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1 Introduction

Reviewing the literature on Purchasing Power Parity (PPP) that uses single equation methods to

estimate the half-lives of real exchange rate deviations from PPP, Rogo (1996) found a remarkable

consensus on 3 to 5 year half-life estimates. This formed an important piece of Rogo ’s ”PPP

puzzle” as the question of how one might reconcile highly volatile short-run movements of real

exchange rates with an extremely slow convergence rate to PPP.

Using Rogo ’s consensus half-life as a starting point, various possible solutions to the PPP

puzzle have been proposed in the literature.1 One important discussion in this context relates to

the aggregation bias that may generate upward bias in half-life estimates.2 Another delicate issue

is how one can aggregate micro evidence of price stickiness for dynamic aggregate models, such

as in dynamic stochastic general equilibrium (DSGE) models, which Carvalho and Nechio (2011)

have begun to investigate. Even though aggregation bias is an important potential problem, much

more research seems necessary before a consensus is reached on whether or not the aggregation

bias solves the PPP puzzle, and how we should aggregate for DSGE models.

In this paper, we ask a di erent question: Should we take Rogo ’s remarkable consensus of 3-5

year half-life estimates as the starting point for aggregate CPI data? The consensus may at rst

seem to support the reliability of these estimates, but Kilian and Zha (2002), Murray and Papell

(2002), and Rossi (2005) have all shown that there is a high degree of uncertainty around these

point estimates. Murray and Papell (2002) conclude that single equation methods provide virtually

no information regarding the size of the half-lives, indicating that it is not clear if the true half-lives

are in fact as slow as Rogo ’s remarkable consensus implies. If we apply a more e cient estimator

to the real exchange rate data, it may be possible to nd faster convergence rates.

For the purpose of obtaining a more e cient estimator, we develop a system method that

combines the Taylor rule and a standard exchange rate model to estimate the half-life of the real

exchange rate. Several recent papers have provided empirical evidence in favor of exchange rate

models using Taylor rules (see Mark 2009, Engel and West 2005, 2006, Clarida and Waldman 2007,

Molodtsova and Papell 2009, and Molodtsova, Nikolsko-Rzhevskyy and Papell 2008). Therefore, a

system method using an exchange rate model with the Taylor rule is a promising way to improve

on single equation methods to estimate the half-lives.

Because standard asymptotic theory usually does not provide adequate approximations for the

estimation of half-lives of real exchange rates, we use a nonparametric bootstrap method to con-

struct con dence intervals. For this purpose, we propose the grid bootstrap method for our GMM

1See Murray and Papell (2002) for a discussion of these other solutions which take Rogo ’s consensus half-life as
a starting point.

2Imbs, Mumtaz, Ravn, and Rey (2005) point out that sectoral heterogeneity in convergence rates can cause upward
bias in half-life estimates, and claim that this aggregation bias solves the PPP puzzle. While under certain conditions
this is possible, the bias can be negligible under other conditions. For example, Chen and Engel (2005), Crucini and
Shintani (2008), and Parsley and Wei (2007) have found negligible aggregation biases. Broda and Weinstein (2008)
show that the aggregation bias of the form that Imbs, Mumtaz, Ravn, and Rey (2005) studied is small for their
barcode data, even though the convergence coe cient rises as they move to aggregate indexes. These papers focus
on purely statistical ndings.
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estimator along with its asymptotic distribution. Median unbiased estimates and bias corrected

con dence bands are reported.3

We apply the system method to estimate the half-lives of real exchange rates of 18 developed

countries against the US dollar. Most of the estimates from the single equation method fall in the

range of 3 to 5 years, with wide con dence intervals that extend to positive in nity. In contrast,

the system method yields median unbiased estimates that are typically substantially shorter than

3 years with much sharper con dence intervals, predominantly ranging from three quarters to 5

years. We implement an array of Monte Carlo simulations in order to understand why one might

obtain much longer half-lives from single equation estimators than that of our system method. Our

ndings imply that the high estimates of the persistence parameter by single equation estimators

in the literature may well be caused by large standard errors of the single equation estimators.

In the recent papers that use two-country exchange rate models with Taylor rules cited above,

the authors assume that Taylor rules are adopted by the central banks of both countries. As some

countries may not use Taylor rules, we remain agnostic about the monetary policy rule in the

foreign country and assume that the Taylor rule is employed only by the home country. None of

these papers with Taylor rules estimates the half-lives of real exchange rates.

Kim and Ogaki (2004), Kim (2005), and Kim, Ogaki, and Yang (2007) use system methods

to estimate the half-lives of real exchange rates. However, they use conventional monetary models

based on money demand functions without Taylor rules. Another important point of di erence of

these works from the present paper is that their inferences are based on asymptotic theory, while

ours are based on the grid bootstrap.

The rest of the paper is organized as follows. Section 2 describes our baseline model. We

construct a system of stochastic di erence equations for the exchange rate and in ation, explicitly

incorporating a forward looking Taylor rule into the system. Section 3 explains our estimation

methods. In Section 4, we report our empirical results. Section 5 provides explanations on our

Monte Carlo simulation schemes and ndings. Section 6 presents our conclusions.

3Kehoe and Midrigan (2007) and Crucini, Shintani, and Tsuruga (2013) show that the persistence of the real
exchange rate can be understood in the context of the New Keynesian Phillips Curve (NKPC) framework with Calvo
(1983) pricing. That is, a higher degree of price inertia may cause more persistent real exchange rate deviations.
Interestingly, the contrast between the single equation methods and our system method in the context of the PPP
literature is similar to the contrast between single equation methods for the NKPC and system methods for DSGE
models with the NKPC observed in the literature for closed economy models. Single equation methods such as Gaĺ
and Gertler’s (1999) GMM yield small standard errors for the average price duration based on standard asymptotic
theory. However, Kleibergen and Mavroeidis (2009), who take into account the weak identi cation problem of GMM,
report that the upper bound of their 95% con dence interval for the price duration is in nity. The estimators of
average price duration in system methods for DSGE models in Christiano, Eichenbaum, and Evans (2005) and Smets
and Wouters (2007), among others, may be more e cient.
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2 The Model

2.1 Gradual Adjustment Equation

We start with a univariate stochastic process of real exchange rates. Let be the log domestic

price level, be the log foreign price level, and be the log nominal exchange rate as the price of

one unit of the foreign currency in terms of the home currency. And we denote as the log of the

real exchange rate, + .

We assume that PPP holds in the long-run. In other words, we assume that a cointegrating

vector [1 1 1]0 exists for a vector [ ]0, where and are di erence stationary

processes. Under this assumption, the real exchange rate can be represented as the following

stationary univariate autoregressive process of degree one.

+1 = + + +1 (1)

where is a positive persistence parameter that is less than one.

Admittedly, estimating the half-lives of real exchange rates with an AR(1) speci cation may

not be ideal, because the AR(1) model is mis-speci ed and will lead to an inconsistent estimator if

the true data generating process is a higher order autoregressive process, AR( ). It is interesting

to see, however, that Rossi (2005) reported similar half-life estimates from both models. Later in

Section 4, we con rm that this is roughly the case when we apply the single equation method to

our exchange rate data. Thus, assuming AR(1) seems innocuous for the purpose of estimating the

half life of most real exchange rates in our data. However, it is still possible that more general

AR( ) models yield quite di erent half-lives for some exchange rates, particularly when the system

method is used because we often observe hump-shaped responses (Steinsson, 2008). Even though

this is an interesting question, we do not pursue this issue in the current paper because it is not

easy to obtain informative saddle-path solutions for a higher order system of di erence equations.

By rearranging and taking conditional expectations, the equation (1) can be written by the

following error correction model of real exchange rates with the cointegrating relation described

earlier.

E +1 = [ ( )] + E +1 + E +1 (2)

where = E( ) = 1 = (1 ) , +1 = 1 +1 + 2 +1 3 +1 = ( +1

E +1) + ( +1 E +1) ( +1 E +1) and E +1 = 0. (·) denotes the unconditional
expectation operator while E (·) is the conditional expectation operator on , the economic agent’s

information set at time . Note that this model is consistent with a single-good version of Mussa’s

(1982) model.4 Note that is the convergence rate (= 1 ), which is a positive constant less than

unity by construction.

4We added a domestic price shock, +1 E +1, that has a conditional expectation of zero given the information
at time .
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2.2 The Taylor Rule Model

We assume that the uncovered interest parity (UIP) holds. That is,

E +1 = (3)

where and are domestic and foreign interest rates, respectively.5

The central bank in the home country is assumed to continuously set its optimal target interest

rate ( ) by the following forward looking Taylor Rule.6

= ¯+ E +1 +

where ¯ is a constant that includes a certain long-run equilibrium real interest rate along with a

target in ation rate7, and and are the long-run Taylor Rule coe cients on expected future

in ation8 (E +1) and current output deviations
9 ( ), respectively. We also assume that the

central bank attempts to smooth the interest rate by the following rule.

= (1 ) + 1

that is, the current actual interest rate is a weighted average of the target interest rate and the

previous period’s interest rate, where is the smoothing parameter. Then, we can derive the

forward looking version Taylor Rule equation with interest rate smoothing policy as follows.

= (1 )¯+ (1 ) E +1 + (1 ) + 1 (4)

Combining (3) and (4), we obtain the following.

E +1 = (1 )¯+ (1 ) E +1 + (1 ) + 1 (5)

= + E +1 + + 1

where = (1 )¯ is a constant, = (1 ) and = (1 ) are short-run Taylor Rule

coe cients.

5The UIP often fails to hold when one tests it by estimating a single regression equation, +1 = ( )+ +1.
This indicates that it is not ideal to assume the UIP in our model, and future research should remove this assumption.
We believe, however, that our initial attempt should start with the UIP, because it is di cult to write an exchange
rate model with the Taylor rule without the UIP for our purpose of getting more information from the model. Further,
Taylor rule-based exchange rate models in the literature often assumes the UIP.

6We remain agnostic about the policy rule of the foreign central bank, because the Taylor rule may not be employed
in some countries.

7See Clarida, Gaĺ , and Gertler (1998, 2000) for details.
8It may be more reasonable to use real-time data instead of nal release data. However, doing so will introduce

another complication as we need to specify the relation between the real-time price index and the consumer price
index, which is frequently used in the PPP literature. Hence we leave the use of real-time data for future research.

9If we assume that the central bank responds to expected future output deviations rather than current deviations,
we can simply modify the model by replacing with E +1. However, this does not make any signi cant di erence
to our results.
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Now, let’s rewrite (2) as the following equation in level variables.

E +1 = + E +1 + (1 ) (1 ) + E +1 (1 ) (2’)

Taking di erences and rearranging it, (2’) can be rewritten as follows.

E +1 = E +1 + +
£
E +1 +

¤
(6)

where = 1 and = 1 + 2 3 = ( E 1 ) + ( E 1 ) ( E 1 ).

From (4), (5), and (6), we construct the following system of stochastic di erence equations.

1 1 0

1 0

0 1

E +1

E +1 =

0

0 0

0 0 1

+

E +1 +

+

+

(7)

For notational simplicity, let’s rewrite (7) in matrix form as follows.

AE y +1 = By + x (7’)

and thus,

E y +1 = A
1By +A 1x (8)

= Dy + c

where D = A 1B and c = A 1x .10 By eigenvalue decomposition, (8) can be rewritten as follows.

E y +1 = V V 1y + c (9)

where D = V V 1 and

V =

1 1 1

1 1

1 0

=

0 0

0 1 0

0 0 0

Pre-multiplying (9) by V 1 and rede ning variables,

E z +1 = z +h (10)

where z = V 1y and h = V 1c .

Note that, among non-zero eigenvalues in , is between 0 and 1 by de nition, while 1 (=

1 (1 ) ) is greater than unity as long as 1 1
1 . Therefore, if the long-run in ation

10It is straightforward to show that A is nonsingular, and thus has a well-de ned inverse.
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coe cient is strictly greater than one, the system of stochastic di erence equations (7) has

a saddle path equilibrium, where rationally expected future fundamental variables enter in the

exchange rate and in ation dynamics.11 On the contrary, if is strictly less than unity, which

might be true in the pre-Volker era in the US, the system would have a purely backward looking

solution, where the solution would be determined by past fundamental variables and any martingale

di erence sequences.

Assuming is strictly greater than one, we can show that the solution to (7) satis es the

following relation (see Appendix A for the derivation).

+1 = ˆ+ +1 +1 +
( )

(11)

+
( ( ))

( )

X
=0

μ
1

¶
E + +1 + +1

where,

ˆ=
( )

( )( (1 ))

=
£

E +1

¤
+

+1 =
( ( ))

( )

X
=0

μ
1

¶
(E +1 + +1 E + +1)

+ +1
( )

+1

and,

E +1 = 0

Or, (11) can be rewritten with full parameter speci cation as follows.

+1 = ˆ+
(1 )

+1
(1 )

+1 +
(1 ) ( )

(11’)

+
(1 )( (1 ) ( ))

( )

X
=0

μ
1 (1 )

¶
E + +1 + +1

Here, is a proxy variable that summarizes the fundamental variables such as foreign ex ante real

interest rates and domestic output deviations.

Note that if is strictly less than unity, the restriction in (11) may not be valid, since the

system would have a backward looking equilibrium rather than a saddle path equilibrium.12 In

other words, exchange rate dynamics critically depends on the size of . However, as mentioned in

11The condition 1
1

is easily met for all sample periods we consider in this paper.
12If the system has a purely backward looking solution, the conventional structural Vector Autoregressive (SVAR)

estimation method may apply.
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the introduction, we have some supporting empirical evidence of this requirement for the existence

of a saddle path equilibrium, at least for the post-Volker era. So we believe that our speci cation

remains valid for our purpose in this paper.

One related study, recently put forward by Clarida and Waldman (2007), investigates exchange

rate dynamics when central banks employ Taylor rules in a small open economy framework (Svens-

son, 1999). In their paper, they derive the dynamics of real exchange rates by combining the Taylor

Rule and the uncovered interest parity (or real interest parity), so that the real exchange rate is

mainly determined by the ex ante real interest rate. In their model, the real interest rate follows

an AR(1) process of which the autoregressive coe cient is a function of the Taylor rule coe cients.

When the central bank responds to in ation more aggressively, the economy returns to its long-run

equilibrium at a faster rate. Therefore, the half-life of PPP deviations is negatively a ected by .

It should be noted that their model does not explicitly incorporate the commodity view of

PPP in the sense that real exchange rate dynamics are mainly determined by the portfolio market

equilibrium conditions. In contrast to their model, we combine a single good version of Mussa’s

(1982) model (2) with the UIP as well as the Taylor Rule. Under this framework, no policy

parameters can a ect the half-life of the PPP deviations because real exchange rate persistence is

mainly driven by commodity arbitrages. On the other hand, policy parameters do a ect volatilities

of in ation and the nominal exchange rate in our model. For example, the more aggressively the

central bank responds to in ation, the less volatile in ation is, which leads to a less volatile nominal

exchange rate.

One interesting feature arises when another policy parameter, , varies. As the value for

increases, the volatility of +1 decreases. This is due to the uncovered interest parity condition.

A higher value of , higher interest rate inertia, implies that the central bank changes the nom-

inal interest rate less. Therefore, +1 should change less due to the uncovered interest parity.

When = , it can be shown that after the initial cost-push shock, price does not change at all

(see Appendix B). That is, +1 instantly jumps and stays at its long-run equilibrium value of

zero. Hence, the convergence toward long-run PPP should be carried over by the exchange rate

adjustments. When , price must decrease after the initial cost-push shock, since the nominal

exchange rate movement is limited by the uncovered interest parity and domestic interest rate

inertia.

3 Estimation Methods

We discuss two estimation strategies here: a conventional univariate equation approach and the

GMM system method (Kim, Ogaki, and Yang, 2007).

3.1 Univariate Equation Approach

A univariate approach utilizes the equations (1) or (2). For instance, the persistence parameter

in (1) can be consistently estimated by the conventional least squares method under the maintained
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cointegrating relation assumption. Once we obtain the point estimate of , the half-life of the real

exchange rate can be calculated by ln( 5)
ln . Similarly, the regression equation for the convergence

parameter can be constructed from (2) as follows.

+1 = [ ( )] + +1 + +1 + ˜+1 (2”)

where ˜+1 = +1 = ( +1 E +1) ( +1 E +1) + ( +1 E +1) and E ˜+1 = 0.

3.2 GMM System Method

Our second estimation strategy combines the equation (11) with (1). The estimation of the equation

(11) is a challenging task, however, since it has an in nite sum of rationally expected discounted

future fundamental variables. Following Hansen and Sargent (1980, 1982), we linearly project E (·)
onto , the econometrician’s information set at time , which is a subset of . Denoting Ê (·) as
such a linear projection operator onto , we can rewrite (11) as follows.

+1 = ˆ+ +1 +1 +
( )

(12)

+
( ( ))

( )

X
=0

μ
1

¶
Ê + +1 + +1

where

+1 = +1 +
( ( ))

( )

X
=0

μ
1

¶ ³
E + +1 Ê + +1

´
and

Ê +1 = 0

by the law of iterated projections.

For appropriate instrumental variables that are in , we assume = { 1 2 · · · }.
This assumption would be an innocent one under the stationarity assumption of the fundamental

variable, , and it can greatly lessen the burden in our GMM estimation by signi cantly reducing

the number of coe cients to be estimated.

Assume, for now, that is a zero mean covariance stationary, linearly indeterministic stochastic

process so that it has the following Wold representation.

= ( ) (13)

where = Ê 1 and ( ) is square summable. Assuming that ( ) = 1 + 1 + 2
2 + · · ·

is invertible, (13) can be rewritten as the following autoregressive representation.

( ) = (14)
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where ( ) = 1( ) = 1 1 2
2 · · · . Linearly projecting P =0

³
1

´
E + +1 onto ,

Hansen and Sargent (1980) show that the following relation holds.

X
=0

Ê + +1 = ( ) =

"
1

¡
1 ( )

¢ 1
( ) 1

1 ( 1 ) 1

#
(15)

where = 1 .

For actual estimation, we assume that can be represented by a nite order AR( ) process,

that is, ( ) = 1
P

=1 , where .13 It can then be shown that the coe cients of ( )

can be computed recursively (see Sargent 1987) as follows.

0 = (1 1 · · · ) 1

= 0

1 = + 0

where = 1 2 · · · . We then obtain the following two orthogonality conditions.

+1 = ˆ+ +1 +1 +
( )

(16)

+
( ( ))

( )
( 0 + 1 1 + · · ·+ 1 +1) + +1

+1 = + 1 + 2 1 + · · ·+ +1 + +1 (17)

where is a constant scalar and Ê +1 = 0.
14 15

Finally, the system method (GMM) estimation utilizes all aforementioned orthogonality con-

ditions, (2”), (16), and (17). That is, a GMM estimation can be implemented by the following

2( + 2) orthogonality conditions.

Ex1 ( +1 ) = 0 (18)

Êx2

Ã
+1 ˆ +1 + +1

( )

( ( ))
( ) ( 0 + 1 1 + · · ·+ 1 +1)

!
= 0 (19)

Êx2 ( +1 1 2 1 · · · +1) = 0 (20)

13We can use conventional Akaike Information criteria or Bayesian Information criteria in order to choose the
degree of such autoregressive processes.
14Recall that Hansen and Sargent (1980) assume a zero-mean covariance stationary process. If the variable of

interest has a non-zero unconditional mean, we can either demean it prior to the estimation or include a constant but
leave its coe cient unconstrained. West (1989) showed that the further e ciency gain can be obtained by imposing
additional restrictions on the deterministic term. However, the imposition of such an additional restriction is quite
burdensome, so we simply add a constant here.
15In actual estimations, we normalized (16) by multiplying ( ) to each side in order to reduce nonlinearity.
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where x1 = (1 )0, x2 = (1 )0, and = 0 1 · · · .16 17

3.3 Median Unbiased Estimator and Grid- Con dence Intervals

We correct for the bias in our estimates by the grid- method, which is similar to the one by

Hansen (1999) for the least squares estimator. It is straightforward to generate pseudo samples for

the orthogonality condition (20) by the conventional residual-based bootstrapping. However, there

are some complications in obtaining samples directly from (18) and (19), since is treated as a

forcing variable in our model. We deal with this problem as follows.

In order to generate pseudo samples for the orthogonality conditions (18) and (19), we denote

˜ as the relative price index . Then, (2”) and (16) can be rewritten as follows.

˜ +1 = (˜ ) + +1 + ˜+1

+1 = ˆ+ ˜ +1 +
( )

+
( ( ))

( )
( 0 + · · ·+ 1 +1) + +1

Or, in matrix form,"
˜ +1

+1

#
= C+ S 1

"
(1 )

0

#
[˜ ] (21)

+ S 1

0
( ) + ( ( ))

( ) ·
( 0 + · · ·+ 1 +1)

+ S 1

"
˜+1

+1

#

where C is a vector of constants and S is 1 1
... 1

¸
.

Then, by treating each grid point [ min max] as a true value, we can generate pseudo

samples of ˜ +1 and +1 through the conventional bootstrapping.
18 The level variables ˜ and

are obtained by numerical integration. It should be noted that all other parameters are treated

as nuisance parameters ( ).19 Following Hansen (1999), we de ne the grid- statistic at each grid

point [ min max] as follows.

( ) =
ˆGMM
(ˆGMM)

(22)

where (ˆGMM) denotes the robust GMM standard error at the GMM estimate ˆGMM. Imple-

menting GMM estimations for bootstrap iterations at each of grid point of , we obtain the

16 does not necessarily coincide with .
17In actual estimations, we again use the aforementioned normalization.
18Historical data was used for the initial values and the foreign interest rate .
19See Hansen (1999) for detailed explanations.
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( quantile) grid- bootstrap quantile functions, ( ) = ( ( )). Note that each function

is evaluated at each grid point rather than at the point estimate.20

In Appendix C, we derive the asymptotic distribution of the grid- statistic (22) as follows.

Under the local to unity ( = 1 + ) framework,

( )
S01
¡
G0 1G

¢ 1
G0 1N³

S01
¡
G0 1G

¢ 1
S1

´1 2
where N and G are de ned in (c4), (c5), and (c6).

Finally, we de ne the 95% grid- con dence interval as follows.

{ : 2 5%( ) ( ) 97 5%( )} (23)

and the median unbiased estimator as,

= s.t. ( ) = 50%( ) (24)

In Appendix C, we also show that the grid bootstrap con dence bands are correctly sized under

some regularity conditions described in Assumption 1.

4 Empirical Results

This section reports estimates of the persistence parameter (or convergence rate parameter )

and their implied half-lives resulting from the two estimation strategies discussed above.

We use CPIs to construct real exchange rates with the US$ as a base currency. We consider 19

industrialized countries that provide 18 real exchange rates.21 For interest rates, we use quarterly

money market interest rates that are short-term interbank call rates rather than conventional short-

term treasury bill rates, since we incorporate the Taylor Rule in the model where a central bank

sets its target short-term market rate. For output deviations, we consider two di erent measures

of output gaps, quadratically detrended real GDP gap (see Clarida, Gaĺ , and Gertler 1998) and

unemployment rate gaps (see Boivin, 2006).22 23 The data frequency is quarterly and from the IFS

CD-ROM. The sample period is from 1979:III to 1998:IV for Eurozone countries, and from 1979:III

to 2003:IV for the rest of the countries.

Based on the empirical evidence of the US Taylor Rule, our sample period starts from 1979.III.

As discussed in Section II, the in ation and exchange rate dynamics may greatly depend on the

20If they are evaluated at the point estimate, the quantile functions correspond to the Efron and Tibshirani’s (1993)
bootstrap- quantile functions.
21Among the 23 industrialized countries classi ed by IMF, we dropped Greece, Iceland, and Ireland due to lack of

reasonable number of observations. Luxembourg was also dropped because of its currency union with Belgium.
22We also tried the same analysis with the cyclical components of real GDP series from the HP- lter with 1600 of

smoothing parameter. The results were quantitatively similar.
23The unemployment gap is de ned as a 5 year backward moving average subtracted by the current unemployment

rate. This speci cation makes its sign consistent with that of the conventional output gap.
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size of the central bank’s reaction coe cient to expected in ation. We showed that the rationally

expected future fundamental variables appear in the exchange rate and in ation dynamics only

when the long-run in ation coe cient is strictly greater than unity. Clarida, Gaĺ , and Gertler

(1998, 2000) provide important empirical evidence for the existence of a structural break in the US

Taylor Rule. Put it di erently, they show that was strictly less than one during the pre-Volker

era, while it became strictly greater than unity in the post-Volker era.

We implement similar GMM estimations for (4) as in Clarida, Gaĺ , and Gertler (2000)24 25

with a longer sample period and report the results in Table 1 (see the note on Table 1 for detailed

explanation). We use two output gap measures for three di erent sub-samples. Most coe cients

were highly signi cant and speci cation tests by -test were not rejected.26 More importantly, our

requirement for the existence of a saddle path equilibrium was met in the post-Volker era rather

than the pre-Volker era. Therefore, we may conclude that this provides an empirical justi cation

for the choice of our sample period.

Insert Table 1 Here

We report our GMM version median unbiased estimates and the 95% grid- con dence intervals

in Table 2. We implemented estimations using both gap measures, but report the full estimates

with unemployment gaps in order to save space.27 We chose = 30 and = 500 totaling 15,000

GMM simulations for each exchange rate. We chose = = 8 by the conventional Bayesian Infor-

mation Criteria, and standard errors were adjusted using the QS kernel estimator with automatic

bandwidth selection in order to deal with unknown serial correlation problems. For comparison,

we report the corresponding estimates by the least squares in Table 3.

We note that the system method provides much shorter half-life estimates compared with those

resulting from the single equation method (see Tables 2 and 3). The median value of the half-life

estimate was 3.42 years from the univariate estimations after adjusting for the median bias using

the grid- bootstrap. However, the median value of the GMM median unbiased estimates was still

below 1 year, 0.94 year, when we correct for the bias.28 Our estimates are roughly consistent with

the average half-life estimates from the micro-data evidence by Crucini and Shintani (2008)29 and

the di erences of the point estimates for di erent countries are very similar to those of Murray and

24They used GDP de ator in ation along with the CBO output gaps (and HP detrended gaps).
25Unlike Clarida, Gaĺ , and Gertler (2000), we assume that the Fed targets current output gap rather than future

deviations. However, this doesn’t make any signi cant changes to our results. And we include one lag of interest rate
rather than two lags for simplicity.
26 -test statistics are available upon request.
27The results with quadratically detrended real GDP gaps were quantitatively similar.
28Without bias correction, the median value of the half-life estimate was 2.59 years from the univariate estimations

and 0.90 year from the system method. All estimates and the conventional 95% bootstrap con dence intervals are
available from authors upon request.
29For the OECD countries, their baseline half-life estimates for traded good prices were 1.5 years, and 1.58 and

2.00 years for all and non-traded good prices.
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Papell (2002) for most countries.30 -test accepts our model speci cation for all countries with an

exception of the UK.31

Regarding e ciency, we obtained substantial e ciency gains from the system method over

the single equation method. Murray and Papell (2002) report a version of the grid- con dence

intervals (Hansen, 1999)32 of which upper limits of their half-life estimates are in nity for every

exchange rates they consider. Based on such results, they conclude that single equation methods

may provide virtually no useful information due to wide con dence intervals.

Our grid- con dence intervals from the single equation method were consistent with such a

view (see Table 3). The upper limits are in nity for most real exchange rates. However, when we

implement estimations by the system method, our 95% GMM version grid- con dence intervals

were very compact. Our results can be also considered as great improvement over Kim, Ogaki, and

Yang (2007) who acquired limited success in e ciency gains.

Insert Table 2 Here

Insert Table 3 Here

Lastly, we compare univariate half-life estimates from an AR(1) speci cation with those from

a more general AR( ) speci cation. Following Rossi (2005), we choose the number of lags by the

modi ed Akaike Information criteria (MAIC, Ng and Perron, 2001) with a maximum 12 lags. We

also estimate the lag length by the modi ed Bayesian Information criteria (MBIC, Ng and Perron,

2001), which yields = 1 for most real exchange rates. The MAIC chooses = 1 for 6 out

of 18 real exchange rates. For the remaining 12 real exchange rates, we implement the impulse-

response analysis to estimate the half-lives of PPP deviations. As can be seen in Table 4, allowing

higher order AR( ) processes results in very di erent half-life estimates from those of the AR(1)

speci cation for some countries such as Italy, Portugal, and Spain. This implies that one has to

be careful in interpreting the results based on AR(1) models for these exchange rates. For many

other real exchange rates, however, half-life estimates do not change much, implying that the AR(1)

process is not a bad approximation.

Insert Table 4 Here

30The exceptions to this similarity are Japan and the UK, as our point estimates for these countries are much smaller
than others. Using the same sample period of Murray and Papell (2002), however, we obtained the estimates of
0.89 and 0.82 for Japan and the UK, respectively, indicating that these exceptions seem to have arisen from the
di erence in the sample periods.
31We also notice that our median-unbiased point estimate ˆGMM,MUE is consistent with the price-stickiness param-

eter estimates by Gaĺ and Gertler (1999) who use the New Keynesian Phillips Curve speci cation with Calvo pricing.
Recall that a single-good version model by Kehoe and Midrigan (2007) or Kim (2009) implies that coincides with
the Calvo probability parameter.
32Their con dence intervals are constructed following Andrews (1993) and Andrews and Chen (1994), which are

identical to the Hansen’s (1999) grid- con dence intervals if we assume that the errors are drawn from the empirical
distribution rather than the i.i.d. normal distribution.
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5 Monte Carlo Simulation Studies

The empirical results in the previous section are consistent with two possible interpretations. One

is that the true half-lives are short, and long half-life estimates given by single equation methods

are due to their high degree of uncertainty. Another is that the true half-lives are long, and short

half-life estimates obtained by the system method are due to the bias caused by the misspeci cation

of the model. For the purpose of obtaining evidence as to which interpretation is more appropriate,

this section provides Monte Carlo simulations based on the DSGE model described in Appendix

D, which is consistent with the model equations above that are used for our estimation.

For the purpose of examining the impact of misspeci cation, we introduce the UIP shock in

addition to the monetary policy shock. We investigate three possible values for the size of the

variance of the UIP shock ( 2) relative to that of the monetary shock ( 2), that is, 2 = 0 2 = 2

and 2 = 5 2. Recall that our saddle-path equation was derived in the absence of the UIP shock.

Putting it di erently, the greater the value for 2 is, the more severe the misspeci cation of the

system method is. We also consider 78 observations ( ) for each simulated series that match those

of the Eurozone countries, while = 500 is also employed in order to see what happens in large

samples. We further consider errors from the standard normal distribution as well as errors from

the student- distribution with three degrees of freedom ( 3). Variances, 1 and 3 for the standard

normal and 3 are re-scaled so that they match with calibrated variances.

From 500 sets of simulated observations for each case, we estimated kernel density estimates of

the persistence parameter via the single equation method and the system method. All estimates are

corrected for the median-bias before we estimate baseline statistics and density function estimates.33

We report estimated distributions of the persistence parameter in Figure 1 through 3. We also

report various statistical properties of singe and system estimators in Table 5.

We note that the system method is substantially more e cient than the single equation method

when the number of observations is small ( = 78) as we can see in Figures 1 and 2. Even though

the single equation estimator has somewhat better empirical properties in mean and median values

(see Table 5), the distributions of the single equation estimators are atter than those of the system

method estimators. Therefore, high estimates of the persistence parameter by the single equation

method in the literature may well be caused by high standard errors. We also note that these results

are fairly robust to the size of the UIP shock and to the underlying distributional assumption of

the shocks.

When misspeci cation of the system method is very large and the sample size is much larger

than that of the available data, then the cost of misspeci cation can o set the bene t of e ciency of

the system method. For instance, when = 500 and 2 = 2, the di erence of standard deviations

becomes quite small so that the gain of using the system method decreases. However, with reason-

able size of misspeci cation and realistic sample size, it is likely that the cost of misspeci cation is

much smaller than the bene t of e ciency.

33We use interpolations using the estimates from up to 10 grid points to correct for bias in GMM estimates.
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Insert Figures 1, 2, and 3 Here

Insert Table 5 here

6 Conclusion

It is a well-known fact that there is a high degree of uncertainty around Rogo ’s (1996) consensus

half-life of the real exchange rate. In response to this fact, this paper proposed a system method

that combines the Taylor Rule and a standard exchange rate model. We estimated the half-lives of

real exchange rates for 18 developed countries against the US and obtained much shorter half-life es-

timates than those obtained using the single equation method. Our Monte Carlo simulation results

are consistent with an interpretation that the large uncertainty of the single equation estimators

is responsible for the high estimates of the persistence parameter from single equation methods in

the literature.

We used two types of nonparametric bootstrap methods to construct con dence intervals: the

standard bootstrap and the grid bootstrap for our GMM estimator, where we also demonstrate the

asymptotic properties of the grid bootstrap method. The standard bootstrap evaluates bootstrap

quantiles at the point estimate of the AR(1) coe cient, which implicitly assumes that the bootstrap

quantile functions are constant functions. This assumption does not hold for the AR model, and

the grid bootstrap method, which avoids this assumption, has better coverage properties. In our

applications, we often obtain very di erent con dence intervals for these two methods.34 Therefore,

the violation of the assumption is deemed quantitatively important.

When we use the grid bootstrap method, most of the (approximately) median unbiased estimates

from the single equation method fall in the range of 3 to 5 years with wide con dence intervals

that extend to positive in nity. In contrast, the system method yields median unbiased estimates

that are typically substantially less than one year with much sharper con dence intervals, most of

which range from 3 quarters to 5 years.

These results indicate that monetary variables from the exchange rate model based on the Taylor

rule provide useful information about the half-lives of real exchange rates. Con dence intervals are

much narrower than those from a single equation method indicating that the estimators from the

system method are signi cantly sharper. Approximately median unbiased estimates of the half-

lives are typically about one year, which is far more reasonable than the consensus 3 to 5 years

from single equation methods.35

Our paper is the rst step toward a system method with the exchange rate model based on

the Taylor rule. We followed most of the papers in the literature with this type of model by

34Results from standard bootstrap are available upon request.
35It is also interesting to see that our half-life estimates imply about 4 to 6 quarters of average price duration in

the context of the Calvo pricing model. Our 95% con dence intervals of the half-lives of real exchange rates are
consistent with most of the estimates of average price durations for aggregate U.S. data for the NKPC and DSGE
models.
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using the uncovered interest parity to connect the Taylor rule to the exchange rate. Because the

uncovered interest parity for short-term interest rates is rejected by the data, one future direction is

to modify the model by removing the uncovered interest parity. This is a challenging task because

no consensus has emerged as to how the deviation from the uncovered interest parity should be

modelled. Even though the AR(1) speci cation seems to be a good approximation for most real

exchange rates, it is possible that more general AR( ) models yield quite di erent half-lives for

some exchange rates. This is another challenging task in our system approach, as it is not easy to

obtain informative saddle-path solutions for a higher order system of di erence equations.
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A Derivation of (11)

Since in (10) is diagonal, assuming 0 1 and 1 1
1 , we can solve the system as

follows.

1 =
X
=0

1 1 +
X
=0

(a1)

2 =
X
=0

μ
1

¶ +1

E 2 + (a2)

3 = 3 1 + (a3)

where and are any martingale di erence sequences.

Since y = Vz ,

1

=

1 1 1

1 1

1 0

1

2

3

(a4)

From rst and second rows of (a4), we get the following.

=
( )

2
( )

3 (a5)

Now, we nd the analytic solutions for z . Since h = V 1c ,

h =
1

1

( ) ( ) 0

( ) ( ) 1

0 1 1

E +1 + + +

(E +1 + ) + +

(E +1 + ) + +

and thus,

1 =
( )

¡
E +1 +

¢
(a6)

2 =
1

1 ( )
(E +1 + ) + +

¸
(a7)

3 = (a8)

Plugging (a6) into (a1),

1 =
( )

X
=0

¡
1 + 1

¢
+
X
=0

(a9)

=
( )

+
X
=0

( )

X
=0

1
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Plugging (a7) into (a2)36,

2 =
( )

X
=0

μ
1

¶ ¡
E + +1 E + + E +

¢
1X

=0

μ
1

¶ ¡
+ E + E +

¢
=

( ) ( ) (1 )X
=0

μ
1

¶
E + +1

X
=0

μ
1

¶ μ
E + E +

¶

Then, denoting as
¡

E +1

¢
+ =

¡
E +1

¢
+ ,

2 =
( ) ( ) (1 )

X
=0

μ
1

¶
+ (a10)

Finally, plugging (a8) into (a3),

3 = 1 + (a11)

Now, plugging (a10) and (a11) into (a5),

= + +
( )

( )( (1 ))
(a12)

+
( ( ))

( )

X
=0

μ
1

¶
E + +

( )
1

( )

Updating (a12) once and applying the law of iterated expectations,

+1 = ˆ+ +1 +1 +
( )

(a13)

+
( ( ))

( )

X
=0

μ
1

¶
E + +1 + +1

where

ˆ=
( )

( )( (1 ))

+1 =
( ( ))

( )

X
=0

μ
1

¶
(E +1 + +1 E + +1)

+ +1
( )

+1

36We use the fact E + = 0 = 1 2 · · ·
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and,

E +1 = 0
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B The Solution When =

When equals , we have the following system of di erence equations.

1 1 0

1 0

0 1

E +1

E +1 =

0

0 0

0 0 1

+

E +1 +

+

+

(b1)

which can be represented by the following.

E y +1 = V V 1y + c (b2)

where

V =

0 1 1

1 1 1

1 1 0

=

0 0

0 1 0

0 0 0

V 1 =

1 1 0

1 1 1

0 1 1

The system yields the same eigenvalues, = and 1 (1 ) . Therefore, when is greater than

one, we have the saddle-path equilibrium as before. By pre-multiplying both sides of (b2) by V 1,

we get,

E z +1 = z + h (b3)

where V 1y = z and V 1c = h

We solve the system as follows.

1 =
X
=0

1 1 +
X
=0

(b4)

2 =
X
=0

μ
1

¶ +1

E 2 + (b5)

3 = 3 1 + (b6)

where and are any martingale di erence sequences.

Since y = Vz ,

1

=

0 1 1

1 1 1

1 1 0

1

2

3

(b7)

Now, we nd the analytical solutions for z . Since h = V 1c ,

h =

1 1 0

1 1 1

0 1 1

(E +1 + ) + +

(E +1 + ) + +

(E +1 + ) + +
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thus,

1 = (1 )
¡
E +1 +

¢
(b8)

2 = E +1 + + + (b9)

3 = (1 ) (b10)

From (b4) and (b8),

1 = (1 )
X
=0

¡
1 + 1

¢
+
X
=0

(b11)

= (1 ) +
X
=0

(1 )
X
=0

1

From (b5) and (b9),

2 =
X
=0

μ
1

¶ +1 ¡
E + +1 E + + E + + + E + E +

¢
(b12)

= (1 )

μ
1

¶
(1 )

(1 )X
=0

μ
1

¶ +1μ
E + +1 + E + E +

¶

Denoting as
¡

E +1

¢
+ =

¡
E +1

¢
+ ,

2 = (1 )
X
=0

μ
1

¶ +1

E +

μ
1

¶
(1 )

(1 )
(b13)

From (b6) and (b10),

3 = (1 ) 1 + (b14)

From (b7), (b13), and (b14),

= (1 )
X
=0

μ
1

¶ +1

E + (b15)μ
1

¶
+

(1 )

(1 )
(1 ) 1 +

Updating (b15) once and applying the law of iterated expectations,

+1 = ˆ+ (1 ) +1 (1 )
X
=0

μ
1

¶ +1

E + + +1 (b16)
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where

ˆ=
(1 )

(1 )

+1 =
X
=0

μ
1

¶
(E +1 + +1 E + +1)

μ
1

¶
+1 + +1

and

E +1 = 0

Note that there is no inertia for domestic in ation in this solution, since there is no backward

looking component. Put it di erently, when there is a shock, +1 instantly jumps to its long-run

equilibrium.

On the contrary, +1 does have inertia. From (b7),

= 1 + (b17)

Plug (b11) into (b17) and update it once to get,

+1 = +1 (1 ) +1 +
X
=0

+1 (1 )
X
=0

(b18)

where +1 contains rational expectation of future fundamentals as de ned in (b16). Note that

+1 exhibits inertia due to the presence of the martingale di erence sequences.

In a nutshell, in the special case of = , domestic in ation instantly jumps to its long-run

equilibrium and all convergence will be carried over by the exchange rate adjustments.
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C GMM with a Near Unit Root and the Grid Bootstrap

C.1 Asymptotic Distribution

When the variables are jointly stationary, then the -ratio ( ) is asymptotically normal and both

conventional inference and the grid bootstrap method provide valid methods for con dence interval

coverage. We are interested in the case where the persistence parameter is large and possibly

equal to one. The appropriate way to incorporate this into an asymptotic distribution theory is to

model as local to 1, e.g.

= 1 + (c1)

With this reparameterization, the localizing parameter indexes the degree of persistence.

Set = ( ) where are the parameters in (19)-(20) in addition to and Let m +1( )

be the list of moment functions in (19)-(20) and set

g ( ) =

( +1 )

+1

m +1( )

which is the set of moment functions (18)-(20). De ne

g ( ) =
1X

=1

g ( )

( ) =
1X

=1

g ( )g ( )0

G ( ) =
1X

=1
0g ( )

Let m +1 g g and G denote these functions evaluated at the true Also, de ne the

moments 2 = E 2
+1 = Em +1 +1 Q = E 0m +1( ) and M = Em +1m

0
+1

Given a preliminary estimator e the GMM estimator b minimizes g ( )0 (e) 1g ( ).

It is well known that under standard conditions, the GMM estimator has the asymptotic linear

representation ³b ´
=
¡
G0 1G

¢ 1
G0 1 g + (1) (c2)

To obtain an asymptotic distribution under the local-to-unity assumption (c1) we have to introduce

additional scale factors so that the moment matrices have non-degenerate limiting distributions.

We de ne

=

"
1 2 0

0 I +1

#
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where = dim (m ) and

=

"
1 2 0

0 I +1

#
where = dim( ) Then we can write (c2) equivalently as³b ´

=
³
G
0 1

G
´ 1

G
0 1 1g + (1) (c3)

where

= 1 1

and

G = 1G 1

Since the errors +1 and m +1 are martingale di erences, then

1
[ ]X
=1

Ã
+1

m +1

!
( )

a Brownian motion with covariance matrix

E

Ã
2
+1 +1m

0
+1

m +1 +1 mt+1m
0
+1

!
=

Ã
2

M

!

Partition ( ) = ( 1( ) 2( )) Under the local-to-unity assumption (c1)

1 2
[ ] 1 ( )

where 1 ( ) = 1 ( ) + 1( ) is a standard di usion process.

It follows that

1g =

1 P
=1 +1

1 P
=1 +1

1 P
=1m +1R 1

0 1 1

1(1)

2(1)

N (c4)
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=

1
2

P
=1

2 2
+1

1
3 2

P
=1

2
+1

1 P
=1 +1m

0
+1

1
3 2

P
=1

2
+1

1 P
=1 +1

1 P
=1 +1m

0
+1

1 P
=1 m +1 +1

1 P
=1m +1 +1

1 P
=1mt+1m

0
+1R 1

0
2
1

2
R 1
0 1

2
R 1
0 1

0R 1
0 1

2 2 0R 1
0 1 M

(c5)

and

G =

1
2

P
=1

2 1
3 2

P
=1 0

1
3 2

P
=1 1 0

1
3 2

P
=1 m +1( ) 0

1 P
=1 0m +1( )R 1

0
2
1

R 1
0 1 0R 1

0 1 1 0

0 0 Q

G (c6)

Applying these distributional results to (c3), we nd

³b ´ ¡
G0 1G

¢ 1
G0 1N (c7)

The asymptotic distribution of b is obtained by taking the rst element of this vector. Let S1 = (1

0)0 be a ( + 2)× 1 unit vector. Then

(b ) S01
¡
G0 1G

¢ 1
G0 1N (c8)

The standard error for b is
(b) = ³ S01

¡
G0 1G

¢ 1
S1

´1 2
=

μ
S01
³
G
0 1

G
´ 1

S1

¶1 2
³
S01
¡
G0 1G

¢ 1
S1

´1 2
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Thus the t-ratio for has the asymptotic distribution

( ) =
b
(b) S01

¡
G0 1G

¢ 1
G0 1N³

S01
¡
G0 1G

¢ 1
S1

´1 2
We state this formally.

Proposition 1: Under (c1),

( )
S01
¡
G0 1G

¢ 1
G0 1N³

S01
¡
G0 1G

¢ 1
S1

´1 2 (c9)

where N and G are de ned in (c4), (c5), and (c6).

In the special case that +1 and m +1 are uncorrelated, then = 0 and both and G are

block diagonal. Then b is asymptotically independent of b and ( ) has a classic Dickey-Fuller

distribution.

However, when +1 andm +1 are correlated so that 6= 0 then b and b are not asymptotically
independent. In this case the asymptotic distribution in Proposition 1 is a mixture of a non-

standard Dickey-Fuller and a standard normal, similar to the result by Hansen (1995) for the case

of unit root testing with covariates. The situation is actually quite similar, as the GMM estimator

is a combination of the (non-standard) least-squares estimator of with a set of classic moment

restrictions.

C.2 Grid Bootstrap

As discussed in Beran (1987) and Hansen (1999) Proposition 1, conventional bootstrap con dence

intervals have asymptotic rst-order correct coverage if the parameter estimates (used to construct

the bootstrap distribution) are consistent for the true values, and the asymptotic distribution is

continuous in the parameters. Furthermore, the conventional bootstrap generically fails to have

asymptotic rst-order correct coverage if these conditions fail.

This theory, plus the distribution theory of Proposition 1 above, helps us understand why the

conventional bootstrap will not have correct coverage. The asymptotic distribution (c9) depends

on the parameters 2 M and Q The parameter = ( 1) is estimated by b= (b 1)

which is inconsistent as shown in (c8). Consequently, the conventional bootstrap will not have

correct coverage.

In contrast, as discussed in Hansen (1999) Proposition 1, the grid bootstrap con dence interval

for has asymptotic rst-order correct coverage if the remaining parameter estimates are consistent

for the true values and the asymptotic distribution of ( ) is continuous in the parameters. First,

we see by direct examination that the distribution in (c9) is a continuous function of the parameters
2 M and Q Second, the moments 2 M and Q are identi ed and are consistently
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estimated by sample averages. For xed (equivalently, xed ) the residual bootstrap method will

consistently estimate these population moments under the auxiliary assumption that the underlying

errors are iid. This meets the conditions for the grid bootstrap and we conclude that the interval

for has asymptotic rst-order correct coverage.

Assumption 1: The error vector ( +1 +1 +1) is independent and identically dis-

tributed, and has nite 2+ moments for some 0 The local-to-unity condition (c1)

holds, the autoregressive roots of (14) lie outside the unit circle, and the set of moment

equations (18)-(19)-(20) satisfy the standard conditions for GMM estimation.

Proposition 2: Let denote the grid bootstrap con dence interval de ned in (23).

Under Assumption 1, P ( ) 0 95 as

We are slightly informal here regarding the regularity conditions and therefore state this result

as a proposition rather than as a formal theorem.

There are two important caveats regarding this result.

First, the grid bootstrap con dence interval only works for not for the other parameters.

This is because the asymptotic distribution (c7) suggests that the distribution of the entire esti-

mator vector is non-standard and a function of and the grid bootstrap method only “solves” the

con dence interval problem for the single parameter which is the source of the non-pivotalness, in

this case In the present context this is satisfactory, as our interest focuses on the persistence

parameter

Second, our grid bootstrap method relies on the residual bootstrap, and is therefore criti-

cally dependent on the assumption that the errors are iid. In particular, this excludes conditional

heteroskedasticity. As our application concerns quarterly observations where the degree of het-

eroskedasticity is mild, we believe that this limitation is not too restrictive.
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D Stochastic Simulations

In this Appendix, we show the derivation of the model used for the Monte Carlo simulations.

D.1 Household

Households in the domestic country maximize

E0
X
=0

ln ( )

subject to the budget constraint:

+ + = (1 + 1) 1 +
¡
1 + 1

¢
1 + +

We denote consumption by , domestic bond holdings by , nominal exchange rate by ,foreign

bond holdings by , the consumer price index by , domestic nominal interest rate by , foreign

nominal interest rate by , output by and the lump-sum tax by .

From the optimality conditions in both home and foreign households’ maximization problem,

we can derive the UIP condition:

= E +1 + + (d1)

where denotes the UIP shock. Lower case variables indicates the logarithm of upper case vari-

ables.

D.2 Firms (Price Setting)

We assume that rms’ price setting is summarized in the gradual adjustment model by Mussa

(1982):

E +1 = [ ( )] + E +1 + E +1 (d2)

which could be transformed into

E +1 = (1 ) (1 ) (1 ) + E +1 + E +1 3 (25)

+ ( E 1 ) + ( E 1 ) ( E 1 )

D.3 Central Bank

The domestic central banks follows the Taylor type rule:

= (1 ) ( E ˆ +1 + ) + 1 + (d4)

where and denote output gap and the monetary policy shock.
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D.4 System of Equations

From equations (d1), (d2), (25), and (d4), we can derive the system of equations for , , , ˆ ,

ˆ , and as follows:

= + E +1 +

ˆ = (1 ) 1 (1 ) ˆ + +
¡
ˆ 1

¢
+
¡
ˆ 1

¢
(1 ) ˆ +E ˆ +1 (d5)

= (1 ) + 1 + (1 ) +

= + +

E +1

E +1

E +1

where we de ne the real exchange rate :

+

It is assumed that the price is set one period in advance when deriving equation (d5). Three

exogenous variables , and are assumed to follow the VAR(2) model:

=
1

1

1

+
2

2

3

+

Parameter matrices and as well as the variances of shocks are estimated for the sample from

1979:III to 1998: IV. The US is supposed to be the home country. Hence, and are weighted

average of policy interest rates and CPI in ation rates for Australia, Austria, Belgium, Canada,

Finland, France, Germany, Italy, Japan, Netherlands, Portugal, Spain, Sweden, Switzerland and

United Kingdom. We use the weight by the FRB for the e ective exchange rate. For , we use

unemployment rate gap in Boivin (2006).

D.5 Calibration

We use the estimated parameters for simulation. They are set as follows.

0.168 2.435 0.162 0.796 0.109
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Table 1. GMM Estimation of the US Taylor Rule Estimation

Deviation Sample Period ( ) ( ) ( )
Real GDP 1959:Q1-2003:Q4 1.466 (0.190) 0.161 (0.054) 0.820 (0.029)

1959:Q1-1979:Q2 0.605 (0.099) 0.577 (0.183) 0.708 (0.056)
1979:Q3-2003:Q4 2.517 (0.306) 0.089 (0.218) 0.806 (0.034)

Unemployment 1959:Q1-2003:Q4 1.507 (0.217) 0.330 (0.079) 0.847 (0.028)
1959:Q1-1979:Q2 0.880 (0.096) 0.217 (0.072) 0.710 (0.057)
1979:Q3-2003:Q4 2.435 (0.250) 0.162 (0.078) 0.796 (0.034)

Notes: i) In ations are quarterly changes in log CPI level (ln ln 1). ii) Quadratically
detrended gaps are used for real GDP output deviations. iii) Unemployment gaps are 5 year
backward moving average unemployment rates minus current unemployment rates. iv) The set
of instruments includes four lags of federal funds rate, in ation, output deviation, long-short
interest rate spread, commodity price in ation, and M2 growth rate.
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Table 2. GMM Median Unbiased Estimates and 95% Grid- Con dence Intervals

Country ˆGMM CIgrid- HL HL CIgrid- ( )
Australia 0.884 [0.837,0.943] 1.404 [0.977,2.953] 5.532 (0.700)
Austria 0.804 [0.786,0.826] 0.793 [0.721,0.904] 8.173 (0.417)
Belgium 0.816 [0.794,0.844] 0.852 [0.751,1.019] 7.942 (0.439)
Canada 1.000 [0.967,1.000] [5.109, ) 4.230 (0.836)
Denmark 0.937 [0.874,1.000] 2.675 [1.290, ) 6.272 (0.617)
Finland 0.948 [0.897,1.000] 3.235 [1.587, ) 7.460 (0.488)
France 0.799 [0.777,0.822] 0.772 [0.688,0.885] 8.517 (0.385)
Germany 0.786 [0.767,0.809] 0.721 [0.652,0.819] 9.582 (0.296)
Italy 0.832 [0.806,0.864] 0.945 [0.805,1.181] 4.228 (0.836)
Japan 0.754 [0.729,0.782] 0.613 [0.549,0.706] 9.800 (0.279)
Netherlands 0.838 [0.798,0.883] 0.984 [0.766,1.388] 6.638 (0.576)
New Zealand 0.805 [0.786,0.828] 0.799 [0.718,0.918] 6.874 (0.550)
Norway 0.873 [0.785,0.971] 1.271 [0.716,5.983] 8.225 (0.412)
Portugal 0.792 [0.779,0.806] 0.741 [0.694,0.803] 6.132 (0.633)
Spain 0.896 [0.856,0.943] 1.581 [1.114,2.954] 6.738 (0.565)
Sweden 1.000 [0.945,1.000] [3.088, ) 7.107 (0.525)
Switzerland 0.831 [0.795,0.870] 0.937 [0.755,1.240] 9.136 (0.331)
UK 0.778 [0.756,0.806] 0.690 [0.620,0.801] 17.49 (0.025)
Median 0.832 [0.795,0.867] 0.941 [0.753,1.211] -

Notes: i) The US$ is the base currency. ii) Unemployment gaps are used for output deviations.
iii) Sample periods are 1979.II-1998.IV (78 observations) for Eurozone countries and are 1979.II-
2003.IV (98 observations) for non-Eurozone countries. iv) CIgrid- denotes the 95% con dence
intervals that were obtained by 500 residual-based bootstrap replications on 30 grid points
(Hansen, 1999). v) denotes the -statistic and is its associated -values.
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Table 3. Univariate Median Unbiased Estimates and Grid-t Con dence Intervals

Country ˆLS CIgrid- HL HL CIgrid-
Australia 0.972 [0.891,1.000] 6.173 [1.494, )
Austria 0.945 [0.866,1.000] 3.087 [1.205, )
Belgium 0.924 [0.847,1.000] 2.203 [1.045, )
Canada 1.000 [0.946,1.000] [3.122, )
Denmark 0.942 [0.866,1.000] 2.886 [1.200, )
Finland 0.959 [0.883,1.000] 4.107 [1.390, )
France 0.931 [0.847,1.000] 2.432 [1.044, )
Germany 0.950 [0.852,1.000] 3.349 [1.078, )
Italy 0.943 [0.859,1.000] 2.932 [1.138, )
Japan 0.952 [0.886,1.000] 3.511 [1.428, )
Netherlands 0.936 [0.839,1.000] 2.619 [0.990, )
New Zealand 0.959 [0.923,0.997] 4.089 [2.174,61.29]
Norway 0.934 [0.851,1.000] 2.529 [1.073, )
Portugal 0.975 [0.913,1.000] 6.765 [1.904, )
Spain 0.959 [0.898,1.000] 4.129 [1.604, )
Sweden 0.959 [0.891,1.000] 4.089 [1.497, )
Switzerland 0.951 [0.862,1.000] 3.481 [1.168, )
UK 0.932 [0.845,1.000] 2.442 [1.028, )
Median 0.951 [0.866,1.000] 3.415 [1.203, )

Notes: i) The US$ is the base currency. ii) Sample periods are 1979.II-1998.IV (78 observations)
for Eurozone countries and are 1979.II-2003.IV (98 observations) for non-Eurozone countries. iii)
CIgrid- denotes the 95% con dence intervals that were obtained by 500 residual-based bootstrap
replications on 30 grid points (Hansen, 1999).
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Table 4. Univariate Median Unbiased Half-Life Estimates: AR(1) vs. AR(p)

Country MAIC MBIC HLAR(1) HLIRF
Australia 1 1 6.173 6.173
Austria 1 1 3.087 3.087
Belgium 4 1 2.203 2.884
Canada 6 1
Denmark 4 1 2.886 3.883
Finland 6 2 4.107 3.631
France 1 1 2.432 2.432

Germany 6 1 3.349 3.386
Italy 3 1 2.932
Japan 1 1 3.511 3.511

Netherlands 6 1 2.619 2.882
New Zealand 9 1 4.089 3.895

Norway 1 1 2.529 2.529
Portugal 6 1 6.765
Spain 2 1 4.129 12.13

Sweden 4 4 4.089 3.387
Switzerland 1 1 3.481 3.481

UK 3 1 2.442 3.129
Median 3.5 1 3.415 3.496

Notes: i) pMAIC and pMBIC denote the lag length chosen by the modi ed Akaike Information
criteria and the modi ed Bayesian Information criteria (Ng and Perron, 2001) with maximum
12 lags, respectively. ii) HLAR(1) refers the half-life point estimates with an AR(1) speci cation
and was replicated from Table 3 for a comparison purpose. iii) HLIRF deontes the half-life point
estimates obtained from the impulse-response function with the lag length chosen by pMAIC.
HLIRF with pMBIC is not reported because the estimates are virtually the same as HLAR(1). iv)
We correct the median bias of each autoregressive coe cient for higher order AR(p) conditioning
on all other coe cients.
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Table 5. Statistics of the Persistence Parameter Estimates from Simulated Data

UIP Shock Distribution Estimator Mean Std. Dev Min Median Max
78 2 = 0 Normal Single 0 832 0 080 0 511 0 844 1 004

System 0 793 0 041 0 529 0 797 0 943

3 Single 0 833 0 076 0 537 0 842 1 030
System 0 805 0 033 0 691 0 804 0 920

78 2 = 2 Normal Single 0 829 0 081 0 459 0 841 1 005
System 0 800 0 050 0 540 0 804 0 940

3 Single 0 831 0 077 0 470 0 837 1 011
System 0 805 0 044 0 629 0 809 0 927

78 2 = 5 2 Normal Single 0 829 0 079 0 526 0 841 1 006
System 0 809 0 056 0 569 0 817 0 970

3 Single 0 827 0 079 0 521 0 838 1 009
System 0 809 0 048 0 640 0 809 0 957

500 2 = 0 Normal Single 0 833 0 026 0 751 0 835 0 892
System 0 814 0 021 0 749 0 812 0 894

3 Single 0 833 0 026 0 751 0 833 0 952
System 0 823 0 019 0 756 0 822 0 888

500 2 = 2 Normal Single 0 831 0 026 0 745 0 832 0 891
System 0 819 0 023 0 765 0 815 0 894

3 Single 0 832 0 025 0 719 0 833 0 935
System 0 824 0 020 0 779 0 823 0 884

500 2 = 5 2 Normal Single 0 830 0 026 0 727 0 832 0 894
System 0 831 0 026 0 742 0 833 0 895

3 Single 0 831 0 025 0 715 0 832 0 915
System 0 834 0 023 0 753 0 834 0 885

Notes: i) We obtained these summary statistics from 500 simulated samples. ii) T is the number
of observations. We set T be 78 from our Eurozone data to see small sample properties, while
= 500 for large samples. iii) We studied three possible values for the size of the UIP shock,
2= 0 2= 2 2

= 5 2 , where 2= 0 332 is the calibrated variance of the monetary policy
shock. iv) Normal and 3 are the standard normal distribution and the t distribution with the 3
degrees of freedom, respectively, for the underlying distribution of structural shocks. Standard
deviations are scaled to match each of calibrated variance of shocks.
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Figure 1. Kernel Density Estimate of the Persistence Parameter: No UIP Shock
( 2 = 0) and = 78

Notes: i) The dotted line is the true value of the persistence parameter, 0.832. ii) The Epanech-
nikov kernel is used.
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Figure 2. Kernel Density Estimate of the Persistence Parameter: With UIP Shock
( 2 = 2) and = 78

Notes: i) The dotted line is the true value of the persistence parameter, 0.832. ii) The Epanech-
nikov kernel is used.
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Figure 3. Kernel Density Estimate of the Persistence Parameter: With UIP Shock
( 2 = 2) and = 500

Notes: i) The dotted line is the true value of the persistence parameter, 0.832. ii) The Epanech-
nikov kernel is used.
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