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1. Introduction 

Global economic growth has ushered in a continuous growth of population, which generates 

an ever-increasing demand for energy. Over time, the negative effects of energy consumption 

on the environment have come to the limelight, in which air pollution and carbon emission 

have been the major concern since the 1970s (Dincer, 2000). This concern motived two trends 

in the energy industry: one is the emergence of a market for emission trading in Europe, known 

as the Emissions Trading Scheme (ETS) (de Perthuis and Trotignon, 2014; Edenhofer, 2014); 

and the other is the research on existing and potential renewable and clean energy (Jacobsson 

and Johnson, 2000). 

The first trend breeds a rich literature on the energy-carbon nexus. One line of studies implicitly 

indicates that energy prices, such as Brent oil and natural gas, have a unilateral impact on 

carbon prices. Examples are Mansanet-Bataller et al. (2007), Alberola et al. (2008), 

Hintermann (2010), to name a few. Other studies, such as Fezzi and Bunn (2009), Creti et al. 

(2012), and Ji et al. (2018b), have identified a bilateral relationship between energy prices and 

carbon price in the long run. The rationale of this relationship can be explained as follows. 

Under the same technology, a low fuel price will drive up energy consumption, which, in turn, 

leads to higher carbon emissions. Over time, as the demand for emission increases, the carbon 

price will increase. With emission becoming more expensive, firms would resort to a 

technology upgrade or fuel switching. By adopting cleaner technology or energy, firms would 

decrease their carbon emission. In the long run, therefore, the carbon price changes exert a 

spillover effect on different energy prices (e.g., electricity prices) and across different 

geographical regions. 
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In the meanwhile, for the second trend, despite the evident advancement of renewable energy 

technologies, oil still accounts for 34.52% of all energy consumption by 2018 (Ritchie and 

Roser, 2020). The dominating status of oil implies that its price has a nontrivial effect on the 

economy, which Cologni and Manera (2008) have described a few channels. For example, a 

positive shock in oil price increases the profits of oil-producing firms or countries pushes up 

the production costs of other firms and render their technology as out-of-date, which in turn, 

fuel up the inflation rate. As this change causes the relative value of assets to vary, people will 

readjust their portfolio, which in turn leads to fluctuations in the financial markets at large.  

Nevertheless, empirical studies sometimes disagree with the intuitive link between energy 

products and financial asset returns. For example, Chan et al. (2019) and Xiarchos and Burnett 

(2018) explored how oil prices comove with the index returns of S&P500 and the three-month 

Treasury yield. They both found a puzzling fact: the volatility of energy futures has a low 

correlation with financial returns. Using monthly returns from 18 industries, Alsalman (2016) 

found that real oil price changes have almost no effect on these sectoral returns.  

To solve this puzzle, Ready (2018) finds that the ambiguous energy-equity relation is due to 

the existent of two related yet competing channels. That is, an increase in oil price may come 

from two types of shocks. On the one hand, demand shocks may drive the price up. In this case, 

oil producers are likely to enjoy the positive equity returns of their stocks. Second, a price 

increase may be driven by supply shocks, such as imposing a quota on the supply, or difficulty 

in the oil-producing area (e.g., because of war). In the second case, the net effect on the oil 

producers is uncertain. 

Degiannakis et al. (2018) identified five channels in the literature on how oil prices might affect 
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the stock market. By linking the oil price changes with price decomposition and other related 

energy products, we can reinterpret the five channels in Degiannakis et al. (2018) using either 

a positive demand shock (which has an immediate effect) or a negative supply shock (which 

has a lagged effect) as examples. (1) Stock valuation channel, where an oil demand shock 

pushes up production costs and lowers a firm’s future cash flow, therefore lowers the fair value 

of its stock. Moreover, as Henriques and Sadorsky (2008) argued, the introduction of carbon 

tax forces firms to take emission into their cost-profit considerations. Moreover, as Kilian 

(2009) has documented, crude oil accounts for around 50% of the cost of gasoline. In other 

words, both the prices of oil, carbon, and energy products are important decision variables of 

firms. (2) The monetary channel, a positive supply shock leads to higher product prices, which 

later transmits to the aggregate economy, and raises the inflation; the monetary authorities, to 

stabilize the economy, would increase short-term interest rates to quench the pressure on the 

price level. (3) Output or consumption channel, by which people’s income decreases and 

therefore lowers their spending (Hamilton, 2008). (4) The fiscal channel, where a positive oil 

demand shock increases the private consumption of oil-producing firms, while may crowd out 

government spending. (5) Uncertainty channel, in which a positive demand shock may increase 

or decrease the price of other energy products, depending on different scenarios. When 

uncertainty moderate, oil consumers may turn to alternative energies. This channel is supported 

by the analysis of Managi and Okimoto (2013), who found that after a structural break in oil 

prices in December 2007, a surge in oil prices accompanies an increase in clean energy prices.  

For the link between electricity and other products, the findings are diverse. For example, 

Mohammadi (2009) found neither a significant long-run correlation between electricity and 
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crude oil nor between electricity and natural gas. In the meanwhile, there are inherent links 

between electricity, coal, and natural gas—the latter two are important inputs in producing 

electricity in the US, so their prices have a stable long-run relationship. 

As a result, this paper decomposes oil price changes into a supply shock and a demand shock 

and examines how these two shocks affect the prices of carbon, renewable energy, and financial 

returns. Given the complex link between these markets, we adopt the connectedness 

methodologies of Diebold and Yilmaz (2012) of Barunik and Krehlik (2018), which devised a 

time- and frequency-domain framework, respectively, to captures the connectedness among 

variables in a VAR system.  

The empirical findings show that there is time-varying connectedness among all variables in 

the sample. Second, the highest total connectedness is during the global financial crisis as well 

as in the shale oil revolution period, implying the significant impact of oil price shocks on other 

markets. Third, the total connectedness is more significant and higher in the short-term 

compared to the long-term, indicating that the spillovers among markets do not persist for long 

period of time. Fourth, the net pairwise directional connectedness become more important 

during the shale oil revolution among oil supply, oil demand and clean energy index. Finally, 

the findings of the static full sample and sub-samples (GFC and SOR) provide significant 

evidence of the electricity futures as diversifier and safe-haven asset for oil shocks. 

The rest of this paper is arranged as follows. Section 2 presents a review of the literature on the 

link among the returns or volatilities of energy, carbon, renewable energy, and major financial 

assets. Section 3 describes the econometric methodology. Section 4 presents our data and 

empirical results. The last section provides some concluding remarks and discussions.  
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2. Literature Review  

The literature on connectedness among energy, carbon, and financial markets can be classified 

into three types. One line of studies looked only at how oil price changes are linked to other 

energy and agricultural commodities. For example, Barbaglia et al. (2020) analyze the daily 

data from 2012 to 2016 and find that there is volatility spillover among energy commodities 

and biofuel, as well as between energy commodities and agricultural commodities. Ji et al. 

(2018) find that the total connectedness of the volatility system is much larger and more volatile 

than that of the return system. And in both systems, the largest net contributors are Brent oil 

and NBP natural gas. 

A plethora of econometric models has been used to model the connectedness of different 

variables. For dynamic and multivariate modeling, a structural VAR or VECM is a natural 

choice. In these models, quantifying the effect of one variable to the other is typically done 

through the impulse responses. However, how one variable affects the other depends on what 

constraints are imposed on the coefficient or the variance matrix. Since there is no universally 

applicable theory on how we should specify the constraints, there is some room for discretion.  

To cope with the lack of direction in VAR specification, Koop et al. (1996) and Pesaran and 

Shin (1998) have developed the generalized forecasting error variance decomposition (FEVD) 

that helps to interpret a VAR model. Diebold and Yilmaz (2009) utilized the FEVD and 

propose a simple indicator of how closely related the variables in a VAR system, which is 

known as connectedness measure.  

Recent studies such as Ji et al. (2018b), Xiarchos and Burnett (2018), Guhathakurta et al., 

(2020), and Demirer et al. (2020), has adopted the connectedness measure proposed by Diebold 
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and Yilmaz (2009, 2012, 2014, 2016). The FEVD connectedness model has been extended to 

the frequency domain by Barunik and Krehlik (2018) to examine connectedness in the short-, 

medium-, and long-term. Ferrer et al. (2018) are among the first to use this model to scrutinize 

the connectedness of oil prices, the return of energy-related stocks, and bond returns over two 

frequency bands: one is 1 to 5 days, and the other is 6 to 200 days. They found that strong 

spillover mainly exists in the former band. Table 1 provides a brief summary of the related 

literature.  

[Insert Table 1 Here] 

3. Econometric Methodology 

Drawing on Ferrer et al. (2018), we estimate the time- and frequency-based spillovers from oil 

demand shocks and oil supply shock to other energy and carbon markets. In addition, we 

compute the returns of each carbon or energy variable and obtain a VAR system. 

3.1. Oil Supply Shock and Oil Demand Shock 

In most of the studies, oil price has been identified to have a strong effect on carbon and other 

energy prices.  

Instead of using the Brent oil price as Ji et al. (2018), we decompose the oil price to two 

different oil shocks, i.e., the oil demand shock and the oil supply shock. We estimate oil shocks 

using Ready (2018), where oil shocks are further classified into demand shocks and supply 

shocks. The supply shocks directly affect the changes in spot oil prices, while the demand 

shocks affect both the returns of oil-producing firms as well as the unexpected changes in 

market uncertainty, which is proxied by the CBOE Volatility Index (VIX).  
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The Ready (2018) approach can be summarized as follows. Denote Δ𝑝𝑡 as the changes in the 

log price of oil, 𝑅𝑡
𝑃𝑟𝑜𝑑 as the oil producer returns, and 𝜉𝑉𝐼𝑋,𝑡 is the residual of an ARMA(1,1) 

model on the VIX, the relationship between a price change and shocks is specified as  

  (1) 

Here, 𝑠𝑡 is the oil supply shock, 𝑑𝑡 is the oil demand shocks, and 𝑣𝑡 is the risk shock. Following 

Das et al. (2019), Δ𝑝𝑡 is taken as the 1-month returns on NYMEX Light Sweet Oil contracts, 

Δ𝑅𝑡
𝑃𝑟𝑜𝑑 is the index return of MSCI All Country World Index, which covers large- and medium-

sized oil producers from a total of 49 countries. 

Using matrix form, that is 

  

The relationship between the variance matrix of the price changes and the shocks is 

 ,  (2) 

Or, 

  

where Σ𝑥 is the covariance matrix of x𝑡.  

3.2. FEVD and connectedness in the time-domain 

First, we estimate a stationary VAR model 

  (3) 
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where vector y𝑡 is 𝑛 × 1, which contains all variables of interest; Φ(𝐿) is a lag polynomial. 

The vector 𝜀𝑡 of random errors has zero mean, variance matrix Σ, and no serial correlation. 

Since this VAR system is stationary, it has a representation as a moving average process with 

infinite order, or VMA(∞) 

  

where Ψℎ is the moving average coefficient matrix corresponds to the h-th lag; when h is zero, 

Ψ0 reduces to the unit diagonal matrix I. By the generalized forecast error variance 

decomposition (FEVD), Pesaran and Shin (1998) showed that the contribution of the j-th 

variable to the forecast error variance of the i-th variable H-steps ahead is 

  (4) 

where 𝜎𝑗𝑗 is the j-th diagonal matrix of Σ, and e𝑗 is a vector of zeros except that the j-th element 

is one. By standardizing the contribution across all variables (𝑗 = 1, 2, … , 𝑛), we can get the 

pairwise connectedness from variable 𝑗 to variable 𝑖: 

  (5) 

It is apparent that by definition,  

 ,  
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And the total connectedness of the VAR system is  

  (6) 

And the net pairwise connectedness is calculated as 

  (7) 

Then the total connectedness is 

  (8) 

The from connectedness and to connectedness are  

 ,  (9) 

The net connectedness of variable 𝑖 is 

  (10) 

3.3. FEVD in the frequency domain 

Now, we start with the VMA(∞) presentation. For the lag polynomial Ψ(L), we replace the lag 

operator 𝐿 with e−i𝜔 to obtain the Fourier transform 

  (11) 

where 𝜔 is a specific frequency. The power spectrum of y𝑡 is defined as 
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The frequency version of the FEVD is 

   (12) 

Using a normalization similar in the time-domain, the pairwise connectedness from variable 𝑗 

to variable 𝑖 is 

    (13) 

The pairwise connectedness within a frequency band (𝜔1, 𝜔2) is defined as: 

     (14) 

And the within net pairwise connectedness is calculated as 

  (15) 

Then the within total connectedness over this frequency band is 

  (16) 

The within from connectedness and within to connectedness are  
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 ,  (17) 

The within net connectedness is 

  (18) 

Given a frequency band, a positive within net connectedness means variable 𝑖 is a net sender 

of spillover in the system; otherwise, if the within connectedness is positive, variable 𝑖 is a net 

receiver of spillover in the system.  

And the contribution of connectedness over frequency band (𝜔1, 𝜔2) is 

  (19) 

4. Data and Empirical findings  

4.1. Data 

For oil shocks, our data series is the same as Das et al. (2019). That is, we use the MSCI ACWI 

Energy Index as our price for the oil and gas producers; the Light Sweet Oil (1-month returns) 

traded on the NYMEX is used to capture the oil price changes; the volatility index, or VIX, 

published by the Chicago Board of Options Exchange (CBOE), is used to capture the uncertain 

in the economy in general. In addition, we use the price of the ICE EUA futures as the returns 

on carbon, and the ICE natural gas futures, ICE coal futures, Nord Pool electricity futures to 

compute the returns on gas, coal, and electricity, respectively. Last, we use the S&P global 

clean energy index to calculate the price change of clean energy for its comprehensiveness. 
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The variables we use can be summarized in Table 2. All the series are extracted from 

DataStream. 

[Insert Table 2 Here] 

Our sample spans from August 1, 2006 – September 3, 2019. In total, we have 3,435 daily 

observations for each series. This period covers two important events: one is the global 

financial crisis (GFC) and the other is the shale oil boom. 

The descriptive statistics for the variables under study are presented in Table 3. The mean for 

clean energy, coal and electricity markets are negative, indicating a general decreasing trend in 

the market. We find that carbon has the highest mean with 0.013, followed by the natural gas 

market, which has a mean of 0.004. On the other hand, the standard deviation in carbon market 

is also significantly very high. All the series are stationary, fulfilling the requirements of VAR 

estimation.  

[Insert Table 3 Here] 

Table 4 reports the unconditional correlations among the pairs of series under study. We find 

that the highest significant correlation is between oil demand shocks and clean energy index 

(0.592). On the other hand, oil supply shocks have negative correlation with clean energy index 

(-0.022). Additionally, carbon is negatively correlated with electricity market. Besides, the 

negative correlations, we find all the correlation coefficients are significantly positive. 

[Insert Table 4 Here] 

4.2. Total connectedness 

Figure 2 displays the time dynamics of time-varying total connectedness based on the Diebold 
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and Yilmaz (2012) [DY] framework. From the figure, we conclude that spillovers are 

comparatively high during the financial crisis period as well as during the shale oil revolution. 

These high results demonstrate a substantial degree of connectedness between oil prices 

demand and supply shocks, other commodities natural gas, coal, electricity, as well as carbon 

and clean energy index.   

 The spillover is steady at the values around 10% until the start of the global financial crisis. 

The return spillover starts to increase during 2008, and one of the main reasons could be the 

Lehman Brothers bankruptcy on September 15, 2008. However, the total connectedness 

continues to increase and at the highest level (around 35%, the highest level during the sample) 

during 2010, which is linked with the Eurozone sovereign debt crisis. These outcomes confirm 

the massive effect of the 2007–2008 financial crisis as well as later European sovereign debt 

crisis on return spillovers. These results confirm the prior prevalent opinion that connections 

between commodities and financial markets increase more during times of worse economic 

conditions (see Bhardwaj et al., 2015; Krehlik and Barunik, 2017; Li et al., 2016; Ferrer et al., 

2018; Balli et al., 2019; Badshah et al., 2019). As the uncertainty in the market increases the 

flow of positive or negative information is processed in more details by investors which leads 

to raise interconnectedness.  

It is also worth noting that the time-varying total return connectedness among the variables 

slightly decrease after the financial crisis period and was at its lowest level (below 5% during 

the last quarter of 2014) for the full sample period. Another import find from Figure 2 is the V-

shaped connectedness in the graph from 2012 to 2016. One of the reasons for the reduction in 

time-varying total return connectedness is the European Union Emissions Trading System, 



15 

 

which strengthens the information flow and connection between the carbon market and energy 

market (for details see Ji et al., 2018). Though Gas prices started to drop due to the shale gas 

shocks in the US, however, the price of oil persisted at a quite high level during this period. 

Furthermore, coal prices remained low due to the weak demand as the consumer substitutes it 

with the gas. Another reason for the inverse movement in the connectedness is due to lower 

prices of carbon since 2013. Further, we can clearly observe the total connectedness increased 

again due to uncertainty related to the oil prices as the increase in oil production of shale oil in 

the United States (see, Ansari, 2017 and Naeem et al., 2020).  

[Insert Figure 2 Here] 

Next, we use the time-frequency method of Barunik and Krehlik (2018) by decomposing total 

return connectedness into higher (5 days) and a lower (6 to 262 days) frequency bands. The 

results of this method are presented in Figure 3. More specifically, we decompose the Figure 2 

into short and longer time frequencies. Figure 3 illustrates the time-frequency dynamics of the 

total connectedness among the seven variables under study computed using the method of BK. 

The red area indicates total connectedness at the higher frequency band, which corresponds to 

movements up to five days (one week). In turn, the green area reflects connectedness at the 

lower frequency band, which refers to movements from six to two hundred and sixty-two days. 

These dynamic total connectedness measures are calculated using a rolling window size of 262 

days and a forecast horizon of H= 100 days. 

Overall, it is apparent that the significant part of interconnectedness occurs at the higher 

frequency band throughout the full sample period. The highest connectedness is during late 

2008, which is a severe stage of the global financial crisis as well as in late 2010 (capture the 
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European debt crisis). These findings evidence that during the time of adverse financial 

conditions, the connectedness among crude oil, commodity market as well as other financial 

markets assets. 

[Insert Figure 3 Here] 

The occurrence of the higher frequency band suggests that total connectedness among 

alternative energy stock prices, crude oil prices shocks, and the selected financial indicators is 

mostly driven by the transmission of shocks in the short-term. These results confirm that the 

financial markets consume information quickly; that is why a week (higher frequency) is 

enough time for transmission of shocks from one asset to another asset. Moving towards a 

lower frequency band, the connectedness in typically small throughout the sample period 

compare to high-frequency periods, indicating that the spillovers from one asset to the other do 

not persist over the long-term.   

4.3. Net directional connectedness 

In the subsequent step, we emphasis on directional information to recognize the critical net 

transmitters and receivers of spillovers. This figure displays the time-varying net directional 

return spillover index across the seven variables under consideration computed using the 

Diebold and Yilmaz (2012) method. The dynamic net return spillover indices are calculated by 

subtracting directional “to” spillovers from directional “from” spillovers. Positive (negative) 

values of spillovers indicate that the corresponding variable is a net transmitter (receiver) of 

return spillover effects to (from) all the remaining variables of the system. 

Similarly, to our total connectedness results, net directional spillovers display a substantial time 

variation, with the particularly high values during the global financial crisis as well as Eurozone 
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sovereign debt crisis. From the results in Figure 4, we conclude that the carbon, coal, and 

electricity are the primary receiver of spillover from all other variables, most of the sample 

period. On the other hand, the oil demand shocks, and natural gas are the main net transmitter 

of spillover over most of the sample period.  The most exciting results are perceived during the 

global financial crisis, as the oil demand shocks, natural gas, and clean energy demonstrate as 

the net transmitter of spillover to all other variables. Whereas, the oil supply shocks, carbon, 

electricity as well as coal demonstrate as net receiver of return spillover from all other variables. 

More specifically, we can conclude that during the SOR period the oil demand and oil supply 

shocks, as well natural gas is the net transmitter of spillover from other variables. Whereas all 

other variables such as clean energy, carbon, and electricity are considered as net receiver of 

spillover.       

[Insert Figure 4 Here] 

Figure 5 exhibit the results for the dynamic net directional connectedness based on the time-

frequency method of Barunik and Krehlik (2018): The figure demonstrates the time-frequency 

dynamics of the net directional return connectedness across the eight variables under study 

estimated using the method of BK.  

[Insert Figure 5 Here] 

The results from Figure 5 conclude that over the low-frequency net transmitter are oil demand 

shocks, natural gas, clean energy, and coal to other variables over most of the sample periods. 

Whereas the oil supply shocks, carbon, and electricity are considered as net receivers of 

spillover from all other variables. Whereas for the lower frequency bands, the net transmitter 

of return spillover is carbon, natural gas, and oil supply shocks to other variables. The net 
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receiver of return spillover is from electricity and coal to all other variables during most of the 

sample period.   

4.4. Pairwise directional return connectedness 

Finally, we examine the net pairwise directional connectedness based on the Diebold and 

Yilmaz (2012). Figure 6 shows the network graphs of the net pairwise directional 

connectedness across the seven variables. We divide the full sample into three sub-samples to 

examine progress over time of return connectedness as follow; full-sample (August 2006–

December 2019), global financial crisis (GFC) (August 2007–July 2012) and shale oil 

revolution (SOR) (August 2014–December 2016). The thickness of edge arrows reflects the 

strength of the connectedness between a pair of variables, so that thicker edges represent 

stronger net pairwise connectedness. 

[Insert Figure 6 Here] 

We conclude Numerous important findings from the graphs. First, during the full sample, the 

oil price demand shocks and clean energy appear as net transmitters of pairwise directional 

spillovers. Similar results established during the global financial crisis. One of the main reasons 

is the interdependence among financial markets. Another explanation of this is the robust 

information transmission among cleaner energy and oil prices demand. This conclude that 

prices of clean energy firms’ stock can beat the future change of crude oil prices. Earlier 

research found a weak link among oil prices and clean energy (see Henriques and Sadorsky, 

2008; Sadorsky 2012; Ahmad 2017; Ferrer et al., 2018). However, we find strong evidence 

there is a link between oil market and the clean energy. This is because instead of using the oil 

price as used in earlier studies, we constructed oil demand and supply shocks. Our findings are 
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also in line with Mohammadi (2009), who find disconnection between electricity and crude oil. 

Our findings support their claims and provide additional evidence of no connectedness between 

electricity and oil-demand and -supply shocks. From a financial perspective, these findings 

speak to the diversification benefit of electricity futures for oil-demand and -supply shocks. 

 Furthermore, the sub-sample network of the shale oil revolution is more appealing compared 

to the global financial crisis. The main pairs come out as a net transmitter of pairwise 

directional return spillover are oil demand and oil supply shocks, oil demands shocks and 

cleaner energy index, coal, and natural gas. However, in all other pairs, the strength of 

connectedness is weaker.  We again find no significant connectedness between electricity 

futures and both oil shocks during GFC and SOR sub-periods. These findings provide sufficient 

evidence that electricity futures might be considered as safe-haven assets during time of 

turmoil. Finally, the significant increase in connectedness during SOR points out to the role of 

oil price shocks to the other assets. Another reason could be the shift in the oil supply due to 

the SOR, which ultimately leads to higher pairwise connectedness among the variables.     

5. Conclusion 

In this study, we examine the relationship between oil demand and supply shock, primary 

energy commodities, and renewable energy by utilizing the well-known methodologies of 

Diebold and Yilmaz (2012) as well as of Barunik and Krehlik (2018). For the empirical 

analysis, we use the daily data for a period of August 1, 2006, to September 30, 2019. Our 

results conclude that there is very high total connectedness during the global financial crisis as 

well as during the shale oil revolution of 2014-16.  

We find a strong link among oil price shocks to clean energy as opposed to prior studies. This 
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is due to the use of supply and demand shocks rather than using the simple price of the oil. 

Furthermore, we also find a V-shaped pattern after the global financial crisis, which confirms 

the time-varying trend of total connectedness among the stated variables. The results from the 

time-frequency model of Barunik and Krehlik (2018) confirms that the return total spillover 

connectedness is higher during higher frequency bands compared to low frequency bands. 

Moreover, the results from the net pairwise directional connectedness confirm more strengthen 

results during the shale oil revolution as compared to the global financial crisis.  

Our research has important implication for the portfolio managers and for risk management at 

various investment horizons. The finding also provide evidence of adding clean energy in the 

portfolio along with the other assets. The short-term investors can create profit from the 

substantial information about the changes in oil demand and oil supply shocks in terms clean 

energy firms. The portfolio managers can use clean energy in the energy commodities portfolio 

for long horizons to gain the benefit of diversification. The findings of the static full sample 

and sub-samples (GFC and SOR) provide significant evidence of the electricity futures as 

diversifier and safe-haven asset for oil shocks. There is also important information for policy 

makers not only for short as well as for long term. This will help policymakers to promote the 

policies related to the clean energy investment. 
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Table 1: A summary of previous studies 

Study Data span and 

frequency 

Econometric methods Variables Main conclusion 

Aatola et al. 

(2013a) 

2005-2010, 

daily 

VAR (also used OLS 

and 2SLS) 

European Union emission allowance forward price (EUA, main 

dependent variable), German electricity, Nord Pool electricity, 

mineral, steel, paper, gas, coal, oil (North Sea, Brent crude oil), FTSE 

350 index, water reservoirs, and UK gas storage 

The other energy-related variables explain around 

40% of the changes in the EUA forward price, and 

German electricity has the largest explanatory power. 

Alsalman 

(2016) 

1973M01 to 

2014M12, 

monthly 

VAR + GARCH-in-

mean 

Real price change of the U.S. refiner’s acquisition cost of imported 

crude oil, excess returns of 18 Fama-French industries. 

The effect of oil price uncertainty does not have a 

significant effect on the CRSP value-weighted stock 

returns, as well as industry returns.  

Barbaglia et al.  

(2020) 

20120103 to 

20161028, 

daily 

VAR + t-lasso Crude oil, gasoline, natural gas, and biofuel (ethanol); corn, wheat, 

soybean, sugar, cotton, and coffee 

Volatility spillover exists between energy 

commodities and biofuel, as well as between energy 

commodities and agricultural commodities. 

Chan et al. 

(2019) 

January 1998 

to June 2016 

DID + OLS Oil, natural gas, copper, corn, gold, and wheat (compute realized 

volatilities); S&P500 return, core inflation rate, MSCI Emerging 

Markets equity return, U.S. bond index, and trade-weighted U.S. 

dollar index (used as explanatory variables) 

Financial index returns negatively affect the realized 

volatility of non-energy commodities, which 

themselves have lower volatilities.  

Demirer et al. 

(2020) 

20000104 to 

20181031 

Shock decomposition + 

VAR + FEVD 

connectedness 

World integrated oil and gas producer index; NYMEX crude-light 

sweet oil futures, VIX; 10-year sovereign bond price indices for 21 

countries, MSCI world stock index and the FTSE world government 

bond index 

Oil demand shocks have an universal, positive effect 

on stock market returns, while oil supply shocks 

have a negative effect. For the effect of oil shocks on 

bond returns, the is no agreement of the direction 

across different countries.  

Ferrer et al. 

(2018) 

2003010 to 

20170920, 

daily 

VAR + FEVE, both 

time and frequency 

domain connectedness 

WTI oil price, Wilder Hill Clean Energy Index (clean energy), NYSE 

Arca Tech 100 Index (tech stocks), S&P 500 Oil, Gas & Consumable 

Fuels sector index (conventional energy). 

There is strong short-term connectedness among 

crude oil prices, the stock returns of alternative, 

conventual energy producers, as well as bonds. Both 

no strong effect of oil prices on clean energy 

commodities was found. 

Guhathakurta et 

al. (2020) 

19960313 to 

20180628, 

daily 

VAR + FEVD 

connectedness 

WTI oil; agricultural commodities including cocoa, coffee, rubber, 

soybeans, soya oil, sugar, wheat, palm oil, oats, and corn; metal 

commodities, including aluminum, copper, gold, silver, palladium, 

and platinum.  

Significant spillover between oil and commodities, 

especially during the pre-crisis period of 2007–08 

and the oil price crash of 2015–16. 

Ji et al. (2018) 20060717 to 

20171031, 

weekly 

VAR + FEVD 

connectedness; estimate 

for a return system and a 

volatility system 

European Climate Energy futures, Coal, Brent oil, Electricity, National 

Balancing Point natural gas futures, Clean Energy index futures 

The largest net contributors are Brent oil and NBP, 

and the largest net receiver is electricity 

Lu et al. (2019) 20080701 to 

20171229, 5 

min intraday 

returns  

Bivariate heterogeneous 

autoregressive (HAR) 

model 

Crude oil, corn, soybean, and wheat futures In the crisis period, there was bilateral spillover 

between the oil market and the commodity market. In 

the post-crisis period, such spillover no longer 

existed. 
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Shahzad et al. 

(2018) 

19960701 to 

20160629, 

daily 

VAR for VaR, pseudo 

quantile impulse 

response function 

(QIRF) and CoVar, 

cross-quantilogram 

approach 

Oil, gold, palladium, platinum, titanium, silver In normal times, the oil-precious metal nexus is weak, 

but during the global financial crisis, negative oil 

returns correlate with negative returns in some 

precious metals. 

Xiarchos and 

Burnett (2018) 

1997 to 2005, 

weekly 

VAR + FEVD 

connectedness 

Corn, crude oil, and ethanol (including price volatility, net speculator 

position, and stocks); 3-month Treasury yield, exchange rate volatility 

The spillover in the system of agriculture 

commodities, energy commodities, and financial 

assets have been increasing; however, the relative 

magnitude of the volatility is small.  

Notes: FEVD = forecast error variance decomposition, VAR = Vector autoregressive, VaR = Value at risk, GARCH = Generalized autoregressive conditional heteroskedasticity, OLS = Ordinary 

least square. 
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Table 2: Variable Explanation 

 
Variable Product/Commodity Original Source 

Stock index of oil and gas 

producing firms 

MSCI ACWI Energy Index MSCI 

Volatility Index VIX CBOE 

Oil price changes NYMEX-Light Sweet Oil (1-month 

returns) 

CME-NYMEX 

Carbon ICE EUA futures ICE 

Natural gas ICE natural gas futures ICE 

Coal ICE coal futures ICE 

Electricity Nord Pool electricity futures ICE 

Clean Energy S&P global clean energy index S&P 

Source: DataStream 

Notes: ICE is short for Intercontinental Exchange. Our sample spans from August 1, 2006 to September 3, 2019. In total, we 

have 3,435 daily observations for each series. 

 

 

  

Table 3: Descriptive statistics and unit root tests 

 ABB  Mean  Std. Dev.  Skewness  Kurtosis ADF KPSS 

Oil Demand Shock DEMS -0.032 1.201 -0.088 13.203 -43.975*** 0.3351 

Oil Supply shock SUPS 0.000 1.832 0.524 12.009 -64.690*** 0.0370 

Carbon Future CRBN 0.013 14.349 43.741 2351.379 -37.016*** 0.0499 

S&P Clean Energy SPGC -0.029 1.848 -0.532 17.250 -40.055*** 0.1678 

Natural gas future NGSF 0.004 3.221 3.130 37.007 -43.025*** 0.0346 

Coal future COLF -0.004 1.495 -1.387 41.809 -55.211*** 0.1359 

Electricity future ELEC -0.011 3.621 1.132 20.336 -55.866*** 0.0455 

Note: This table presents the descriptive statistics and unit root tests of the daily series over the period from August 1, 

2006 to September 30, 2019. ADF and KPSS are the statistics of the ADF (Augmented Dickey-Fuller) unit root test and 

the KPSS (Kwiatkowski-Phillips-Schmidt-Shin) stationarity test, respectively. Log difference returns (multiplied by 100) 

are used for CRBN, SPGC, NGSF, COLF, and ELEC. *** indicates statistical significance at the 1% level. 

 

 

Table 4: Unconditional correlation matrix 

 DEMS SUPS CRBN SPGC NGSF COLF ELEC 

DEMS  1       

SUPS  0.116*** 1      

CRBN  0.039** 0.036** 1     

SPGC  0.592*** -0.022 0.035** 1    

NGSF  0.088*** 0.040** 0.020 0.047*** 1   

COLF  0.187*** 0.087*** 0.043** 0.142*** 0.180*** 1  

ELEC  0.060*** 0.043** -0.021 0.038** 0.119*** 0.159*** 1 

Note: This table reports the unconditional correlation coefficients between all possible pairs of 

the daily series over the whole sample period (August 1, 2006 to September 30, 2019).  

As usual, ***, ** indicates statistical significance at the 1% and 5% level, respectively. 
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Time-varying total connectedness 

 

Fig. 2. Time-varying total connectedness based on the Diebold and Yilmaz (2012) [DY] framework. Note: 

This figure displays the time-varying behavior of the total spillover index among the seven variables under 

examination computed using the approach of DY. These dynamic total spillover indices are calculated from 

the forecast error variance decompositions using a rolling window size of 262 days and a forecast horizon 

of H = 100 days. 

 

Frequency connectedness 

 

Fig. 3. Dynamic total connectedness based on the time-frequency method of Barunik and Krehlik (2018) 

[BK]. Note: This figure depicts the time-frequency dynamics of the total connectedness among the seven 

variables under study computed using the method of BK. The red area indicates total connectedness at the 

higher frequency band, which corresponds to movements up to five days (one week). In turn, the green area 

reflects connectedness at the lower frequency band, which refers to movements from six to two hundred and 

sixty-two days. These dynamic total connectedness measures are calculated using a rolling window size of 

262 days and a forecast horizon of H= 100 days, although the time-frequency connectedness method of 

Barunik and Krehlik (2018) is not influenced by the particular forecast horizon.  
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a) DEMS         b) SUPS 

       

c) CRBN         d) SPGC 

       

e) NGFS         f) COLF  

       

g) ELEC 

 

Fig. 4. Net directional return spillovers based on the Diebold and Yilmaz (2012) [DY] framework. Note: 

This figure depicts the time-varying net directional return spillover index across the eight variables under 

consideration computed using the DY method. The dynamic net return spillover indices are calculated by 

subtracting directional “to” spillovers from directional “from” spillovers. Positive (negative) values of 

spillovers indicate that the corresponding variable is a net transmitter (receiver) of return spillover effects to 

(from) all the remaining variables of the system.  
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a) DEMS         b) SUPS 

       

c) CRBN         d) SPGC 

       

e) NGFS         f) COLF  

       

g) ELEC 

 

Fig. 5. Dynamic net directional return connectedness based on the time-frequency method of Barunik and Krehlik 

(2018) [BK]. Note: This figure displays the time-frequency dynamics of the net directional return connectedness 

across the eight variables under study estimated using the method of BK. The dynamic net directional return 

connectedness measures are calculated by subtracting directional “to” spillovers from directional “from” 

spillovers. Positive (negative) values of connectedness indicate that the corresponding variable is a net transmitter 

(receiver) of return connectedness to (from) all the other variables. The red area indicates the connectedness at the 

higher frequency band (up to five days). In turn, the green area reflects the connectedness at the lower frequency 

band (from six to two hundred and sixty-two days). 
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a) Full-sample (August 2006 – December 2019) 

 

 

b) GFC (August 2007 – July 2012)   c) SOR (August 2014 – December 2016) 

           

 

Fig. 6. Net pairwise directional return connectedness based on the Diebold and Yilmaz (2012) [DY] 

framework. Note: This figure depicts the network graphs of the net pairwise directional return connectedness 

across the eight variables of our system computed using the approach of DY. The network graphs correspond 

to the following three periods: Full-sample (August 2006–December 2019), global financial crisis (GFC) 

(August 2007–July 2012) and shale oil revolution (SOR) (August 2014–December 2016). The thickness of 

edge arrows reflects the strength of the connectedness between a pair of variables, so that thicker edges 

represent stronger net pairwise connectedness. 
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