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Abstract

We propose that the formation of beliefs be treated as statistical hy-

pothesis tests, and label such beliefs inferential expectations. If a belief is

overturned due to sufficient contrarian evidence, we assume agents switch

to the rational expectation. We build a state dependent Phillips curve,

and show that adjustments to equilibria may be contaminated by signal

censoring, where agents in possession of extreme information are the first

to adjust to changed economic circumstances. This approach is able to

replicate recent micro-level evidence on firms’ pricing behavior and sheds

light onto the dynamics of disaggregated prices.
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“While I was aware a lot of these [subprime] practices were going

on, I had no notion of how significant they had become until very

late. I didn’t really get it until very late in 2005 and 2006.”

Alan Greenspan on CBS “60 minutes”, 16 September 2007

1 Introduction

Recent decades have seen a theoretical backing away from Rational Expecta-

tions (RE).1 Examples include: (1) near rationality (Akerlof and Yellen, 1985),

(2) agents as econometricians (Sargent 1993), (3) parameter uncertainty and

econometric learning (Evans and Honkapohja, 2001), (4) model uncertainty

and robustness (Hansen and Sargent, 2001), (5) infrequent rational expecta-

tions, when inattentive agents consult experts (Carroll, 2003), (6) information

processing constraints and ‘rational inattention’ (Sims, 2003), (7) utility-based

beliefs, or ‘optimal’ expectations (Brunnermeier and Parker, 2005), and, the

subject of this paper, (8) inferential expectations (Menzies and Zizzo, 2009).

The approach of inferential expectations is captured in Alan Greenspan’s

quote: evidence must build up to a ‘significant’ threshold before agents ‘get it’.

This seems reasonable for three reasons.

First, asset prices sometimes move far more sharply than the underlying

fundamentals at the onset of a crisis, when beliefs are typically being revised.

Figure 1 shows evidence from three decades.

Our explanation for the mismatch between the gradual erosion of funda-

mentals and the rapid asset price declines is that the fundamental factors are

noticed by agents as they form expectations. But, as described in the quote,

they take some time to ‘get it’ before dramatically downgrading their forecasts.

At that instant, asset prices decline sharply.

Second, in Menzies and Zizzo (2005) undergraduates were shown the contents

of two urns, each with different combinations of white and orange balls. One

urn was then selected randomly, and subjects received signals about its contents

by the means of random ball draws with replacement from the chosen urn. The

prior probability of a particular urn being chosen was 0.5 at the start of the

experiment, but should then have evolved under RE according to Bayes’ rule,

as each new ball was drawn. In fact, agents displayed belief conservatism. Even

allowing for rounding, agents failed to switch their probability guess far more

often - over 30 per cent of the time - than would be expected under RE. The

evidence suggests that subjects often noticed the evidence without changing

their mind (further, less direct experimental evidence for belief conservatism is

discussed in the exchange rate experiment by Menzies and Zizzo, 2007).

1RE has equivocal support in the experimental literature. While its predictions are not

rejected as null hypotheses in some contexts (see Dwyer et al., 1993), the most common

outcome is that individuals do not hold RE (e.g., Schmalensee, 1976; Blomqvist, 1989; Beck-

man and Downs, 1997; Swenson, 1997). In addition, experimental research often finds either

under-utilization or over-utilization of priors (Camerer, 1995).
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Figure 1: Sudden Asset Price Movements in Three Decades of Crises

Third, we appeal to the philosophy of science. While economists have be-

come uneasy with RE in recent decades, a parallel debate has been carried on

in the physical sciences on the status of hypothesis testing as a model of belief

formation. Mayo (1996) and Mayo and Spanos (2006) have argued that there

is a paradoxical reluctance of scientists to describe their own belief changes in

terms of Neyman-Pearson testing. The key point here is that, if we, as social

scientists, habitually use hypothesis testing to help form our own beliefs,2 it

would be natural to assume that our representative agents also use hypothesis

tests.

A hypothesis test is a good model for belief formation of the kind described

by Greenspan. In particular, until the rejection region is reached, agents notice

information without changing their minds. We call our model ‘inferential expec-

tations’ (IE) where ‘inferential’ refers to classical Neyman-Pearson inference.

We assume that, when a belief is overturned, agents switch to RE. Thus, RE

is a special case of IE if agents are unconcerned about mistakenly changing their

beliefs (the test size  equals unity). Seen in this way,  becomes a metric for

rationality. When it is zero agents are completely unresponsive to evidence, and

when it is unity they are completely untainted by belief conservatism. By link-

ing RE to IE in this way, we ground our expectations theory ultimately in the

structure of the model, which provides modeling discipline. Furthermore, if RE

is defined in terms of the best unbiased estimator for a model variable or para-

2One author received criticism from a referee of a top-tier journal because significance was

accorded to a test in the submitted paper with a p-value of 0.052.
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meter — what we call feasible RE — then the model may be at the full information

equilibrium in an expected value sense whilst exhibiting some volatility.3

In any IE model, there is a cognitive target about which hypotheses are tested

using a test statistic based on a model variable, a rejection region and a test

size.

This paper extends the theory of inferential expectations, outlined in Menzies

and Zizzo (2009). In that paper the cognitive target was the money stock in

a Dornbusch overshooting model, the hypotheses concerned the duration of

that shock, the test statistic was the period of time the monetary expansion

was observed and the rejection region was the time beyond which an observed

expansion was believed to be permanent.

In this paper, the cognitive target is an economy wide real marginal cost

shock, the hypotheses concern the size of this shock, the test statistic is a noisy

signal and the rejection region comprises shocks that are ‘too large’ given beliefs

about noise.

Treating beliefs as hypotheses tests in this context delivers two steady state

features of micro level price movements suggested by the literature. First, a

large fraction of price changes at the micro level are negative (Nakamura and

Steinsson, 2008). Second, the absolute price changes are large (greater than

10 per cent) or small (less than 5 per cent), rather than medium (Klenow and

Kryvtsov, 2008). Together, these imply price changes are somewhat ‘tri-modal’.

IE explains this by  per cent of agents mistakenly rejecting the null each period.

If  is small this implies no change, or large (positive or negative) changes.

Furthermore, we build an IE Phillips curve and demonstrate that forming

beliefs ‘at the threshold’ as opposed to ‘at the margin’ implies a distorted path

on the adjustment toward equilibria. In particular, so called ‘signal censoring’

means that those agents in possession of extreme views (based on extreme draws

of noise) are the first to ‘get it’. The IE Phillips curve is state-dependent and

offers an alternative explanation for price stickiness advanced in recent theoret-

ical work, including Bonomo and Carvalho (2004), Caballero and Engel (2006,

2007), Caplin and Leahy (1997), Danziger (1999), Dotsey and King (2005),

Dotsey et al. (1999), Golosov and Lucas (2007), John and Wolman (2008), Ki-

ley (2000), Máckowiak and Wiederholt (2007), Mankiw and Reis (2002, 2006,

2007), McAdam and Willman (2007), Reis (2006), and Woodford (2003, 2008a,

2008b).

In Section 2 we set up some basic notation. In section 3 we show the rela-

tionship between signal extraction and IE. In section 4 we model information

sets of agents and consider when an ‘information deluge’ does, or does not, bring

the economy closer to the full information equilibrium. In Section 5 we set up

the basic monopolistic competition pricing model. Sections 6 and 7 derive the

steady state price change distribution, and an IE Phillips curve. Section 8 exam-

ines signal censoring ‘at the threshold’, and Section 9 discusses the adjustment

of inflation to a ‘newsworthy’ shock, drawing on the previous sections. Section

3This is related to the distinction made in modeling between rational expectations and

perfect foresight, where the former departs from the latter by a zero mean error.

4



Figure 2:

10 concludes.

2 Notation and Basic Setup

We now introduce some notation and illustrate the possibility of sharp belief

changes under IE. We do so in the simplest of informational environments,

namely a single draw of a noisy signal.

In a standard way (Lucas, 1972), Nature draws an economically important

parameter from a random variable  ∼ 
¡
 2

¢
and agents observe a noisy

signal of this draw:  =  + , where  ∼ 
¡
0 2

¢
. Given the informa-

tional constraints, the feasible rational expectation of the draw  is the signal

extraction solution:

 ( | ) = 2
2 + 2

+
2

2 + 2
 (1)

IE provides another guess of the cognitive target ( | ). A reasonable 0

belief is ( | ) = . Conditioning on this, the hypotheses are:

0 :  =  (2)

1 :  6= 

The test statistic is based on  , and  determines the rejection region as follows:

Reject 0 if
| − |


 2

Figure 2 shows the distribution of  for three very different draws of  and

the probability that 0 : =  is rejected, conditional on the  draw.

It is a matter of elementary definitions that the probability that 0 is re-

jected equals the probability of a type I error  if 0 is true, and, it is the
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probability complement of a type II error, namely 1 −  (also known as the

power) if 0 is false. Thus, if the truth is  = ,  per cent of the time

agents find themselves in the shaded rejection regions. If, on the other hand,

the true value of  is either very big or very small, the probability mass of

 =  +  will be almost entirely to the right or left of the critical values.

Equivalently, with these extreme draws of  the probability of a type II error

is effectively zero, since it is extremely unlikely that 0 will be believed. For

values of  close to the critical values the probability that 0 will be rejected

will lie somewhere between 1 and  (not shown in Figure 2).

A key difference between signal extraction (1) and a hypothesis test (2) is

the impact of an increment in  on the beliefs held. With signal extraction:

 ( | )


=
2

2 + 2
=

1

1 + 
  ≡ 2

2
 (3)

Every increment in  impacts upon the estimator, but discounted by . The

greater the variance of the noise relative to the variance of  the more the

influence of  is discounted. The derivative is independent of the value of  .

Under IE, increments in  have no impact on beliefs up to the critical value

because 0 is maintained, viz. when the Greenspans of the world don’t ‘get it’.

 ( | )


= 0 if
| − |


 2 (4)

At the critical value there is a jump to the RE belief, and ( | ) =∞.
For further increments in  , within the rejection region, the derivative depends

on what the RE belief is assumed to be.

If the variance of is known, signal extraction is feasible and the derivative

could be (3). However, we assume that hypothesis testing is a ‘fast and frugal

heuristic’ (Gigerenzer et al., 1999) which avoids the need to form beliefs about

 by conditioning on the 0 value. We then define the RE belief to be  , a

parcel of information that must after all be available to agents in order to do

the hypothesis test.4

Under this RE belief the hypothesis test in (2) is:

0 :  =  (5)

1 :  6=  ⇐⇒  = 

and we have

 ( | )


=

⎧⎪⎨⎪⎩
0 if

|−|


 2

∞ if
|−|


= 2

1 if
|−|


 2

(6)

4Giere (1988, cited in Mayo 1996 pg. 90) goes further than we need to. He suggests that

even if the variance of  is known, signal extraction is unlikely to occur in practice: "Human

beings are not naturally Bayesian information processors. And even considerable familiarity

with probabilistic models seems not generally sufficient to overcome the natural judgment

mechanisms, whatever they might be."

6



At the moment of rejection, the last increment in  is the proverbial ‘straw that

broke the camel’s back.’ This is the feature of IE that can explain sharp asset

price movements, such as those in Figure 1.

3 Signal Extraction and Expected IE Beliefs

Section 2 outlined the differences between the RE and IE solutions, but there

is a relationship between the RE solution and the expected IE solution.

We define the Expected IE Belief (EIEB) as the expected value of the beliefs

which will be held at the conclusion of the hypothesis test, where the expectation

is taken over the distribution of  .

In principle, the EB requires consideration of the cases where 1 is true and

where 1 is false. However, 1 is always true in a probabilistic sense if  is

continuous: the precise value of the mean under 0 has measure (probability)

zero.

The EB is therefore simply a convex combination of the beliefs implied by

0 and 1 where we may assume 1 is true. Denoting the probability of a type

II error as  we have

 =  [0-belief] + (1− ) [1-belief] = + (1− ) (7)

where  depends on the rejection regions chosen in figure 2 as follows:

 = Pr (fail to reject 0) = Pr

µ | − |


≤ 2

¶


When we allow for the variance of the  component of the variance of  ,

2 , we can calculate this probability in terms of a 2-distribution, and the

weights in (1) appear in the resultant expression

 = Pr

Ã
( − )

2

2
≤ 2

!
(8)

= Pr

Ã
( − )

2

2 + 2
≤ 2

2 + 2
2

!

= Pr

µ
21 ≤

2
2 + 2

2

¶
≤ 1− 

The intuition for (8) is provided by Figure 3. The larger 2 is relative to

2, the more the (bold) unconditional distribution stretches, and the smaller

the probability mass in the acceptance region.  gets smaller and the weight in

(7) shifts off  onto  , just as it does in (1).

The EIEB and the signal extraction solution are therefore both convex com-

binations of the mean of  () and the signal  . In both cases, the weight on

 is increasing and the weight on  is decreasing in 2
¡
2 + 2

¢
.
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Figure 3:

The importance of this is that any environment in which signal extraction

occurs over multiple agents, such as in Lucas (1972), can be recast into an IE

framework, with the same qualitative interpretation. This is guaranteed by the

appearance of 2
¡
2 + 2

¢
in both (1) and (8). The concept of an expected

IE belief (EB) then just becomes the aggregation of beliefs over a large number

of agents, prior to a draw on  or .

4 Information Deluges

During times when the economy is newsworthy, such as crises or a change in

policy direction, it is common for the quantity of information to increase rapidly.

We refer to this as an information deluge. We need to make some analytic points

in anticipation of the pricing model.

In what follows, we assume that agents form beliefs about a draw on  ,

denoted , by accessing  different information sources each of which is a noisy

signal. The set of all + must be combined somehow to arrive at an estimate

of .

We allow the  to be dependent, and we let the common correlation across

all shocks be . The estimation of  is a GLS problem.

 =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦   (0) = Ω = 2

⎡⎢⎢⎢⎢⎣
1  · · · 

 1
...

...
...

...
. . .

...

 · · · · · · 1

⎤⎥⎥⎥⎥⎦ 
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 =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1

1
...

1

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦ = + 

=⇒  =
¡
0Ω−1

¢−1
0Ω−1

where

Ω−1 =
1

2 [(1− ) (1− + )]

⎡⎢⎢⎢⎢⎣
1 +  (− 2) − · · · −

− 1 +  (− 2) ...
...

...
...

. . .
...

− · · · · · · 1 +  (− 2)

⎤⎥⎥⎥⎥⎦
Now for any symmetric matrix , the expression 0 just sums all the elements
in the matrix, so

0Ω−1 =
1

2 [(1− ) (1− + )]

£
 (1 +  (− 2))− ¡2 − 

¢

¤

=


2 (1− + )


=⇒ ¡
0Ω−1

¢−1
=

2 (1− + )




The expression for the GLS estimator is therefore the sample mean,

 =
¡
0Ω−1

¢−1
0Ω−1

=
2 (1− + )



1

2 [(1− ) (1− + )]

×0

⎡⎢⎢⎢⎢⎣
1 +  (− 2) − · · · −

− 1 +  (− 2) ...
...

...
...

. . .
...

− · · · · · · 1 +  (− 2)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦
=

1

 (1− )
[1 +  (− 2)− (− 1) ]

X
=1

 = 

Hence, in the analysis of sections 2 and 3,  =  +  could be replaced

with  =  +  if agents receive multiple noisy signals which they optimally

combine with GLS.

However, although the estimator is the same as the standard case, the vari-

ance depends on the degree of correlation between the signals:

 () =  (−) (−)
0

(9)

= 
¡
0Ω−1

¢−1
0Ω−10Ω−1

¡
0Ω−1

¢−1
=

¡
0Ω−1

¢−1
=

2 (1 +  (− 1))

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Clearly, when  = 0 we obtain the textbook variance for a random sample,

namely 2. The analysis of sections 2 and 3 holds in full, except that 

becomes  and 2 becomes 
2
. An information deluge (where  approaches

infinity) results in the elimination of all noise, unmasking the signal. The IE

solution (and, for that matter, the signal extraction solution) converges to 

which is now a perfect measure of .

However, it is more realistic to consider what happens when the correlation

between parcels of information is not zero.

As  approaches unity (9) converges to 2, regardless of the size of . This

is identical to the variance of a single signal. The intuition is that if all infor-

mation is perfectly correlated there is no point collecting more than one piece

of essentially the same commodity.

To consider the asymptotic variance, note (−1) is close to unity for large
:

 () =
2 (1 +  (− 1))


≈ 2

µ
1


+ 

¶
 (9’)

Clearly, (9’) does not converge to zero when  is non-zero. The limit as 

approaches infinity is 2. Thus, there is a floor on the variance of the feasible

GLS estimator and any agent who rejects the null cannot expect to have a

fully accurate belief about the true signal. Feasible RE cannot coincide with

full information beliefs about the economy, no matter how much information is

examined.

The economic intuition of this is that one can go so far by looking at extra

stories on a Reuters screens. Market commentary may be influenced by common

perceptions which lead to a correlation of the information.

Considering (9) and (9’) together reveals that agents may be worse off in an

information deluge if the correlation between (more abundant) signals increases.

This would be economically important if a lot of market commentary at the

time of newsworthy events is repetitive and uninformative. How much does the

correlation have to change by to undo the advantage of an extra signal? Totally

differentiate (9) and set it equal to zero.

 ()


=




+




 = 2

− 1
2

 ≡ 0 (10)

=⇒ ∆

∆
≈ 1− 

 (− 1) 

Setting ∆ = 1, if  and  are large, any extra correlation between parcels

of information need not be very large to undo the positive effects of one more

signal information. For example, if  is 05 and  is 5, ∆ is 0025. That is, if

the correlation between parcels of information grew by more than 0025 it would

undo the variance benefits of one more signal.

Although IE grounds the model by jumping to the RE solution when 0

is rejected, this section has shown that feasible RE need not be very close to

the full information beliefs for individual agents if the signals collected by an

individual agent are highly correlated. This result is robust to an information
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deluge that one might expect as the economy becomes ‘newsworthy’, provided

that some correlation between news remains.

5 Pricing Setup

We assume a single producer of a final good in a centralized economy–the

‘aggregator’ demands a continuum of highly substitutable intermediate goods

 on an index  over [0 1] and combines them using CES production,5

 =

∙Z 1

0


−1




¸ 
−1

   1 (11)

The aggregator solves the following problem:

max

½
 −

Z 1

0



¾
=⇒  = 

µ




¶−
≡ 

−
  (12)

where  is the relative price of the input. Combining (12) and (11) and can-

celling  gives the price index

1− =

Z 1

0

1−  (13)

We assume each intermediate firm has a production function such that real

marginal cost is constant across all firms at time , namely  = (1+)

where  refers to the steady state. Firms average  i.i.d. noisy signals of ,

to obtain a statistic on  as in section 4. The idiosyncratic perception for

firm  is d. In terms of the earlier notation, the draw from  is  and it

has zero mean. We have:

d =

P
=1  (1 +  + )


=  (1 +  + ) 

We now assume that (9’) is valid and that  is not too large.6

Firms conduct the following hypothesis test:

0 :  =  ⇐⇒  = 0

1 :  = d ⇐⇒  6= 0

If 0 is believed, firms opt for the steady state version of real marginal cost,

. If 0 is rejected, firms use d.

5 In this section  is not the same as  defined earlier. The un-subscripted  remains a

correlation in what follows.
6This whole section could be written with independent observations, in which case the

average of the ’s would have variance 2. The generalization above relies on ( − 1)
being close to unity (for (9’) to be valid) and on the mutual correlation being small enough

that the average of the ’s converges to a Gaussian distribution.
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The hypothesis test rejection region is:

Reject 0 if

¯̄̄̄
¯̄ d − 


q

1

+ 

¯̄̄̄
¯̄  2 ⇐⇒

¯̄̄̄
¯̄  + 


q

1

+ 

¯̄̄̄
¯̄  2

Firms need beliefs about real marginal costs to maximize profits. Firms

choose  to maximize current profits.
7 Call  nominal marginal cost. Firm

’s real profits are given by

Πreal =
{ −} 


 (14)

Let the relative price between the chosen and aggregate price in period  be 
and real marginal costs be . The aggregator’s demand for  will be given

by (12). Substituting this in for  in (14) gives:

Πreal = ( − ) 
−
 (15)

=
¡
1− − − 

¢


Differentiation w.r.t.  we obtain:
8

Πreal


=
³
(1− ) − + 

−(1+)
 

´
 = 0

which implies

 =


 − 1

Or, equivalently,

 =


 − 1 (17)

We can now be specific about how agents calculate (17) under inferential

expectations. They need beliefs about  and . Under 0 agents set 
equal to its expected value . Furthermore, they set  = −1 for simplicity
in (17). Under 1 agents work out the full model RE solution for  in (17) and

use d for .

6 Steady State Analysis

Before building a Phillips curve, we will show that the 0 and 1 beliefs in

(17) can deliver a ‘tri-modal’ distribution of price changes, as suggested in the

7Unlike the Calvo model, all firms are free to optimize. It is true that IE agents could

predict non-optimization in the future if they do not fall in a rejection region, in which case a

Calvo structure emerges, but we are more comfortable assuming our agents would ‘wait and

see’.
8The second order condition holds, and monopolistically competitive firms ignore their

effect on .
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Figure 4:

literature. IE explains this by at least  per cent of agents mistakenly rejecting

the null each period. If  is small this can imply no change, or large (positive

or negative) changes.

We begin by assuming a stochastic steady state where inflation is zero.9

Therefore  = −1 and the only difference between 0 and 1 beliefs are then

beliefs about .

More subtly, we assume a constant fraction of agents reject the null for the

consecutive periods where we calculate the distribution of price changes. From

(8), we know the fraction of agents believing the null is no greater than 1− ,

and so we can write the fraction of agents rejecting the null as  where  ≥ 1.
Finally, we have assumed that  is large, so  ( − 1) is close to one. That
being so, we have

 ≈  under 0

 ≈ d under 1

which allows a direct graphical mapping of the distribution of d onto the

distribution of relative prices and relative price changes.

In figure 4 firm  receives a signal d. Under 0 the sampling distribution

of  is the taller  in the left panel, and it rejects 0 in the tails. However,

the actual probability of rejection is larger, because 0 is false. The -value of

the shaded critical values, namely  is shown on the right.

The distribution of (relative) prices can be derived easily from the above

and is illustrated in Figure 5. A proportion  fall in the two tails, and their

estimate is actually d. So the distribution of prices has exactly the same 

in that region. However, under 0 the agents believe  = , so probability

mass 1−  is a discrete random variable at the single point .

9We will make use of a non-stochastic steady state to build the Phillips curve.
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Figure 5:

We can now derive the distribution of price changes assuming that each

probability mass in the above distribution is independently allocated across

prices in the next period, in the proportions above. That is, the proportion

of agents 2 in, say, the left tail is divided up next period across the left,

middle and right with proportions (2)
2
, (2) (1− ), (2) (1− ),

respectively. In the following table, the position of the firm in period  is read

off the rows, and the position of the agent in period +1 is read off the columns.

Table 1

Transition Matrix for Price Changes
Left Tail+1 Middle+1 Right Tail+1

Left Tail ()
2
4 (2) (1− ) ()

2
4

Middle (1− ) (2) (1− )
2

(1− ) (2)

Right Tail ()
2
4 (2) (1− ) ()

2
4

We denote an unchanged position between  and + 1 as ‘0’, a shift up one

region (from the left tail to the middle or from the middle to the right tail) as ‘+’

and a shift from the left tail to the right tail as ‘++’. Using the same convention

for ‘−’ and ‘−−’ we obtain a matrix of qualitative changes, summarized in table
2.

Table 2

Qualitative Transition Matrix for Price Changes
Left Tail+1 Middle+1 Right Tail+1

Left Tail 0 + ++

Middle − 0 +

Right Tail −− − 0

If  is small, ‘++’ and ‘−−‘ are second-order small, and crossing from one

tail to another becomes nigh impossible. Taking the limit as  → 0 for the

proportions in Table 1 we use Table 2 to group a small- distribution of 

between areas.
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Figure 6:

Figure 6 gives area-to-area price changes related to Figure 5. That is, the

proportion in ‘+’ move from the left tail to the centre, or, from the centre to

the right tail. The probability mass in the zero position is composed partly by

agents who move literally zero between periods (they stay at the single point

 in the central column in figure 5) and those who stay in the same tail.

The key insight here is that if  is small, because there is not much signal

noise ( is approximately unity) and agents exhibit belief conservatism ( is

small), then agents who stay in the same tail in Figure 5 will not move very

much in terms of actual price changes.10 Thus, for a small , there will be

some agents with literally zero change (the ones in the central column in Figure

5), some with small changes (the ones who stay in the same tail in Figure 5), and

some with large changes (since  is small moving ‘+’ or ‘−‘ involves moving
a significant distance in Figure 5). Naturally, as  grows these regularities

dissolve, because the tails become so large that ‘staying in the same tail’ no

longer implies small price changes.

Thus the model explains a tri-modal distribution under the assumption that

agents are belief conservative and that underlying shocks to real marginal costs

are not too large. This is in keeping with Nakamura and Steinsson (2008) and

Klenow and Kryvtsov (2008).11 IE also helps explain why sometimes these

results might  be seen. For example, during times of structural change or

rapid inflation, agents may lower their degree of belief conservatism, and 

may rise.

10As  approaches zero, the probability mass in an infinitesimally small neighbourhood of

±2 converges to 12.
11Other papers studying micro-level pricing behavior include Bils and Klenow (2004), Boivin

et al. (2009), Levy et al. (1997), Midrigan (2008), Rumler and Vilmunen (2005), Wolman

(2007), and Zbaracki et al. (2004).
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7 An IE Phillips Curve

Returning to the model (11) — (17) we condition on a particular shock  and

derive an economy-wide Phillips curve. We break up the integral (13) into those

firms that believe 0 and those that believe 1. Denote the proportion that

reject 0 as , where the parameter  is now conditioned on a particular

economy-wide draw of . (In section 6, it was not conditioned on a draw of ).

We divide up firms on [0 1] with [0 1 − ] indexing firms which believe 0,

and [1−  1] indexing those which believe 1. From (13) the integral is

1− =

Z 1−

0

³
0



´1−
+

Z 1

1−

³
1



´1−


= (1− )

Z 1

0

∙


 − 1−1

¸1−
| {z }

0 beliefs

+

Z 1

1−

∙


 − 1d

¸1−
| {z }

1 beliefs

= (1− )

∙


 − 1−1

¸1−
+

Z 1

1−

∙


 − 1 (1 +  + ) 

¸1−


= (1− )

∙


 − 1−1

¸1−
+

∙


 − 1

¸1− Z 1

1−
(1 +  + )

1−


We assume the average of the noise is small, so we can use the following ap-

proximation:Z 1

1−
(1 +  + )

1−
 ≈

Z 1

1−
(1 + (1− ) ( + )) 

= 

µ
1 + (1− )  + (1− )

Z 1

0



¶


The last line uses the properties of Lebesgue integrals.12

We assume the integral of the noise is small and we therefore haveZ 1

1−
(1 +  + )

1−
 ≈ 

µ
1 +  +

Z 1

0



¶1−
≡ 

µ
1 +  +

Z ¶1−


12Consider
 1
1−  ()  where  is randomly assigned to all the ()’s. The Lebesgue integral

is the supremum of all simple integrable function summations of the form


=1 ()

where ∪=1 () =  and 0 ≤  ≤  . (See, for example, Capinski and Kopp, 2004,

page 77). We re-write the summation as 


=1
()


and

()


=  () where

∪=1 () = 1. Therefore,
 1
1−  ()  = 

 1
0
 ()  and  (·) summing to unity implies

that any Lebesgue integral summed over the index [0 1] is an expected value, where the

random variable is uniform with support [0 1]. We use this in section 8.
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where the integral
R
of the noise in the range where agents reject 0 will be

discussed further momentarily. For now, we leave it as a symbol and derive the

IE Phillips curve.

1− = (1− )

∙


 − 1−1

¸1−
+

∙


 − 1

¸1− µ
1 +  +

Z ¶1−


Divide both sides by −1,

(1 + )
1−

= (1− )

∙


 − 1

¸1−
+

∙


 − 1 (1 + )

¸1− µ
1 +  +

Z ¶1−


In the (non-stochastic) steady state  = 0 and all underlying shocks are set

to zero which yields

1 = (1− )

∙


 − 1

¸1−
+ 

∙


 − 1

¸1−
=⇒ 

 − 1 = 1

This substitution is made, and the model is log linearized to deliver

[1 + (1− )] = (1− ) +  [1 + (1− )]

µ
1 + (1− )

µ
 +

Z ¶¶
(18)

(1− ) = −+ 

µ
1 + (1− )

µ
 +  +

Z ¶¶
 =



1− 

µ
 +

Z ¶


In (18) both  and
R
are determined by . The dependence of  is

obvious from figure 2: a large shock pushes most agents in the rejection region,

and the dependence of
R
will be presently.

A proper understanding of (18) requires an economic interpretation of .

Recalling that  = (1 + ) it is apparent that  is the proportional

deviation of real marginal cost from its steady state. Equation (18) therefore

shows how cost shocks impact upon inflation.13 Since agents do not care about

aggregate output, we may scale (14) by  and rewrite their profit maximization

problem as a marginal equivalence between revenue and cost scaled by output.

Let  = . Then

Π∗ =
{ −} 


= 




− 




= ( − )  =  ()−  () 

Use (12) to write () as a function of , and to find marginal revenue, which

is given by

 () =  = −1 = 
−1


 () =
 ()


=

 − 1


−1

13 It is standard to map deviations of  onto an output gap, though we do not do so here.
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Figure 7:

Figure 7 shows price setting for a monopolistically competitive firm:

The axes shown are prices and quantities, relative to the aggregation of all

other firms. Firms equate and taking into account the feasible relative

price from the demand curve, which is derived from the aggregators demand for

the intermediate inputs (12).

As shown by the dashed segments, if marginal cost rises the last unit of

output becomes extra-marginal. The optimal response is to cut output relative

to other firms and thereby raise prices relative to other firms. As the optimizing

firms (those who reject 0) do this, it feeds into the aggregate price level, and

hence creates inflation.

According to (18) the extent of the increase in inflation is increasing in

the share of firms who reject 0 and optimize–that is, . Since we are

conditioning on a particular shock, figure 2 is the appropriate diagram. Clearly,

large shocks will push a large probability mass into the rejection region. In the

limit, as  approaches unity, a shock to real marginal cost will, according to

(18), have a very large impact on inflation.

The intuition is that increasing real marginal costs make firms want to cut

back output relative to other firms and thereby raise prices relative to the aggre-

gate price index of all firms ((13) and figure 7). Since an adjustment of relative

prices is required, it becomes problematic if too many firms optimize. If virtu-

ally all firms increase prices in (13) then the aggregate rises by nearly the same

amount, and further rises are required to take account of the very small mea-

sure of firms which do not change prices in (13). There is a runaway cost-push

inflation spiral as most firms try to increase prices relative to everyone else.
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Figure 8:

Another feature of (18) is that if shocks to  are small, then  will be

low and stable. In these circumstances, (18) looks very much like a Calvo

(1983) setup, where the Calvo Fairy’s arrival frequency is dictated by the belief

conservatism of firms parameterized by . In a noisy world, agents must decide

how seriously to take the occasional perverse signal. If they do not take it

seriously, the proportion of firms changing prices each period will be low.

We emphasize a feature of (18) and IE more generally, which is that agents

sometimes make mistakes based on misreading information. This seems an un-

controversial proposition to us, but it is surprisingly difficult to get optimizing

models to deliver it.

8 Threshold Pricing: Signal Censoring

We now consider the final term in (18):

 =


1− 

µ
 +

Z 1

0



¶
(18)

The integral is indexed over [0 1] and it represents the probability weighted sum

of all the ’s observed by firms who reject the null. It is the average noise term,

where a conditional distribution has been created by re weighting the measure

by the probability that the null is rejected () (cf. footnote 16).

It turns out that this function is not analytic, but some qualitative results

are possible. We proceed graphically. Consider figure 8 which is an expanded

version of figure 2.

For a draw of  that is zero (), the probability mass of rejecters is the

shaded tails,  = 1 and so  = . The distribution of  is just the rejection

tails of a normal scaled up so that each tail has probability one-half. Its expected

value is clearly zero.
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Figure 9:

For a small positive draw of  (), the probability mass in the lower rejection

region becomes very small, but the probability mass to the the upper rejection

region increases rapidly. In Figure 8  looks like it is around 02. Therefore,

the -scaled  of  will consist of a large right tail and a small left tail both

multiplied by 5 (102).

Finally, for a big enough shock to  () virtually all agents reject and 

is around 1. The distribution of  just becomes a normal (scaled up slightly

because  is not quite unity).

Economically, when the proportion of negative noise for optimizers differs

from the proportion of positive noise, we say that there is noise adverse-selection.

What is of concerning about this is that the average noise for those who reject

0 departs from zero.

At distribution  there is no signal censoring because the rejecters are acting

on the basis of an equal amount of positive and negative noise. However, for

increasing values of et firms that optimize possess extreme positive noise (see

). Beyond a certain point, when virtually the entire probability mass is in

the rejection region (say ), there is very little signal censoring because, again,

rejecters are just as likely to have received positive or negative noise. For a given

shock et the average noise is found by finding an expected value conditional on

the draw of . In Figure 9 we fix and show the distribution conditional on

draws of  rather than sliding the distribution along the  axis by , as in

figure 8. The conditional distribution is the  scaled up outside of the interval£−2 −  2 − 
¤
, the scaled  in the grey rejection regions.14

14 In this section  is whatever the standard deviation of the noise is. If there is correlation,

(90) applies.
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We now find the expected value of the noise, conditional on being in the grey

regions. This is
R 1
0
 and  is our existing terminology for the probability

of being in the grey region. A preliminary result required is the integral of

(), where  is a normal random variable, over the range [ ]:Z 




1√
2


−2
22 

Let  = 222 and rewrite the above as
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From Figure 9, the expected noise isZ 1

0
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Using the above result, this simplifies toZ 1

0
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where  (·) is the cumulative density function for a (0 1) and 2 =

1 (1− 2). The 1 term is not analytic. So the function is plotted for

 = 001 and  = 005 in figure 10. A similar shape occurs for other parameter

values.

Figure 10 shows the expected noise term for firms for given shocks to real

marginal costs. Signal censoring is not a problem for very small shocks (in the

immediate neighbourhood of zero) or very large ones (more than 3 standard

deviations, e.g. ±003 in figure 10). In the latter case, virtually the whole
distribution of  in figure 2 lies in the rejection region and therefore positive

and negative noise is almost equally prevalent.

A technically reassuring point from calibrations based on (19) is that the

size of the integral is fairly small, justifying the derivation of (18).

The economic point of this section and figure 10 is that signal censoring will

magnify the effects of marginal cost shocks on inflation. Firms in possession of

extreme signals (driven by large noise terms — either positive or negative) reject

before other firms. Thus, the integral term in (18) is positively related to  and

reinforces the effect of  on .

This point is made in reference to our model of inflation, but it is likely to

apply to other IE models ‘at the threshold’.
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Figure 10:

9 A Newsworthy Shock

All the analytic apparatus has now been assembled to trace through the full

effects of a shock to real marginal cost. To make use of figure 10, we assume

that the agents each receive 20 noisy signals, with noise standard deviation of

002 and correlation of 02. From (9’), agents average signals as dictated by

GLS to arrive at a noise standard deviation  of 002(120 + 02)05 = 001, as

in figure 10. We shall assume the shock to real marginal cost, , is equal to 2

per cent, or 002.

When the shock hits, the distribution of the noisy signal shifts to the right

(figure 2) and a fraction of agents reject the null. For these parameters, the

fraction is 05160 (from the expression under (19), where  is understood to be

the standard deviation inclusive of correlation as in (9’)). The fraction which

rejects 0 makes up a ‘multiplier’ in front of the square brackets in (18).

 =  =


1− 

µ
 +

Z 1

0



¶
The multiplier here is 0516(1− 0516) = 10660, or, approximately unity.
As described at the end of section 7, the 1 firms who optimize reduce their

extra marginal production to raise their prices relative to the aggregate price.

With just under half the firms holding onto 0, the optimizers can quite easily

achieve the increase in relative price without much inflation; there is inertia

in the aggregate price index (13) because the 0-agents–half the total–leave

their prices unchanged. As a result of these effects, inflation rises to just over 2

per cent (002× 1066).
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However, signal censoring adds around 08 of a percentage point onto head-

line inflation. (See the last term in (18)). From figure 10, a positive shock of

002 leads to an average noise term of 00077. As seen in both figures 2 and 9,

the positive shock means that 1-agents are more influenced by positive noise

‘at the threshold’ than by negative noise. Given the multiplier of 10660, this

extra effect transmits into inflation virtually one-for-one.

What now happens if there is an information deluge as a result of the shock?

There are many degrees of freedom in this setup, so there are many possible

outcomes. We will consider two scenarios.

Suppose that there are now 1000 pieces of information, so that 1 effectively

vanishes, and that their correlation drops to 014. With these parameters, the

noise standard deviation drops to 002(014)05 = 00075. Agents realize this

and draw in their rejection regions closer to  = 0.

For a shock of 02, many agents–76 per cent–optimize. The equivalent

of figure 10 drawn with noise standard deviation of 00075 leads to somewhat

less signal censoring–the expected noise drops from half a percentage point to

approximately 03 of a percentage point. However, the bad news is that with

the higher proportion of firms optimizing the multiplier  (1− ) rises to

over 31. A cost-push inflation (described at the end of section 7) ensues and

inflation rises to over 6 per cent.

Now let us consider the case where the deluge is extremely uninformative.

If the correlation between the signals rises to unity, the variance of the noise

becomes 002 (regardless of how many observations there are — see (9)). The

proportion rejecting0 drops to 017, and the multiplier becomes approximately

02.

The signal censoring becomes very important here. As seen in the figure 11

(figure 10 with variance of 002), nearly 3 percentage points are added to the

term in square brackets in (18). When the 5 per cent (3 from signal censoring

plus 2 from ) in the square brackets pass through the multiplier of 02, the net

outcome is an inflation rate of 1 per cent.

This section has shown that signal censoring could potentially add to infla-

tion. It would be interesting to explore any links between signal censoring and

the ‘missing inflation rates’ between moderate inflation and hyperinflation.

We leave to future research the question of the impact on inflation if price

signals become extremely noisy. Could the optimizers then provide an impetus

towards hyperinflation due to signal censoring?

10 Conclusion

In this paper we have extended the theory of inferential expectations, outlined

in Menzies and Zizzo (2009) by building an IE model of pricing.

We have shown that belief conservatism, parameterized by a low , can

deliver a steady state ‘tri-modal’ distribution of price changes (Nakamura and

Steinsson, 2008, and, Klenow and Kryvtsov, 2008). IE explains this by  per
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Figure 11:

cent of agents mistakenly rejecting the null each period. If  is small this implies

no change, or large (positive or negative) changes.

Out of the steady state, our IE Phillips curve shows that signal censoring

can lead to a distorted adjustment paths because the agents in possession of

extreme views (based on extreme draws of noise) are the first to change beliefs

and ‘get it’ when an underlying shock hits the economy.

We recognize that our analysis has been essentially static. It has been im-

portant to establish the link between signal extraction and expected IE beliefs,

but future research will consider the build up of information in more dynamic

models, and the potential to estimate IE parameters, such as the degree of belief

conservatism.

Some of our results have been general, rather than specific. The relationship

between signal extraction and IE bodes well for the latter’s future modelling

usefulness, as does the analysis of informative and uninformative ‘information

deluges’.
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