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Abstract

We provide heterogenous agent foundations for regime-switching tests of asset price bubbles, and
illustrate by applying the models to historical U.S. stock market data. While the tests remain
unchanged, we show the specification of regimes can be based on the beliefs of investors that
come from an underlying heterogenous agent model. This allows consideration of alternative
specifications for investor beliefs, straightforward interpretation of extensions to more than three
regimes, and added flexibility in determining the evolution of beliefs. Our empirical example
shows that this can lead to results which differ from traditional regime-switching models.
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1 Introduction

Rational bubbles are a popular way to explain movements in asset prices which are difficult to
understand with fundamentals. Particularly appealing to some is that rational bubbles do not
depend on investor irrationality. This also allows tests of rational bubbles to be based on standard
models of asset pricing in the spirit of Lucas (1978). The regime-switching tests of van Norden
(1996) and Brooks and Katsaris (2005) are notable examples. These tests assume a rational bubble
in asset prices always exists, but may be in a finite number of regimes. The model of van Norden
(1996) has two regimes (bubble collapse and bubble survival), while that of Brooks and Katsaris
(2005) has three regimes (bubble expansion, bubble collapse, and bubble survival). Each regime
has an associated probability, based on exogenously specified factors, and the probabilities of being
in a particular regime are the items of interest. While either two or three regimes seems to be a
reasonable number, it is unclear where the regimes originate.
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Information Administration. We would like to thank seminar participants at the University of Technology Sydney
for comments.

†U.S. Energy Information Administration, 1000 Independence Ave., SW, Washington, DC 20585. E-mail:
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In this paper we use an asset pricing model to provide heterogenous agent foundations for this
regime-switching approach and illustrate by applying this model to historical U.S. stock market
data. We also show that the models of van Norden (1996) and Brooks and Katsaris (2005) can
be derived from the optimization problems of investors with heterogenous beliefs. Our primary
contribution is to provide a simple and plausible heterogenous agent foundation for regime switching
models of rational bubbles. We also seek to link direct tests of rational bubbles with the literature
on asset pricing, particularly asset pricing with heterogenous agents.

The regime switching bubble tests of van Norden (1996) and Brooks and Katsaris (2005) have
been applied to many different markets. Among others, van Norden and Schaller (1993), van
Norden and Vigfusson (1998) and Brooks and Katsaris (2005) apply them to stock markets. van
Norden (1996) and Maldonado et al. (2012) use these models to test for bubbles in exchange rate
markets, while Anderson et al. (2011) do the same for real estate. And these two models have also
been used to test for bubbles in oil prices by Shi and Arora (2012).

We begin by deriving the conditions required for a rational bubble under a representative agent,
following the work of Lucas (1978). We then derive the optimality conditions and implications of
an asset pricing model where investors have heterogenous beliefs following Brock and Hommes
(1998). Next, we put forth the three-regime test of Brooks and Katsaris (2005). This test assumes
the price of an asset is comprised of fundamental and bubble components, and that this bubble
always exists and is in one of three regimes (with positive probability): bubble expansion, bubble
survival, and bubble collapse. These assumptions lead to a model which can be estimated to assess
the probability of being in any of the regimes at any given point in time. These probabilities are
based on absolute bubble size, return spread, and abnormal trading volume.

The probabilities are the link between a heterogenous agent model and the regime switching
test. In particular, we interpret the probability of being in a particular regime as the fraction of
investors with a specific belief. The implication is that the number of regimes corresponds to the
number of different beliefs. It is in this sense that the evolution of a bubble depends on the beliefs
of individual investors. A two-regime model says that investors have two different types of beliefs
about the expected value of excess returns, whereas a three-regime model posits three different
types of beliefs.

The final step is to specify how the beliefs of investors change. In the regime switching models
these are specified by the modeler, based on experience and personal judgement. We provide a
general formulation that can accommodate such specifications, but also allows for different factors
to impact belief evolution. Specifically, we assume that an investor selects or chooses their beliefs
based upon a fitness or performance measure. The evolution of beliefs can evolve according to
any performance measure investors think characterizes the expected value of a bubble. This could
be absolute bubble size, return spread, and abnormal trading volume as in Brooks and Katsaris
(2005), or it could be a different measure such as past realized profits.

We then apply the regime switching models (including one based on heterogenous agent foun-
dations) to U.S. stock market data from January 1888 to November 2011. Our results highlight
the importance of model specification. In particular, the model specification of Brooks and Kat-
saris (2005) and a three-regime extension of van Norden (1996) identify three periods of bubble
survival (including the famous dot-com bubble episode), whereas a regime switching model based
on heterogeneous agent foundations shows only two.
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2 Rational Bubbles and Regime Switching Tests

We begin by deriving the conditions required for a rational bubble under a representative agent,
following the work of Lucas (1978). As is standard, we show that a rational bubble exists in this
framework when the transversality condition fails. We then derive the optimality conditions and
implications of an asset pricing model where investors have heterogenous beliefs following Brock
and Hommes (1998). Specifically, we show that given a finite set of different beliefs about future
prices, asset prices can exhibit behavior which differs from that under a representative agent. Next,
we put forth the three-regime test of Brooks and Katsaris (2005). This test assumes that a bubble
in asset prices can exist due to the failure of the transversality condition in the representative agent
model.

Throughout, we use the terms rational bubble and bubble interchangeably. These are deviations
of the price of an asset from their fundamental value, which is the expected stream of future
dividends in the models below. The bubbles are rational in the models outlined below because
investors know prices deviate from fundamental values, they also know the size of the deviations,
and their expectations are set accordingly.

2.1 Rational Bubbles With a Representative Agent

Following Lucas (1978), a representative agent maximizes the discounted sum of expected utility
at any time t. The agent receives some endowment each period, which can either be consumed
or invested in an asset. Following the maximization, the price of this asset (ex dividend) at any
time (Pt), assuming a constant risk-free rate (rf ), can be separated into a market fundamental
component (P ∗

t ) and a bubble component (Bt):

Pt = P ∗
t +Bt, (1)

where P ∗
t ≡ ∑∞

k=0M
−(k+1)Et (Dt+k) with M = 1 + rf , and Dt is the dividend at period t.

The dividend process {Dt} is assumed to be independent and identically distributed (IID) with
Et [Dt+1] = Dt. Based on the definition of P ∗

t , we have:

MP ∗
t = Et

(
P ∗
t+1 +Dt+1

)
. (2)

In the presence of bubbles, the transversality condition fails and the bubble component is shown
to be a submartingale process:

Et (Bt+1) = (1 + rf )Bt ≡ MBt. (3)

This condition says that the representative agents expects the bubble to grow at a constant rate
when the transversality conditions fails. It will form the basis of the regime switching tests outlined
below.

2.2 Rational Bubbles With Heterogenous Agents

The model generalizes the standard representative agent framework following Brock and Hommes
(1998). There are now H traders, indexed by h in the market. The market has two assets, a risky
asset, and a risk-free asset which is supplied at gross returnM (the same as the risk-free rate above).
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Traders are assumed to be mean-variance optimizers; we move away from utility maximization for
tractability.1 These mean-variance optimizers choose shares of risky assets to solve:

max
zh,t

{
Eh,t (Wh,t+1)− 1

2
ahVh,t (Wh,t+1)

}
, (4)

where zh,t denotes the number of shares of the risky asset purchased by trader h in period t, ah is
the agent-specific risk aversion parameter, and Vh,t is the agent-specific conditional variance. Notice
that a higher mean level of wealth increases utility and a higher variance of wealth decreases utility.
The maximization is subject to the realized wealth, Wt+1 denoted in units of the risky asset, of
each trader,

Wh,t+1 = M (Wh,t − zh,t) +
Pt+1 +Dt+1

Pt
zh,t. (5)

The realized wealth can be divided between risk-free and risky portions, and agents are choosing
how many risky asset to purchase, with this risk characterized by the mean and variance of their
realized wealth. Define the excess return, Rt+1 = (Pt+1 +Dt+1) /Pt − M , which is the difference
between the gross return on a unit of the risky and risk-free assets. We assume that beliefs about
the conditional variance of this excess return are constant over time and the same for all traders.2

Further assume that all agents have the same degree of risk aversion, so that ah = a for all h. The
optimality condition then yields:

zh,t =
1

aσ2
Eht (Rt+1) . (6)

This condition says that for each trader, the number of risky shares purchased should equal the
ratio of the expected excess return to the risk adjusted variance. That is, the number of risky
shares should be the factor by which they believe the mean of the excess return will exceed the risk
adjusted variance.

The key point to note is that this can be different for each trader h, depending on individual
beliefs about expected excess returns. There may be as many different beliefs as individuals in the
economy, and we assume that agents can choose from a finite set of different beliefs or predictors
of the future price of a risky asset. Let nh,t be the fraction of investors in the economy with beliefs
corresponding to h at time t. Using this, we can write the market equilibrium condition for risky
assets as:

H∑
h=1

nh,tzh,t = zs,t. (7)

This condition says that, over allH individuals in the market, the risky shares purchased by investor
h with their specific beliefs must total zst. As in Lucas (1978), we assume that the risky asset is
in zero net supply, or zs,t = 0. Substituting the optimality condition equation (6) into equation (7)
and simplifying yields the equilibrium pricing equation for a share of the risky asset:

MPt =
H∑

h=1

nh,tEh,t (Pt+1 +Dt+1) . (8)

1Lengwiler (2004) discusses the special cases where the two are equivalent.
2Specifically, Vh,t (Rt+1) = Vt (Rt+1) = σ2 for all h and t.

4



To ease comparison with the standard model, we also assume that the dividend process {Dt} is
independent and identically distributed (IID) with Et [Dt+1] = Dt. Therefore, equation (2) still
holds. The dividend process is common knowledge for all types of traders. Equation (8) can then
be combined with equation (2) to yield:

H∑
h=1

nh,tEh,t (Bt+1) = MBt. (9)

The bubble dynamic needs to satisfy equation (9) as opposed to Et (Bt+1) = MBt in the represen-
tative agent case.

2.3 Regime Switching Tests of Rational Bubbles

The representative agent asset pricing model can be used to provide a means of testing for rational
bubbles in asset prices. To show this, we now derive the three-regime model of Brooks and Katsaris
(2005). The two regime model of van Norden (1996) is derived in a similar manner.

Brooks and Katsaris (2005) assume that the bubble component can be in one of three states
(or regimes): a deterministic (D) regime, collapsing (C) regime, or a surviving (S) regime. In the
two regime case, the assumption is that only two different states are possible. Following Blanchard
and Watson (1982), equation (3) can be written conditional on one of these particular states (st+1

is the regime next period):

Et (Bt+1|st+1 = D) dt + Et (Bt+1|st+1 = C) (1− dt)(1− qt)

+Et (Bt+1|st+1 = S) (1− dt)qt = MBt. (10)

where dt is the probability of being in a deterministic regime, (1−dt)qt is the probability of being in
a survival regime, and (1−dt)(1−qt) is the probability of being in a bubble collapsing regime. This
equation first differentiates between deterministic and non-deterministic states, and then further
restricts non-deterministic ones to be surviving or collapsing. There are many potential candidates
to characterize each of the conditional expectations in this equation. Brooks and Katsaris (2005)
assume that in the deterministic regime the bubble will grow at a constant rate:

Et (Bt+1|st+1 = D) = MBt. (11)

In the collapsing regime the conditional expectation is given by:3

Et (Bt+1|st+1 = C) = g (bt)Pt, (12)

where bt is the relative size of the bubble in period t (i.e. bt = Bt/Pt). This condition says that
if the bubble is collapsing then the expected value of the bubble will be proportional to the price.
Substituting equations (11) and (12) into equation (10) gives the conditional expected value in a
surviving regime:

Et (Bt+1|st+1 = S) =
M

qt
Bt − 1− qt

qt
g (bt)Pt. (13)

3Here, g (bt) is a continuous and everywhere differentiable function such that, g (0) = 0 and 0 ≤ ∂g (bt) /∂bt ≤ Mbt.
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This equation implies that the rate of bubble expansion in the surviving regime moves in tandem
with the magnitude of bubble collapse. Big collapses (i.e. when g (bt)Pt is small) are associated
with fast expansions. If g (bt)Pt goes to zero during collapse, the rate of bubble expansion in the
surviving regime is faster than in the deterministic regime. This means that M/qt ≥ M . Moreover,
when the value of qt is small, bubbles expand at a faster rate and the probability of bubble collapse
is high.4

For estimation purpose, the Brooks and Katsaris (2005) model is written in terms of gross
return (R∗

t ). The expected gross return for each of the conditional expectations derived above are:

Et

(
R∗

t+1|st+1 = D
)

= M, (14)

Et

(
R∗

t+1|st+1 = S
)

= M +
1− qt
qt

[Mbt − g (bt)] , (15)

Et

(
R∗

t+1|st+1 = C
)

= M + g (bt)−Mbt. (16)

The final step in setting up the model is to outline how the probabilities of being in any of the
regimes is determined (dt and qt). The probability of being in a deterministic regime is assumed to

be related to the absolute bubble size |bt| and the return spread Sfa
t :

dt = Ω
(
βd0 + βdb |bt|+ βdsS

fa
t

)
, (17)

where Ω is the standard normal cumulative density function and the β’s are coefficients. The
interpretation is that a higher return spread and/or deviation from fundamental values raises the
likelihood of being in the non-deterministic regime.5 The probability qt is assumed to be a function
of the absolute bubble size and abnormal trading volume:

qt = Ω(βq0 + βqb |bt|+ βqvJt) , (18)

where Jt is the percentage deviation of last month’s volume from the 12 month moving average.
Notice that both probabilities are based on measures which are believed to be important for bubble
expansion and collapse, but which do not come from the underlying asset pricing model. Equations
(14)-(18) constitute the three-regime BK model.

The two-regime model of van Norden (1996) consists only of the bubble survival and collapsing
regimes. It does not utilize information from the return spread or abnormal trading volume, and
is formalized by equations (12), (13), (15) and (16), with qt = Ω(βq0 + βqb |bt|).

3 A Heterogenous Foundation for Regime Switching Tests

In this section we provide heterogenous agent foundations for the regime switching tests outlined
above. The heterogenous agent asset pricing model yields an interpretation which allows the differ-
ent regimes to be interpreted as varying beliefs among investors. While these varying beliefs lead
to potentially many different types of regimes, we can specify a general formulation of how those
beliefs evolve. Thus there are as many regimes as there are investor beliefs, and the price of an
asset may change regimes based on changing beliefs, which can be specified in general terms. We
then estimate the models and illustrate their use through an empirical application.

4This is due to the fact that
∂Et(Bt+1|st+1=S)

∂qt
= − 1

q2t
[MBt + g (bt)Pt] < 0.

5Parameters βdb, βds are restricted to be negative.
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3.1 The General Case

In the heterogenous agent setting of Brock and Hommes (1998), a rational bubble will grow at a
constant rate which is the weighted average over the expected value of the bubble, as in equation
(9). It is in this sense that the evolution of a bubble depends upon the beliefs of individual investors.
These beliefs are the key variables which link the heterogenous agent model to regime switching
tests of rational bubbles.

We can interpret individual beliefs (nh,t) as the fraction of investors with a certain belief. For
example, n1,t might represent the fraction who believe that the bubble will rise at a constant rate,
while n2,t the fraction who believe it will collapse. If there are large number of investors, these
fractions will also correspond to the probability that investors have certain beliefs. This linkage has
previously been documented in discrete choice literature by Anderson et al. (1992) and Brock and
Durlauf (2001).6 In this case, equation (9) states that the bubble grows at a constant rate which is
a probability weighted average over the expected value of the bubble. And these probabilities are
the probabilities that investors have certain beliefs about the expected value of the bubble.

To see explicitly how the heterogenous agent model provides foundations for the regime switch-
ing tests, consider again the three-regime model of Brooks and Katsaris (2005). This test is derived
from equation (3) by assuming three states, yielding equation (10):

Et (Bt+1|st+1 = D) dt + Et (Bt+1|st+1 = C) (1− dt)(1− qt)

+Et (Bt+1|st+1 = S) (1− dt)qt = MBt. (19)

To ease comparison we assume that there are three groups of investors, each with differing beliefs.
To transform this equation to its heterogenous agent equivalent, first replace the expected value
of the bubble in each state by the beliefs of particular investors about the bubble, i.e. Eht (Bt+1).
Second, dt and qt (the probabilities associated with each state) are replaced by n1,t−1, n2,t−1, and
n3,t−1 (the fraction of investors that have certain types of beliefs about the state of the bubble).
The equation above becomes:

E1t (Bt+1)n1,t + E2t (Bt+1)n2,t + E3t (Bt+1)n3,t = MBt, (20)

which is the bubble dynamic equation in the heterogenous agent framework. The rate of growth
of the bubble is a weighted average over expected beliefs, where the weights are the fraction of
investors with a particular belief. We further assume that the specifications of investor beliefs are
the same as the conditional expected values of bubbles, namely:

E1t (Bt+1) = MBt,

E2t (Bt+1) = g (bt)Pt,

E3t (Bt+1) = MBt +
n2,t

n3,t
[MBt − g (bt)Pt] .

The last equation was obtained by replacing qt with n3,t/ (n2,t + n3,t). These three equations
yield an intuitive interpretation based on the beliefs of investors, derived from the underlying
optimization problem. For example, type 2 investors (those with expectationd denoted by E2t) are

6It is based on the assumption of identical and independent investors and law of large numbers.
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similar to agents who are called contrarians in Brock and Hommes (1998), and type 1 and type 3
investors are trend chasers.

Type 2 investors believe that the bubble will collapse next period and the remaining bubble
size is proportional to the current prices. Type 1 investors are pure trend chasers who believe the
bubble will grow at a constant rate. Type 3 investors are more sophisticated than type 1 investors,
and their belief on the rate of extrapolation at period t depends on the ratio of the fractions of
type 2 and type 3 investors at the beginning of period t, i.e. n2,t/n3,t.

From this point, one could follow the steps in previous section to derive the equations for excess
returns of each investor type, which can then be estimated. In this case the evolution of the nh,t−1

are assumed to follow those of dt and qt. These can follow many different processes, with equations
(17) and (18) one specific example.

As another example, which will be estimated below, Brock and Hommes (1998) use realized
profits. To see this in the context of the model, first the excess return can be rewritten as Rt+1 =
(Bt+1 −MBt + δt+1) /Pt, where δt+1 = P ∗

t+1 +Dt+1 − Et

(
P ∗
t+1 +Dt+1

)
is a martingale difference

sequence. The realized profits for trader type h is:7

πh,t = Rt.zh,t−1 =
1

aσ2

1

P 2
t−1

[Eh,t−1 (Bt)−MBt−1] (Bt −MBt−1) . (21)

We assume the fraction of investors with belief h evolves according to the following equation:8

dt = Ω
[
γd0 + γd

(
Δπ1,2

t +Δπ1,3
t

)]
(22)

qt = Ω
[
γq0 + γq

(
Δπ3,1

t +Δπ3,2
t

)]
(23)

where the parameters γd, γq > 0 are called the intensity of choice and Δπh,k
t = πh,t−πk,t denotes the

difference in realized profits of belief type h compared to type k. The key feature of this equation
is that strategies with higher fitness (realized profits) in the recent past attract more followers.
Here, when γi = ∞ with i = {d, q}, all type h investors will change to the more accurate strategy
in predicting the actual price. This means that agents are infinitely sensitive to differences in
forecasting accuracy. With γi = 0, agents will not change their beliefs at all. Agents are boundedly
rational in the sense that they abandon beliefs that performed poorly in the recent past.

One can then derive that the realized profit differences are nonlinear functions of qt−1, bt and
bt−1, namely:

Δπ1,2
t +Δπ1,3

t = − 1

aσ2

1

qt−1
Ψt,

Δπ3,1
t +Δπ3,1

t =
1

aσ2

(
1− 2

qt−1

)
Ψt,

where Ψt = [g (bt−1)−Mbt−1] (bt −Mbt−1).

7For simplicity, we assume δt = 0.
8Brock and Hommes (1998) use a discrete choice model with multi-nominal logit probabilities.

8



3.2 Model Estimation

To estimate the model we assume in equations (14) - (16) that g (bt) = cbt, with 0 < c ≤ M
capturing the magnitude of bubble collapse and κ = M − c.9 The model is then:

R∗D
t+1 = M + εDt+1, εDt+1 ∼ N

(
0, σ2

D

)
(24)

R∗S
t+1 = M + κ

1− qt
qt

bt + εSt+1, εSt+1 ∼ N
(
0, σ2

S

)
(25)

R∗C
t+1 = M − κbt + εCt+1, εCt+1 ∼ N

(
0, σ2

C

)
(26)

The residuals of each equation are assumed to be normally distributed with zero mean and a given
variance. The transition probabilities of the heterogeneous agent model are:

dt = Ω

[
γd0 + γd1

1

qt−1
Ψ′

t

]
, (27)

qt = Ω

[
γq0 + γq1

(
1− 2

qt−1

)
Ψ′

t

]
, (28)

where Ψ′
t = bt−1 (bt −Mbt−1).

The log likelihood function of this system is:

l (R1, R2, · · · , RT ; Ψ) =
T−1∑
t=1

ln

[
dt
φD

σD
+ (1− dt) qt

φS

σS
+ (1− dt) (1− qt)

φC

σC

]
,

where Ψ contains all of the unknown parameters, the σ’s are standard deviations, and φD, φS and

φC are the probability density functions of N
(
RD

t+1 −M,σ2
D

)
, N

(
RS

t+1 −M − κ1−qt
qt

bt, σ
2
S

)
and

N
(
RC

t+1 −M + κbt, σ
2
C

)
respectively.

This likelihood function is unbounded.10 To avoid this problem we use the Quasi-Bayesian
approach of Hamilton (1991), where one adjusts the log likelihood function to be:

l∗ (R1, · · · , RT ; Ψ) = l (R1, R2, · · · , RT ; Ψ)−
∑

k∈{D,S,C}

ak
2

log σ2
k −

∑
k∈{D,S,C}

bk
2σ2

k

,

where the ratio bk/ak corresponds to our prior for σ2
k, and ak characterizes the weight of the

prior. The model is estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
with 100 sets of randomly generated start-up values and we take estimates associated with the
largest likelihood value.

3.3 Empirical Application

We now revisit the empirical application of Brooks and Katsaris (2005) with the sample period
extended to November 2011, using the same data sources. The monthly observations on the S&P

9Unlike Brooks and Katsaris (2005), we do not apply first order linear approximation to these equations because
important information may be lost.

10The unbounded likelihood function problem associated with the mixture normal model has been well documented
in the literature. See Fruhwirth-Schnatter (2006).
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price index, dividends, and the US Consumer Price Index (All Items Seasonally Adjusted) are taken
from Robert Shiller’s website. The monthly share volume is the monthly average of the daily share
volume from the NYSE. We calculate the monthly abnormal volume as the percentage deviation
of last month’s volume from the 6-month moving average.

The market fundamental values are obtained using the method of Campbell and Shiller (1987).
The bubble deviations from the market fundamental values are displayed in Figure 1, where we
observe significant drops around 1917 and 1932 and a fast increase around 1995. We estimate three
different models: the nonlinear Brooks and Katsaris (2005) model, the nonlinear three regime
extension of the van Norden (1996) model, and our extended heterogeneous agent model. The
prior coefficients in all models are set to be: ak = 0.1 for all k ∈ {D,S,C} and bD = 0.01, bS =
0.01, bC = 0.1.

FIGURE 1
Bubble Deviations of Actual Prices from Campbell and Shiller Fundamental Values.

From Table 1, we can see that coefficients βdS and βqV are insignificant in both models. Es-
timates from the Brooks and Katsaris (2005) model and the van Norden (1996) model for other
coefficients are almost identical. In addition, we fail to reject the null hypothesis of the likelihood
ratio test at the 10% significance level. This suggests that the return spread and abnormal trading
volume do not provide additional information for parameter estimation of either model over the
sample period. Transition probabilities obtained from these two models are the same (see panels
(a) and (b) of Figure 2). This is in contrast to Brooks and Katsaris (2005), where they conclude
that these two exogenous variables provide richer dynamics to the transition probabilities. Panel
(a) of Figure 2a shows that there are several episodes of dramatic increase in the bubble surviving
probability around 1917M07 (post panic of 1917), 1932M01 (post great depression), and 1995M04
(beginning of the dot-com bubble).

Estimates from the heterogeneous agent model are displayed in the last column of Table 1.11

The estimated value of M is 1.05 (implying a 5% risk-free rate), similar to the regime-switching
models. The estimates of κ and σC , however, are much larger than the other two, implying a more
dramatic and volatile collapse regime. Panel (c) of Figure 2 shows that the heterogenous agent

11We have also considered using the accumulated past realized profit (of previous two and three periods) as fitness
measures. Results are similar to the reported one.
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FIGURE 2
Probabilities of being in a surviving or collapsing regime

(a) The Brooks and Katsaris (2005) model

(b) The three regime extension of van Norden (1996) model

(c) The heterogeneous agent model

model has similar rises in the bubble surviving probability as the other two models in 1917 and
1932, but this is not the case in the mid-1990s. In general, however, there is less volatility in the
estimates from the heterogenous agent model. This may reflect the fact that past realized profits
have become less informative of investor beliefs, or that calculated deviations from fundamental
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TABLE 1
The S&P stock market: regime switching bubble models and the heterogeneous agent bubble model.

Figures in parentheses are p-values.

BK Extension of VNS HAM
M 1.05 (0.00) 1.05 (0.00) M 1.05 (0.00)
κ 0.14 (0.00) 0.14 (0.00) κ 0.82 (0.00)
σD 0.01 (0.00) 0.01 (0.00) σD 0.01 (0.00)
σS 0.01 (0.00) 0.01 (0.00) σS 0.03 (0.00)
σC 0.06 (0.00) 0.06 (0.00) σC 0.29 (0.00)
βd0 -0.08 (0.37) -0.08 (0.38) γd,0 -0.61 (0.00)
βdb -0.16 (0.44) -0.17 (0.41) γd,1 1.84 (0.18)
βdS 0.73 (0.60) γq,0 1.51 (0.00)
βq0 -0.39 (0.00) -0.39 (0.00) γq,0 -0.55 (0.00)
βqb 1.27 (0.00) 1.26 (0.00)
βqV 0.05 (0.42)
lld 8298.18 8297.73 8105.22
Test for Restrictions
M ≥ κ 6085.97 (0.00) 6026.04 (0.00) M ≥ κ 2.65 (0.05)
βq,V < 0 0.65 (0.21) -
βq,b < 0 267.23 (0.00) 270.82 (0.00)
βd,S < 0 0.27 (0.30) -
βd,b < 0 0.61 (0.22) 0.68 (0.21)
LR Test 0.88 (0.64)

values are too volatile.

4 Conclusion

Providing heterogenous agent foundations for regime switching tests of asset price bubbles does not
change in any way their mechanics or computation. But it does allow consideration of alternative
specifications for investor beliefs, straightforward interpretation of extensions to more than three
regimes, and added flexibility in determining the evolution of beliefs. When the regime switching
tests are derived from a representative agent model, the bubble grows at a constant rate which is the
probability weighted average of assumed states. These states are not represented in the underlying
asset pricing model, nor do they play a part in a solution where the transversality condition holds.

In contrast, the weights in the heterogenous agent model are fundamental to the model irre-
spective of whether a bubble exists or not. These beliefs can correspond to the regimes in the
models above, but can also be more general. This fits in well with the heterogenous agent litera-
ture where many different types of investor beliefs have been proposed. Examples of such beliefs
include chartist, trend chaser, agents with perfect foresight, and fundamentalist [see Frankel and
Froot (1990), Brock and Hommes (1998), Boswijk et al. (2007) among others].

Our empirical application to the U.S. stock market shows the importance of the regime switching
model specification. The specification of transition probabilities, whether assumed or based on a
fitness measure, is particularly important. This is highlighted by the fact that the inferred transition
probabilities of the Brooks and Katsaris (2005) specification show the expansion phase of the dot-
com bubble along with the recovery phases of the 1917 crash and the great depression, whereas the
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transition probabilities calculated from the Brock and Hommes (1998) specification do not reflect
the dot-com episode.
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