectation that future policymakers will not

attempt to solve the fiscal deficit problem by stimulating the economy. This line of reasoning

gives rise to equilibrium C (or B).

In contrast, if future policymakers are expected to tighten monetary policy aggressively in

response to a decline in government debt, then a monetary policy that stimulates the economy

today can achieve lower inflation over time, even if it permits higher inflation today, provided
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real marginal costs decline in the future. By lowering the interest rate in response to the

markup shock, monetary policy stimulates the economy and causes real marginal costs to rise,

which is inflationary. However, because this policy raises government tax receipts and lowers

the cost of financing debt, it causes the stock of government debt to decline. Since future

policymakers are expected to tighten monetary policy aggressively in response to a decline

in government debt, this policy achieves lower inflation over time because it induces tighter

policy in the future. This line of reasoning gives rise to equilibrium A.

The economy’s behavior in each of these equilibria can be seen clearly in Figure 2, which

shows the responses of key variables to a unit markup shock. Focusing first on the active

and moderately active equilibria (equilibria C and B, respectively), inflation rises following the

markup shock (panel C) and the policy response is to raise the nominal interest rate (panel F).

With the nominal interest rate rising by more than inflation, the real interest rate rises causing

households to defer consumption (panel D). The decline in consumption lowers output (panel

A) and government tax revenues (panel H), which leads to a rise in government debt (panel

B). In subsequent periods, although interest rates are lowered to stimulate the economy and

bring it out of recession, government debt is brought back to baseline predominantly through

(primary) fiscal surpluses, rather than through a decline in the cost of financing government

debt.

In the passive equilibrium (equilibrium A), monetary policy responds to the markup shock

by lowering the interest rate, which stimulates consumption and output, raises real marginal

costs, and causes inflation to rise by more than it otherwise would. This monetary policy

causes tax revenues to rise and leads to a decline in government debt. To stabilize gov-

ernment debt, future policymakers raise the cost of financing government debt, which causes

consumption, output, and real marginal costs to decline and places downward pressure on

inflation.
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Figure 2: Responses to unit markup shock

It is clear from Figure 2 that monetary policy and the economy’s behavior more generally

is very different in equilibrium A than it is in either equilibrium B or equilibrium C. With

these differences in mind, we now apply the equilibrium selection methods described in Section

4 and report the results in Table 2. Table 2 also identifies the equilibria that can be obtained

via the iterative Backus and Driffi ll (1986) and Oudiz and Sachs (1985) solution procedures

and shows the average loss associated with each equilibrium.
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Table 2: Equilibrium characteristics
Equilibrium

Criterion A B C
(1) Average loss 2.2252 1.9935 1.6700

(2) Minimax loss rank 1 2 3
(3) Minimax regret rank 3 1 2

(4) IE-stable (Joint) yes no yes
(5) IE-stable (Private sector) yes yes yes
(6) Coalition size (pj) 5 3 –
(7) Backus-Driffi ll yes no yes
(8) Oudiz-Sachs no no yes

Row (1) of Table 2 reports the average loss associated with each equilibrium. This row

shows that the three equilibria can be welfare ranked and that equilibrium C, the equilibrium in

which monetary policy is most active in stabilizing output and inflation, is the Pareto-preferred

equilibrium. In contrast, equilibrium A, in which monetary policy seeks to stabilize output

and inflation by manipulating government debt, performs worst. Clearly, if policymakers and

private agents could choose, they would choose to coordinate on equilibrium C. Rows (2) and

(3) of Table 2 show that if policymakers were to choose their policy action using minimax loss or

minimax regret, then they would coordinate on equilibrium A and equilibrium B, respectively.

Thus, these robustness-based criteria suggest that the Pareto-preferred equilibrium C might be

unattainable. However, row (4) reveals that equilibrium B is not locally IE-stable under joint

learning. If we require the equilibrium to be both jointly learnable and private-sector learnable

(locally IE-stable under private sector learning), then rows (4) and (5) preclude equilibrium

B, and the minimax regret criterion identifies equilibrium C. As expected, equilibrium C is

also the unique equilibrium located by the Oudiz and Sachs (1985) solution procedure and,

since it is jointly learnable, it is also an equilibrium located by the Backus and Driffi ll (1986)

solution procedure.

Although either equilibrium A or equilibrium C might prevail, we now ask whether policy-

makers and private agents could reasonably coordinate on the Pareto-preferred equilibrium C.

Equilibrium C is jointly learnable and it is locally IE-stable under private sector learning. In

addition, row (6) of Table 2 shows that the largest coalition of policymakers needed to support

equilibrium C is 5, which seems “relatively small”, and is certainly smaller than the typically

central banker’s tenure, suggesting that coordination on equilibrium C could be possible.
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4.2 A model with capital accumulation and inflation indexation

Following Woodford (2003, Chapter 5), the economy is populated by households, intermediate-

good producing firms, final-good producing firms, and a central bank. Households are iden-

tical and infinitely lived, choosing consumption, ct, labor, lt, and nominal holdings of next

period bonds, bt+1, to maximize expected discounted utility subject to a budget constraint.

On the production side, a unit-continuum of monopolistically competitive intermediate-good

producing firms, indexed by ω ∈ [0, 1], produce by combining labor services hired in a per-
fectly competitive market with their firm-specific capital. These intermediate-good producing

firms make labor and investment decisions, seeking to maximize their value subject to their

production technology

Yt (ω) = eutKt (ω)
α Lt (ω)

(1−α) ,

their capital accumulation equation

It (ω) = I

(
Kt+1 (ω)

Kt (ω)

)
Kt (ω) ,

where I(1) = δ, I
′
(1) = 1, and I

′′
(1) = η, and a Calvo (1983) price rigidity, where firms

that cannot optimally set their price in a given period are assumed to index their price to

lagged aggregate inflation (Smets and Wouters, 2003). Profits are aggregated and returned

to households (shareholders) in the form of a lump-sum dividend. The final-good producing

firms purchase intermediate goods, aggregate them into a final good according to a Dixit and

Stiglitz (1977) production technology, and sell these final goods in a perfectly competitive

market to households and firms to consume and invest, respectively.

After aggregating and log-linearizing about a zero-inflation nonstochastic steady state, the

model’s constraints and first-order conditions are

πt =
θ

1 + θβ
πt−1 +

β

1 + θβ
Etπt+1 +

(1− ξ) (1− βξ)
(1 + θβ) ξ

mct + vt,

ct = Etct+1 −
1

σ
(rt − Etπt+1 − gt + Etgt+1) ,

kt+1 =
1

1 + β
kt +

β

1 + β
Etkt+2 +

1− β (1− δ)
(1 + β) η

Etmst+1 −
1

(1 + β) η
(rt − Etπt+1)

mct = wt − yt + lt,

wt = χlt + σct − gt,

yt = (1− γ) ct +
γ

δ
[kt+1 − (1− δ) kt] ,

yt = ut + αkt + (1− α) lt,

mst = wt − kt + lt
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where β ∈ (0, 1) is the discount factor, ρ ≡ 1−β
β is the discount rate, γ ≡ αδ

ρ+δ
ε−1
ε is the

steady-state share of investment in output, ε > 1 is the steady-state elasticity of substitution

between intermediate goods, δ ∈ (0, 1) is the depreciation rate, and η > 0 is the elasticity of the
investment-to-capital ratio with respect to Tobin’s q evaluated at steady state (Eichenbaum

and Fisher, 2007).

Although the model allows for three stochastic elements: an aggregate consumption-

preference shock, gt; an aggregate markup shock, vt; and an aggregate technology shock,

ut, we zero-out gt and ut in order to focus on the policy trade-offs associated with the markup

shock, vt, which is assumed to evolve over time according to

vt+1 = ρvvt + εvt+1,

where ρv ∈ (−1, 1) and εvt+1 is i.i.d. distributed with zero mean and finite variance.15

The central bank’s loss function is assumed to have the form

Lt = (1− β)Et
∞∑
k=t

β(k−t)
[
π2k +

(1− ξ) (1− βξ)
(1 + θβ) ξε

y2k

]
.

With monetary policy conducted under discretion this model has three symmetric Markov-

perfect Stackelberg-Nash equilibria. The policy rule and the private-sector decision rules for

each of these equilibria are reported in Table 3.

Table 3: Policy rules in equilibrium

Eqm F =
[
Fv Fk Fπ

]
H =

 Hπv Hπk Hππ

Hcv Hck Hcπ

Hkv Hkk Hkπ

 |M|

A
[
−4.1623 4.8258 −0.7321

]  2.4376 −2.3107 0.6257
1.6494 −2.3572 0.2771
0.7774 −0.4040 0.1304

 0.3000

B
[
1.0633 −0.0914 0.6072

]  0.3707 −0.1749 0.1201
−0.9957 0.2727 −0.3789
−0.5546 0.9242 −0.1996

 0.9655

C
[
1.0163 −0.0247 0.5994

]  0.1934 −0.0050 0.0768
−1.0822 0.3487 −0.4007
−0.6019 0.9663 −0.2115

 0.9674

Clearly, equilibria B and C are “close”, sharing policy rules that are qualitatively and

quantitatively similar. In these two equilibria, the coeffi cients in the policy rule indicate that
15To parameterize the model, we set the discount factor (β) to 0.99, the Calvo price rigidity (ξ) to 0.75, the

inflation indexation parameter (θ) to 0.60, the Cobb-Douglas production function parameter (α) to 0.36, the
labor supply elasticity (χ) to 1, the elasticity of intertemporal substitution (σ) to 2, the depreciation rate (δ)
to 0.025, the elasticity of subititution between goods (ε) to 11, and the shock persistece (ρv) to 0.3.
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the central bank will raise the nominal interest rate in response to a positive markup shock

and in response to higher (lagged) inflation, but lower the nominal interest rate in response

to a higher capital stock. In contrast, the policy responses in equilibria A are qualitatively

the very opposite of those in equilibria B and C.

To understand why this model has multiple equilibria we again turn to the Phillips curve

and to the problem of stabilizing inflation. Adapting a result from Dennis and Söderström

(2006), the forward representation of the inflation equation is given by

πt = θπt−1 +
(1− ξ) (1− βξ)

ξ
Et
∞∑
k=t

β(k−t)mck +
1 + θβ

1− ρvβ
vt. (47)

Moreover, real marginal costs can be expressed as

mct = αmst + (1− α)wt

=

(
α+ χ

1− α +
σ

1− γ

)
yt +

[
σγ (1− δ)
(1− γ) δ −

α (α+ χ)

1− α

]
kt −

σγ

(1− γ) δ kt+1. (48)

Analogous to the model with government debt, equation (47) shows that movements in

mct and mct+1 are highly substitutable in terms of their effect on πt and that, for any initial

value of inflation, there are multiple paths for mct that will return inflation to target. As

earlier, these different paths for real marginal costs are associated with different monetary

policies and with different performance in terms of loss. Equation (48) shows that monetary

policy can affect mct through two distinct channels. To lower real marginal costs, the central

bank can either raise the real interest rate, weakening aggregate demand and thereby causing

yt to decline or it can lower the real interest rate to stimulate investment and thereby boost

the future capital stock. Notice that raising (lowering) the real interest rate causes both

yt and kt+1 to decline (rise) and that yt and kt+1 have countervailing effects on mct. As a

consequence, the desirability of each policy from the perspective of the period-t policymaker

turns on how future policymakers are expected to respond to the capital stock.

Consider the case where future policymakers are expected to lower the interest rate in

response to a rise in the capital stock. Following a positive markup shock, the policy of

raising the real interest rate and causing yt and kt+1 to decline will successfully deliver lower

real marginal costs and inflation because the boost in future real marginal costs caused by the

decline in the capital stock is offset by higher interest rates in the future. Under this approach,

monetary policy responds to the positive markup shock by contracting demand, lowering real

marginal costs and inflation, and by then lowering interest rates as inflation declines allowing

the economy to recover, producing equilibrium C (or B). Alternatively, if future policymakers
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are expected to raise the interest rate in response to a higher capital stock, then a policy that

lowers the real interest rate and stimulates investment can bring about a decline in inflation,

despite the boost to yt and mct today, because future policymakers respond to the higher

capital stock by tightening monetary policy, producing equilibrium A.

The economy’s behavior in the different equilibria are shown in Figure 3 which displays

the responses of key variables to a unit markup shock.

Figure 3: Responses to unit markup shock
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Focusing first on equilibria B and C, following the markup shock the interest rate is raised

(Panel I) by more than the increase in inflation (Panel F), causing the real interest rate

to rise. The higher real interest rate generates a decline in consumption (Panel D) and

investment (Panel G), which lowers output (Panel A) and real marginal costs (Panels E and

H). Further, the fall in investment leads to a decline in the capital stock (Panel B). In

subsequent periods, the decline in real marginal costs causes inflation to moderate. With

inflation declining back to baseline, monetary policy responds by lowering the interest rate

and stimulating demand. In these two equilibria, monetary policy stabilizes the economy

in the traditional way, contracting output and hence real marginal costs in order to keep

inflationary pressures contained. Although equilibria B and C are similar in many respects,

it is notable that the economy returns to steady state somewhat more slowly in equilibrium B

than it does in equilibrium C.

In constrast, in equilibrium A the interest rate is lowered in response to the positive

markup shock, generating a big decline in the real interest rate. The lower real interest rate

stimulates consumption and investment, which pushes up output and real marginal costs and

further boosts inflation. However, the rise in investment causes the capital stock to increase

and the capital build up eventually lowers real marginal costs while inducing tighter monetary

policy. Although the policy tightening is aimed primarily at lowering investment, it also serves

to lower output, which causes a further decline in real marginal costs. In this equilibrium,

monetary policy responds to the markup shock by stimulating the economy in order to boost

capital spending. This policy succeeds in stabilizing the economy because the higher capital

stock causes future real marginal costs to decline and future monetary policy to tighten.

Table 4: Equilibrium characteristics
Equilibrium

Criterion A B C
(1) Average loss 6.6737 0.8535 0.2849

(2) Minimax loss rank 1 3 2
(3) Minimax regret rank 3 2 1

(4) IE-stable (Joint) yes no yes
(5) IE-stable (Private sector) yes no no
(6) Coalition size (pj) @ @ –
(7) Backus-Driffi ll yes no yes
(8) Oudiz-Sachs no no yes

Clearly the economy behaves very differently in equilibrium A than it does in equilibrium

C. But are the conventional policies (equilibria B and C) superior to the unconventional
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policy (equilibrium A)? Table 4 (row 1) shows that the conventional policies are superior

to the unconventional policy and that equilibrium C is superior to equilibrium B. Rows (2)

and (3) show that the minimax loss and minimax regret criteria identify equilibrium A and

equilibrium C, respectively. In addition, equilibrium B is neither jointly learnable (row 4)

nor learnable by private agents (row 5). Interestingly, the Pareto-preferred equilibrium C is

also not learnable by private agents. As a consequence, only equilibrium A is both jointly

learnable and learnable by private agents, and no sequence of trembling hand errors could

occur to induce coordination on equilibrium C. In this model, unless the policymaker is

a minimax-regret decisionmaker, the equilibrium of interest appears to be equilibrium A in

which monetary policy seeks to stabilize output and inflation by manipulating investment and

the capital stock.

5 Conclusion

Discretionary policymakers cannot manage either the expectations of private agents or the

actions of future policymakers. As a consequence, discretionary policymakers are susceptible

to expectations traps and coordination failures and discretionary control problems can have

multiple equilibria. Recognizing this potential for multiple equilibria, this paper addresses

the important issue of equilibrium selection, an issue related intrinsically to the capacity for

agents to coordinate. One contribution of this paper is to cast the discretionary control

problem as a dynamic game, allowing us to explain clearly the strategic interactions that give

rise to multiple equilibria. However, the paper’s main contribution is to develop a range of

equilibrium selection criteria, where these criteria are motivated by robustness, learning, and

the possibility of systematic policy errors. Among other results, the paper finds coordination

on an equilibrium that is not learnable by private agents and not learnable jointly by private

agents and by policymakers to be unlikely. Where more than one equilibrium satisfies these

learnability criteria, a policymaker’s desire for robustness can be invoked to achieve uniqueness.

We illustrate the equilibrium selection criteria by applying them to two New Keynesian

models. In the first model, the Pareto-preferred equilibrium is one of two equilibria that is

both jointly learnable and learnable by private agents, and, between these two equilibria, it

is the equilibrium that would be coordinated on by minimax-regret policymakers. Since, in

addition, the Pareto-preferred equilibrium can be supported by a relatively short sequence of

trembling hand errors, is seems reasonable to expect that agents residing in this model might

plausibly coordinate upon the Pareto-preferred equilibrium. In the second model, however,
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although the Pareto-preferred equilibrium is jointly learnable it is not learnable by private

agents and it cannot be supported by any sequence of trembling-hand errors. Accordingly, to

the extent that private sector learnability is critical for coordination, it appears likely that the

Pareto-worst equilibrium and not the Pareto-best equilibrium will be the equilibrium outcome.

At the same time, we do not rule out entirely the possibility that agents might coordinate on

the Pareto-preferred equilibrium in this model. The Pareto-preferred equilibrium is jointly

learnable and it is the equilibrium identified by the minimax regret selection criterion. Finally,

where model uncertainty influences behavior, the question arises as to whether policymakers

can facilitate coordination by making their forecasts public. We leave this question to further

research.
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