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Abstract

We investigate a new source of economic stickiness: namely, staggered loan

interest rate contracts under monopolistic competition. The paper introduces

this mechanism into a standard New Keynesian model. Simulations show

that a response to a �nancial shock is greatly ampli�ed by the staggered loan

contracts though a response to a productivity, cost-push or monetary policy

shock is not much a¤ected. We derive an approximated loss function and

analyse optimal monetary policy. Unlike other models, the function includes

a quadratic loss of the �rst-order di¤erence in loan rates. Thus, central banks

have an incentive to smooth the policy rate.
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Imperfections in �nancial markets a¤ect the design of monetary policy because

it is implemented through �nancial markets. Here, �nancial market imperfection

is understood as the presence of a wedge between the optimal and actual levels of

loan interest rates. A very in�uential study in this regard is Bernanke, Gertler and

Gilchrist (1999, henceforth BGG), stressing that credit market imperfections have a

signi�cant in�uence on business cycle dynamics. In the BGG model, this �nancial

market wedge is determined by time-varying leverage in that endogenous mechanisms

in credit markets work to amplify and propagate shocks to the economy, the so-called

�nancial accelerator mechanism. Consequently, a considerable number of existing

theoretical studies on monetary policy and �nancial market imperfections follow the

BGG model.1 However, unlike the present analysis, these studies assume that loan

rates can change costlessly in each period, and therefore do not focus on a realistic

imperfection observed in many credit markets: namely, the sticky adjustment of loan

rates.

Many studies report the stickiness in loan rates for non-�nancial corporations in

several economies.2 More speci�cally, in US work, Berger and Udell (1992) employ

micro-level data to show that it takes at least two quarters and perhaps more for

private banks to adjust the loan rates for newly contracted loans against the market

rate proxying for the policy rate. Gambacorta (2008) conducts a similar analysis

for Italy and �nds the presence of a sticky adjustment of about two quarters in the

response of loan rates to a policy rate change for newly contracted short-term lending.

Hülsewig, Mayery and Wollmershäuserz (2007) and Gerali et al. (2010) also assume

staggered loan contracts in New Keynesian models and �nd empirically that frictions

in loan markets play an important role in the propagation of shocks in the euro area

on account of incomplete pass-through from policy rates to loan rates. Finally, in

Japan, the Bank of Japan (2007, Chart 50) reports that major city banks require

�ve quarters and local banks seven quarters on average to adjust their loan rates in

1For example, see Christiano, Trabandt and Walentin (2007) and Christiano, Motto and Ros-

tagno (2007).
2Graham and Wright (2007) show interest rate stickiness in consumer loans.
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response to a change in the policy rate for all loans. The Bank of Japan (2008, Chart

1-29) similarly reports loan rate stickiness in local banks. Together, these studies

suggest that regardless of whether loans are newly contracted or outstanding, or

short or long term, loan rates are su¢ ciently sticky in response to changes in policy

rates.3 Thus, we should consider staggered loan rates, along with other types of

�nancial market imperfections, as an important factor in the conduct of monetary

policy.

The �rst main contribution of this study is to introduce in a tractable manner a

staggered nominal loan rate contract with microfoundations derived from the opti-

mizing behaviour of agents into a simple New Keynesian model. We assume staggered

loan contracts between a bank and a �rm under monopolistic competition.4 In re-

lated work, Sander and Kleimeier (2004), Gropp, Sørensen and Lichtenberger (2007)

and van Leuvensteijn et al. (2008) show that the wedge between the loan rate and

the policy rate is a result of the imperfect competition between banks, which induces

the staggered loan rates. This staggered contract mechanism highlights a new source

of economic rigidity that adds to pre-existing sources of stickiness in the literature.

Moreover, by introducing a new equation for the �nancial market in our model, i.e.,

the loan rate curve, we can incorporate �nancial market shocks into our analysis.

In the impulse response analysis, we reveal the following property: the cost channel

and its stickiness alter economic �uctuations. In particular, a response to a �nan-

cial shock is greatly ampli�ed by the presence of staggered loan contracts though a

response to a productivity, cost-push or monetary policy shock is not much a¤ected.

The second main contribution is that we derive a new objective function for the

central bank given a loan rate friction in the �nancial market, and therefore more

3In terms of outstanding loans, loan rate stickiness is natural because private banks and �rms

do not modify all loan contracts in every period. This is also generally true for long-term loans

because most of these have �xed loan rates.
4In Hülsewig, Mayery and Wollmershäuserz (2007), an ad hoc loan demand function is induced

from the distorted aggregation of loans. Alternatively, in Gerali et al. (2010), the assumption is

that the loan adjustment cost derives the sticky loan rate dynamics. Both of these mechanisms

di¤er from that assumed in our model. Moreover, neither study focuses on optimal monetary policy.
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fully investigate the characteristics of optimal monetary policy. We show that this

approximated utility-based welfare criterion holds a speci�c property not shared by

other welfare functions in previous work, including Rotemberg and Woodford (1997),

Giannoni (2000), Erceg, Henderson and Levin (2000), Aoki (2001), Steinsson (2003),

Benigno (2004) and Ravenna and Walsh (2006).5 In contrast to these studies, using

a model with staggered loan rate contracts, we show that the approximated welfare

function includes the �rst-order di¤erence in loan interest rates, and this in turn

induces a reduction in the magnitude of the policy rate changes. As a result, optimal

monetary policy has the characteristic of policy rate smoothing. Also, with a modest

degree of loan stickiness, we can quantitatively rationalize the smoothing parameter

of policy rate estimated in the literature. These outcomes explain the fact that a

central bank changes its policy rate through a series of small adjustments in the same

direction, as discussed in previous studies such as Goodfriend (1991) and Woodford

(2003b). It is the staggered property of �nancial markets that induces the central

bank to optimally smooth the policy rate. We also show the response of optimal

monetary policy to a variety of shocks, whereby the directions of the responses of

optimal monetary policy and monetary policy conducted under a Taylor-type rule

di¤er for both a loan rate shock and a marginal cost shock.

The remainder of the paper is organized as follows. Section 1 constructs the

baseline model. In Section 2, we provide the impulse responses of the model under a

5Giannoni (2000) derives a second-order approximation to the consumer utility function in a

model with monetary transaction costs. Erceg, Henderson and Levin (2000) derive an approximated

welfare function in a model with staggered wage contracts. Aoki (2001) derives the approximated

welfare criteria for a central bank in a model with heterogeneous price-setting sectors, comprising

a �exible-price sector and a sticky-price sector. Steinsson (2003) provides an approximated welfare

function for a model in which one agent behaves by following Calvo-type price setting and the other

sets prices according to a rule of thumb, which induces a hybrid Phillips curve, including both

forward- and backward-looking terms. Benigno (2004) extends the discussion of welfare criteria

to an international macro framework. Ravenna and Walsh (2006) derive the welfare criteria and

investigate optimal monetary policy under a �exible cost channel, i.e., under �exible loan contracts

between �rms and private banks.
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Taylor-type rule. In Section 3, we derive a second-order approximation to the con-

sumer utility function and derive an optimal monetary policy rule. Section 4 details

the properties of the optimal monetary policy. In Section 5, we conclude the paper.

1 Model

The model comprises four agents: a consumer, a �rm, a central bank and a private

bank. The representative consumer plays four roles in our model. First, the consumer

consumes di¤erentiated goods determined through a cost minimization problem given

an aggregate consumption level. Second, the consumer chooses the optimal amount

of aggregate consumption, bank deposits and investment in risky assets given the

deposit rate set by the central bank. Third, the consumer provides di¤erentiated

labour services and, because it holds monopolistic power, decides the wage of each

di¤erentiated type of labour. Lastly, the consumer owns both the bank and the �rm,

and so receives dividends in each period.

The representative �rm consists of three layers: a president, a continuum of

project groups populated on the [0; 1] interval under the president and a continuum

of business units populated on the [0; 1] interval in each project group. Here, we

assume that the business unit h in each project group is characterized by a dif-

ferentiated type of labour h. The �rm thus plays two roles in our model. First,

the president decides how many di¤erentiated workers to hire, which is determined

through a cost minimization problem in which a fraction of the labour cost must be

�nanced through an external loan from a private bank, the so-called cost channel.

The cost of the di¤erentiated type of labour is �nanced by a di¤erentiated loan. Sec-

ond, in a monopolistic environment (an individual demand curve on di¤erentiated

consumption goods o¤ered by the consumer), each project manager sets a di¤eren-

tiated goods price and produces one good using the external loan assigned by the

president to �nance some of the labour costs in order to maximize pro�t. We assume
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staggered price setting for goods following the Calvo (1983)�Yun (1992) framework.6

The representative private bank consists of two layers: a president and a con-

tinuum of working groups populated over [0; 1] under the president. The private

bank plays two roles in our model. First, the president receives a deposit from the

consumer and divides the deposit among the working groups.7 Second, under mo-

nopolistic competition, each working group lends to the �rm by setting di¤erentiated

nominal loan rates according to the loan�s demand curve. As explained below, we as-

sume that each working group can set the di¤erentiated nominal loan rate according

to the business unit property which is characterized by the di¤erentiated labour type.

In the baseline model, we replicate the staggered property of loan rates through the

Calvo (1983)�Yun (1992) framework in which the private bank perfectly �xes loan

rates for a certain period. Finally, the central bank sets the deposit rate.8

1.1 Cost Minimization

In this model, we have two cost minimization problems. The �rst determines the

optimal allocation of di¤erentiated goods for the consumer. The second determines

the optimal allocation of labour services, given the loan rates and wages, for the

�rm�s president.

For the consumer, we assume that the consumer derives utility from the con-

6In terms of the �rst �rm role, we can alternatively assume a representative labour aggregator,

i.e., an employment co-ordinator, as in Erceg, Henderson and Levin (2000), instead of a �rm

president. In this case, it is natural to assume the coexistence of many independent �rms producing

di¤erent goods using a di¤erentiated labour service instead of a single �rm.
7BGG make the same assumption. We can also assume the existence of many di¤erent private

banks providing loans to di¤erent business units in a �rm or to di¤erent �rms instead of a single

private bank. In this case, each private bank receives a deposit from the consumer and lends the

entire deposit to a particular �rm. Thus, the total amount of deposit for each private bank should

equal the total deposits of the consumer.
8Appendix A provides details of the optimization problem, the derivation of the

�rst-order conditions and the log-linearizations. Appendix is available on my website

(http://www.geocities.jp/yuki_teranishi/).
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sumption index, which is de�ned as a Dixit�Stiglitz (1977) aggregator, of bundles of

di¤erentiated goods f 2 [0; 1] produced by a �rm�s project groups as follows:

Ct �
�Z 1

0

ct(f)
��1
� df

� �
��1

; (1)

where Ct is aggregate consumption, ct(f) is a particular di¤erentiated good along a

continuum produced by the �rm�s project group f and � > 1 is the elasticity of sub-

stitution across goods produced by project groups. For the consumption aggregator,

the appropriate consumption-based price index is given by

Pt �
�Z 1

0

pt(f)
1��df

� 1
1��

; (2)

where Pt is the aggregate price and pt(f) is the price of a particular di¤erentiated

good ct(f). As in other applications of the Dixit�Stiglitz aggregator, the consumer�s

allocation across di¤erentiated goods at each time must solve a cost minimization

problem. This means that the relative expenditure on a particular good is decided

according to the following:

ct(f) = Ct

�
pt(f)

Pt

���
: (3)

An advantage of this consumption distribution rule is that the consumer�s total

expenditure on consumption goods is given by PtCt. We use this demand function

for di¤erentiated goods in the �rm sector.

On the �rm side, the president optimally allocates labour services from the con-

sumer to each project group according to another cost minimization problem. The

labour index Lt is given by

Lt �
�Z 1

0

lt(h)
��1
� dh

� �
��1

; (4)

where lt(h) is the di¤erentiated labour supply of type h 2 [0; 1] that goes to �rm

business unit h within each project group. � > 1 is the elasticity of substitution

across di¤erentiated labors. Thus, the di¤erentiated labour types are not perfectly

substitutable. Because of the simpli�ed homogeneous project group assumption, each
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project group eventually uses all types of workers in the same proportions.9 Here,

the �rm uses a di¤erentiated loan to hire a di¤erentiated worker. Furthermore, we

assume that aggregate labour Lt is used for production. Given the model set-up in

which the �rm must �nance a fraction 
 of the labour cost of the business unit h,


wt(h)lt(h) (where 0 � 
 � 1), through a loan from working group h in the private

bank, the cost minimization problem of the president is given by

min
lt(h)

Z 1

0

(1 + 
rt(h))wt(h)lt(h)dh; (5)

subject to Eq. (4), where rt(h) is the nominal loan rate during time t to the business

unit h, which is set by the working group h in the private bank, and wt(h) is the

nominal wage for labour supply to h business unit of all project groups, which is

set by the consumer. Note that we use the same notation h for the di¤erentiated

nominal loan rate, the business unit, the working group, the di¤erentiated nominal

wage and the di¤erentiated labour supply, which correspond to each other. Here,

working groups in the private bank can set di¤erent loan rates for di¤erent busi-

ness units in the �rm, each characterized by the type of labour, under monopolistic

power. Importantly, the private bank interprets di¤erences in the type of labour as

di¤erences in the risk of business units. In the real economy, a �rm borrows di¤er-

ent loans according to when, why, how much and for how long it requires external

�nance.10 Given the aggregate labour Lt determined by the demand for goods, the

relative demand for each di¤erentiated type of labour, which is decided by the �rm�s

president, is given by

lt(h) = Lt

�
(1 + 
rt(h))wt(h)


t

���
; (6)

9Erceg, Henderson and Levin (2000) assume the same situation for employment. In other words,

all project groups solve the cost minimization problems under the same situation, especially under

the same labour index in this model.
10We can also justify this environment when considering project �nance. For project �nance, a

�rm uses di¤erent loans for di¤erent businesses.
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t �
�Z 1

0

[(1 + 
rt(h))wt(h)]
1�� dh

� 1
1��

: (7)

Then, we have

Z 1

0

(1 + 
rt(h))wt(h)lt(h)dh = 
tLt: (8)

Using the assumption that a speci�c fraction of the �rm�s labour cost associated

with labour type h is �nanced through a loan h, then the amount the �rm needs to

borrow per labour type is

qt(h) = 
wt(h)lt(h): (9)

Then, we also have

qt(h) = 
Lt

�
(1 + 
rt(h))wt(h)


t

���
wt(h): (10)

By de�ning Qt �
R 1
0
qt(h)dh, we have

qt(h) =

�
(1 + 
rt(h))

��(wt(h))
1��


�t

�
Qt; (11)

where 
�t �
R 1
0
(1 + 
rt(h))

��(wt(h))
1��dh. This is the demand function for loans

by business unit of type h in the �rm. Here, the president of the �rm changes the

allocation of loans according to the business cost, i.e., the labour and loan costs, for

each business. When the business cost in h business unit increases, the proportion of

business operations through h business unit used for production decreases. Note that

because of the di¤erentiated type of labour, the demand for loans is di¤erentiated

without assuming a distorted aggregator of loans (money). We use this demand

function for private banks.

1.2 Consumer

We consider a representative consumer that derives utility from consumption and

disutility from the supply of labour. The consumer maximizes the following welfare

function:
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Ut = Et

( 1X
T=t

�T�t
�
U(CT ; �T )�

Z 1

0

V (lT (h); �T )dh

�)
; (12)

where Et is an expectation conditional on the state of nature at period t. U(�)

is an increasing and concave function in the consumption index Ct and V (�) is an

increasing and convex function in labour supply lt(�). �t is an exogenous disturbance

of preference, where the steady state value of �t is given by � = 1 (hereafter, we

denote the steady state value of kt as k for any variable except the output gap and

the in�ation rate). The budget constraint of the consumer is given by

PtCt + Et [Xt;t+1Bt+1] +Dt � Bt + (1 + it�1)Dt�1 + (1 + �w)

Z 1

0

wt(h)lt(h)dh

+

Z 1

0

�Bt (h)dh+

Z 1

0

�Ft (f)df + Tt; (13)

where Bt is a set of risky assets, Dt is the amount of bank deposits, it is the nominal

deposit rate (policy rate) set by the central bank from t to t+1, �w is the subsidy for

income, wt(h) is the nominal wage for labour supply lt(h) to the �rm�s business unit

of type h,
R 1
0
�Bt (h)dh is the nominal dividend from owning the bank,

R 1
0
�Ft (f)df is

the nominal dividend from owning the �rm, Tt is a subsidy andXt;t+1 is the stochastic

discount factor between t and t+1. We assume a complete �nancial market for risky

assets. Thus, we have a unique discount factor and can characterize the relationship

between the deposit rate and the stochastic discount factor as follows:

1

1 + it
= Et [Xt;t+1] : (14)

Given the optimal allocation of consumption expenditure across the di¤erentiated

goods, the consumer must choose the total amount of consumption, the optimal

amount of risky assets to hold and an optimal amount to deposit in each period to

maximize the welfare function. The necessary and su¢ cient conditions are given by

UC(Ct; �t) = �(1 + it)Et

�
UC(Ct+1; �t+1)

Pt
Pt+1

�
: (15)
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In this model, the consumer provides di¤erentiated types of labour to the �rm and

so holds the power to decide the wage of each type of labour, as in Erceg, Henderson

and Levin (2000). We assume that each project group hires all types of workers in

the same proportions. The consumer sets each wage wt(h) for any h in every period

to maximize its utility subject to the budget constraint given by Eq. (13) and the

demand function of labour given by Eq. (6).11 Then we have the following relation:

(1 + �w)
wt(h)

Pt
=

�

�� 1
Vl(lt(h); �t)

UC(Ct)
: (16)

In this paper, we assume that the consumer supplies labour only for the �rm, not

the private bank. We use the relation given by Eq. (16) for the �rm. To eliminate

the distortion from monopolistic labour supply, we set 1 + �w = �
��1 .

1.3 Firm

As explained above, we �rst assume that the president determines the allocation of

hiring di¤erentiated labour, given the aggregate labour determined by the demand

for goods, using a cost minimization problem in which a fraction of the labour costs

must be �nanced through external loans from a private bank. We also assume that

in a monopolistically competitive goods market, each project manager employs all

types of workers, borrows all types of external loans and produces a single good with

resetting the �rm�s price at certain intervals.

Under the Calvo (1983)�Yun (1992) framework, the f project manager resets the

�rm�s price with probability 1�� and maximizes the �rm�s present discounted value

of pro�t:

Et
1X
T=t

�T�tXt;T [(1 + � p) pt(f)yt;T (f)�GT
TLT (f)] : (17)

Gt is the exogenous disturbance on the marginal cost as in Woodford (2003a), where

G = 1. We use the consumer�s (shareholder�s) marginal rate of substitution Xt;T

11We assume a �exible wage setting in the sense that the consumer can change her wage in every

period.
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between t and T for each �rm�s project group. � p is the subsidy for pro�t, where

1+� p =
�
��1 (1 + 
r) eliminates two distortions arising frommonopolistic competition

in the goods market and the positive loan (policy) rate to make the marginal cost of

production equal to one.

The �rst and second terms in the bracket for Eq. (17) denote sales pro�t

(1 + � p) pt(f)yt;T (f) and production cost GT
TLT (f), respectively. Given that the

production cost depends on the loan rate, in addition to the labour cost, the �rm

sets prices according to the aggregate loan rate, as shown below. The optimal price

pt(f) in this Calvo environment is as follows:

Et
1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)

�
(1 + � p)

� � 1
�

pt(f)

PT

�
= Et

1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)

�GT

"Z 1

0

�
(1 + 
rT (h))

Vl(lT (h); �T )

UY (YT ; �T )

@LT (f)

@yt;T (f)

�1��
dh

# 1
1��

; (18)

where we use yt;T (f) � YT

h
pt(f)
PT

i��
from Eq. (3) under the goods market clearing

such that the supply of each di¤erentiated good equals its demand, ct(f) = yt(f) and

Ct = Yt for any t, use Eq. (16) and assume that the �rm�s linear production function

is given by yt(f) = AtLt(f), where At is an exogenous disturbance of productivity.

Project groups that are allowed to reset their goods prices will set the same goods

price, so the solution of pt(f) in Eq. (18) is expressed by p�t .

In the Calvo (1983)�Yun (1992) setting, the evolution of the aggregate price index

is described by the following motion:

P 1��t = �P 1��t�1 + (1� �) (p�t )
1�� : (19)

1.4 Private Bank

Each working group manager can reset the group�s loan rate with probability 1�'.

To explain this stickiness, behind the model, we assume a situation where (1) the

12



bank re-evaluates the risks associated with �nancing a �rm�s businesses in some

interval periods citing limitations on informational transactions or costs associated

with re-evaluation, or (2) the �rm makes long-term �xed loan rate contracts with

the private bank. We assume that each working group can set di¤erent loan rates

that depend on the business units�labour type under monopolistic power. We can

then de�ne the maximization problem for working group h, where the objective is to

maximize the present discounted value of pro�t:

Et
1X
T=t

'T�tXt;T [MT (1 + � r) (1 + rt(h))� (1 + iT )] qt;T (h); (20)

where we de�ne qt;T (h) =
h
(1+
rt(h))��(wT (h))1��


�T

i
QT from Eq. (11), 1+� r =

�
(1+r)
�
(1+r)�1�
r

is the pro�t subsidy to eliminate the distortion from monopolistic competition in the

loan market as 1 + i = 1 + r and rt(h) is the nominal loan interest rate during time

t set by working group h in the private bank.12 Mt is the exogenous disturbance

from the time-varying subsidy, as followed by Woodford (2003a), where M = 1. We

use the consumer�s (shareholder�s) marginal rate of substitution X for each working

group of the bank. Furthermore, in equilibrium, we assume that the supply of de-

posits equals demand: Dt = Qt. Thus, the president of the private bank implicitly

allocates deposits to each working group. We can transform Eq. (20) as follows:

Et
1X
T=t

('�)T�t
Pt
PT

UC(CT ; �T )

UC(Ct; �t)
qt;T (h) [MT (1 + � r) (1 + rt(h))� (1 + iT )] : (21)

Then, the optimal loan rate rt(h) in this Calvo setting solves the following equation:

Et
1X
T=t

('�)T�t
Pt
PT

UC(CT ; �T )

UC(Ct; �t)
qt;T (h)

�
(1 + � r)� �


MT (1 + � r) (1 + rt(h))� (1 + iT )
1 + 
rt(h)

�
= 0:

(22)

12If we interpret rt(h) as the interest rate from t to t+ 1, the dividend from the private bank in

the consumer�s budget constraint is given by
R 1
0
�Bt�1(h)dh. However, even in this case, the model

does not change.
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Working groups that are allowed to reset their loan rates will set the same loan rate,

so the solution of rt(h) in Eq. (22) is expressed by r�t . On the other hand, we have

the following evolution of the aggregate loan rate index:

1 +Rt = '(1 +Rt�1) + (1� ')(1 + r�t ); (23)

where we de�ne 1 +Rt �
R 1
0
qt(h)
Qt
(1 + rt(h))dh.13

1.5 Log-linearization and the Closed System of Economy

We log-linearize the equation around the constant steady state that is e¢ cient be-

cause of subsidies (hereafter, we denote the log-linearized value of kt as bkt for any
variable except the output gap and the in�ation rate). We de�ne the output gap as

that between output Yt and the natural rate of output Y nt that is de�ned from Eq.

(18) as the output obtained under a �exible price and constant loan rate as

(Z 1

0

�
Vl(l

n
t (h); �t)

UY (Y nt ; �t)Gt

�1��
dh

) 1
1��

= 1; (24)

where we assume a �exible price setting p�t (f) = Pt, the constant loan rate brt(h) = r
and the subsidies for wage income, �rm pro�t and bank pro�t, and lnt (h) is the

amount of labour type h employed under Y nt . Thus, the disturbances given by �t

and At induce the disturbance in the natural rate of output.

Together with Eq. (14), the condition given by Eq. (15) expresses the intertem-

poral optimal allocation on aggregate consumption. Assuming the market clears, we

�nally obtain the standard New Keynesian IS curve by log-linearizing Eq. (15):

xt = Etxt+1 � �
�bit � Et�t+1 � brnt � ; (25)

where we name xt � bYt � bY nt the output gap, �t � lnPt=Pt�1 in�ation, brnt �
��1

�
�bY nt + EtbY nt+1� the natural rate of interest and � � � UY

UY Y Y
is the intertemporal

13Kobayashi (2008) derives a similar loan rate curve under a di¤erent model by assuming bank�s

monopoly for �rm.
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elasticity of substitution of aggregate expenditure. We refer to brnt as a productivity
shock.

By log-linearizing Eq. (18) and Eq. (19), we obtain the following augmented

New Keynesian Phillips curve:

�t = �xt + � bRt + �Et�t+1 + �

(� + ��1)
bGt; (26)

where � � (1��)(1���)(�+��1)
�

and � � �
(1+r)
(�+��1)(1+
r) are positive parameters, where � �

LVll
Vl
is the elasticity of the desired real wage to the quantity of labour demanded. bGt

is a marginal cost shock. In contrast to the standard New Keynesian Phillips curve,

this augmented form includes the loan rate because the production cost depends on

the loan rate in addition to the labour cost.

By log-linearizing Eq. (22) and Eq. (23), we can characterize the relationship

between the loan rate and the deposit rate as follows:

bRt = �1Et bRt+1 + �2 bRt�1 + �3bit � �3

1 + i
cMt; (27)

where �1 � '�
1+'2�

, �2 � '
1+'2�

, and �3 � �(1�'�)(1�')
(��1)(1+'2�)

1
1+�r

. cMt is interpreted as a loan

rate shock. One of the key contributions in this paper is to incorporate shocks to

the �nancial market, speci�cally the shock to the loan rate curve, into an otherwise

standard New Keynesian model.

Finally, the closed system of economy consists of three equations, Eq. (25), Eq.

(26) and Eq. (27), in addition to a monetary policy de�ned in the following sections

for four endogenous variables: xt, �t, bit and bRt.
2 Properties of the Model

2.1 Parameters and Monetary Policy Rule

To show the impulse responses, we assume that the central bank sets a deposit rate,

i.e., policy rate, in every period using a Taylor-type rule as follows:

bit = (1� �i) (���t + �xxt) + �ibit�1 + St; (28)

15



where ��, �x, and �i are positive parameters. St is a monetary policy shock. In

simulations, we set the policy parameters in the Taylor-type rule as �� = 1:72, �x =

0:34 and �i = 0:71 following Clarida, Gali and Gertler (2000) to compare impulse

responses under this instrumental rule with those under the optimal monetary policy

in Section 5. Some empirical studies, such as Judd and Rudebusch (1998) and

Orphanides (2003), also show that the policy rate smoothing parameter �i has been

around 0.7 to 0.8 since the 1980s.

To set empirically supported parameters, we use parameters from empirical stud-

ies as much as possible in Table 1. We set � as 0.2 from Chari, Kehoe and McGrattan

(2002), � as 0.75 from Steinsson (2007) and ' as 0:58 from Fujiwara and Teranishi

(2011). Values for the other parameters are from Woodford (2003a). We use the

parameters in Table 1 as the base case. To show the e¤ects of the cost channel and

the staggered loan rate, we illustrate two additional cases by changing parameters

' = 0 (the �exible loan rate case) and 
 = 0:5 (the weak cost channel case) alongside

the other parameters given in Table 1.

2.2 Impulse Responses under the Taylor-type Rule

2.2.1 Loan Rate Shock

Figure 1 depicts the simulation outcomes under the Taylor-type rule. We assume

an unexpected 1% positive shock on the loan rate in the loan rate curve, where the

autocorrelation of the shock is 0.6. The �gure shows the percentage deviations from

the steady state.

The shock to the loan rate increases the in�ation rate because of an increase in

cost. The policy rate then increases. In turn, a high policy rate induces a negative

output gap. To compare the base case and that for the �exible loan rate, the loan rate

shock induces signi�cantly larger and more persistent economic �uctuations through

staggered loan contracts.14 In addition, comparing the base case with that for the

14As the persistence of the shock or loan rate stickiness increases, the di¤erence in the impulse

response between the two cases becomes more marked.
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weak cost channel, as the share of external �nance to labour cost increases, economic

�uctuations become larger. Thus, both the cost channel and the stickiness of the

cost channel potentially play an important role in explaining economic �uctuations.

2.2.2 Other Shocks

Figure 2 provides the simulation outcomes under the Taylor-type rule to an unex-

pected 1% positive shock on the rate of in�ation in the augmented New Keynesian

Phillips curve, on the output gap in the IS curve, or on the policy rate in the Taylor

rule, where the autocorrelation of the shock is 0.6. We only show impulse responses

under the base case in Figure 2 because the impulses of the cases for the weak cost

channel and the �exible loan rate do not signi�cantly di¤er from ones of the base

case.15 The �gure shows the percentage deviations from the steady state.

In response to the marginal cost shock, the rate of in�ation increases, and this

induces increases in the policy rate and the loan rate. In turn, these changes induce

a negative output gap. The shock to productivity increases the output gap and the

in�ation rate. In turn, these raise the policy rate and the loan rate. As shown,

the positive shock to monetary policy decreases the rate of in�ation, even with an

increase in the loan rate. The output gap decreases according to the real policy rate.

Even assuming the weak cost channel case or the �exible loan rate case, impulse

responses do not signi�cantly change, in particular for the in�ation rate and the

output gap. Thus, the response to the productivity, cost-push or monetary policy

shock is not much a¤ected by the presence of staggered loan contracts.

3 Optimal Monetary Policy

First, we derive a second-order approximation to the welfare function.16 Second, we

derive an optimal monetary policy when the central bank is credibly committed to

15The �gures of the cases for the weak cost channel and the �exible loan rate are shown in

Appendix B.
16Appendix C provides details of these derivations and explanations.
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a policy rule in the timeless perspective.

3.1 Approximated Welfare Function

Under the goods market clearing, a second-order approximation to the welfare func-

tion of Eq. (12) around the e¢ cient steady state is �nally given by

Ut ' ��Et
1X
T=t

�T�tJT ; (29)

where

Jt = ���
2
t + �xx

2
t + �R

� bRt � bRt�1�2 ; (30)

and � � 1
2
Y uc, �� � ��

(1��)(1���) , �x � (�
�1+�) and �R �

�2'(�+��1)
(1+��)2(1�')(1�'�)

�

(1+r)
1+
r

�2
.

The loss function Jt includes a quadratic loss of the �rst-order di¤erence in loan rates

in addition to quadratic losses in the in�ation rate and the output gap because the

disaggregated loan rates disperse, which distorts production through distorted labour

supplies, given infrequent price change.17

In the case of �exible loan contracts, the loss function only includes quadratic

losses of the in�ation rate and the output gap, i.e., �R = 0.18 This loss function is

consistent with that in Ravenna and Walsh (2006) with a �exible loan contract and

in Woodford (2003b) without a banking sector. Thus, in a model with staggered loan

rates, the central bank should pay attention to loan rate �uctuations, particularly

the �rst-order di¤erence in loan rates.19

17From the technical point of derivation, the dispersion of disaggregated variables can be ap-

proximated by the quadratic loss of the �rst-order di¤erence of an aggregated variable. Thus, the

quadratic loss of the �rst-order di¤erence in loan rates is included as the quadratic loss of the

�rst-order di¤erence in price levels expressed by the in�ation rate is included.
18Even in the case where there is no loan contract between the �rm and the private bank, we

have �R = 0.
19The relative values of �R to �� and �x increase as the staggeredness of loan rate contracts rises.

Furthermore, the relative values of �R to �� and �x increase as the fraction of the �rm�s external

�nance increases.
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3.2 Derivation for Optimal Monetary Policy

We consider an optimal monetary policy when the central bank is credibly committed

to a policy rule in the timeless perspective.20 Here, as shown in Woodford (2003a), the

central bank conducts monetary policy in a forward-looking way by paying attention

to future economic variables and by taking account of the e¤ects of monetary policy

on these future variables.

The objective of monetary policy is to minimize the expected value of the loss

function given by Eq. (29) under the standard New Keynesian IS curve given by

Eq. (25), the augmented Phillips curve given by Eq. (26) and the loan rate curve

given by Eq. (27). The optimal monetary policy is expressed by the solution of the

optimization problem, which is represented by the following Lagrangian problem:

L = Et

8>>><>>>:
1X
T=t

�T�t

8>>><>>>:
JT + 2�1;T

h
xT+1 � �

�biT � �T+1�� xTi
+2�2;T

h
�xT + � bRT + ��T+1 � �Ti

+2�3;T

h
�1 bRT+1 + �2 bRT�1 + �3biT � bRTi

9>>>=>>>;
9>>>=>>>; ; (31)

where �1, �2, and �3 are the Lagrange multipliers associated with the constraints of

the IS, Phillips and loan rate curves, respectively. We di¤erentiate the Lagrangian

with respect to �t, xt, bRt and bit to obtain the following �rst-order conditions:
���t + �

�1��1;t�1 � �2;t + �2;t�1 = 0; (32)

�xxt � �1;t + ��1�1;t�1 + ��2;t = 0; (33)

�R

� bRt � bRt�1����R �Et bRt+1 � bRt�+ ��2;t��3;t+��1�1�3;t�1+��2Et�3;t+1 = 0;
(34)

�3;t � ��13 ��1;t = 0: (35)

These four conditions, together with the IS curve, the Phillips curve and the loan

rate curve equations, are the conditions governing the loss minimization for t � 0.

20Detailed explanations about the timeless perspective are in Woodford (2003a).
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In other words, the sequence of policy rates determined by these conditions is the

optimal interest rate path. Note that all variables are in the steady state before

t = 0, so we have bR�1 = �1;�1 = �2;�1 = �3;�1 = 0.
For simplicity, we can better understand optimal policy by reducing the number

of conditions to

(1� z1L)(1� z2L)
h
�R

�
4 bRt � �Et4 bRt+1�� ��1��xxti (36)

= Et

�
��2�

�3
z3(1� z�13 F )(1� z4L)(����t + �x4xt)

�
;

where z1, z2, z3 and z4 are parameters, satisfying z1+z2 = 1+�
�1+����1, z1z2 = �

�1

(z1 > 1, 0 < z2 < 1), z3 + z4 = � �3
��2�

( �
�3
� �

�
), and z3z4 = �3

��2�
( �
��
� ��1

��3
). L is the

lag operator and F is the forward operator. Using this, we con�rm that the central

bank has an incentive to pay attention to the �rst-order di¤erence in loan rates,

as well as to the standard concerns of the output gap and the in�ation rate. This

property is induced by the staggered loan contracts. There are both forward-looking

and backward-looking terms in the optimal policy. Thus, not only does the optimal

rule imply history dependence, but it also has a pre-emptive property (precautionary

property). This pre-emptive property arises from the inertia in the loan rate curve.

In the case of �exible loan contracts, i.e., ' = 0, �R is zero, and so the optimal

monetary policy rule reduces to

���1��x(1� z1L)(1� z2L)xt =
�
�

�3
� �

�
� �

��
L

�
(����t + �x4xt): (37)

Under �exible loan rate contracts, the central bank does not have an incentive to pay

attention to either loan rates or forward-looking terms. In a model in which no part

of the labour cost must be paid through a loan, i.e., 
 = 0, the optimal monetary

policy rule reduces to that in a standard New Keynesian model of Woodford (Ch. 4,

2003a) as follows:

����t + �x4xt = 0: (38)
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4 Analysis of Optimal Monetary Policy

4.1 Policy Interest Rate Smoothing

In reality, central banks often change their policy rates through a series of small ad-

justments in the same direction, as discussed in previous studies such as Goodfriend

(1991) and Woodford (2003b). Woodford (2003b) suggests that optimal commitment

policy can induce this gradualism, i.e., the history-dependent property of monetary

policy. However, in Woodford�s (2003b) model, there is no term that measures the

change in interest rates in its loss function. We show that in a staggered loan con-

tract setting, the central bank does indeed have this additional term, which implies

that the central bank has the incentive to smooth policy rates.

Giannoni (2000) and Woodford (2003a) theoretically introduced an interest rate

term into the loss function by assuming monetary friction. Their loss function,

however, includes the quadratic loss of the policy rate deviation from its steady state

value rather than that of the change in the policy rates. As such, this loss function

is inconsistent with the fact that central banks typically attempt to smooth policy

rate changes. In discussing this di¤erence, Woodford (2003b) refers to the delegation

problem. He shows that a central bank can achieve exactly the same equilibrium as in

the optimal commitment policy for the standard loss function consisting of quadratic

losses in the in�ation rate and the output gap in Woodford (Ch. 6, 2003a) when a

central bank minimizes a loss function day by day:21

Jt = ���
2
t + �xx

2
t + �ibi2t + �4 �bit �bit�1�2 ; (39)

where �4 is a positive parameter.22 Note that an additional term measuring the

change in the policy rates is included. This desirable outcome, however, holds only

in a speci�c environment. Thus, in the delegation problem, the loss function given

21The form of day-by-day minimization, known as discretionary policy, is de�ned in Woodford

(2003b).
22We set i� = 0 in Woodford (2003b).
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by Eq. (39) cannot generally induce equilibrium responses achieved by the optimal

commitment policy for the standard loss function.

In contrast to the discussion in Woodford (2003b), the model with staggered loan

rates directly modi�es the loss function in a way that induces it to smooth policy

rates over time. Using the loan rate curve given by Eq. (27), we can transform� bRt � bRt�1�2 in the loss function given by Eq. (30) as
� bRt � bRt�1�2 = ����11 n�11 (1� n2L)�1(1� n�11 F )�1� ��3 �bit �bit�1�� �3

1 + i

�cMt � cMt�1

���2
;

(40)

where we have n1+n2 = �
�1
1 and n1n2 = ���11 �2. If there is no shock in the loan rate

curve, i.e., cMt = 0 for any t, the loan rate stabilization directly implies policy rate

stabilization. Thus, when faced with shocks to marginal cost and productivity, the

central bank has the incentive to minimize any change in policy rates. The central

bank then conducts monetary policy by generating realistic time paths of smoothed

policy rates under staggered loan contracts. Another important �nding is that the

policy rates can be more volatile so as to o¤set the loan rate shock in the last bracket

of the loss function. Loan rates, however, are still adequately stabilized.

We can check the property of the monetary policy smoothing through simula-

tions. Following Steinsson (2007), Table 2 provides a median value of the resulting

distribution of the autocorrelation of the policy rate. We assume three types of

shock, a productivity shock, a marginal cost shock and a loan rate shock, and two

types of monetary policy, an optimal monetary policy and an optimal policy with no

loan rate smoothing. The optimal policy with no loan rate smoothing denotes the

optimal monetary policy with �R = 0 to evaluate the role of the loan rate smoothing

term. We set the autocorrelation of the shock to 0.6 for the base case and 0.4 for

the shorter persistence case.

In the base case, for the productivity shock, the optimal monetary policy induces

the autocorrelation of the policy rate to be 0.87. This is close to the empirically
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estimated values of 0.7 to 0.8. Compared with this case, the optimal monetary

policy with no loan rate smoothing induces a lower autocorrelation of the policy

rate, with a value of 0.66. The di¤erence in persistence arises from the quadratic

loss of the �rst-order di¤erence of loan rates in the approximated welfare function.

Thus, the central bank�s incentive to smooth the loan rate is an important element in

explaining policy rate smoothing in addition to the policy commitment. We can see

a similar result for the marginal cost shock. Following the revealed property of the

optimal monetary policy, for the loan rate shock, the autocorrelation of the policy

rate is smaller at 0.27 under the optimal policy than under the optimal monetary

policy with no loan rate smoothing, where it takes a value of 0.43.23

Even for the shorter persistence case, optimal monetary policy induces higher

autocorrelation of the policy rate than the optimal monetary policy with no loan

rate smoothing does for the productivity and marginal cost shocks. We observe the

reverse for the loan rate shock.

4.2 Impulse Responses under Optimal Monetary Policy

In the following analyses, we use the parameters in Table 1.

4.2.1 Loan Rate Shock

Figure 3 depicts the simulation outcomes under optimal monetary policy. We assume

an unexpected 1% positive shock on the loan rate in the loan rate curve, where the

autocorrelation of the shock is 0.6. The �gure shows the percentage deviations from

the steady state.

For the loan rate shock, the optimal monetary policy lowers the policy rate to

o¤set the shock for the �rst few periods, as shown in Eq. (40), although the Taylor-

type rule raises the policy rate in response to increased in�ation through the cost

23These properties do not change even when we assume 
 = 0:5 alongside the other parameters

given in Table 1. See details in Appendix D.
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channel.24 Thus, the impulse responses to the other variables di¤er between the two

forms of monetary policy. In particular, the impulse response of the in�ation rate is

su¢ ciently mitigated under the optimal monetary policy to reduce the welfare loss.25

4.2.2 Productivity Shock

Figure 4 provides the simulation outcomes under the optimal monetary policy. We

assume an unexpected 1% positive shock on the output gap in the IS curve, where

the autocorrelation of the shock is 0.6. The �gure shows the percentage deviations

from the steady state.

For the productivity shock, the policy rate rises under both rules. The optimal

monetary policy, however, increases the policy rate more than the Taylor-type rule,

which thereby induces di¤erent impulse responses for the other variables. In partic-

ular, the impulse responses of the in�ation rate and the output gap are su¢ ciently

mitigated under the optimal monetary policy.

4.2.3 Marginal Cost Shock

Figure 5 details the simulation outcomes under the optimal monetary policy. We

assume an unexpected 1% positive shock on the rate of in�ation in the augmented

New Keynesian Phillips curve, where the autocorrelation of the shock is 0.6. The

�gure shows the percentage deviations from the steady state.

For the marginal cost shock, the policy rate rises under both rules. The optimal

monetary policy raises the policy rate much more than the Taylor-type rule, which

thereby induces di¤erent impulse responses for the other variables. As a result, the

in�ation rate is stabilized more under the optimal monetary policy than under the

Taylor-type rule.

24cMt is negative to produce a positive loan rate shock.
25These outcomes do not change even when we assume 
 = 0:5 alongside the other parameters

given in Table 1. See details in Appendix D.
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5 Concluding Remarks

In this paper, we introduce staggered nominal loan interest rate contracts between

a private bank and a �rm under monopolistic competition into the standard New

Keynesian model in a tractable way. Simulation results for this model show that a

response to a �nancial shock is greatly ampli�ed by the presence of staggered loan

contracts though a response to a productivity, cost-push or monetary policy shock

is not much a¤ected. In this sense, staggered loan rates e¤ectively change economic

�uctuations.

The normative question of what the central bank should seek to accomplish is

a primary concern of our study. We show that a second-order approximation to

the consumer�s welfare function includes a quadratic loss of the �rst-order di¤erence

term in the loan rate. This is the novel contribution of this analysis. This property

implies that the central bank desires to smooth the policy rate over time. In reality,

the central bank adjusts the policy rate through a series of small adjustments in

the same direction, and it is the staggered property of the loan rate contracts that

implies that such small adjustments are theoretically optimal.

In terms of future work, it would be interesting to investigate indeterminacy in the

model with staggered loan interest rate contracts. It is also important to introduce

a sticky loan interest rate into dynamic stochastic general equilibrium models so as

to implement quantitatively rich analysis in these models when explaining economic

�uctuations.
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Table 1: Parameter Values

Parameters Values Explanation

� 0.99 Discount factor

� 0.2 Intertemporal elasticity of substitution of aggregate expediture

� 0.75 Probability of price unchange

' 0.58 Probability of loan rate unchange

� 7.66 Substitutability of di¤erentiated consumption goods

� 7.66 Substitutability of di¤erentiated labors


 1 Fraction of external �nance

� 0.11 Elasticity of the desired real wage to the quantity of labor demanded

�� 1.72 Coe¢ cient of in�ation in Taylor rule

�x 0.34 Coe¢ cient of the output gap in Taylor rule

�i 0.71 Coe¢ cient of the policy rate lag in Taylor rule
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Table 2: Autocorrelation of Policy Rate

ShocknPolicy Optimal Monetary Policy Monetary Policy with

No Loan Rate Smoothing

AR(1) of Shock=0.6

Productivity 0.87 0.66

Marginal Cost 0.91 0.8

Loan Rate 0.27 0.43

AR(1) of Shock=0.4

Productivity 0.76 0.45

Marginal Cost 0.87 0.79

Loan Rate 0.14 0.44

Notes. The median value of the resulting distribution of AR(1) is calculated by simulating

1000 data series from each model, in which each data length is 100, following Steinsson

(2007).
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Fig. 1. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan Rate ( bRt),
and Policy Rate (bit) under Taylor-type Rule for Loan Rate Shock.

Notes. In the base case, the parameters in Table 1 are used. The model assumes the

ratio of the external �nance being 0.5 in the case of weak cost channel and assumes the

probability of loan rate unchange being zero in the case of �exible loan rate alongside the

other parameters given in Table 1.
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Fig. 2. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan Rate ( bRt),
and Policy Rate (bit) in Base Case under Taylor-type Rule for Marginal Cost Shock,

Productivity Shock, and Monetary Policy Shock.
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Rate Shock.

33



-0.5

0.0

0.5

1.0

1.5

0 5 10 15

Inflation Rate under
Optimal Monetary
Policy

Inflation Rate under
Taylor-type Rule

-0.5

0.0

0.5

1.0

1.5

2.0

0 5 10 15

Output Gap under
Optimal Monetary
Policy

Output Gap under
Taylor-type Rule

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15

Loan Rate under
Optimal Monetary
Policy

Loan Rate under
Taylor-type Rule

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15

Policy Rate
under Optimal
Monetary Policy

Policy Rate
under Taylor-
type Rule

Fig. 4. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan Rate ( bRt),
and Policy Rate (bit) under Optimal Monetary Policy and Taylor-type Rule for

Productivity Shock.

34



-0.5

0.0

0.5

1.0

1.5

2.0

0 5 10 15

Inflation Rate under
Optimal Monetary
Policy

Inflation Rate under
Taylor-type Rule

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0 5 10 15

Output Gap under
Optimal Monetary
Policy

Output Gap under
Taylor-type Rule

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

Loan Rate under
Optimal
Monetary Policy

Loan Rate under
Taylor-type Rule

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15

Policy Rate under
Optimal Monetary
Policy

Policy Rate under
Taylor-type Rule
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Appendix (Not for Publication)
In this appendix, I explain the detailed derivation of the model and approximated

welfare function.

A Baseline Model

Except xt and �t, log-linearized version of variable kt is expressed by bkt = ln(kt=k),
where k is steady state value of kt.

A.1 Consumer

A cost minimization problem of consumer on di¤erentiated consumption bundle is

given by

min
ct(f)

Z 1

0

ct(f)pt(f)df;

subject to

Ct �
�Z 1

0

ct(f)
��1
� df

� �
��1

:

By de�ning a following consumption-based price index as

Pt �
�Z 1

0

pt(f)
1��df

� 1
1��

;

we can derive a relative expenditure on (demand for) di¤erentiated goods as follows:

ct(f) = Ct

�
pt(f)

Pt

���
:

Then the consumer maximizes the objective function:

Ut = Et

( 1X
T=t

�T�t
�
U(CT ; �T )�

Z 1

0

V (lT (h); �T )dh

�)
;

subject to the budget constraint:

1



PtCt + Et [Xt;t+1Bt+1] +Dt � Bt + (1 + it�1)Dt�1

+(1 + �w)

Z 1

0

wt(h)lt(h)dh+

Z 1

0

�Bt (h)dh+

Z 1

0

�Ft (f)df:

The consumer chooses Ct, Bt+1, Dt, and wt(h) in every period under given optimal

allocation of di¤erentiated goods, then we have following relations:

UC(Ct; �t)

UC(Ct+1; �t+1)
=

�

Xt;t+1

Pt
Pt+1

; (41)

UC(Ct; �t) = �(1 + it)Et

�
UC(Ct+1; �t+1)

Pt
Pt+1

�
; (42)

(1 + �w)
wt(h)

Pt
=

�

�� 1
Vl(lt(h); �t)

UC(Ct; �t)
;

where 1 + �w = �
��1 . Under assumption of Eq. (14), we can �nd that the conditions

given by Eq. (41) and the one given by Eq. (42) are same. Thus we use the relation

given by Eq. (42). Before log-linearization, under equilibrium Ct = Yt for any t, we

interpret Eq. (42) as

UY (Yt; �t) = �(1 + it)Et

�
UY (Yt+1; �t+1)

Pt
Pt+1

�
: (43)

Under the de�nitions of �t � lnPt=Pt�1 andbit � ln (1 + it) = �1 + i�, we log-linearize
Eq. (43) around the e¢ cient steady state, then we have

xt = Etxt+1 � �
�bit � Et�t+1 � brnt � ;

where brnt � ��1 h�bY nt + EtbY nt+1i and � � � UY
UY Y Y

> 0. The de�nition of the output

gap is given by the following section.

A.2 Firm

As explained, the demand function of loans by a �rm is given by

2



qt(h) =

�
(1 + 
rt(h))

��(wt(h))
1��


�t

�
Qt: (44)

Under given optimal allocation of loans by a president, the h project manager

uses loan to �nance a part of wage, re-sets its price pt(h) with probability 1 � � to

maximize present discounted value of pro�t given by

Et
1X
T=t

�T�tXt;T

�
(1 + � p) pt(f)yt;T (f)�GT

Z 1

0

(1 + 
rT (h))wT (h)lT (h)dh

�
;

=) Et
1X
T=t

�T�tXt;T

"
(1 + � p) pt(f)

�
pt(f)

PT

���
YT �GT
TLT (f)

#
;

where we use the outcome from the cost minimization problem and use the demand

function on di¤erentiated goods yt;T (f) � YT

h
pt(f)
PT

i��
from Eq. (3) under ct(f) =

yt(f) and use Ct = Yt for any t. Gt is the marginal cost shock as in Woodford

(2003), where G = 1. Here we use consumer�s (shareholder�s) marginal rate of

substitutionXt;t+1 as given discount rate for each �rm�s project group. For specifying

the derivation, we put f on lt(h) and Lt. In this case, in the relation of Lt, we may

have

Lt =

Z 1

0

Lt(f)df:

It notes that the price setting of �rm�s project group is independent from the loan

rate setting of bank�s working group. Then, we can transform the present discounted

value of pro�t as

Et
1X
T=t

(��)T�t
Pt
PT

UC(CT ; �T )

UC(Ct; �t)

"
(1 + � p) pt(f)

�
pt(f)

PT

���
YT �GT
TLT (f)

#
:

We can �nd the optimal price setting p�t (f) in a following �rst-order condition:

Et
1X
T=t

(��)T�t
UY (CT ; �T )

PT

24 (1 + � p) (1� �)yt;T (f)

�GT
hR 1
0
((1 + 
rT (h))wT (h))

1��dh
i 1
1�� @LT (f)

@pt(f)

35 = 0:
3



=) Et
1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)

�
(1 + � p)

� � 1
�

p�t (f)

PT

�
= Et

1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)

�GT

(Z 1

0

[1 + 
rT (h)]
1��
�
Vl(lT (h); �T )

UY (YT ; �T )

@LT (f)

@yt;T (f)

�1��
dh

) 1
1��

; (45)

due to Eq. (16). Here we assume that the �rm�s linear production functions is given

by yt(f) = AtLt(f). At is an exogenous disturbance of technology. Then we can

transform Eq. (45) again as

Et
1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)

�
(1 + � p)

� � 1
�

p�t (f)

Pt

Pt
Pt+1

Pt+1
Pt+2

� � � PT�1
PT

�

= Et
1X
T=t

(��)T�tUC(CT ; �T )yt;T (f)GT

�Z 1

0

(1 + 
rT (h))
1��mc1��t;T (h; f)dh

� 1
1��

;(46)

where we de�ne mct;T (h; f) � Vl(lT (h);�T )
UY (YT ;�T )

@LT (f)
@yt;T (f)

. By log-linearizing Eq. (46) around

the e¢ cient steady state, we have a following equation:

Et
1X
T=t

(��)T�t

"bep�t (f)� TX
�=t+1

�� �

(1 + r)

1 + 
r
bRT � bGT � cmcT + !p�(bep�t (f)� TX

�=t+1

�� )

#
= 0;

(47)

where we de�ne 1 + Rt �
R 1
0
qt(h)
Qt
(1 + rt(h))dh, brt(h) � ln(1 + rt(h))=(1 + r),

and bRt � ln(1 + Rt)=(1 + r), and so we have bRt � R 1
0
brt(h)dh. Also, we de-

�ne cmct(f) � R 1
0
cmct(h; f)dh , cmct(h; f) � ln(mct(h; f)=mc), ep�t (f) � p�t (f)

Pt
, andbep�t (f) � ln(ep�t (f)=ep�t ). It notes that log-linearization for mct(h) � Vl(lt(h);�t)

UY (Yt;�t)
@Lt
@Yt

is given by cmct � R 1
0
cmct(h)dh, and we make use of the relation of cmct;T (f) =

cmcT � !p�(bept(f)� TX
�=t+1

�� ), where !p � ffLL
(fL)

2 . By transforming Eq. (47), we have

1

1� ��
bep�t (f) = Et 1X

T=t

(��)T�t

"
(1 + !p�)

�1
�cmcT + 
(1 + r)

1 + 
r
bRT + bGT�+ TX

�=t+1

��

#
:

(48)

Thus, all project groups which change prices at time t set the same price. Then, by

taking average of f , Eq. (48) can be transformed to
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1

1� ��
bep�t = Et 1X

T=t

(��)T�t

"
(1 + !p�)

�1
�cmcT + 
(1 + r)

1 + 
r
bRT + bGT�+ TX

�=t+1

��

#
;

(49)

where (p�t )
1�� �

R 1
0
p�t (f)

1��df , and so bep�t = R 10 bep�t (f)df . In the Calvo (1983) - Yun
(1992) setting, the evolution of aggregate price index is described by the following

motion:

Z 1

0

pt(f)
1��df = �

Z 1

0

pt�1(f)
1��df + (1� �)

Z 1

0

p�t (f)
1��df;

=) P 1��t = �P 1��t�1 + (1� �)(p�t )1��: (50)

By log-linearizing Eq. (50), we have

bep�t = �

1� ��t: (51)

After substituting Eq. (51) into Eq. (49), we have a following relation:

�

1� ��t = (1���)Et
1X
T=t

(��)T�t

"
(1 + !p�)

�1
�cmcT + 
(1 + r)

1 + 
r
bRT + bGT�+ TX

�=t+1

�� )

#
:

(52)

Then, by considering of �
1���t � ��Et

�
1���t+1 in Eq. (52), we �nally have the aug-

mented Phillips curve:

�t =
(1� �)(1� ��)
�(1 + !p�)

�cmct + 
(1 + r)
1 + 
r

bRt�+ �Et�t+1 + �

! + ��1
bGt:

On the other hand, according to the discussion in Woodford (2003a), we de�ne

the natural rate of output Y nt from Eq. (45) as

(1 + � p)
� � 1
�

� (1 + 
r)
(Z 1

0

�
GtVl(l

n
t (h); �t)

UY (Y nt ; �t)

�1��
dh

) 1
1��

= 0; (53)

(Z 1

0

�
GtVl(l

n
t (h); �t)

UY (Y nt ; �t)

�1��
dh

) 1
1��

= 1; (54)
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where we assume a �exible price setting p�t (f) = Pt and assume constant loan ratebrt(h) = r as in Ravenna and Walsh (2006) under the natural rate of output, so hold
yt(f) = Y nt . Also, l

n
t (h) is the amount of labor type h employed under Y

n
t . The

disturbances by �t and At induces the disturbance of the natural rate of output.

The de�nition of the natural rate of output is slightly di¤erent from one de�ned in

Friedman(1968) and Woodford (2003a) in terms of treatment of loan rates in Eq.

(53).26 Here, 1 + � p is given by �
��1 (1 + 
r). Then, we have

cmct = (! + ��1)(bYt � bY nt );
where bYt � ln(Yt=Y ), bY nt � ln(Y nt =Y ), and ! � !p + !w.27 Here !w is the elasticity
of marginal disutility of work with respect to output increase in Vl(lt(h);�t)

UY (Yt;�t)
, which is

given by LVll
Vl
in a case of a linear production function. Then, by de�ning xt � bYt�bY nt ,

we �nally have

�t = �xt + � bRt + �Et�t+1 + �

! + ��1
bGt;

where � � (1��)(1���)(!+��1)
�(1+!p�)

and � � (1��)(1���)
(1+r)
�(1+!p�)(1+
r)

.

A.3 Private Bank

Then under given demand function of loan set by Eq. (44), each working group of

private bank re-sets its loan rates, rt(h), with probability 1�' to maximize present

discounted value of pro�t given by

Et
1X
T=t

'T�tXt;T [MT (1 + � r) (1 + rt(h))� (1 + iT )] qt;T (h); (55)

where we de�ne qt;T (h) =
h
(1+
rt(h))��(wT (h))1��


�T

i
QT from Eq. (11) andQT �

R 1
0
qt;T (h)dh,

it is deposit rates which is set by a central bank and is same for all working groups.

We assume zt(h) is zero, z(h) = 0 and Dt = Qt in equilibrium. Then, we can

26Friedman, M., 1968. The role of monetary policy. American Economic Review 58, 1�17.
27We can see more detailed derivation in Woodford (Ch. 3, 2003).
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transform Eq. (55) as

Et
1X
T=t

('�)T�t
Pt
PT

UC(CT ; �T )

UC(Ct; �t)
qt;T (h) [MT (1 + � r) (1 + rt(h))� (1 + iT )] :

Then an optimal loan rate setting of rt(h) under the situation in which managers

can re-set their loan rates with probability 1� ' is given by

Et
1X
T=t

('�)T�t
Pt
PT

UC(CT ; �T )

UC(Ct; �t)
qt;T (h)

�
MT (1 + � r)� �


MT (1 + � r) (1 + rt(h))� (1 + iT )
1 + 
rt(h)

�
= 0:

(56)

To eliminate the distortion from monopolistic competition in loan market and realize

1 + r = 1 + i, we set 1 + � r =
�
(1+r)

�
(1+r)�1�
r .
28

By log-linearizing Eq. (56), we have a following equation:


(1� �)(1 + r) (1 + � r)
�'� 1 brt(h) = Et 1X

T=t

('�)T�t
h

�(1 + i)biT � 
�cMT

i
: (57)

Here working groups that are allowed to change their loan rates will set the same

loan rate, so the solution of rt(h) in Eq. (56) is expressed by r�t , and so the solution

of brt(h) in Eq. (57) is expressed by br�t . On the other hand, we have the following
evolution of aggregate loan rate index:

1 +Rt = '(1 +Rt�1) + (1� ')(1 + r�t ): (58)

By log-linearizing Eq. (58) around the e¢ cient steady state, we have

br�t = 1

1� '
bRt � '

1� '
bRt�1:

Then, by considering of br�t �'�Etbr�t+1 in Eq. (57), we �nally have a loan rate curve:
bRt = �1Et bRt+1 + �2 bRt�1 + �3bit � �3

1 + i
cMt;

where �1 � '�
1+'2�

, �2 � '
1+'2�

, and �3 � 1+i
1+r

�
��1

(1�'�)(1�')
1+'2�

1
1+�r

.

28When 
 = 1, 1 + � r = �
��1 .
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B Impulse Responses of Other Cases

I show the impulse responses of the cases for the weak cost channel and the �exible

loan rate to the marginal cost shock, the productivity shock, and the monetary policy

shock in Figures 6 to 8, respectively.
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Fig. 6. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Taylor-type Rule for Marginal Cost
Shock.

Notes. In the case of weak cost channel, the model assumes the ratio of the external

�nance is 0.5. In the case of �exible loan rate, the model assumes the �exible loan rate.
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Fig. 7. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Taylor-type Rule for Productivity
Shock.

Notes. In the case of weak cost channel, the model assumes the ratio of the external

�nance is 0.5. In the case of �exible loan rate, the model assumes the �exible loan rate.
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Fig. 8. Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Taylor-type Rule for Monetary Policy
Shock.

Notes. In the case of weak cost channel, the model assumes the ratio of the external

�nance is 0.5. In the case of �exible loan rate, the model assumes the �exible loan rate.
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C Derivation of Approximated Welfare Function

In derivation of approximated welfare function, we basically follow the way of Wood-

ford (2003a). Note that we think of the second order approximation around the

e¢ cient steady state. Under the situation in which goods supply matches goods

demand in every level, Yt = Ct and yt(f) = ct(f) for any f , the welfare criteria of

consumer is given by

Et

( 1X
T=t

�T�tNT

)
;

where

Nt � U(Yt; �t)�
Z 1

0

V (lt(h); �t)dh; (59)

and

Yt �
�Z 1

0

yt(f)
��1
� df

� �
��1

:

We log-linearize Eq. (59) step by step to derive an approximated welfare function.

Firstly, we log-linearize the �rst term of Eq. (59):

U(Yt; �t) = U + UceYt + U��t + 1
2
UcceY 2t + Uc� eYt + 12� 0tU���t +Order(k � k3)

= U + Y Uc

�bYt + 1
2
bY 2t �+ U��t + 12UccY 2bY 2t + Y Uc��tbYt + 12� 0tU���t +Order(k � k3)

= Y UcbYt + 1
2

h
Y Uc + Y

2
Ucc

i bY 2t � Y 2UccgtbYt + t:i:p+Order(k � k3)
= Y Uc

�bYt + 1
2
(1� ��1)bY 2t + ��1gtbYt�+ t:i:p+Order(k � k3); (60)

where U � U(Y ; 0), eYt � Yt � Y , t:i:p means the terms that are independent from
monetary policy, Order(k � k3) expresses order terms higher than the second order

approximation, ��1 � �Y Ucc
Uc

> 0, and gt � �Uc��t
Y Ucc

. To replace eYt by bYt � ln(Yt=Y ),
we use the Taylor series expansion on Yt=Y in the second line as
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Yt=Y = 1 + bYt + 1
2
bY 2t +Order(k � k3):

Secondly, we log-linearize the second term of Eq. (59) by a similar way:

Z 1

0

V (lt(h); �t)dh = VlL(Ehblt(h) + 1
2
Eh(blt(h))2) + 1

2
VllL

2
Eh(blt(h))2 + Vl�L�tEhblt(h)

+t:i:p+Order( k � k3)

= LVl

�bLt + 1
2
(1 + �)bL2t � �e�tbLt + 12(� + 1� )varhblt(h)

�
+ t:i:p+Order(k � k3)

= LVl

24 bYt + 1
2
(1 + !)bY 2t � !qtbYt + 1

2
(1 + !p�)�varf ln pt(f)

+1
2
(� + 1

�
)varh ln lt(h)

35
+t:i:p+Order( k � k3)

= Y Uc

24 bYt + 1
2
(1 + !)bY 2t � !qtbYt

+1
2
(� + 1

�
)varhblt(h) + 1

2
(1 + !p�)�varf ln pt(f)

35
+t:i:p+Order( k � k3); (61)

where e�t � �Vl��t
LVll

, � � LVll
Vl
, qt � (1 + !�1)at + !

�1�e�t, at � lnAt, varhblt(h) is
the variance of blt(h) across all types of labor, and varfbpt(f) is the variance of bpt(f)
across all di¤erentiated good prices. Here the de�nition of labor aggregator is given

by

Lt �
�Z 1

0

lt(h)
��1
� dh

� �
��1

;

and so we have bLt = Ehblt(h) + 1
2
��1
�
varhblt(h) + Order(k � k3) in the second order

approximation. We use this relation in the second line. From the second line to the

third line, we use the condition that the demand of labor is equal to the supply of

labor as

Lt =

Z 1

0

Lt(f)df =

Z 1

0

f�1(
yt(f)

At
)df;

where the linear production function is given by yt(f) = AtLt(f), where f(�) is an

increasing and concave function. By taking the second order approximation, we have

bLt = �bYt � at�+ 1
2
!p

�bYt � at�2 + 1
2
(1 + !p�)�varfbpt(f) +Order(k � k3);
12



where we log-linearize the demand function on di¤erentiated goods to derive the

relation varf ln yt(f) = �2varf ln pt(f), which can be derived from the consumer�s

cost minimization problem under Dixit-Stiglitz aggregator, as

yt(f) = Yt

�
pt(f)

Pt

���
;

where the aggregate price index is given by Pt �
hR 1
0
pt(f)

1��df
i 1
1��
. Also, we use

the relation of � = !w. To the forth line, we replace LVl by Y Uc from Eq. (54),

where there is no distortion in the steady state.

Then we can combine Eq. (60) and Eq. (61) as

Nt = Y Uc

24 bYt � 1
2
(��1 + !)bY 2t + (��1gt + !qt)bYt

�1
2
�(1 + !p�)varf ln pt(f)� 1

2
(� + ��1) varh ln lt(h)

35
+t:i:p+Order( k � k3) (62)

= �1
2
Y Uc

�
(��1 + !)x2t + �(1 + !p�)varf ln pt(f) +

�
� + ��1

�
varh ln lt(h)

�
+t:i:p+Order( k � k3):

In the second line, we use the log-linearization of Eq. (54) as

bY nt � ln(Y nt =Y ) = ��1gt + !qt
��1 + !

+Order(k � k2):

To evaluate varhblt(h), we use the optimal condition of labor supply and the labor
demand function given by following equations

lt(h) = Lt

�
(1 + 
rt(h))wt(h)


t

���
;

wt(h)

Pt
=

�

�� 1
Vl(lt(h); �t)

UC(Ct; �t)
:

where


t �
�Z 1

0

((1 + 
rt(h))wt(h))
1��dh

� 1
1��

:
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By log-linearizing these equations, we �nally have a following relation:

varh ln lt(h) =
�2

(1 + ��)2

�

(1 + r)

1 + 
r

�2
varh ln(1 + rt(h)) +Order(k � k3):

Then, Eq. (62) is transformed into

Nt = �
1

2
Y Uc

24 (��1 + !)x2t + �(1 + !p�)varf ln pt(f)

+
�2(�+��1)
(1+��)2

�

(1+r)
1+
r

�2
varh ln(1 + rt(h))

35+ t:i:p+Order(k � k3):
(63)

The remaining work to derive the approximated welfare function is to evaluate

varh ln pt(f) and varh ln(1 + rt(h)) in Eq. (63). Following Woodford (2003a), we

de�ne

P t � Ef ln pt(f);

4t � varf ln pt(f):

Then we can make the following relation as

P t � P t�1 = Ef
�
ln pt(f)� P t�1

�
= �Ef

�
ln pt�1(f)� P t�1

�
+ (1� �)Ef

�
ln p�t (f)� P t�1

�
= (1� �)Ef

�
ln p�t (f)� P t�1

�
; (64)

and we also have
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4t = varf
�
ln pt(f)� P t�1

�
= Ef

n�
ln pt(f)� P t�1

�2o� (Ef ln pt(f)� P t�1)2
= �Ef

n�
ln pt�1(f)� P t�1

�2o
+ (1� �)Ef

n�
ln p�t (f)� P t�1

�2o� �P t � P t�1�2
= �4t�1 + (1� �)Ef

n�
ln p�t (f)� P t�1

�2o� (P t � P t�1)2
= �4t�1 + (1� �)(varf (ln p�t (f)� P t�1) +

�
Ef
�
ln p�t (f)� P t�1

�	2
)�

�
P t � P t�1

�2
= �4t�1 +

�

1� �
�
P t � P t�1

�2
; (65)

where we use Eq. (64) and p�t (f) is an optimal price setting by the agent f following

the Calvo (1983) - Yun (1992) framework. It notes that all project groups re-set

the same price at time t when they are selected to change prices, because the unit

marginal cost of production is same for all project groups. Also, we have a following

relation that relates P t with Pt as

P t = lnPt +Order(k � k2);

where Order(k � k2) is order terms higher than the �rst order approximation. Here

we make use of the de�nition of price aggregator Pt �
hR 1
0
pt(f)

1��df
i 1
1��
. Then Eq.

(65) can be transformed as

4t = �4t�1 +
�

1� ��
2
t : (66)

From Eq. (66), we have

4t = �
t+14�1 +

tX
s=0

�t�s
�

�

1� �

�
�2s;

and so

Et
1X
T=t

�T�t4T =
�

(1� �)(1� ��)Et
1X
T=t

�T�t�2T + t:i:p+Order(k � k3): (67)

To evaluate varh ln(1 + rt(h)), we de�ne Rt and 4R
t as
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Rt � Eh ln(1 + rt(h));

4R
t � varh ln(1 + rt(h)):

Then, we can make following relations:

Rt �Rt�1 = Eh
�
ln(1 + rt(h))�Rt�1

�
= 'Eh

�
ln(1 + rt�1(h))�Rt�1

�
+ (1� ')

�
ln(1 + r�t )�Rt�1

�
= (1� ')

�
ln(1 + r�t (h))�Rt�1

�
; (68)

and

4R
t = varh

�
ln(1 + rt(h))�Rt�1

�
= Eh

n�
ln(1 + rt(h))�Rt�1

�2o� (Eh ln(1 + rt(h))�Rt�1)2
= 'Eh

n�
ln(1 + rt�1(h))�Rt�1

�2o
+ (1� ')

�
ln(1 + r�t )�Rt�1

�2 � �Rt �Rt�1�2
= '4R

t�1 +
'

1� '
�
Rt �Rt�1

�2
; (69)

where we use Eq. (68). Also, as in the discussion on price, we have

Rt = ln(1 +Rt) +Order(k � k2); (70)

where we make use of the de�nition of the aggregate loan rates 1+Rt �
R 1
0
qt(h)
Qt
(1+

rt(h))dh. Then, from Eq. (69) and Eq. (70), we have

4R
t = '4R

t�1 +
'

1� '

� bRt � bRt�1�2 ; (71)

where bRt � ln 1+Rt1+r
. From Eq. (71), we have

4R
t = '

t+14R
�1 +

tX
s=0

't�s
�

'

1� '

��bRs � bRs�1�2 ;
and so

16



Et
1X
T=t

�T�t4R
T =

'

(1� ')(1� '�)Et
1X
T=t

�T�t
� bRT � bRT�1�2+ t:i:p+Order(k � k3):

(72)

From Eq. (63), Eq. (67), and Eq. (72), we �nally have

Et
1X
T=t

�T�tNT ' ��Et
1X
T=t

�T�t
�
���

2
T + �xx

2
t + �R

� bRT � bRT�1�2� ;
where � � 1

2
Y uc, �� � �

(1��)(1���)�(1+!p�), �x � (�
�1+!), and �R � �2

(1+��)2

�

(1+r)
1+
r

�2 '(�+��1)
(1�')(1�'�) .
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D Robustness Analysis

D.1 Robust Analysis for Di¤erent Fraction of External Fi-

nance for Labour Cost (
) in Table 2

To check the robustness of the outcomes in Table 2 for di¤erent value of fraction of

external �nance for labour cost, we set 
 as 0.5 alongside the other parameters given

in Table 1. Table 3 shows the simulation results. The properties of the results do not

signi�cantly di¤er from ones for the base case. The optimal monetary policy induces

a higher autocorrelation of the policy rate than the optimal monetary policy with

no loan rate smoothing does for the productivity shock and the marginal cost shock.

For the loan rate shock, the optimal monetary policy induces a lower autocorrelation

of the policy rate than the optimal monetary policy with no loan rate smoothing

does.

Table 3: Autocorrelation of Policy Rate When 
 = 0:5

ShocknPolicy Optimal Monetary Policy Monetary Policy with

No Loan Rate Smoothing

AR(1) of Shock=0.6

Productivity 0.72 0.62

Marginal Cost 0.87 0.85

Loan Rate 0.1 0.5

AR(1) of Shock=0.4

Productivity 0.54 0.42

Marginal Cost 0.76 0.71

Loan Rate -0.02 0.57

Note: The median value of the resulting distribution of AR(1) is calculated by simulating

1000 data series from each model, in which each data length is 100, following Steinsson

(2007).
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D.2 Robust Analysis for Di¤erent Fraction of External Fi-

nance for Labour Cost (
) in Figures 3 to 5

To check the robustness of the outcomes in Figure 3 to 5 for di¤erent value of fraction

of external �nance for labour cost, we set 
 as 0.5 alongside the other parameters

given in Table 1. Figures 9 to 11 show the simulation results when we assume 
 = 0:5.

These results do not signi�cantly di¤er from ones of the base case.
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Figure 9: Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Optimal Monetary Policy and
Taylor-type Rule for Loan Rate Shock When 
 = 0:5.
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Figure 10: Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Optimal Monetary Policy and
Taylor-type Rule for Productivity Shock When 
 = 0:5.
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Figure 11: Impulse Responses of In�ation Rate (�t), Output Gap (xt), Loan

Rate ( bRt), and Policy Rate (bit) under Optimal Monetary Policy and
Taylor-type Rule for Marginal Cost Shock When 
 = 0:5.
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