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1 Introduction 

Since launching the “open-door” policy in the late 1970s, China has experienced a profound 

transformation from a rural agricultural-based to an urban industrial-focused society. As one 

of the fastest growing economies, China is expected to continue its growth trend and 

overtake the U.S. to become the world’s largest economy by 2030 (World Bank, 2011). While 

China’s rapid growth has created tremendous wealth and prosperity, its development path – 

with enormous resource depletion and environmental degradation - is becoming 

unsustainable, putting China at the center of international debates on energy governance 

and climate mitigation (IEA, 2010; EIA, 2010).  

While a country’s economic size generally reflects its energy demand and carbon 

emission, China’s appetite for energy and emission is unsurprisingly mammoth. During the 

period 1990-2005, China’s total primary energy demand grew by 4.7% annually from 874 to 

1742 Mtoe, and its CO2 emissions grew by 5.6% per year from 2244 to 5101 Mt (IEA, 2007). In 

a global context, China had overtaken the U.S. in 2010 to become the world’s largest carbon 

emitter, and its emissions will continue to rise rapidly in line with its industrialization and 

urbanization. Reportedly, China has accounted for nearly three quarters of world emission 

growth in recent years, and its emission levels are projected to rise to about 28% of the 

world’s total in 2020 (IEA, 2010; BP, 2011). Without regulations, this growth trend is likely to 

offset climate mitigation elsewhere. In the global efforts of tackling climate change, there is 

no disagreement that China needs to take on a growing responsibility of carbon abatement.  

To stabilize the rising emission trend, China would have set a daunting challenge of 

cutting its carbon intensity given a large demographic base and rapidly rising consumption 

levels (Kaya, 1990; IPCC, 2000). In the minds of the leadership in Beijing, the key to handling 

this challenge is tp decouple carbon emissions from economic growth through technological 

innovation. This is true for China where the growth story, beyond the role of global 

manufacturing engine, is increasingly about innovation. In the course of building a 

“harmonious society” through “scientific development”, Beijing has begun to raise 

awareness of the pivotal role that scientific development and innovation play in sustaining 

long-term quality growth and addressing major social challenges.1  

                                                        
1 This is reflected by a commitment to create an “innovation-oriented” society made by Chinese 
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In a changing landscape of global innovation, the emergence of innovation hubs in 

China is underpinned by the strong growth of R&D investments in indigenous innovation. 

While the U.S. and Japan remain leaders in science and technology innovation, they face 

increasing competition from emerging markets, notably China - the world’s third leading 

R&D investor at $100 billion in 2010 (OECD, 2010). R&D spending in China grew by about 

20% per year over the last decade. Average R&D investments in G7 markets, by comparison, 

have grown by 3.2% annually during the same period. R&D intensity remained flat across 

G7 markets over the past decade at 2.1%. In China it has double as a share of GDP since 1999, 

reaching 1.5%, leaving room for potential improvement by international standards (OECD, 

2008, 2010). In a transition to the innovation-oriented society, Beijing is expected to boost 

future investments in indigenous innovation. This is reflected by the government’s spending 

target of 2.5% of GDP on R&D by 2020, translating into a tripling of China’s R&D investment 

over the next decade to $300 billion (MOST, 2006b). 

     In a context where climate mitigation and technological innovation are closely 

interconnected, it is vital to investigate the effectiveness of China’s R&D efforts to achieve its 

carbon reduction commitment. I thus aim to address the following four issues: 1) How 

substantially can R&D-induced TC drive China’s carbon emissions below projected baseline 

levels; 2) Can emission cuts driven by R&D efforts guarantee the achievement of Beijing’s 

pledged climate target; 3) Do public R&D intervention with the aim of correcting for 

innovation market failure provide significant aid to cut emissions; 4) Is it needed to 

introduce carbon tax to complement technology policy in order to achieve the climate target. 

To handle these issues, I incorporate the endogenous mechanism of R&D-induced TC 

into a multi-sector computable general equilibrium (CGE) model for climate policy analysis. 

The theory of R&D-induced TC has its origins in the second-generation endogenous growth 

literature, which highlights the key role of R&D and knowledge stock in shaping economic 

growth (Romer, 1990; Aghion and Howitt, 1998; Acemoglu, 2009a). In this direction, most 

climate policy studies represent the R&D-induced TC by adopting knowledge substitution 

for physical inputs, with an innovation possibility frontier (IPF) specifying the process of 

knowledge accumulation (Nordhaus, 2002; Popp, 2004; Sue Wing, 2006; Bosetti et al., 2008; 

                                                                                                                                                                     
President Hu at the National Science and Technology Conference in January 2006, an occasion 
which also saw the unveiling of the 2006-2020 Medium to Long-term Plan for the Development of 
Science and Technology (MOST, 2006b). 
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Acemoglu et al., 2009b). As a feature, the representation of disaggregated sectors in a CGE 

model provides a useful platform to explore general equilibrium effect of intersectoral 

knowledge interactions, which facilitates examining the externality of knowledge (e.g., 

spillover, crowding-out) and its impacts on the timing and costs of carbon emissions 

reduction (Löschel, 2002; Popp, 2006; Clarke et al., 2006, 2008; Gillingham, 2008). 

To our knowledge, few CGE studies with the R&D-induced TC have appeared in 

climate policy analysis literature. Goulder and Schneider (1999) investigate the attractiveness 

of the U.S. climate policies in the presence of induced TC. Sue Wing (2003) explores the 

impact of induced TC on the U.S. macroeconomic cost of carbon taxation. Wang et al. (2009) 

examine the role that TC could play in designing China’s climate mitigation targets. Bye and 

Jacobsen (2011) scrutinize the welfare effects of differentiated R&D subsidies across general 

and carbon-saving TC on the Norwegian economic cost of carbon tax. Investigations of 

R&D-induced TC also include the studies on the cost effectiveness of climate policies that 

combine R&D subsidies with carbon constraints in the presence of technological externality 

by Otto et al. (2007), Otto et al. (2008), Otto and Reilly (2008) and Löschel and Otto (2009). 

 As a needed complement to the existing literature, this paper contributes to advancing 

methods of climate policy modeling in the following ways: 1) Instead of using 

recursive-dynamic modeling, I develop an intertemporal optimization framework to capture 

the time path of adjustment associated with particular climate policy shocks; 2  2) To 

represent the endogenous process of innovation, I incorporate the mechanism of 

R&D-induced TC into a CGE framework, with special treatments on innovation externalities 

including R&D crowding-out, intersectoral knowledge spillovers and the dual role of R&D 

in knowledge absorption. 

The paper is organized as follows: Section 2 provides a detailed description of modeling 

framework. Section 3 discusses model implementation, with an emphasis on how to 

undertake knowledge accounting for model calibration. Simulation results and discussion 

under various scenarios are presented in Section 4. Section.5 concludes. 
                                                        
2 This differs from the traditional recursive-dynamic model that solves for a sequence of static 
equilibrium in a Slow-Swan formulation, where capital stock accumulation is based on an 
exogenous saving rate with myopic expectations. In contrast, optimization models endogenize 
the intertemporal behavior of economic agents, with current decisions depending on expectation 
about future economic prospect (Jorgenson and Wilcoxen, 1990; Bovenberg and Goulder, 1996; 
McKibbin and Wilcoxen, 1999; Dixon et al., 2005). 
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2 Model Description 

Fossil energy is an indispensable input into every industry in the energy-intensive Chinese 

economy. A model encompassing multiple industries and commodities is thus required to 

capture the full general equilibrium effect of climate policies.3 In our modeling framework, 

the Chinese economy is represented by multiple economic agents, including: Twelve 

production sectors, an investment (physical capital producing sector), a R&D sector 

(producing R&D goods), a representative household, and a government. To be relevant to 

climate policy analysis, the twelve production sectors consists of five energy sectors and 

seven non-energy sectors.4 Carbon emissions are calculated based on carbon intensities of 

fossil fuels inputs (coal, oil and natural gas) in intermediate production and final use. 

In the spirit of the G-Cubed model (McKibbin and Wilcoxen, 1999),5 our modeling 

framework describes economic behaviors of multiple agents within a general equilibrium 

structure which outlines the input-output (IO) circular flows of multiple commodities and 

primary factors within an economy (see Fig. 1). There are 12 commodities and corresponding 

production sectors, indexed by the row subscript j (j 1,2,...,12)=  and the column subscript i 

(i 1,2,...,12)= ; 3 types of primary factors (labor, physical capital, knowledge capital), indexed 

by the subscript f =(f L,K,H) ; 5 types of final uses (consumption, investment, R&D, 

government and export), indexed by the subscript d =(d C,I,R,G,X) . Intersectoral 

transaction in intermediate production are represented by the j i×  matrix X ; the inputs of 

primary factors into production are indicated by the f i×  matrix V ; the final use of 

produced commodities are represented by the j d×  matrix G . 

 

                                                        
3 The multi-sector specification differs from Ramsey growth model where the supply side of an 
economy is represented as a single producer of unique final goods. The economic dynamics are 
captured by a social planner choosing the optimal level of inputs into an aggregate production 
function, e.g., R&DICE (Nordhaus, 2002), ENTICE (Popp, 2004), and WITCH (Bosetti et al., 2008). 
4 For model sectoral classification and mapping by reference to the GTAP, see Appendix A.  
5 The G-Cubed model incorporates more macroeconomic elements into the micro-founded CGE 
framework. The macroeconomic features include: a full specification of the interactions between 
real and financial sides; intertemporal dynamics of physical asset; the neoclassical optimizing and 
liquidity-constrained behavior of consumers; imperfect capital mobility and adjustment costs; 
intertemporal equilibrium with rational expectation. 
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From this IO schematic framework to a numerical CGE model, I need to describe the 

optimization problems facing these representative agents and characterize their economic 

behaviors in a decentralized equilibrium. This will be articulated in following sections.6 

2.1 Production  

As Fig. 2(a) shows, the representative firm in each production sector has the same generic 

technology – a separable KLEM-H nested CES function. For any given sector i producing 

output iQ , knowledge capital iH  substitutes for a composite of physical inputs iZ , which 

is in turn made up of primary factor inputs of physical capital iK  and labor iLX , and 

intermediate inputs of energy bundle iEX  and material bundle iMX . iEX  comprises five 

energy goods E
ijX , and iMX  is composed of seven non-energy goods M

ijX . Given this 

production technology, the producer problem in production sector i is formulated as:  

                                                        
6 A detailed description of the specification and characterization of the problem faced by each 
economic agent are provided in Appendix B. 

Figure 1: The input-output circular flows of commodities and primary factors 
within an economy, with an explicit representation of R&D investment (R) and 

knowledge inputs (H) 

 

  
Industries i Final Demand d Total 

Output 

Commodities j 

  

 1 . . i . 12 C I G R X 

1 x1,1 . . x1,i . x1,12 C1 I1 G1 R1 X1 Y1 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

j xj,1 . . xj,i . xj,12 Cj Ij Gj Rj Xj Yj 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

12 x12,1 . . x12,i . x12,12 C12 I12 G12 R12 X12 Y12 

Primary Factor f 

K K1 . . Ki . K12       

L L1 . . Li . L12       

H H1 . . Hi . H12       

Imports M M1 . . Mi . M12       

Total Outlays   Y1 . . Yi . Y12       
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where the firm’s objective is to optimally choose the inputs of labor iLX , energy iEX , 

material iMX , physical investment iI  and R&D investment iR  to maximize an 

intertemporal profit streams iV , subject to the technology constraints. In Eq. (1), iV  is 

expressed as a discounted present value of future profit streams from time t to an infinite 

future, with real interest rate r as the discounting factor. In Eq. (2), current profit flow i∏  

equals output revenues minus inputs costs, with Q C I Rτ ,τ ,τ ,τ  being corporate profit tax, 

carbon tax on fossil fuel input, investment tax credit and R&D tax credit, respectively.  

Note: (a) KLEM-H three-tier nested CES technology of twelve production sectors; 
(b) two-tier nested CES structure of household consumption; (c) two-tier nested CES 
production technology of investment and R&D sectors.  

Figure 2: Nested CES production and consumption structure 
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Eq. (3) specifies the law of motion for physical capital iK , which depends on fixed 

capital formation iJ  and capital depreciation rate Kδ .7 Eq. (4) describes the IPF as an 

representation of knowledge creation process, where the accumulation of sector-specific 

knowledge stock iH  depends on R&D investment iR , existing knowledge stock iH  and 

intersectoral R&D spillovers ( ) ( )i j j ij j
R R R Rθ⋅ ⋅ −∑ ∑ .8 η denotes the efficiency of knowledge 

creation. Hδ  is the depreciation rate of knowledge obsolescence. The condition < <0 α+β 1 

implies diminishing returns to R&D in innovation (Romer, 1990; Rivera-Batiz and Romer, 

1991; Jones, 1995; Popp, 2004; Bosetti et al., 2008). 

Drawing on the seminal work of Schmookler (1966), Terleckyj (1974), Scherer (1982) and 

Griliches (1992), our model highlights knowledge externality generated by the inter-industry 

spillovers.9 Due to the imperfect appropriability of knowledge, physical goods produced by 

each individual sector could partially embody intangible knowledge created by its 

purposeful R&D investments. Other sectors, in the multi-sector economic transaction, can 

hereby enjoy the benefits of these external R&D efforts through forward and backward 

sectoral linkages along the supply chains – the so-called intersectoral R&D spillovers (Clark 

et al., 2006, 2008).  

To specify it, our multi-sector model postulates that each individual sector is exposed to 

a public pool of intersectoral R&D and absorbs a fraction of this public good for creating its 

own sector-specific knowledge. For any given sector i, the accessible R&D pool is the gap 

between its own sector-specific R&D and the economy-wide one: j ij
R Rθ⋅ −∑ . θ denotes 

the externality of intersectoral R&D spillovers that occur in imperfect innovation markets, of 

which the value is determined by exogenous factors such as patent policy.10 I also assume 

                                                        
7 We also consider imperfect capital mobility and investment adjustment cost. The investment 
process is subject to rising marginal costs of physical capital installation. The adjustment cost 
function (J,K)φ  is homogenous of degree one in its two arguments, with J JJ K0 , 0 , 0φ φ φ> > <  
(Lucas, 1967; Treadway, 1969; Goulder and Schneider, 1999; McKibbin and Wilcoxen, 1999). 
8  In the formulation of IPF, the additive specification between sector-specific R&D and 
intersectoral spillovers are building on the work by Cohen and Levinthal (1989). For an 
alternative of multiplicative specification, see Bosetti et al. (2008). 
9 Innovations are less the product of individual sector than of a clustering of assembled resources, 
knowledge, capacities and inputs from all sectors. It is the organizational clustering of knowledge 
and information that facilitates knowledge-sharing and cross-fertilization of ideas. 
10 A value of one means that the benefits of research can fully spill over to a public R&D pool that 
is potentially available to all other sectors. A value of zero means that the benefits of research are 
exclusively appropriated by the sector undertaking research. 
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that the capacity of a sector to absorb externally generated knowledge depends on its own 

R&D effort, with the ratio of sector-specific R&D to economy-wide one representing 

knowledge absorptive capacity i jj
R R∑ . Therefore, R&D not only directly generate 

in-house technical know-how, but also enhance the firm’s ability to absorb knowledge 

developed elsewhere – the dual faces of R&D in knowledge creation (Nelson and Phelps 

1966; Cohen and Levinthal, 1989; Keller, 1996).  

Note that, the specification of IPF underlines three key factors of sector-specific 

knowledge creation: 1) purposeful R&D investment – the “no free lunch” assumption (to 

gain the economic benefits of innovation firms should commit to undertake own R&D efforts 

and not free ride on external knowledge spillovers); 2) current stock of knowledge – the 

“standing on the shoulders of predecessors” assumption (the more existing stocks of 

knowledge a firm has, the easier it is to create new knowledge); 3) intersectoral R&D 

spillovers – the “pubic good sharing” assumption (any sector can benefit from the positive 

externality of knowledge spillovers resulting from other sector’s innovation).  

So far R&D investment and knowledge creation are modeled as the endogenous 

behaviors of private firms. To affect the rate and bias of TC, the accumulated knowledge 

assets are applied in the production process to facilitate a reconfiguration of production 

inputs for higher productivity (the rate of production TC). At the same time, the use of 

knowledge inputs leads to a substitution for physical inputs such as labor, energy and 

materials (the bias of production TC).  

Solving the dynamic optimization problem outlined in Eqs. (1)-(4) yields the producer 

demand for each variable input (labor, energy and materials), physical investment and R&D. 

The optimal level of R&D investment can be characterized as:    

iβ1
R iR iH i i

jj

2R (t)(1 ) P (t) λ (t) R (t) H (t)
R (t)

ατ α η θ−
⎡ ⎤
⎢ ⎥− ⋅ = ⋅ ⋅ ⋅ ⋅ + −⎢ ⎥
⎢ ⎥⎣ ⎦∑

                              (5) 

 
i β-1

iH Q i iH i i
i

H
iH

Q (t)λ (t) (1 ) P (t) λ (t) β R (t) H (t)
H (t) r(t)
λ (t)

ατ η
δ

∂
+ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

∂
= +                      (6) 

where Eq. (5) is the static optimality conditions for R&D investment iR  that instruct the 
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firm to equate marginal cost (LHS) to marginal benefit (RHS). The marginal cost comes from 

expenditures on purchasing an extra unit of R&D goods. The marginal benefit is the product 

of innovation possibility gain and the shadow price of knowledge capital iHλ .11 In particular, 

the innovation possibility gains are harvested from two sources: R&D investments not only 

create in-house new knowledge, but also enhance the firm’s capacity to assimilate and 

exploit external R&D spillovers (the dual face of R&D). 

The intertemporal part of this problem is to optimally choose the dynamic path of the 

shadow price as Eq. (6) shows, which provides the implicit arbitrage condition of knowledge 

accumulation. The RHS is a sum of real interest rate and knowledge depreciation rate as the 

opportunity cost. The LHS represents the rate of return from knowledge accumulation, 

including: an increase in the shadow price of knowledge asset, a rise in the marginal product 

of knowledge input, and innovation possibility gain from higher existing knowledge stocks.  

2.2 Consumption 

As Fig. 2(b) shows, the representative household values her aggregate consumption in the 

form of a two-tier nested CES structure. The aggregate consumption C is a CES composite 

of energy bundle CEX  and materials bundle CMX . CEX  comprises five energy goods E
CjX , and 

CMX  is made up of seven non-energy goods M
CjX . This household is infinitely lived with 

perfect foresight, with an objective of maximizing an intertemporal utility subject to a static 

budget constraint and transversality condition as: 

[ ]
t

max U(t) InC(s) exp (s t) dsρ
∞

= ⋅ − ⋅ − ⋅∫                                          (7) 

C

s
, ,

s t

s.t. P (s) C(s) A(s) r(s) A(s) w(s) L(s)

lim A(s) exp r(s ) ds 0
→∞

⋅ + = ⋅ + ⋅
⎡ ⎤

⋅ − ⋅ =⎢ ⎥⎢ ⎥⎣ ⎦∫
                                     (8) 

where the household values aggregate consumption in a logarithmic form, exhibiting 

positive but diminishing marginal utility. ρ is the pure rate of time preference. Integrating 

static budget constraint over infinite time horizon, I derive the following lifetime budget 

                                                        
11 This is the so-called “Tobin’s-q” theory: the shadow price of a particular type of capital is a 
forward-looking variable determined by the agent’s rational expectation about future economic 
conditions. This shadow price denotes the increment to the stock-market value of the firm from 
adding an extra unit of investment (Tobin, 1969; Summers, 1981; Hayashi, 1982). 
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constraint where discounted present values of future consumption expenditures are financed 

by a sum of human and financial wealth: 

[ ]

s
, ,

C C C
t t

s
, ,

C w
t t

C iK i iH ii

P (s) C(s) exp r(s ) ds ds H (t) A (t)

with H (t) (1 ) w(s) L(s) exp r(s ) ds ds

A (t) λ (t) K (t) λ (t) H (t)

τ

∞

∞

⎡ ⎤
⋅ ⋅ − ⋅ ⋅ = +⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤
= − ⋅ ⋅ ⋅ − ⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦
= ⋅ + ⋅

∫ ∫

∫ ∫
∑

                       (9) 

where CC,P  are aggregate consumption level and consumer price index, respectively. CH  is 

the human wealth that is expressed as the discounted present value of future income streams. 

Labor income is made up of after-tax wage earnings w(1 ) w(s) L(s)τ− ⋅ ⋅ . Financial wealth 

CA (t) includes the equity values held by the household, equaling to the stock-market values 

of physical asset Kλ K⋅  plus knowledge asset Hλ H⋅ . 

Solving the problem of intertermporal utility maximization yields an equation that 

characterizes the consumption behavior of households as: 

[ ]C C CP (t) C(t) H (t) A (t) (1 ) w(s) L(s)ω ρ ω κ⋅ = ⋅ ⋅ + + − ⋅ ⋅ ⋅                                 (10) 

where aggregate consumption expenditure CP C⋅  is a weighted average of neoclassical 

optimizing behavior and liquidity-constrained behavior. A portion ω  of households are 

fully leveraged whose consumption expenditure equal to a constant proportion ρ of the 

sum of human and financial wealth, in accordance with the permanent income hypothesis 

(Modigliani, 1976; Hall, 1978; Flavin, 1981; McKibbin and Wilcoxen, 1999). The remaining 

liquidity-constrained households are only able to consume a fraction of their current 

incomes, given by exogenous marginal propensity to consume κ. Using two-tier nested CES 

consumption structure, the aggregate consumption expenditures are further allocated to 

consumer demand for each individual energy and material good.  

2.3 Investment and R&D  

So far I have determined the producer demand for investment and R&D goods in Section 2.1. 

This section will model the supply side of investment and R&D goods that are available for 

accumulating physical and knowledge assets. With such a specification of demand-supply 

interactions, I can capture R&D crowding-out effect that may occur in imperfect innovation 
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market. That is, due to the limited supplies of R&D resources, climate policies that induce 

energy-saving R&D may reduce the availability of R&D resources for innovation in other 

sectors, potentially driving down the aggregate economic output (Goolsbee, 1998; Nordhaus, 

2002; Popp, 2004; Sue Wing, 2006; Gillingham et al., 2008).  

As Fig. 2(c) shows, investment and R&D sectors are constructed to produce and supply 

raw investment and R&D goods respectively. Both sectors have a two-tier nested CES 

production technology that produces outputs by combining the inputs of energy and 

materials goods. In both sectors, i I,R= , the respective producer solves problems as follows: 

i i i iE iE iM iMmax (t) P (t) Q (t) P (t) X (t) P (t) X (t)∏ = ⋅ − ⋅ − ⋅                                (11) 

where the firm’s objective is to optimally choose the inputs of energy bundle iEX  and 

materials bundle iMX  to maximize current profit flows iΠ , subject to the technology 

constraints. Solving this static optimization problem yields demands for the inputs of energy 

and material bundles. Subsequently, the demand for each bundle is optimally allocated to 

each individual energy and material goods. 

2.4 Government and International Trade  

Government behavior is normally constrained by a specific budgetary regime, which is 

represented by a certain well-defined fiscal target. The target of the Chinese government is to 

ensure a balanced budget with public revenue neutrality (NBS, 2010). Thus, our model 

specifies the government behavior as follows: it collects the revenue of tax imposed on 

corporate profit, household income and fossil energy use to finance public expenditure and 

subsidies on private investment and R&D: 

Q W C I RG(t) T (t) T (t) T (t) T (t) T (t)= + + − −                                      (12) 

where G  is aggregate government expenditure for the current use of goods and services. 

This aggregate spending is then allocated among individual energy and material 

commodities according to historical spending shares. Tax revenues are collected from 

corporate profit tax QT , household income tax WT  and carbon tax CT . IT , RT  denote 

government spending on subsidizing private investment and R&D, respectively. The 

government budget constraint is hereby determined by endogenous economic activities of 
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private agents and exogenous tax rates setting. 

I model international trade flows in line with the Armington structure: a commodity 

produced domestically is an imperfect substitute for the imported goods (Armington, 1969). 

For any given good, the domestically-produced output is combined with the imports to 

create a CES Armington composite of that commodity. Total supplies of that Armington 

commodity are used to clear the demands by intermediate production and final use. The 

export is modeled by allocating each Armington commodity between domestic and export 

markets via a constant elasticity of transformation (CET) assumption. 

2.5 Equilibrium Characterization  

In an intertemporal optimization model, the full characterization of equilibrium condition 

involves both intraperiod and intertemporal equilibrium. Since decisions on consumption, 

investment and R&D are based on rational expectations of forward-looking agents, our 

model derives a set of intertemporal equations (e.g., Eq. (6)) to characterize economic 

variables at different time points in equilibrium.  

For each energy and material goods, the supplies of that Armington commodity are 

used to satisfy the demands by intermediate and final use, with market clearing condition 

pinning down the equilibrium price of that commodity. Similarly, production outputs of the 

investment and R&D sectors are used to clear the demands by production sectors for 

physical and knowledge capital accumulation, which determine the equilibrium prices of 

raw investment and R&D goods. In the competitive labor market, the representative 

household derives no felicity from leisure and inelastically supplies its labor endowment at a 

constant exponential rate of growth. The demand side is determined by labor employment in 

production sectors. Equilibrium closure requires full employment and labor market clearing, 

which pins down the equilibrium labor wage. 

3 Model Implementation 

To implement the modeling structure in a numerical simulation, I construct a consistent 

benchmark dataset for model calibration. First, the year 2004 IO table of China is collected 
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from the GTAP 7 Data Base (Narayanan and Walmsley, 2008).12 Second, I aggregate the 

GTAP 57 sectors into the 12 sectoral groupings used in our model. The 5 value-added inputs 

are aggregated into 2 primary factors (labor and physical capital). Finally, the 2004 IO table is 

scaled to approximate the Chinese economy in the year 2005 (base year of simulation) using 

the 2005 growth rate of real GDP (9.1 percent). 

These aforementioned steps produce a stylized IO table of China, which records the 

input flows of multiple commodities and primary factors into production and final use. 

However, as a departure from traditional calibration, this IO table is not well suited to 

calibrate a CGE model with R&D-induced TC, because it does not record economic flows 

associated with R&D investment and knowledge inputs. To transform the conventional IO 

data into a structure like Fig. 1, I undertake knowledge accounting to capture intangible 

knowledge flows. To this I now turn.  

3.1 Knowledge Accounting 

In the System of National Accounts, the conventional IO table treats corporate expenditures on 

R&D as current cost of production along with intermediate inputs, implying that only a 

portion of each intermediate transaction reflects the value of pure physical flows, with the 

remainder being the value of intangible knowledge flows embodied in that transaction (BEA, 

2007; SNA, 2008). In line with this principle, knowledge accounting can be conceptualized as 

follows: in a stylized IO table, the intangible knowledge flows matrix ji j 1,...,n ;i 1,...,n[ω ]Ω = ==  is 

embodied in the intermediate transactions matrix ji j 1,...,n ;i 1,...,n[x ]X = == . The row sums of Ω  

represent the sector-specific R&D investments, j jii
R ω=∑ , and the column sums of Ω  

denote the remuneration of knowledge capital as primary factor inputs into production, 

i jij
H ω=∑ .  

Based on the embodied technology hypothesis, I estimate the intangible knowledge 

flows embodied in the intermediate transaction as: 13 

                                                        
12 This original IO table records the economic flows associated with 57-by-57 production sectors 
intermediate transactions, 5 categories of value-added inputs, and 4 components of final use. 
13 Embodied technology hypothesis claims that intangible knowledge inputs must be embodied 
in specific tangible physical materials in order to manifest economically useful characteristics. 
The knowledge accounting technique used in our work builds on the seminal work of Terleckyj 
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jij1 ji jn j jii
ji j

j1 ji jn ji j ji
Embodied technolog y hypothesis

R x
... ... R

x x x x X X
ωω ω ω

ω= = = = = = ⇒ = ⋅∑
∑

                     (13) 

where jix  is the (j,i) cell of the intermediate transaction matrix X  in the stylized IO table, 

representing the intersectoral transaction of intermediate inputs from sector j to i. jiω  is the 

intangible knowledge flows embodied in that transaction. j jR , X  denote R&D investment 

and intermediate production specific to sector j, respectively. The embodied technology 

hypothesis claims that, for any given commodity j, the knowledge embodiment ratio ji jixω  

is invariant across sectors in intermediate production. 

Given the available data on sector-specific R&D expenditure jR  and the shares of 

product sales to other sectors in intermediate transaction ji jx X ,14 I use Eq. (13) to estimate 

intangible knowledge flows jiω  embodied in the intermediate transaction jix , and hence 

capture the entries in knowledge flows matrix. Then, I vertically aggregate this knowledge 

flows matrix to create an additional row of knowledge inputs in the primary factors matrix 

V , with each element being the value of knowledge input into production sector. Finally, 

the knowledge flows matrix is horizontally aggregated to generate an additional column of 

R&D investments in the final use matrix G , with each element being the value of 

sector-specific R&D investment. This procedure hereby constructs a modified IO dataset 

with an explicit representation of R&D investments and knowledge inputs (see Fig. 1), based 

on which our CGE model with R&D-induced TC is calibrated.  

3.2 Parameterization and Solver 

The software GEMPACK is used to solve the intertemporal optimization model.15 The solver 

requires an initial baseline equilibrium for computing economic response to a policy shock. 
                                                                                                                                                                     
(1974), Scherer (1982) and Griliches and Lichtenberg (1984), which used IO-based technology flow 
matrices to measure the intersectoral technology flows in an economic system. 
14 The sector-level R&D data are collected from China Statistical Yearbook on Science and Technology 
2006 (MOST, 2006a). The product sale shares are calculated from intermediate transaction matrix 
in the stylized IO table. 
15 GEMPACK is a suite of general-purpose economic modeling software designed for solving 
large-scale CGE models, which is capable of solving intertemporal models. For an introduction, 
see Harrison and Pearson (1996). For solving intertemporal optimization CGE models, see Codsi 
et al. (1992), Malakellis (1994) and Wendner (1999). 
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For an intertemporal dynamic model, this benchmark equilibrium is required to record the 

values of variables at each time point over the simulation periods, which is a time-series IO 

dataset (one for each time point) consistent with both intratemporal and intertemporal 

equations (e.g., Eq. (6)) in the model. 

   To obtain such a full intertemporal dataset, I take the available initial period dataset (base 

year 2005 IO table) and replicate it in all future years over the period 2005-2030, which 

satisfies all the intratemporal equations but not the intertemporal ones in the model. Next, I 

add a Homotopy term to each intertemporal equation and carry out a simulation where the 

Homotopy variables are shocked. This experiment then generates a time-series IO data that 

satisfies every equations of the intertemporal model. Based on this consistent time-series 

benchmark dataset and model parameters lised in Tab. 1, the entire system of equations in 

the model can be numerically solved by GEMPACK.   

4 Results and Discussions 

4.1 Alternative Scenario Settings 

Recall that, I aim to examine the effectiveness of China’s R&D efforts and technological 

innovation to curb its carbon emissions. To achieve that goal, I attempt to simulate and 

compare emissions paths under two different scenarios, including: 1) Reference scenario: the 

incentives of innovation are not factored into private agent decisions, with R&D investments 

and knowledge inputs are set to null in simulations. Without the process of knowledge 

creation, this scenario represents the baseline growth trajectory; 2) R&D scenario: the 

mechanism of R&D-induced TC is introduced into producer problem, where R&D 

investment and knowledge creation are modeled as endogenous response of profit-seeking 

firms to input price changes. Its comparison with the reference scenario reflects the effect of 

R&D-induced TC. In Sections 4.3-4.4, additional policy scenarios will be developed to 

investigate the effectiveness of technology and climate policies to cut carbon emissions. 
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Table 1: Substitution elasticity and parameters 

 
Qσ : Elasticity of substitution between knowledge capitals and physical input composite 
Zσ : Elasticity of substitution among capital, labor, energy, material (KLEM) physical inputs. 
Eσ : Elasticity of substitution among intermediate energy goods. 
Mσ : Elasticity of substitution among intermediate material goods. 
Aσ : Armington elasticity of substitution between domestical and imported varieties. 
Tσ : Elasticity of output transformation between domestic and exported varieties. 

Notes: For the parameters of substitution elasticity, twelve production sectors have 
sector-differentiated parameter values. For other parameters, the twelve production sectors 
are assumed to have the same parameter values in baseline simulation. 

Source: McKibbin and Wilcoxen (1999); Goulder and Schneider (1999); Popp (2004); Sue 
Wing (2006); Bosetti et al. (2008); Wang et al. (2009); Narayanan and Walmsley (2008); Otto et 
al. (2008). 

 Qσ  Zσ   Eσ  Mσ  Aσ  Tσ  
Production sectors       

Electric utility 1.0 0.8 0.2 1.0 2.8 1.0 

Gas utilities 1.0 0.8 0.9 0.2 2.8 1.0 

Petro refining 1.0 0.5 0.2 0.2 2.1 1.0 

Coal mining 1.0 1.7 0.2 0.5 3.0 1.0 

Crude oil & gas 1.0 0.5 0.1 0.2 5.0 1.0 

Agriculture 1.0 1.0 1.1 2.8 0.9 1.0 

Forestry 1.0 1.3 0.6 1.7 2.5 1.0 

Mineral mining 1.0 0.9 0.9 0.2 2.5 1.0 

Durable 1.0 0.4 0.8 0.2 3.0 1.0 

Non-durable 1.0 1.0 1.0 0.1 3.0 1.0 

Transportation 1.0 0.5 0.2 0.2 1.9 1.0 

Services 1.0 0.3 0.3 3.0 1.9 1.0 

Qτ  Corporate short-run profit tax rate 0.1 

Iτ  Investment tax credit 0 

Rτ  R&D tax credit 0 

Cτ  Carbon tax imposed on fossil fuel input 0 
α  Elasticity of knowledge creation to R&D investment 0.2 
β  Elasticity of knowledge creation to existing knowledge stock 0.55 
η  Sector-wide efficiency of knowledge creation 1 
r  Real interest rate 0.05 

Kδ  Depreciation rate of physical capital 0.05 

Hδ  Depreciation rate of knowledge capital 0.1 
ψ  Investment adjustment cost coefficient 4 

θ  Externality of intersectoral R&D spillovers 1 
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4.2 Impacts of R&D-induced TC 

Given the scenario settings in Section 4.1 and the model’s parameter assumptions in Tab. 1, I 

simulate the economic and emission growth paths under the two aforementioned scenarios, 

so that the impact of R&D-induced TC can be captured. As shown in Fig. 3(a), GDP in the 

reference scenario is projected to grow by 6.3% annually from $2327 to $9650 billion dollars 

between 2005 and 2030. In contrast, GDP in the R&D scenario rises by almost 5 folds from 

$2327 to $11182 billion dollars during the same period, generating an annual average growth 

rate of 7.6%.16 This suggests a stronger GDP growth with the stimulus of R&D investments 

and technical innovation.  

Climate repercussions resulting from the R&D-induced TC are shown in Fig. 3(b). The 

reference scenario exhibits a rising trajectory of carbon emissions that grow by 4.2% annually 

from 5100 to 13800 Mt. In comparison, carbon emissions in the R&D scenario are set to rise 

from 5100 to 12300 Mt between 2005-2030 - an average annual growth rate of 3.5%. Measured 

in terms of percentage change, R&D efforts are seen to drive China’s absolute emissions 

below its projected baseline levels by 8.5% in 2020 and 11.2% in 2030. As a result, cumulative 

emission cuts relative to the reference level are estimated to reach 22 gigatons over the 

period 2005-2030, indicating that R&D-induced TC has a notable effect to curb baseline 

emissions. Simulation also shows that the reference scenario projects a trajectory where 

China’s carbon intensity is likely to fall from its 2005 level of 2.2 to a 2030 level of 1.4 tons per 

thousand dollars.17 In contrast, that intensity in the R&D scenario will be cut deeper to 1.1 

tons per thousand dollars at the end of simulation. 

Furthermore, the multi-sector CGE framework is used to examine the effect of 

R&D-induced TC on emission abatement potential at the sector level. This is done by 

examining the sector-specific cumulative emission cuts relative to the reference levels. As Fig. 

4(a) shows, the sectors of durable manufacturing, electricity and transport accommodate the 

highest abatement potential from innovation and TC. This is primarily because current 

production recipes of these sectors heavily rely on fossil fuel inputs. Once R&D funds are in 

                                                        
16 In our study, all measurements of output values are real GDP (constant price estimate) in unit 
of 2005 U.S. dollars (year 2005 is the base period). Differences in real GDP reflect changes in 
output volume. 
17 Our analysis focuses on the time path of carbon intensity because China is normally using the 
intensity targets to bind its climate responsibility of carbon emission cuts. 



 19

 

 

 

Note: (a) GDP growth path under four scenarios (reference, R&D-induced, innovation 
policy, carbon tax); (b) Carbon emissions growth path under four scenarios (reference, 
R&D-induced, innovation policy, carbon tax). 

Figure 3:  GDP and carbon emission growth trajectory 
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Note: (a) Effect of R&D-induced TC on sector-level cumulative emission cuts 
relative to the reference emission levels; (b) Intertemporal trends of economy-wide 
R&D investment expenditure and its sectoral composition. 
 

Figure 4:  Growth trend of R&D investment expenditure and the 
effect on carbon emission abatement 

0

50

100

150

200

250

300

350

400

2005 2010 2015 2020 2025 2030

Services

Transportation

Non‐durable manufacturing

Durable manufacturing

Forestry

Agriculture 

Mining mineral

Crude oil & gas extraction

Coal mining

Petro refining

Gas utilities

Electric utilities

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0



 21

place for innovation, these sectors have a large room of developing clean production 

technologies. For example, R&D investment in electric utility sector can foster development 

of low-carbon energy technology and produce “green” electric power, satisfying electricity 

demand without increasing carbon emissions. 

As the driving force to the aforementioned changes, the dynamic profile of R&D 

investment is shown in Fig. 4(b). Between 2005 and 2030, the economy-wide R&D 

investments are expected to grow by 12% annually from $31 to $335 billion dollars. The 

strong growth in R&D is spread across industrial sectors, with manufacturing, agriculture, 

electric utility and transportation making up the bulk (almost 80%) of aggregate R&D.18 As a 

result, R&D intensity is projected to rise from 1.3% to 3.2% as a share of GDP, which 

basically coincides with China’s R&D intensity target by 2020 (2.5% of GDP) in its transit 

towards a knowledge-based economy (MOST, 2006b).  

To elucidate the process of R&D-induced TC, I can think the following mechanism. The 

stimulus of R&D investment improves innovative capacity and creates a stock of knowledge 

assets (e.g., technique know-how, managerial skills). Once applied to the production process, 

the knowledge assets facilitate a reconfiguration of production factor inputs for higher 

productivity – an explanation for the stronger output growths in the R&D scenario. At the 

same time, owing to knowledge substitution for physical inputs, production technology 

experiences a decline in the cost share of each physical input and a rise for the knowledge 

input. The bias of production TC thus gives rise to a reduction in the intensity of fossil 

energy input - an explanation for the lower carbon intensity in the R&D scenario. 

While the emission cuts achieved by R&D are notable, global climate concerns are 

calling for China’s commitment on deeper carbon intensity cuts (or even hard emission caps). 

This then raises two issues: 1) On the basis of absolute emission levels, does the 

R&D-induced TC generate a significant carbon-saving effect; 2) In terms of relative carbon 

intensity, do technological innovations guarantee the achievement of climate target that is 

officially set out. 

                                                        
18 R&D efforts in these sectors can create higher levels of marginal benefits due to higher 
innovation efficiency and marginal products of knowledge input. Given a certain level of 
marginal cost of R&D, the producers in these sectors would hence rationalize their economic 
behaviors by undertaking more R&D investments. 
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 Firstly, as Fig. 3(b) shows, China’s carbon emissions are still on a climbing trajectory, 

even if its carbon intensity has been driven down by R&D efforts. While knowledge 

substitution for fossil energy inputs brings about a reduction in carbon intensity, fuelling 

China’s rapidly expanding economy still entails mammoth inputs of factor endowments. 

This unsurprisingly leads to a continuous increase in the absolute levels of fossil energy use 

and carbon emissions, without a significant carbon-saving effect.19 Secondly, at the 2009 

Copenhagen climate summit, China unilaterally pledged to cut its carbon intensity by 40-45% 

below its 2005 levels by 2020. This climate target is likely to aim for a 60-65% carbon intensity 

cut by 2030 relative to its 2005 levels. However, simulations show that China’s R&D efforts 

will drive down its 2005 carbon intensity level by 35% by 2020 and 50% by 2030, which is 

well below the pledged climate target. Moreover, if the risky nature of innovation is taken 

into account, massive R&D investment can’t translate into new knowledge creation and its 

substitution for fossil energy input, China’s carbon intensity will still remain a high level and 

fail to fulfill the climate target.20 In this regard, there is a growing need for China to call for 

additional intensity cuts on top of the existing achievement by R&D efforts. 

In this context, China’s R&D strategy is likely to be far from sufficient to realize “green” 

innovations and the pledged climate target. The underlying reasons are twofold. First, from 

the perspective of microeconomic foundation of innovation (Binswanger, 1974), R&D 

investment is an inventive response of private firms to input price changes in the pursuit of 

economic profitability, without particular concerns about climate mitigation; Second, China’s 

national innovation blueprints appear to focus on pushing domestic industries upstream in 

global value chains through improvements in productivity and competitiveness, without the 

motivation to capture the niche market of climate-friendly technologies. This innovation 

pattern is basically “normal” with carbon neutrality, as opposed to a carbon-saving “green” 

innovation (Nordhaus, 2011).21  

                                                        
19 This may reflect why Beijing has repeatedly rejected the calls to commit to an emission peak 
year. Its fast expanding economy consistently reinforce the increases in its emissions (IEA, 2007). 
20  For a detailed discussion about climate policy uncertainty, see McKibbin and Wilcoxen (2009). 
21 While China is gaining speed as a world leader in producting renewable energy technology, 
the bulk of these capacities are used for exports instead of domestic deployment (Kahrl et al., 
2011; de la Tour et al., 2011). China still maintains its focus on key research areas and enabling 
general-purpose technologies like biotechnology, nanotechnology, pharmaceuticals, large-scale 
IC manufacturing, broadband telecommunication (MOST, 2006b). 
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4.3 Innovation Policy Scenario 

The R&D scenario reveals that, while China is becoming increasingly committed to R&D, the 

nation still confronts a gap between achieved emissions cuts and expected climate targets. To 

bridge this gap, Beijing needs to implement complementary policies to create additional 

intensity reductions. In this section, I examine the effect of innovation policies that aim for 

public R&D subsidies and stringent patent protection. The climate policy of carbon taxation 

will be examined in next section.   

Recall that, in the R&D scenario the private firm in each sector fully finances R&D 

spending from own output sale revenues, but broader R&D investments can be attained if 

public R&D support is in place. As a key form of public R&D intervention, government can 

use tax revenue to subsidize private R&D and hence encourage more innovation. Moreover, 

public R&D support should be biased towards innovative activities of non-fossil fuel sectors 

(clean sectors), so that their reliance on fossil fuel inputs can be reduced. To represent this 

particular type of innovation policy, I impose the policy shock on R&D subsidy rate R 0.3τ =  

for all non-fossil fuel sectors (include the electric utility sector and seven non-energy sectors). 

That is, 30% of R&D spending is financed by government fiscal revenues (OECD, 2008). 

As Fig. 3 shows, in the presence of public subsidy, R&D investments continue to rise to 

385 billion dollars in 2030 – a level that is 14% higher than that without the subsidy. As a 

result, GDP is projected to grow by 7.7% annually from $2327 to $11381 billion dollars 

between 2005 and 2030 – a stronger growth than that in the R&D scenario. Meanwhile, 

carbon emissions are likely to rise from 5100 to 12019 Mt, with a growth rate of 3.4% that is 

slightly below the rate in the R&D scenario (3.5%). That’s because public R&D subsidies 

provide private firms stronger incentives of knowledge creation. Once these knowledge 

assets are applied in the production, more physical inputs will be substituted out, further 

lowering fossil fuel use and carbon emissions.  

In addition to the economy-wide changes, I further examine the effect of this biased 

R&D subsidy on cumulative output at the sectoral level. As shown in Fig. 5, in the presence 

of public R&D intervention, fossil fuel sectors are likely to suffer from output losses, while 

outputs in other sectors will continue to grow. The reasons are twofold. Firstly, with public 

R&D subsidies biased towards the non-fossil fuel sectors, the expansion of R&D resources in  
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these sectors will reduce that is available in fossil fuel sectors. Knowledge creation and 

productivity growth are hereby inhibited in fossil fuel sectors, generating the crowing-out 

effect in the R&D pool. Secondly, the biased R&D subsidies tend to encourage non-fossil fuel 

sectors to innovate and apply new knowledge in production, substituting for the use of fossil 

fuel inputs. To clear the market, the declining demand for fossil fuel inputs will drive down 

the output supply of fossil fuel sectors, with the output falls of fossil fuel sectors 

representing the opportunity cost of this particular type of R&D policy. However, as public 

R&D subsidies bring about significant productivity growth in non-fossil fuel sectors, this 

effectively offsets the output declines in fossil fuel sectors without a potential GDP loss. Put 

another way, R&D subsidies biased towards non-fossil fuel sectors diminish the contribution 

of fossil fuel industries to GDP, without limiting the output growth. This is an appealing 

strategy for China to restructure its carbon-intensive economy into a low-carbon one. 

I now turn to the other type of innovation policy, intellectual property rights (IPR). In 

principle, due to the positive externality of knowledge spillovers, innovators do not fully 

appropriate the benefits of innovation with private returns to R&D usually below the social 

Figure 5:  Effect of biased R&D subsidy on cumulative production   
output changes at the sectoral level 
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returns, leading to less R&D investments than the socially optimal levels (Nordhaus, 1969; 

Mansfield, 1996; Popp, 2006). Accordingly, innovation policy that aims for stringent IPR can 

correct for imperfect innovation market, creating an improved excludability of innovation 

and knowledge creation. 

To represent this stringent patent policy, the model scales down the values of θ by half 

0.5θ= . Simulation results show that, under a stringent IPR system, enhanced R&D efforts 

push the growth of GDP to 11509 billion dollars by 2030 - an additional 1.1% increase on top 

of the outputs achieved by R&D subsidies. Carbon emissions are likely to drop further to 

11892 Mt by 2030 – an additional 0.8% emission cut on top of that achieved by R&D 

subsidies. The reason for this improvement is that, stringent IPR serves to eliminate the 

externality of intersectoral knowledge spillovers that occurs in the imperfect innovation 

market. Therefore, the benefits of knowledge creation are largely appropriated by the private 

sector undertaking R&D, with smaller amount of knowledge spillover as a public good. To 

gain the benefits of innovation, private firms need to undertake more purposeful R&D, with 

a weak incentive of free riding on intersectoral R&D spillovers. Given more R&D efforts at 

the sectoral level, economy-wide knowledge accumulated and its substitution for fossil fuel 

in production is accordingly strengthened.  

In summary, innovation policies that aim for R&D subsidies and stringent IPR enable 

China to lower emission intensity further, but the effect is relatively minor, generating only 

1-2% additional cuts on top of the intensity level achieved in R&D scenario. Consequently, 

the joint effect of private R&D efforts and public R&D intervention is to cut China’s carbon 

intensity by 38% by 2020 (1.36 tons per thousand dollars) and 53% by 2030 (1.03 tons per 

thousand dollars) relative to its 2005 levels. Such a cut may still fall short of the pledged 

climate target (40-45% cuts by 2020 and 60-65% cuts by 2030). Doubts still remain about the 

effectiveness of innovation policies as the sole strategy, because continued growth in public 

R&D subsidies may become uncertain due to diminishing return to R&D.22 Also stringent 

IPR only serves to improv innovation excludability ex post, which is ancillary to ex ante 

incentive of R&D investments (the response of profit-seeking firms to input price changes). 

                                                        
22 Worries also exist at the central leadership level about whether massive public R&D can bear 
productive and sustainable innovations. Reportedly, many Chinese R&D activities have been 
plagued by research fund waste, haste and shoddy workmanship, and low quality standards. A 
political culture of corruption, prestige projects and top-down obedience could hinder the 
efficient use of public R&D funds (e.g., Shi and Rao, 2010). 
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4.4 Climate Policy Scenario 

As shown above, the emission cuts achieved by private R&D efforts and public R&D 

intervention fall short of the pledged climate target. To bridge this gap, a carbon price signal 

should be thought of as indispensable. On the one hand, as China’s current administrative 

measures on emission abatement are becoming increasingly costly and challenging to reach 

medium-term climate target, carbon taxation may serve as a pivotal market-based 

supplement to cutting emissions.23 On the other hand, by fulfilling carbon intensity target 

via carbon taxation, China can pave the way to introduce an emission trading scheme to 

hard cap its long-run absolute emissions.24  

I thus introduce a carbon tax of $20 dollars per ton of carbon dioxide from 2012, 

growing at a rate of 5% to $50 dollars per ton by 2030.25 As shown in Fig. 3(b), the carbon tax 

generates a noticeable effect to stabilize emissions path, with the emission levels down by 25% 

to 8702 Mt by 2030. Carbon intensity is likely to fall by 47% in 2020 and by 65% in 2030 

relative to the 2005 levels, reaching a level of 0.78 tons per thousand dollars at the end of 

time frame. Put differently, on top of private R&D and public innovation policies, carbon tax 

can yield additional carbon intensity cuts of 9% in 2020 and 12% in 2030. This translates into 

additional absolute emissions cuts of 24% in 2020 and 28% in 2030. Over the period 

2005-2030, carbon taxation yields an additional cumulative abatement of about 50 gigatons of 

carbon emissions, of which the sectoral composition is given in Fig. 6(a). Coal sectors have 

the highest abatement of cumulative emissions (50-60%), followed by oil and natural gas 

sectors (20-30%), with a modest level of abatement (10-20%) occurring in non-energy sectors. 

As Fig. 3(a) reveals, it comes as no surprise that the environmental benefit of deeper 

emission cuts achieved by carbon tax is at the compliance cost of output losses. Putting a 

                                                        
23 This is reflected by China’s difficulty in achieving its energy saving target during the 11th five 
year cycle. Local governments conducted forceful administrative measures, such as power plant 
shutdown, electricity and vehicle use control. As abatement levels become more stringent, such 
measures will become costly to achieve climate targets (Zhang, 2011).  
24 China’s share of historical cumulative emissions between 1900-2030 is expected to rise to 16%, 
approaching that of the U.S. (25%) and the E.U. (18%). China’s per capita emission in 2030 is 
projected to approach that of OECD Europe. Provided that developed countries have make 
concrete efforts of absolute emissions cuts, China will lost its ground not to take on hard emission 
caps, even if it remains on a climbing trajectory (IEA, 2010).  
25 The timing and level of carbon tax are set according to the shadow carbon prices calculated by 
IEA (2010), which represents a hypothetical policy experiment. 
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carbon price on the economy incurs a growth slowdown in the near term (2012-2020). After 

this transition period, the economy absorbs fossil fuel price shock and continues its normal 

growth path without compromising long-run growth prospect. This simulation trend is 

consistent with the findings in other modellling studies (e.g., McKibbin, 2008; McKibbin and 

Wilcoxen, 2004, 2009). Results show that, GDP is likely to grow by 6.8% annually to $11153 

billion dollars in 2030 (2.1% fall relative to the GDP levels without carbon tax). This 

translates into present-value cumulative GDP losses of $2981 billion dollars, of which the 

sectoral composition is displayed in Fig. 6(b). Most non-energy sectors experience 

cumulative output losses of about 5%. The carbon-intensive fossil fuel sectors suffer 

precipitous output declines of roughly 30%.  

While carbon tax enables China to achieve the stringent climate target, the compliance 

costs may raise worries in the nation that such a policy may give rise to growth slowdown 

and job losses. However, Beijing’s nerves can potentially be eased if induced TC as another 

benefit of climate policy (in addition to the direct benefit of emission cuts) is taken into 

account. Provided that private firms tend to innovate as their responses to input price 

changes, putting a price on carbon can induce firms to undertake R&D and knowledge 

creation, so that cost burden of higher fossil fuel prices can be avoided. This phenomenon is 

demonstrated in Fig. 6(c), although the reductions in private output incurred by carbon tax 

would diminish sale revenues and hence the absolute levels of spending in R&D, the relative 

ratio of R&D to output (R&D-output ratio or R&D intensity) does not necessarily drop across 

sectors. Decline in cumulative R&D spending exceeds the fall in cumulative output in fossil 

fuel sectors, but falls short of those in other sectors. Consequently, the R&D-output ratio 

increases slightly across a range of less carbon-intensive industries including manufacturing, 

transport and electric utilities, indicating that R&D is induced by carbon tax in these sectors.  

The inducement of R&D investment appears to coincide with the changes in 

knowledge-output ratio (knowledge inputs as a share of output). As depicted in Fig. 6(d), 

knowledge-output ratio falls sharply in fossil fuel sectors but rise slightly in others sectors, 

suggesting that inputs of productive knowledge are reallocated from the output-constrained 

fossil fuel sectors to the input-constrained non-fossil fuel sectors that accommodate higher 

potential of knowledge substitution for fossil fuel inputs. The result confirms findings on the 

induced innovation hypothesis, suggesting that a change in the relative price of a production 

input is in itself a spur to innovations that economize the use of that relatively expensive 
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factor (Hicks, 1932).26  

In summary, putting a carbon price on the economy may incur growth slowdown, but 

additional R&D investment and knowledge creation induced by carbon tax can partially 

mitigate the deadweight loss of such distortion, making the long-run growth performance 

still better than the reference trajectory. In other words, if a carbon tax is set to correct for 

emission externality, the price signal will induce private agents to undertake carbon-saving 

“green” innovation, which is an important complement to existing carbon-neutral “normal” 

innovation.

                                                        
26 For theoretical expositions of the induced innovation hypothesis, see Kennedy (1964), Kamien 
and Schwartz (1968), Goulder and Schneider (1999) and Sue Wing (2006). For empirical evidences, 
see Newell et al. (1999) and Popp (2002). 
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Note: (a) The effect of carbon tax on the sector-level cumulative emission cuts ; (b) The effect of carbon tax 
on the sector-level cumulative output losses; (c) The effect of carbon tax on the sector-level R&D-output 
ratio; (d) The effect of carbon tax on the sector-level knowledge-output ratio. All measured in terms of 
percentage changes relative to the corresponding case without carbon taxation. 

Figure 6:  Environmental and economic effects of carbon taxation and the induced innovation 
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4.5 Sensitivity Analysis 

Tab. 2 provides the results of sensitivity analysis (SA) for technology parameters in our CGE 

model. The SA is implemented by lowering and raising these exogenous parameters by 25% 

relative to their original values (see Tab. 1). I then compare new simulation results 

(parameters take new values) with regular simulation results (parameters take original 

values), and report the SA results as percentage change between them. 

    The general SA results (as shown the column of carbon intensity cuts in Tab. 2) suggest 

that the findings reached from Sections 4.1-4.4 are basically robust to changes in exogenous 

technology parameters. That is, sole dependence on R&D efforts is not sufficient to achieve 

pledged carbon intensity cut target, and a carbon price signal is indispensable to fulfill the 

climate target. 

    Turning to the specific technology parameters, in the case of lowering Qσ  by 25%, a 

smaller substitution possibility translates into lower incentives of private firms to undertake 

innovation due to a lower possibility of knowledge substitution. As less knowledge assets 

are created and applied in production process, it becomes less likely to stimulate 

productivity growth and substitute out fossil energy for carbon saving. Accordingly, GDP 

and R&D investment falls, and emissions rise in all scenarios. The opposite holds if the 

parameter Qσ  is raised by 25%.  

Lowering the parameter Hδ  by 25% translates into a higher level of accumulated 

knowledge stock. Its application in production is more likely to enhance output growth and 

substitute out fossil energy inputs. Accordingly, GDP and R&D investments rise, and 

emissions fall in all scenario. The opposite holds if the parameter Hδ  is raised by 25%.  

For the IPF parameters α , β , η , lowering their values by 25% translates into a lower 

possibility of knowledge creation in innovation. Given lower returns of R&D in innovation, 

private agents have less incentive of undertaking R&D and knowledge accumulation. A 

smaller amount of knowledge, once applied in production, is less likely to boost productivity 

growth and substitute for fossil energy. Accordingly, GDP and R&D fall, and emissions rise 

in all scenario. The opposite holds when these parameters are raised by 25%. 
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Table 2: Results of sensitivity analysis 

 
 
a  Percentage change of cumulative GDP in new simulation relative to that in regular simulation. 
b  Percentage change of cumulative carbon emissions in new simulation relative to that in regular simulation. 
c  Percentage change of cumulative R&D investment in new simulation relative to that in regular simulation. 
d  Year 2030 carbon intensity cuts relative to the year 2005 carbon intensity level. 
e  Scenario 1,2,3 refer to R&D-induced TC scenario, innovation policy scenario, and carbon tax scenario, respectively. 
f  Low and High refer to lowering and raising exogenous parameters by 25% relative to their central case values, respectively. 
 

Qσ : Elasticity of substitution between knowledge and physical input 

Hδ : Depreciation rate of knowledge capital 
α : Elasticity of knowledge creation to R&D investment 
β: Elasticity of knowledge creation to existing knowledge stock η : Efficiency of knowledge creation

  GDP a Carbon Emissions b R&D Investment c Carbon Intensity Cuts d 
Scenario e 1 2 3 1 2 3 1 2 3 1 2 3 

Qσ  Low f -0.72% -0.53% -1.31% 1.94% 1.62% 2.51% -3.48% -3.15% -4.51% 45.6% 48.2% 60.8% 
High 0.54% 0.27% 1.75% -1.73% -1.27% -2.65% 3.81% 3.52% 4.76% 54.7% 57.5% 68.5% 

Hδ  
Low 0.43% 0.32% 0.79% -1.16% -0.97% -1.51% 2.09% 1.89% 2.71% 52.1% 55.3% 67.3% 
High -0.32% -0.16% -1.05% 1.04% 0.76% 1.59% -2.29% -2.11% -2.86% 47.2% 50.8% 62.8% 

α  Low -0.29% -0.21% -0.52% 0.78% 0.65% 1.00% -1.39% -1.26% -1.80% 48.5% 52.2% 63.7% 
High 0.22% 0.11% 0.70% -0.69% -0.51% -1.06% 1.52% 1.41% 1.90% 50.9% 53.9% 65.2% 

β  Low -0.36% -0.27% -0.66% 0.97% 0.81% 1.26% -1.74% -1.58% -2.26% 47.2% 51.5% 62.8% 
High 0.27% 0.14% 0.88% -0.87% -0.64% -1.33% 1.91% 1.76% 2.38% 51.7% 54.2% 66.5% 

η  Low -0.50% -0.37% -0.92% 1.36% 1.13% 1.76% -2.44% -2.21% -3.16% 46.9% 49.6% 62.7% 
High 0.38% 0.19% 1.23% -1.21% -0.89% -1.86% 2.67% 2.46% 3.33% 52.6% 55.2% 67.7% 
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.5 Concluding Remarks 

This paper develops an intertemporal CGE model that incorporates the endogenous 

mechanism of R&D-induced TC. The model is used to analyze the effectiveness of China’s 

indigenous R&D investments and technological innovation to curb its carbon emissions. The 

results provide various policy implications for China’s strategy to address climate mitigation: 

1) R&D-induced TC has a notable effect on curbing China’s baseline carbon emissions levels, 

with the sectors of durable manufacturing, electric utility and transport accommodate the 

highest abatement potential from innovation; 2) While indigenous R&D plays a significant 

role in emissions cut, sole dependence on R&D may be far from sufficient to achieve the 

pledged climate target. That’s because China’s pursued innovation pattern is fundamentally 

“normal” with a focus on productivity improvements rather than carbon saving; 3) As 

complementary actions to existing R&D efforts, innovation policies (public R&D subsidy and 

stringent IPR) can strengthen R&D investment and cut emissions further, but the effect is 

still minor and insufficient to meet the stipulated emission cuts target; 4) A carbon price 

signal through carbon taxation should be thought of as indispensable in order to fulfill the 

climate target, but the achievement of carbon-saving benefits is at the cost of sizable 

economic losses; 5) The induced technical improvement can partially mitigate the 

deadweight loss incurred by carbon tax distortion, because additional R&D investment and 

knowledge application would be induced by carbon tax in a pattern of carbon-saving ”green” 

innovation, without compromising the long-run economic growth prospect. 

Needless to say, a number of refinements and model extensions are required for future 

work. In particular, our current modeling frameworks only focus on indigenous innovation 

within a single economy, with no attention paid to cross-country technology interaction and 

knowledge diffusion. As China is increasingly integrated into a globalized world economy 

through trade, FDI and human capital mobility, international knowledge diffusion may 

serve as a key complement to indigenous R&D in facilitating climate innovation and 

emissions reduction. There is hence a growing need for future research to incorporate the 

mechanism of international technology interaction into a multi-region global framework and 

explore the role of international knowledge diffusion in low-carbon innovation and climate 

mitigation.  
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Appendix A. Model Sectoral Classification and Mapping 

Sector Number Sector Name GTAP Sector Numbers 
1 Electric utilities 43 
2 Gas utilities 44 
3 Petroleum refining 32 
4 Coal mining 15 
5 Crude oil & gas extraction 16-17 
6 Mineral mining 18 
7 Agriculture 01-12, 14 
8 Forestry & wood products 13, 30 
9 Durable manufacturing 34-42 
10 Nondurable manufacturing 19-29, 31, 33 
11 Transportation 48-50 
12 Services 45-47, 51-57 
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Appendix B. Specification of Model Structure 

B.1 Production 

1)  Production technology  

The representative firm in each production sector has a separable KLEM-H nested CES function, 

with the following production technology: 
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By the principle of duality, the dual cost functions corresponding to each quantity variable are 

derived as follows: 
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where i iQ ,P  are the quantity and price of domestically-produced good, i iZZ ,P  are the quantity 

and price of physical inputs composite, iL iE iM i i i iL iE iM iK iH[X , X , X ,K ,H ], [P ,P ,P ,P ,P ]iX P= =  are 

quantity and price of labor, energy bundle, materials bundle, physical capital and knowledge 
capital. E E

ij ijX ,P  are the quantity and price of intermediate energy commodities, M M
ij ijX ,P  are the 

quantity and price of intermediate material commodities. 

2)  Solving Producer Problem  

For each production sector i , the problem of a representative producer is specified as . 
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The dynamic optimization problem is solved by using the current-value Hamiltonian formulas: 
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We first optimally solve for the demand for labor iLX (t)  , energy bundle iEX (t)  and materials 

bundle iMX (t)  from the F.O.C. with respect to ijX (t)  for j L,E,M= . 
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We further use the optimality condition at tier one in the nested CES structure - the value of 

marginal product of physical input composite iZ (t)  should equal its cost, and obtain the optimal 

level of demand for physical input composite as follows: 
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By substituting out iZ (t) , we express the optimal level of demand for ijX (t )  as function of 

iQ (t) : 
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In the second step, we solve for the optimal level of demand for raw investment goods iJ (t)  and 
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R&D goods iR (t) , and obtain the following static optimality conditions for investment and R&D:  
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The above equations are static form of optimality conditions, the truly intertemporal part of this 

problem is solved by optimally choosing the dynamic paths for the shadow price of physical and 

knowledge capital iKλ iHλ : 
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Where the expression represents the implicit arbitrage condition for physical capital investment: 

LHS denotes the shadow rate of return from an extra unit of investment in physical capital, 

including: the increase in the shadow price of physical capital, marginal product of physical 

capital, and the adjustment cost saving. RHS represents the cost of physical capital investment, 

including the market interest rate and the capital depreciation rate. Hence, in determining the 

optimal path of iKλ , the firm is guided by this implicit arbitrage equation. In a similar way, we 

can solve for the optimal dynamic path for the shadow price of knowledge asset iHλ . 
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3)  Characterization of Producer Problem 

 For any production sector i (i 1,...,12)= , the optimal level of demand for labor, energy 

bundle and materials bundle are characterized as follows: 
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where the optimal demands for energy bundle iEX (t)  and materials bundle iMX (t)  are further 
disaggregated into demand for each energy commodities E

ijX (t)  for j 1,...,5=  and material 

commodities M
ijX (t)  for j 6,...,12=  as follows: 
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 Investment behavior of producer is characterized by the following conditions: 
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where the first term is the static optimality conditions for investment determined by the shadow 

price of physical capital. The second is the implicit arbitrage condition that determines the time 

path of the shadow price of physical capital. The third denotes the actual purchases of investment 

goods with adjustment cost function. The fourth is the law of motion for physical capital stock.  

 R&D behavior of producer is characterized by the following conditions: 
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where the first term is the static optimality conditions for R&D investment determined by the 

shadow price of knowledge stock. The second is the implicit arbitrage condition that determines 
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the time path for the shadow price of knowledge asset. The third denotes the innovation possibility 

frontier for knowledge creation.  

3.B.2. Consumption 

1) Structure of Consumption 

In each economy, we assume a representative household owns all factors of production and all 

shares in firms, and determine the consumption which is a CES aggregate of individual 

consumption goods:  
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The dual cost functions corresponding to each above variable are as follows 
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where CC,P  are aggregate consumption and consumer price index, CE CM[X ,X ]=CX ,

CE CM[P ,P ]=CP  are the consumed quantity and consumer price of energy bundle and materials 

bundle. E E
Cj CjX ,P  are the consumed quantity and consumer price of energy commodities, M M

Cj CjX ,P  

are the consumed quantity and consumer price of material commodities. 

2) Consumer Problem 

The consumer problem is to maximize an intertemporal utility subject to the budget constraint 

and transversality condition: 

[ ]
t

max U(t) InC(s) exp (s t) dsρ
∞

= ⋅ − ⋅ − ⋅∫                   

C

s
, ,

s t

s.t. P (s) C(s) A(s) r(s) A(s) w(s) L(s)

limA(s) exp r(s ) ds 0
→∞

⋅ + = ⋅ + ⋅
⎡ ⎤

⋅ − ⋅ =⎢ ⎥⎢ ⎥⎣ ⎦∫
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By integrating the static budget constraint over an infinite time horizon, we can derive a lifetime 

budget constraint where the discounted present value of future consumption expenditure is 

financed by the sum of human wealth and financial wealth: 

[ ]

s
, ,

C C Ct t

s
, ,

C wt t

C iK i iH ii

P (s) C(s) exp r(s ) ds ds H (t) A (t)
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⎡ ⎤
⋅ ⋅ − ⋅ ⋅ = +⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤
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= ⋅ + ⋅

∫ ∫

∫ ∫
∑

         

where CC,P  are aggregate consumption level and consumer price index, respectively. CH  denotes 

the human wealth as the discounted present value of future income stream. The labor income is 

made up of after-tax wage earnings w(1 ) w(s) L(s)τ− ⋅ ⋅ . The financial wealth CA (t)  involves the 

equity values hold by the representative household, equaling the stock market value of physical 

assets Kλ K⋅  and knowledge assets Hλ H⋅ . 

The problem of intertermporal utility maximization is solved by constructing the 

Lagrangian: 

[ ]
s

, ,
C C Ct t t

L(t) InC(s) exp (s t) ds λ(t) H (t) A (t) P (s) C(s) exp r(s ) ds dsρ
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F.O.C. with respect to C(s) yields: 
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Plug back into the lifetime budget constraint yields: 
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( ) [ ]
s

, ,
C t
(t) exp (s t) exp r(s ) dsρ ⎡ ⎤

⋅ − ⋅ − ⋅ ⋅⎢ ⎥⎢ ⎥⎣ ⎦∫

 

Given the human and financial wealth at time t, the household will choose her optimal 

consumption path over time s [t,t 1,..., ]= + ∞  according to the above equation. Let s t=  and 

derive the optimal consumption level at current period:  

( )C C CP (s) C(s) H (t) A (t)ρ⋅ = ⋅ +                                                     
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This formula represents the consumption behavior of household according to permanent income 

hypothesis – household’s consumption expenditure equals to a constant proportion of the 

aggregated human and financial wealth. However, some group of household are 

liquidity-constrained with myopic expectations about her future income, and are only able to 

consume a fraction of their after-tax income, thus the aggregate consumption expenditure is 

expressed as follows: 

[ ]C C CP (t) C(t) H (t) A (t) (1 ) w(s) L(s)θ ρ θ σ⋅ = ⋅ ⋅ + + − ⋅ ⋅ ⋅                    

Based on the two-tier nested CES structure of consumption, the aggregate consumption 

expenditure can be allocated to each goods and services component: 
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where CE CE CM CM(t) (t) [P (t) X (t),P (t) X (t)]⋅ = ⋅ ⋅Cj CjP X  are the consumption expenditure on energy 

and material bundles. E E
Cj CjP (t) X (t)⋅  are the consumption expenditure on energy commodities, 

M M
Cj CjP (t) X (t)⋅  are the consumption expenditure on material commodities 

3) Characterization of Consumer Problem 

 From labor endowment, human and financial wealth, aggregate consumption expenditures 

are determined: 
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 Aggregate consumption expenditure is allocated into individual E/M commodities as: 
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where the demand for energy bundle CEX (t)  and materials bundle CMX (t)  is further allocated 
into each energy commodities E

CjX (t) j 1,..., 5=  and material commodities M
CjX (t) j 6,...,12= : 
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3.B.3 Capital good producing sector 

The investment sector produces new investment goods by combining energy and materials 

according to a two-tier nested CES production technology:  
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The dual cost function corresponding to each variable is as follows: 
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where 
I IQ ,P  are the quantity and price of investment good, 

IE IM[X ,X ]=IX ,
IE IM[P ,P ]=IP  are 

quantity and price of E/M bundle used in financial sector. E E
Ij IjX ,P  are the quantity and price of 

energy commodities, M M
Ij IjX ,P  are the quantity and price of material commodities.  

For the investment sectors, the producer problem is specified as: 

I I I IE IE IM IMmax (t) P (t) Q (t) P (t) X (t) P (t) X (t)∏ = ⋅ − ⋅ − ⋅                     

where the firm’s objective is to optimally choose the inputs of energy bundle IEX  and materials 

bundle IMX  for maximizing its current profit flows I∏ . Solving this top-tier static maximization 

problem can determine the demands for the inputs of energy and materials bundles. We further 
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solve a cost minimization problem at energy and material tier, and characterize the demand for 

each individual energy and material commodities. 

The optimal level of demand for energy bundles and materials bundles are characterized as: 
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where the demand for energy bundle IEX (t)  and materials bundle IMX (t)  is further 

disaggregated into each energy commodities E
IjX (t) j 1,..., 5=  and material commodities 

M
IjX (t) j 6,...,12= : 
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3.B.4 R&D good producing sector 

The structure of production technology in R&D sector is to produce R&D goods by combining 

energy and material bundles according to a two-tier nested CES function.  

( )

( )

( )

Q
R

Q Q
R RQ QR R

E
R

E E
R RE ER R

M
R

M M
R RM MR R

1 1 1
Q Q

R R Rj Rjj E,M

1 1 1
E E E

RE R Rj Rjj 1,...,5

1 1 1
M M M

RM R Rj Rjj 6 ,...,12

Q A ( ) X

X A ( ) X

X A ( ) X

− −

=

− −

=

− −

=

⎡ ⎤
⎢ ⎥= ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⋅ ⋅⎢ ⎥⎣ ⎦

∑

∑

∑

σ
σ σ

σ σ

σ
σ σ

σ σ

σ
σ σ

σ σ

δ

δ

δ

 

By the principle of duality, the dual cost function can be expressed as follows: 
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where R RQ ,P  are the quantity and price of produced R&D good, IE IM[X ,X ]=RX , IE IM[P ,P ]=RP  
are quantity and price of capital service, labor, energy and materials used in R&D sector. E E

Rj RjX ,P  

are the quantity and price of energy commodities, M M
Rj RjX ,P  are the quantity and price of material 

commodities. 

For R&D sectors, the producer problem is specified as follows: 

R R R RE RE RM RMmax (t) P (t) Q (t) P (t) X (t) P (t) X (t)∏ = ⋅ − ⋅ − ⋅                     

where the firm’s objective is to optimally choose the inputs of energy bundle REX  and materials 

bundle RMX  for maximizing its current profit flows R∏ . Solving this top-tier static 

maximization problem can determine the demands for the inputs of energy and materials 

bundles. We further solve a cost minimization problem at energy and material tier, and 

characterize the demand for each individual energy and material commodities. The optimal level 

of demand for energy bundles and materials bundles are characterized as : 
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where the demand for energy REX (t)  and materials bundle RMX (t)  is disaggregated into each 

energy good E
RjX (t) j 1,..., 5=  and material good M

RjX (t) j 6 , ..., 12= :  
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3.B.5 Government  

Government behavior is normally constrained by a specific budgetary regime, which is 

represented by a certain well-defined fiscal target. The target of the Chinese government is to 

ensure a balanced budget with public revenue neutrality (NBS, 2010). Thus, our model specifies 

the government behavior as follows: it collects the revenue of tax imposed on corporate profit, 

household income and fossil energy use to finance public expenditure and subsidies on private 

investment and R&D: 

Q W C I RG(t) T (t) T (t) T (t) T (t) T (t)= + + − −                                                 
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where G  is aggregate government expenditure for the current use of goods and services. This 

aggregate spending is then allocated among individual energy and material goods according to 

historical spending shares. Tax revenue is collected from corporate profit QT , household income 

WT  and carbon emissions CT . IT , RT  denote government spending on subsidizing private 

investment and R&D, respectively. The government budget constraint is hereby determined by 

endogenous economic activities of private agents and exogenous tax rates setting. 

According to historical spending shares, aggregate government expenditure is allocated 

among individual commodities, and yield government demands for each energy good 
E
GjX (t) j 1,...,5=  and material good M

GjX (t) j 6,...,12= :  

E
jE

Gj

M
jM

Gj

G (0)
X (t) G(t) j 1,...,5

G(0)
G (0)

X (t) G(t) j 6,...,12
G(0)

= ⋅ =

= ⋅ =

 

where E M
j jG(0),G (0),G (0)  denote the initial period government aggregate spending, spending on 

energy goods and spending on material goods, respectively. 
 

3.B.6 International Trade  

We model international trade flows in line with the Armington structure: a commodity produced 

domestically is an imperfect substitute for the imported goods. For any given good, the 

domestically-produced output is combined with the imports to create a CES Armington 

composite of that commodity.  
Y
i

Y Y Y
i i i

Y Y
i i

1 1 1

i i iY (t) Q (t) M (t)

σ
σ σ σ
σ σ
− − −⎡ ⎤

⎢ ⎥
= +⎢ ⎥⎣ ⎦  

where iY  denote the total supply of Armington composite good i as a CES aggregate of 

domestically-produced output iQ  and import iM  that is set exogenously. Total supplies of 

that Armington commodity are used to clear the demands by intermediate production and final 

use. The export is modeled by allocating each Armington commodity between domestic and 

export markets via a constant elasticity of transformation (CET) assumption. 

( )
CET

Xi i iX (t) P (t) Y (t)= ⋅
σ  

where the export XiX  is modeled by allocating Armington composite iY  to export market 
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according to its product price iP  and CET parameter CETσ .  

3.B.7 Market clearing condition  

 Market clear condition for each individual commodity j (j 1,...,12)=  

j ij Cj Ij Rj Gj Xji
Y (t) X (t) X (t) X (t) X (t) X (t) X (t)= + + + + +∑  

where the LHS denotes the total supply of Armington goods j (j 1,...,12)= , which is used to 

satisfy the RHS demand by production, consumption, investment, R&D, government and export. 

This market clearing condition thus pins down an equilibrium price of commodity j. 

 Market clear condition for raw investment good 

I ii
Q (t) I (t)=∑  

where the LHS denotes the total supply of raw investment good (the output produced by 

investment sector), which is used to satisfy the capital good demand by production sectors in the 

RHS. This market clearing condition pins down an equilibrium price of raw investment good. 

 Market clear condition for raw R&D good 

R ii
Q (t) R (t)=∑  

where the LHS denotes the total supply of raw R&D good (the output produced by R&D sector), 

which is used to satisfy the R&D good demand by production sectors in the RHS. This market 

clearing condition thus pins down an equilibrium price of raw R&D good. 

 Market clear condition for labor 

( )S
L iLi

L (0) exp n t X (t)⋅ ⋅ = ∑  

where the representative household derives no felicity from leisure and inelastically supplies its 

labor endowment at a constant exponential rate of growth Ln , with initial period labor 

endowment SL (0) . The demand side is determined by labor employment in production sectors. 

Equilibrium closure requires full employment and labor market clearing, which pins down the 

equilibrium labor wage. 
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