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1 Introduction

The full employment condition in the economic growth model with heterogeneous capital

introduced by Solow ([6]) imposes restrictions on the feasible capital paths of the central

planner problem. When the technology exhibits perfect complementarity between capital

goods and labor force the condition is even more restrictive since there is not substitution

between these factors. Despite that condition having been used in the literature to calculate

the optimal capital path and the optimal vintage period length it has not been used to verify

if the initial capital stocks are compatible with it (Boucekkine et al. ([3]), Fabbri and Gozzi

([4])).

The goal of this work is to analyse if the restriction of full employment exclude some

compositions of initial capital stocks in the Ramsey Vintage Capital Model (RVCM). We

show that, given a level of technological progress and a period length for the vintage capital,

the initial capital stocks must remain in a compact and convex set determined by these

values. We show some cases where such set is empty, thus the central planner problem will

not have a solution. Furthermore, using the replacement echoes effect on the capital stocks,

we transform the infinite horizon problem in a finite dimensional problem where the decision

is to find the optimal scrapping time and the optimal composition of initial capital stocks.

The results have important theoretical and applied features. In practice, when solving the

central planner problem of the RVCM, it is necessary to verify if the proposed initial capital

stocks are feasible, otherwise the capital path will not be a solution. From the theoretical

point of view, the results allow us to explain why some economies with vintage capital stocks

cannot get a sustainable growth without generating unemployment (disequilibrium in the

labor market) or even, using inefficiently the capital instaled . Thus, the model is capable to

explain why economies with high level of human capital and a poor structure of initial capital

stocks exhibit low growth with unemployment. Reciprocally, It also explains why economies

with low levels of human capital and a good capital structure must invest in qualification or

import labor force.

The manuscript is divided in four sections. In Section 2 we present the RVCM in a

discrete version (which is more suitable for the kind of analysis that we develop) and state

the main results. In Section 3 we show the transformation process of the central planner

problem of the RVCM in a finite dimensional problem, where the goal is to find the optimal
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value for the scrapping time. In Section 4 we discuss some conclusions of the work and the

proofs of the results of Section 2 are given in the appendix.

2 Discrete Version of the RVCM

In this sections we are going to present the discrete version of the RVCM in order to

show how the technological progress parameter restricts the initial composition of capital

stocks. As a consequence we will characterize the set of initial capital stocks compatible with

the level of technical progress and the scrapping time for the machines. In particular, we

will show that for each level of technological progress, there is a lower bound for the length

period of capital usage that allows sustainable growth.

Time is discrete and the technology corresponds to that of the standard AK model

with vintage capital. The length period of the vintage, or scrapping time, is denoted by T

(constant for simplicity) and the parameter representing the Harrod-neutral technological

progress is γ ∈ (0, 1). Thus, if kj ≥ 0 represent the capital stock (number of machines)

in period j = t − T, · · · , t to be used in time t, then the amount of labor force needed

to operate those machines is γjkj. In this setting, the lower the parameter γ, the greater

the technological progress. Labor has a totally inelastic supply which we normalize to one.

There is one representative consumer with the instantaneous utility function u : R+ → R

and intertemporal discount factor β ∈ (0, 1). Therefore the central planner problem is to find

a value for the scrapping time T and a path for the consumption, investment and production

(ct, kt+1, yt)t≥0 such that:

Maximize
{T,(ct,kt+1,yt)t≥0}

+∞∑
t=0

βtu(ct)

subject to ct + kt+1 = yt

yt =
t∑

j=t−T

kj

t∑
j=t−T

γjkj = 1

k0, k−1, · · · given.

(1)

This is the analogous discrete version of the problem stated in Boucekkine et al. ([1]). In

that article they used the replacement echoes property that arises in this problem and they

proved that a constant scrapping time is the long run solution for their problem. For that
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reason, we fix the value of T and use the non-negativeness of the consumption path to define

a feasible capital path for the problem (1) as a sequence (kt)t≥−T such that for all t ≥ 0 :

(i) kt+1 ≤
t∑

j=t−T

kj;

(ii)
t∑

j=t−T

γjkj = 1.
(2)

Condition (ii) in (2), which is the equality between demand and labor supply, implies

the replacement echoes effect in the model. Specifically, if we take the first difference of that

equality we will obtain:

kt+1 = γ−T−1kt−T , for all t ≥ 0. (3)

It means that the creative destruction process requires that the capital must grow at rate

γ−T−1 in each vintage period in order to keep the full labor employment. Therefore, given

the initial capital stocks (k−T , · · · , k0), the equation (3) will provide the complete capital

path that equilibrates the demand and supply of labor. In this way, the problem (1) is

reduced to find only the optimal value of T (the vintage period length).

Once we noticed that the equation (3) imposes a strong restriction on the whole capital

path, a natural question arises: does the initial capital stock satisfy the market clear condition

(ii) of (2)? The answer is no. Thus, we will say that the initial capital stocks is compatible

with T and γ if and only if
0∑

j=−T

γjkj = 1. If this condition is satisfied, a complete capital

path is defined from (3). Such path will be feasible only if the sustainable condition (i) of

(2) is satisfied. The following proposition provides a characterization of all compatible initial

capital stocks which generates feasible capital paths satisfying (2).

Fixing the pair (T, γ), let us define the following matrix:

RT+1(γ) =

⎡
⎢⎢⎢⎢⎢⎣

(γ−T−1 − 1) −1 −1 · · · −1
−γ−T−1 (γ−T−1 − 1) −1 · · · −1
−γ−T−1 −γ−T−1 (γ−T−1 − 1) · · · −1

...
...

...
. . .

...
−γ−T−1 −γ−T−1 −γ−T−1 · · · (γ−T−1 − 1)

⎤
⎥⎥⎥⎥⎥⎦ , (4)

and the set:
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ET+1(γ) =

{
x = (x1, · · · , xT+1) ∈ R

T+1
+ /

T+1∑
j=1

γj−T−1xj = 1, RT+1(γ)x ≤ 0

}
(5)

Proposition 1 (Feasible capital paths characterization) The sequence (kt)t≥−T is a feasible

capital path for the problem (1) if and only if the initial capital stocks (k−T , · · · , k0) ∈ ET+1(γ)

and kt+1 = γ−T−1kt−T for all t ≥ 0.

The consequences of Proposition (1) are important for obtaining a solution of the prob-

lem (1). If the set ET+1(γ) is empty, the central planner problem (1) has not an optimal

capital path. The emptiness of the set ET+1(γ) means that the technological parameter γ

is not compatible with the scrapping time T for producing sustainable capital paths for the

economy; that might occur because either the labor market is not cleared or the consump-

tion is not positive. On the other hand, is the set ET+1(γ) is not empty, the Proposition (1)

asserts that in the initial period of vintage, the feasible capital stocks is in a compact and

convex subset of RT+1
+ and in the subsequent periods it grows at rate γ−T−1.

We can illustrate both cases in the following example with T = 1. In this case, a vector

(x1, x2) ∈ E2(γ) if and only if γ−1x1 + x2 = 1; (γ−2 − 1)x1 − x2 ≤ 0 and −γ−2x1 + (γ−2 −
1)x2 ≤ 0. The figure 1 shows the set E2(γ) in two different cases. In (a) we have that for

γ ∈ [(3−√
5)/2, 1] the set E2(γ) �= { }, and in (b) the set E2(γ) = { } for γ ∈ (0, (3−√

5)/2).

Figure 1: The set E
2
(γ)
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Therefore the following question arises: given the technological parameter γ ∈ (0, 1),

what are the scrapping times T such that ET+1(γ) �= { }? The next theorem provides a

complete answer for that question.

Theorem 1 (Limits for the technological progress) For each T ≥ 1 there exists a γT+1 ∈
(0, 1) such that:

(i) RT+1(γ)x ≤ 0 has a solution x > 0 if and only if γ ≥ γT+1;

(ii) {γT+1}T≥1 is a strictly decreasing sequence;

(iii) lim
T→+∞

γT+1 = 1/2.

The following conclusions come from the Theorem (1). First, given a lenght period of

vintage T , high technological progress parameters (low values of γ) are not compatible with

it. This results from the full labor employment condition (ii) of (2). In fact, for each pre-

defined scrapping time, there is a maximum level of technological progress that allows it

as feasible for the economy, without triggering unemployment. Second, for a given level of

technological progress, the feasible values for the scrapping times has a lower bound, which

increases as the technical progress augments. Finally, and less intuitive, there exists a global

upper bound for the technological progress. In this simple formulation of the model, the

upper bound is 0.5 (i.e. half of labor unit per machine). This number may change if we

consider more complex production processes. However, this is a remarkable finding which

establishes the following: given a production process with perfect complementarity of factors,

there exists a maximum level of technological process that supports the sustained growth.

In figure 2 we depict the piecewise curve defined by γT+1. It relates the scrapping time

with its maximum level of technological progress (minimum value of γ). This illustrates

parts (i) and (ii) of Theorem (1).
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Figure 2: Maximum level of technical progress for each scrapping time

3 Optimal Capital Stock Composition and Scrapping

Time

In Proposition (1) we saw that the set of feasible capital paths given by (2) is closely

related with the set ET+1(γ). In this section we will explore this singular property of the

RVCM in order to characterize the solution of the problem (1) and to perform a sensitivity

analysis of the technological progress parameter on that solution.

Let us introduce the following notation. If (x1, · · · , xT+1) ∈ ET+1(γ), the unique feasible

capital path from this is k−T = x1, · · · , k0 = xT+1 and kt+1 = γ−T−1kt−T , for all t ≥ 0.

From that path (kt)t≥−T , let us denote k0 = (k−T , · · · , k0) ∈ ET+1(γ). We may notice that

the first component of RT+1(γ)k0 is equal to (γ−T−1 − 1)k−T − k−T+1 − · · · − k0 and using

(3) it results k1 − k−T − k−T+1 − · · · − k0 which is equal to −c0. Analogously, the following

components will result −c1,−c2, · · · ,−cT , the negative of the consumption plan in the first

vintage period. Denoting by c0 = (c0, · · · , cT ), the condition RT+1(γ)k0 ≤ 0 is equivalent

to c0 = −RT+1(γ)k0 ≥ 0. The same procedure may be followed for each subsequent period

of vintage, namely, for t ≥ 0, we denote kt = (k(T+1)t−T , · · · , k(T+1)t), this vector belongs to

ET+1(γ) and ct = −RT+1(γ)kt ≥ 0, where ct = (c(T+1)t, · · · , c(T+1)t+T ) is the consumption

plan in the t+ 1 period of vintage.

Using the notation given above and (3) we can conclude that kt+1 = γ−T−1kt for all t ≥ 0
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and ct+1 = γ−T−1ct. In this way, the objective function of (1) can be expressed in terms of

the consumption in the first vintage period:

G(c0) =
+∞∑
k=0

T∑
j=0

βk(T+1)+ju(γ−k(T+1)cj). (6)

Thus, we are able to define the welfare of the economy as a function of the scrapping

time T :

WT =
Maximize
x∈ET+1(γ)

G(c0(x))

subject to c0(x) = −RT+1(γ)x
(7)

Finally, the optimal scrapping time is defined by T ∗ = ArgMax
T≥0

WT . Therefore, the

optimal capital stock for the vintage capital problem (1) is the solution of (7) when T = T ∗.

3.1 Example

Let us consider the following example to illustrate the method and to analyse the sensi-

tivity of the results to changes of the technological progress parameter.

The instantaneous utility is u(c) = (c1−θ − 1)/(1− θ). It implies that the total utility of

a feasible consumption path given by (6) is:

G(c0) = A
(
c1−θ
0 + βc1−θ

1 + · · ·+ βT c1−θ
T

)
+B,

where the constants A and B depend on γ, T, β and θ. The solution of the maximization

(7) is:

c0 = d
−1/θ
0

[
d
1−1/θ
0 + β1/θd

1−1/θ
1 + · · ·+ βT/θd

1−1/θ
T+1

]−1

,

ck = β(k−1)/θd
1/θ
0 d

−1/θ
k c0; k = 1, · · · , T ;

where d = [d0 d1 · · · dT ]′ = − [(RT+1(γ))
′]−1 [γ−Tγ−T+1 · · · γ−11

]′
. From that consump-

tiom plan we have that the optimal capital stock is k0 = − [RT+1(γ)]
−1 c0. Making these

same calculations for T = 1, · · · we will obtain the function WT .

Using the parameter values of Boucekkine et al. ([1]; [2]) θ = 0.15; γ = 0.97; and

β = 0.95123 we obtain T ∗ = 9. In addition we are able to describe the shape of the welfare

function WT and see how it varies as the technological progress parameter decreases. Figure

3 shows the optimal scrapping time when the parameter γ decreases.
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Figure 3: Total welfare and the optimal scrapping time

Therefore, we can conclude that economies with higher levels of technological progress

exhibit shorter periods of vintage, thus the capital reposition is more frequent.

4 Conclusions

The consequences of technological advances on the involuntary unemployment have been

a central issue for policy makers in the labor market. The excess in the human capital

accumulation in economies with a defficient infrastructure unable to absorve the labor force

may lead the economy to low wages, unemployment and slow development. On the other

side of the coin, economies with a labor force that does not follow the technological progress

may be forced to import qualified labor to meet such advances.

The Ramsey vintage capital model provides a clear framework to analyse the effect of

technological progress in heterogenous capital. In this work we use that model to explain

that certain capital structures may not be compativel with the technological progress that

the economy is receiving.

Two main results are provided. The first asserts that, depending on the level of tech-

nological progress, some scrapping times for the capital are not feasible (in the sense that

they could generate unemployment). In addition we prove that there exists an upper bound

for the technological progress that allows for sustainable growth with full employment. The
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second result is that the central planner problem of the model may be reduced to a simple

finite dimensional problem of serching for an optimal scrapping time for the model. Once

that scrapping time is found, the optimal initial capital structure is provided and the whole

capital path results from the replacement echoes effect present in this model.

Those results may open research lines where the productive factors have some degree of

substitution or where the labor has not a totally inelastic supply.

A Appendix

Proof. (Proposition 1 (Feasible capital paths characterization))

Let (kt)t≥−T be a feasible capital path, namely, satisfying condition (i) and (ii) of (2).

Let us prove that k0 = (k−T , · · · , k0) ∈ ET+1(γ). Condition (ii) corresponds to the first

restriction in ET+1(γ). For t = 0, condition (i) is k1 ≤ k−T + k−T+1 + · · · + k0; substituting

k1 = γ−T−1k−T (equation (3)) it results (γ−T−1−1)k−T−k−T+1−· · ·−k0 ≤ 0, which is the first

element ofRT+1(γ)k0. Analogously, k2 ≤ k−T+1+k−T+2+· · ·+k1; substituting k1 = γ−T−1k−T

and k2 = γ−T−1k−T+1 it results −γ−T−1k−T + (γ−T−1 − 1)k−T+1 − k−T+2 − · · · − k0 ≤
0,which is the second element of RT+1(γ)k0. Following the same procedure we conclude that

RT+1(γ)k0 ≤ 0.

Now, consider a capital path (kt)t≥−T such that k0 = (k−T , · · · , k0) ∈ ET+1(γ) and

kt+1 = γ−T−1kt−T for t ≥ 0. Part (ii) of 2) will be proved by induction. For t = 0, it is the

first condition of ET+1(γ). If (ii) is valid for t, then
t+1∑

j=t+1−T

γjkj =
t∑

j=t+1−T

γjkj + γt+1kt+1.

Using (3) it will be equal to
t∑

j=t+1−T

γjkj + γt+1γ−T−1kt−T =
t∑

j=t−T

γjkj = 1. Now, let us

prove (i). Denoting by kt = (k(T+1)t−T , · · · , k(T+1)t) the capital path corresponding to the

t−period of vintage, we will have that for all t ≥ 0, kt+1 = γ−T−1kt or k0 = γt(T+1)kt. Thus,

RT+1(γ)k0 ≤ 0 implies RT+1(γ)kt ≤ 0 for all t ≥ 0. Using (3) in each component of these

inequalities it results (i) for all t ≥ .

Proof. (Theorem 1 (Limits for the technological progress))

For the sake of simplicity, letN = T+1 andR = RT+1(γ). Since the set
{
x ∈ R

N
+/Rx ≤ 0

}
is a cone, let us consider x1 + · · ·+ xN = 1.

Let us notice that x ∈ R
N
+ is a non-zero solution of Rx ≤ 0 if and only if the components

of x satisfy:
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xn ≤ γN + (1− γN)
n−1∑
i=1

xi; n = 1, · · · , N (8)

Inequalities in (8) imply:

x1 ≤ γN ,

x2 ≤ γN + (1− γN)x1 ≤ γN(2− γN),

xn ≤ γN(2− γN)n−1; n = 1, · · · , N
Summing up in n it results:

1 ≤ γN

N∑
n=1

(2− γN)n−1 or 0 ≤ PN(γ
N) (9)

where PN is the polynomial PN(m) = m
N∑

n=1

(2−m)n−1 − 1. Therefore (9) is a necessary

condition for the existence of non-zero solution for Rx ≤ 0. Furthermore, if (9) is satisfied,

we can define:

xn =
(2− γN)n−1

N∑
k=1

(2− γN)k−1

;n = 1, · · · , N,

and it is not difficult to check that it is a solution of (8) which is equivalent to Rx ≤ 0

as noticed before. Therefore (9) is also a sufficient condition for the existence of solution of

Rx ≤ 0.

Now we will prove that for each N ≥ 2 there exists a γN ∈ (0, 1) such that PN(γ
N
N ) = 0,

PN(γ
N) > 0 if γ ∈ (γN , 1) and PN(γ

N) < 0 if γ ∈ (0, γN), so part (i) will be proved.

The polynomial PN may be written as PN(m) = m(1−m)−1
[
(2−m)N − 1

]− 1. Thus:

PN(m) ≥ 0 ⇔ 2−m ≥ 1
m1/N .

Let us notice that there exists a unique mN ∈ (0, 1) such that:

2−mN ≥ 1

m
1/N
N

; i.e. PN(mN) = 0, (10)

2−m ≥ 1

m1/N
; i.e. PN(m) > 0 if m ∈ (mN , 1), and

2−m ≥ 1

m1/N
; i.e. PN(m) < 0 if m ∈ (0,mN).
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Now, let us define γN = (mN)
1/N

. If γ > γN then γN > mN and PN(γ
N) > 0. If γ < γN

then γN < mN and PN(γ
N) < 0. Therefore we conclude the part (i).

Claim: 2−N < mN < 2−N+1.

To prove this, it is sufficient to verify that PN(2
−N) < 0 and PN(2

−N+1) > 0. Indeed:

2− 2−N < 1

(2−N )1/N
= 2, so PN(2

−N) < 0.

To prove PN(2
−N+1) > 0, notice that it is equivalent to 2 − 2−N+1 > 2

(2−N+1)1/N
or

1
2
<

[
1− 1

2N

]N
. The sequence aN =

[
1− 1

2N

]N
is strictly decreasing, because:

aN+1

aN
=

(
22N+2 − 2N+2 + 1

22N+2 − 2N+2

)(
2N+1 − 1

2N+1 − 2

)N−1

> 1.

Since a2 = 0.5625, we conclude that aN > 1/2 for all N ≥ 2. Then the Claim is correct.

From the Claim above we have that mN+1 < mN then 2−mN+1 > 2−mN . Using (10)

it results m
1/N
N > m

1/(N+1)
N+1 then γN > γN+1, therefore the part (ii) is proved.

Finally, using again the Claim above, 2−N < γN
N < 2−N+1, then 2−1 < γN < 2−1+(1/N).

Taking N → +∞ it results γN → 1/2, and the part (iii) is proved.
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