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1 Introduction

Policy makers typically make decisions in real time using incomplete information on current
economic conditions. Many key statistics are released with lags and are subject to frequent
revisions. Nowcasting models have been increasingly popular tools developed to mitigate
some of these uncertainties and they have been widely used by forecasters at many central
banks and other institutions (Giannone et al. 2008, Banbura et al. 2013, Jansen et al. 2016,
Bloor 2009).

Prompted by advances in computing power, machine learning (ML hereafter) methods
have recently been proposed as alternatives to time-series regression models typically used by
central banks for forecasting key macroeconomic variables. The ML models are particularly
suited for handling large datasets when the number of potential regressors is larger than
that of available observations. In this paper, we investigate the performance of different
ML algorithms in obtaining accurate nowcasts of the current quarter real gross domestic
product (GDP) growth for New Zealand. We use multiple vintages of historical GDP data
and multiple vintages of a large features set - comprising approximately 550 domestic and
international variables - to evaluate the real-time performance of these algorithms over the
2009Q1-2018Q1 period. We then compare the forecasts obtained from these algorithms
with the forecasting accuracy of a naive autoregressive benchmark as well as other data-rich
methods such as a factor model, a Bayesian VAR (BVAR) and a suite of statistical models
used at the RBNZ. To our knowledge, our study is the first to evaluate the relative nowcast
performance of alternative ML methods using real-time data.

Our results show that the majority of the ML models produce point nowcasts that are
superior to the simple AR benchmark. The top-performing models such as the support vector
machines, Lasso (Least Absolute Shrinkage and Selection Operator) and neural networks are
able to reduce the average nowcast errors by approximately 16-18 per cent relative to the AR
benchmark. Moreover, combining the nowcasts of the ML models using various weighting
schemes leads to further improvements in performance. The majority of the ML algorithms
also outperform the other two commonly used statistical benchmarks, namely the factor
model and the small Bayesian VAR model.

This paper joins a growing literature that evaluates the relative success of the ML models
in forecasting over the more traditional time-series techniques. However, to our knowledge,
none of these papers focuses on the real-time forecasting performance of these models.

Makridakis et al. 2018 compares the forecast accuracy of various popular ML algorithms
with eight types of traditional statistical benchmarks and finds that the out-of-sample fore-
casting accuracy of ML models is lower than that of more traditional statistical methods.
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Chakraborty & Joseph 2017, on the other hand, conduct an out-of-sample forecasting exer-
cise using UK data and argue that ML models generally outperform traditional modelling
approaches in prediction tasks. Similarly, Kim 2003 finds that support vector machines in
particular are a promising alternative for stock market prediction.

Given we use a large dataset for New Zealand for our analysis, our paper is also related
to Eickmeier & Ng 2011 who use elastic net and ridge regression (amongst other shrinkage
methods) to forecast New Zealand’s GDP from a large number of domestic and international
predictors. They find data-rich methods result in gains in forecast accuracy over common
statistical methods using small data sets. Also, Matheson 2006 uses a factor model to produce
real-time forecasts of New Zealand’s GDP, inflation, interest rate and exchange rate from
a large number of predictors which has good forecast performance at longer-term horizons
when compared to other statistical models.

The remainder of this paper is as follows. Section 2 explains the models and the data
used. Section 3 presents the results and Section 4 concludes.

2 Empirical Application

In this section, we provide a brief description of the various ML and benchmark models we
considered for nowcasting GDP. We also discuss how we made key hyperparameter choices.1

2.1 Models

2.1.1 Autoregressive Model (AR)

As a benchmark, we use an univariate AR model of order 1 for quarterly GDP growth (yt):

yt = α0 + α1yt−1 + ut (1)

where α0 and α1 are parameters and ut is the residual term.

2.1.2 K Nearest Neighbour Regression (KNN)

KNN is a non-parametric method that works by storing all available training data and
predicting the outcome of new data based on the k-most similar observations (neighbours)
in the training set to the new data. The similarity is typically measured using the Euclidean

1We initially investigated using hyperparameter optimization through k-fold cross validation. However,
this methodology proved computationally intensive, and resulted in poor out-of-sample forecast performance
compared to adopting standard or default values for hyperparameters.
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distance and the prediction is computed as the mean of the k most similar instances. We
choose k as 4 which produces the lowest average RMSE calculated over all iterations.

2.1.3 Least-squares boosting (LSBoost)

LSBoost is an ensemble aggregation methodology. In this approach, the algorithm builds
up a higher quality predictor from a number of weak individual predictors. The individual
predictors (called learners) in this case are regression trees. At each step in the algorithm,
a new tree is fitted to the difference between the observed response and the aggregated
prediction of all trees grown previously. This ensemble minimises the mean-squared error at
each step.

We have chosen hyperparameters for this methodology with a focus on improving the out-
of-sample generalization of the model. The learning rate, which governs how the information
from a new tree is incorporated into the model, is set to 0.1, as discussed in Hastie et al.
(2001). This means that, for every new learner, corrections made to previous residuals are
weighted less than 1, to avoid over-fitting the in-sample data. Our initial investigations into
hyperparameter optimization pointed to the need for only a small number of learners - so
our number of learning cycles is set to 15. We also need to make choices about the structure
of the regression trees. Specifically, we restrict the maximum number of splits to 10. We
also opt for a minimum leaf size of 8, to avoid arbitrary splits with too few predictors.

2.1.4 Lasso, Ridge and Elastic Net (ENET)

These three methods are very similar to ordinary least squares (OLS) but incorporate dif-
ferent types of shrinkage for creating parsimonious models in presence of a large number of
features. Lasso performs L1 regularisation which involves adding a penalty equivalent to
the absolute value of the magnitude of the coefficients and shrinking some of them to zero.
Ridge is a similar method to lasso but it performs L2 regularisation where the penalty is on
the absolute value of the magnitude of the coefficients. Therefore the coefficients estimated
by ridge are never reduced to exactly zero. The elastic net regression is a hybrid of the
ridge and lasso regressions and as such, it can shrink the coefficients of the features as well
as removing them completely (a coefficient of zero). The regression penalty is, therefore, a
convex sum of the ridge and lasso penalties.2

β = argmin[
l∑

i=1

(yi − β0 −
p∑

j=1

xijβj) + λ
p∑

j=1

(αβ2
j + (1− α)|βj|)] (2)

2For a detailed explanation of the elastic net refer to Zou & Hastie 2005

4



For the Lasso and ridge regression, we use a λ value of 0.1. For the Elastic Net, we set both
α and λ to 0.1.

2.1.5 Support Vector Machine Regression (SVM)

SVM is a non-parametric approach which aims to identify the hyperplane that maximizes
the margin between classes while also making sure that the perpendicular distance between
the two closes points from either of these two classes is maximized.3For our modelling, we
use linear epsilon-insensitive SVM (ε-SVM) regression with a polynomial kernel function of
order 2. As is commonly used in the literature, we use an epsilon value of a tenth of the
interquartile range of the target variable; a proxy for the noise level in the training sample.
The hyperparameter C (ie the box constraint) is set in a similar way using the interquartile
range of the target variable.

2.1.6 Feed Forward Neural Network (NN)

A feed forward neural network is a model that is able to capture and represent complex
relationships. The model works by taking input data and using weights and an activation
function to pass them through to N hidden layers of a perceptron. Each input is weighted
and passed through the activation function to determine the value of a given node within the
first layer of perceptrons and this is repeated for each node in the first layer. Each node of the
first layer then becomes the new input variable for layer 2 and gets re-weighted and passed
through the activation function to determine the value of a given node in layer 3. The process
is repeated until the N th layer is created. The nodes in the N th layer are weighted and passed
through an activation function to give the output value. The weights are initially set with
random values and are updated on each iteration using the backpropagation algorithm.4

The key parameter choices for this model are the number of nodes and the number of
hidden layers. Our initial modelling used 10 nodes at each layer, with 2 hidden layers. We
choose 10 nodes as this captures the overall variation of the feature set (for comparison,
10 factors from a principle components model covers about 70 percent of the variation
of the feature set), and 2 layers are typically enough to capture any potential non-linear
relationships. However, practically, we found a 10 node, 1 hidden layer model produced very
similar results, and substantially reduced computational time. After our initial investigation
on fitting neural networks, we used 50 neural networks at each vintage and average the
nowcasts from these 50 models. 5

3See Vapnik 1995 for detailed information
4For more details on backpropagation see Hecht-Nielsen 1992
5As a sensitivity check, we also tested models with 5 nodes, and models with an early stopping criteria
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2.1.7 Factor Model (FM)

Factor models use a large number of time series to produce forecasts, and therefore do
not require the model builder to make strong assumptions about what particular series are
important for forecasting the variable of interest. We estimate a linear factor model which
assumes that the quarterly growth rate of GDP is given by

yt = α0 + α1f1 + ...+ αkfk + ut (3)

where the fj,j = 1, ..., k, are the common factors obtained using the principal components
technique. These factors are the linear combinations of all the data in the model that
explain the highest proportion of the variance of the data. They can, therefore, be thought
of as picking up the underlying movements in the economy that influence a large number of
variables. The estimated factors are used in linear regressions of the variables of interest.
We choose the optimal number of factors to incorporate in (3) using the Bai & Ng 2001
two-step procedure and use the Bayesian Information Criteria (BIC) as the benchmark for
selection.

2.1.8 Bayesian VAR (BVAR)

This model uses 95 macroeconomic time series in a Bayesian VAR framework. The model
produces forecasts for key macroeconomic variables such as GDP, consumption, inflation,
the exchange rate and interest rates. The BVAR has 4 lags and a Minnesota prior (Doan
et al. 1984) as the method of shrinkage. We use the quarterly GDP growth rate forecasts
from this model as the basis for our comparisons.

2.1.9 RBNZ Statistical Suite (RBNZ SS)

The suite contains a range of different models that vary across size and complexity (Bloor
2009). The models in the suite are particularly designed to forecast medium-term movements
in the economy and are used as a cross check for the central forecasts produced by the main
policy model and sectoral experts. The suite also includes several models that are aimed
towards picking up shorter-run fluctuations.

2.2 Data

The data consist of a number of continuous real-time vintages of a range of macroeconomic
and financial market statistics. These include: New Zealand business surveys; consumer

linked to a minimum MSE and found similar out-of-sample results.
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and producer prices; general domestic activity indicators (e.g. concrete production, milk-
solids production, spending on electronic cards etc.); domestic trade statistics; international
macroeconomic variables and international and domestic financial market variables. The
data range from daily to quarterly - with the mean used to aggregate higher frequency data
to quarterly for model estimation. The series are then seasonally adjusted. Each series is
individually assessed, and either left in a level form or transformed to a stationary form
depending on which form is likely to be more predictive of GDP growth. All data are
standardized.

The storage of historical model runs by the RBNZ has allowed us to create 37 real-time
vintages of these data. Every 3 months, the RBNZ publishes a Monetary Policy Statement.
In working towards this publication, the RBNZ’s staff put together an initial set of macroe-
conomic projections. The data banks containing the data described above were saved down
along with these projections each quarter. This process, therefore, gives us a quarterly real-
time snapshot of a range of macroeconomic and financial market series. Conveniently, these
snapshots were generally taken about four weeks before the release of the preceding quarters
GDP estimate. For example, the initial projections for the March 2015 Monetary Policy
Statement would have been finalized on about the 20th of February. At this point, almost
all of the key macroeconomic and financial market indicators for the December 2014 quar-
ter would have been released - and it is at this point the snapshot of these macroeconomic
statistics has been saved. The December quarter GDP estimate was then released 19th
March. New Zealand does not produce flash estimates of GDP, and so there is a significant
lag between the end of the quarter and the publication of the GDP estimate.

From this point, the data storage methodology was changed. The ’global database’ con-
taining 668 series (the detail of which we described above) was routinely saved in estimating
the Bank’s suite of statistical models. A version of this data set is saved at the end of the
month following each Monetary Policy Statement. For example, for the May 2018 Monetary
Policy Statement, a version of the data set was saved on the last working day of May. This
data set contains most of the indicators up to the end of 2018Q1. The 2018Q1 GDP figures
were then released on the 21 June 2018 - around 3 weeks after the data snapshot was taken.
This process gives us a set of data vintages from 2015Q3 to 2018Q1.

The data available with each vintage differ somewhat, as data were added and removed
from the RBNZ’s data banks through time. After making the modifications described above,
from a candidate of 668 series, we are left with between 532 to 634 series at each vintage.

In total, we have a 37 real-time vintages of this dataset, covering the period 2009Q1
to 2018Q1. The data in each vintage begin in 1995Q1. These data vintages enable us to
test how the forecast performance of these models compares under the conditions which the
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practitioner would use them - capturing the revision properties of the predictors.

2.3 Forecast evaluation methodology

We evaluate the performance of the models using an out-of-sample forecast exercise. We
train each algorithm over an expanding window thereby replicating an actual forecasting
situation starting from 2009Q1 and moving forward a quarter at a time through to 2018Q1.
For example, for the first vintage of the data, the models are estimated over the period
1995Q1 to 2008Q4 using real-time data for both the predictor and response variables. The
resultant fitted models are used to nowcast the 2009Q1 growth rate of real GDP. Overall, we
generate 37 real time nowcasts of quarterly GDP growth. As discussed above, we choose fairly
standard parameter settings for each algorithm. Next, we measure the forecast accuracy of
each model by calculating the Root Mean Square Error (RMSE) and the Mean Absolute
Deviation (MAD) defined as:

RMSE =

√√√√√√
T∑
t=1

(yt − ŷt)
2

T
(4)

MAD =
1

T

T∑
t=1

|yt − ŷt| (5)

where yt and ŷt are the actual and forecast values of GDP growth and T is the total number
of forecasts. The forecasts of a univariate (i.e. AR(1)) model provide the main benchmark for
our comparisons. We use the Diebold-Mariano (Diebold & Mariano 1995) test to determine
whether the forecasts obtained from each ML model are significantly different than those
from the AR model.

3 Empirical Results

In this section, we describe the main results of our analysis. Table 1 documents the nowcast
performance of the models for the sample period 2009Q1-2018Q1. In addition to the models
outlined in Section 2.1, we also present the results obtained by combining the forecasts from
all the ML models using alternative weighting schemes.

The results indicate that the large majority of the ML models produce forecasts that
have RMSEs and MADs lower than the AR benchmark. The top three models are the SVM,
Lasso and NN models which are able to reduce the average forecast errors by approximately
16-18 per cent relative to the AR benchmark. The relative success of the neural network
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and support vector machine models are not surprising and is in line with previous findings
in the literature (Teräsvirta et al. 2005, Ahmed et al. 2010). The majority of the ML models
are also able to produce RMSEs and MADs lower than the BVAR, factor model and the
combination forecasts obtained from RBNZ’s statistical suite. However, the DM test results
based on the RMSE loss function indicate that in most cases, the null hypothesis that the
forecast errors are equal cannot be rejected. The null hypothesis of equal forecast errors
based on the mean absolute deviations, on the other hand, is rejected for the case of SVM,
NN and the Lasso at the conventional levels of statistical significance. The DM test results,
however, should be treated with caution given our small sample size of 37 observations.

It is important to note that some of these models come with the added costs of increased
computational time, and a lack of tractability when it comes to understanding the drivers
of certain results. This could be significant in practice in two regards. First, it may limit
the practical use of such models in situations that require a quick turnaround. Second, if
the forecast accuracy of a model started to deteriorate, it may be difficult to pick apart the
factors leading to such a deterioration.

Figure 1 presents the quarterly GDP growth and its nowcasts obtained from each model
over the sample period. It can be seen that all ML models have successfully predicted the
sharp downturn in activity occurred in the first quarter of 2009 and also predicted the other
major upturns and downturns in the GDP data successfully.

Figure 1: Real-time nowcasts of quarterly GDP growth
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Table 1: Real-time nowcast performances of models (RMSE), 2009Q1-2018Q1

RMSE RMSE p-value MAD MAD p-value
Models (Rel. to AR) (Rel. to AR)
SVM 0.445 0.820 0.166 0.338 0.770 0.037
NN 0.446 0.821 0.182 0.336 0.766 0.041
Lasso 0.454 0.836 0.206 0.348 0.793 0.061
BT 0.469 0.865 0.153 0.386 0.880 0.107
ENET 0.488 0.899 0.526 0.349 0.796 0.140
KNN 0.479 0.882 0.251 0.387 0.882 0.196
Ridge 0.565 1.040 0.770 0.427 0.972 0.823
FM 0.517 0.951 0.757 0.379 0.864 0.357
BVAR 0.608 1.119 0.286 0.450 1.025 0.961
RBNZ SS 0.471 0.867 0.262 0.384 0.874 0.160
AR 0.543 - - 0.439 - -

Notes: The first column refers to the models used to nowcast GDP. SVM: support vector machine; NN:
neural network; ENET: elastic net; Lasso: lasso regression; BT: boosted tree; FM: factor model; Ridge:
ridge regression; AR: autoregressive model; BVAR: bayesian VAR; KNN: k-nearest neighbours; RBNZ SS:
the statistical models suite used by the RBNZ. The second column refers to the entries for the out-of-sample
RMSEs obtained from each model using the methodology outlined in subsection 2.3. The third column
refers to the RMSEs relative to the AR model. The fourth column refers to the p-values obtained from the
Diebold-Mariano test for testing the significance of the forecast accuracy of each method versus that of the
AR model. Columns 5-7 refer to the corresponding values in columns 2-4 when the loss function is the Mean
Absolute Deviation (MAD).

3.1 Forecast combination

In the previous section, we compared the forecasts from individual models by ranking them
individually according to their forecast accuracy. From a practical point of view, however,
we may prefer to pick the “best” model amongst them to use for nowcasting. Therefore, an
alternative approach is to combine forecasts from the set of all models under consideration to
produce a single summary forecast. Forecast combinations have frequently been found in the
literature to produce better forecasts than individual models. In this section, we implement
this strategy using all the ML models we considered. More specifically, we use four types of
forecast combination strategies for combining point forecasts: equal weighting, Least-squares
weighting, inverted mean squared error (MSE) and MSE ranks weighting. Equal weighting
is a particularly simple method which works by assigning equal weights to the forecasts
from all individual models at each date in the forecast sample. The Least-squares weighting
strategy, on the other hand, is implemented by regressing all the forecasts against the actual
values and then using the coefficients from the resultant regression as weights. The final
two strategies both small use the inverted MSEs computed over the forecast horizon for
weighting the forecasts where the latter is based on the inverted MSE ranks rather than the
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actual MSE values.
The results summarised in Table 2 suggest that there are gains in combining forecasts.

It can be seen that the combined forecasts produce lower RMSEs and MADs compared to
the individual model results presented in Table 1. Amongst the different weighting schemes
we’ve considered, the Least-squares weighting scheme generates the best gains in predictive
accuracy.

Table 2: Forecast combination results

RMSE RMSE MAD MAD
(Rel. to AR) (Rel. to AR)

Equal 0.437 0.805 0.324 0.738*
Least-squares 0.427 0.786 0.317 0.722*
Inverted MSE 0.434 0.799 0.324 0.738*
Inverted MSE ranks 0.429 0.790 0.323 0.736*

Notes: The first column refers to the weighting methods used to combine the individual ML forecasts. Equal:
assigning equally weighted forecasts; Least-squares: weights are assigned by regressing all the forecasts
against the actual values and then using the coefficients from the resultant regression as weights neural
network; Inverted MSE: weights are assigned using the inverted MSEs as weights; Inverted MSE ranks:
weights are assigned using the inverted MSE ranks as weights. See Table 2 for column definitions. The *
indicates statistical significance of the Diebold-Mariano test at the 5% significance level .

Furthermore, we investigate whether the optimal combination of the ML model nowcasts
(i.e. the Least-squares weighting) adds value to the nowcasts generated by the combination
of models in the RBNZ’s statistical model suite. To test this formally, we follow the approach
by D. Romer & H. Romer 2008 and estimate the following regression equation:

yt = c+ α1FC + α2SS + et (6)

where yt is the actual real GDP, FC is the combined nowcasts from the least-squares weights
method outlined above, SS is the real-time GDP nowcasts obtained from the combination
of models in the RBNZ statistical suite and et is the residual term. The results presented in
Table 3 suggest that forecast combination adds significant value to the combined statistical-
suite nowcasts as implied by the large, positive and significant α1 coefficient. Figure 2
presents the quarterly GDP growth together with the two sets of nowcasts over the period
2009Q1-2018Q1.
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Table 3: Does forecast combination add value to the RBNZ’s statistical-suite nowcasts?

Coefficients Estimated value t-Statistic
α1 0.94 4.14
α2 -0.10 -0.30
C 0.004 0.04
R2 0.46

Figure 2: Quarterly GDP growth and its nowcasts (2009Q1-2018Q1)

4 Conclusion

In this paper, we evaluate the real-time performance of popular ML algorithms in obtaining
accurate nowcasts of the real gross domestic product (GDP) growth for New Zealand. We
estimate several ML models over the 2009-2018 period using multiple vintages of historical
GDP data and a large features set comprising approximately 550 domestic and international
variables. We then compare the forecasts obtained from these models with the forecasting
accuracy of a naive autoregressive benchmark as well as other data-rich methods such as a
factor model, a large Bayesian VAR and the combined GDP nowcasts obtained from the suite
of statistical models used at the RBNZ. We find that the majority of the ML models are able
to produce more accurate forecasts than those of the AR and other statistical benchmarks.
The results also suggest that there are some gains in combining individual ML forecasts.
Our results thus recommend the use of ML algorithms as an addition to a forecaster’s suite
of GDP nowcasting models.
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