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1 Introduction

Persistence profiles are a key facet in learning about the dynamic adjustment of macroeco-

nomic variables. The real exchange rate literature stands out for its substantial attention

to the characterization of persistence through the calculation of half-lives. The half-life

is the time it takes for half the effect of a shock to dissipate. It is a summary measure

of persistence which quantifies the speed of mean reversion, where the estimation of the

half-life of the real exchange rates is used to test how quickly Purchasing Power Parity

(PPP) is restored. Characterization of the half-life of the real exchange rate occurs almost

exclusively through the lens of univariate models, mostly through estimating short-order

autoregressive (AR) processes (e.g. Cheung and Lai, 2000; Kilian and Zha, 2002; Rossi,

2005; Chortareas and Kapetanios, 2013; Lo and Morley, 2015). A broad consensus is that

the half-life of the real exchange rate is roughly between three to five years, an estimate

which is acknowledged as “puzzlingly high” (see, e.g. Rogoff, 1996).

The contribution of this paper is to present methods to characterize the half-life within

a multivariate framework, thus expanding the tools available for measuring persistence.

There are theoretical and consistency reasons for why one might characterize persistence in

multivariate frameworks despite the widespread practice of half-life estimation within uni-

variate environments. The proliferation of tools such as Vector Autoregressions (VAR) and

Dynamic Stochastic General Equilibrium (DSGE) models at least suggests that macroe-

conomists regard joint determination of variables as a useful way to think about macroe-

conomic fluctuations. Even so, it appears common practice to write down general equilib-

rium models to match univariate time series properties of the real exchange rate, often in

the form of autocorrelations or the univariate impulse response functions (e.g. Steinsson,

2008; Carvalho and Nechio, 2011). This represents a form of cognitive dissonance, given it

is unclear how to reconcile a multivariate data generating process with empirical evidence

of real exchange rate persistence from univariate processes. At the same time, models like

Eichenbaum and Evans (1995) and Ng (2003) study the persistence of the real exchange

rate within SVARs which are conditional upon different identified shocks. It is once again

not clear how one should reconcile conditional characterization of persistence from say,

an identified monetary shock from an SVAR, to the persistence profile from univariate

models, which may be closer to unconditional measures. Therefore, at a minimum, the

development of tools to characterize persistence in multivariate environments is a step

in aiding reconciliation of theory with data. To the extent that theory or the assumed

underlying data generating process is often from the perspective of a multivariate process

like a VAR or DSGE model, empirical validation through multivariate models is likely to

provide a more consistent basis to makes comparisons.

Characterizing half-life through multivariate models is however less straightforward

because discussion inevitably center about the impulse response function (IRF) (e.g Che-
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ung and Lai, 2000; Chortareas and Kapetanios, 2013). The focus on IRFs in multivariate

environments such as an N variable VAR is less helpful as one can identify IRFs for up to

N shocks. Not only are there multiple IRFs in multivariate models, these IRFs are also

conditional. Persistence is inherently a summary of the autocovariance function (ACF).

While the distinction between the IRF and ACF can be easily ignored in univariate AR

models, this can cause confusion if we consider multivariate models. In particular, view-

ing the problem through the IRF means multiple IRFs in multivariate models may be an

impediment to calculating half-life, but a single variable within a multivariate system still

only possess a single ACF. Therefore, focussing one’s attention on some characterization

of the ACF, rather than the IRF, greatly clarifies how one can measure the half-life in

multivariate environments.

I present an empirical example by calculating the half-life of the real exchange rate

of the G7, Australia and New Zealand relative to the U.S. In general, multivariate in-

formation increases the estimated half-life of the real exchange rate. A key reason for

this empirical finding is because multivariate information contains information about real

exchange rate fluctuations, and this is confirmed by Granger causality tests.

A Monte Carlo exercise utilizing a standard two country DSGE model as a data

generating process lends support to the empirical results. In particular, the results of the

Monte Carlo experiment suggest the omission of multivariate information is a possible

underlying cause of underestimating the half-life for the univariate model, consistent with

the empirical finding. Even allowing for the usual finite sample issues with estimating

real exchange rate half-lives, the Monte Carlo experiment suggests incorporating relevant

multivariate information results in less biased estimates of the half-life of the real exchange

rate. A large sample Monte Carlo simulation suggests that the approach I am proposing

is also much closer to uncovering the true persistence in population.

The rest of this paper is organized as follows. In Section 2, I will first describe the

proposed approach. Section 3 presents an empirical application estimating the half-life

of the real exchange rate for the G7, Australia and New Zealand. Section 4 presents a

Monte Carlo simulation using a standard two country DSGE model to lend some context

to the empirical results. Section 5 briefly notes how the ideas developed can be easily

extended into a fully identified VAR. The final section provides some concluding remarks.
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2 A Multivariate Approach to Characterizing Half-

Life

Let yt be a vector of N variables. Suppressing the constant without any loss of generality,

a Vector Autoregression (VAR) of lag order p can be written as

yt = A1yt−1 + A2yt−2 + . . .+ Apyt−p + νt, (1)

where νt is a vector of mean zero innovations, E[ν ′
tνt] = Σν and E[ν ′

tνt−i] = 0 ∀i > 0.

Given the half-life literature typically makes the argument from the perspective of an

impulse response function (IRF), it is more convenient for the exposition to work with

the moving average (MA) representation. Assuming the roots of the VAR are invertible,

the Wold representation theorem states that the VAR in Equation (1) has a infinite MA

representation

yt = B0νt +B1νt−1 +B2νt−2 + . . . (2)

Equation (2) is generally not sufficient to pin down the IRF because of correlation

across νt. To get independent variation, let εt is a vector of N independent innovations

with covariance matrix IN . Suppose there is a matrix C where Σν = CC ′, then νt = Cεt.

Substituting into Equation (2),

yt = B0Cεt +B1Cεt−1 +B2Cεt−2 + . . . (3)

Let φ(i) be the IRF at horizon i for a one unit shock to εt, the IRF at horizon i can

be written as

φ(i) = BiC. (4)

If one can identify εt, then one can calculate the IRF, and all other characterizations

of IRF such as half-lives in typical set ups. The problem arises that while C is uniquely

pinned down in the univariate case, it is generally not in the multivariate case. To see

this, let Q be an N × N orthonormal matrix where QQ′ = IN , and C̃ = CQ. It is then

trivial to verify Σν = C̃C̃ ′. So long as Q is not the identity matrix, both C and C̃ are

valid, yet different, orthogonalizations to obtain εt. In the univariate case when N = 1,

Q = 1 and thus C is uniquely pinned down (i.e C = Σ
1
2
ν ). Therefore, the problem only

arises because C is generally not unique in the multivariate setting, or when N > 1. In

the multivariate case, because C is not uniquely pinned down, the likelihood function

cannot uniquely pin down the IRF. On the other hand, in the univariate case, because C

is uniquely identified, knowledge of the likelihood is sufficient to pin down the IRF, and

other quantities of interest, such as half-lives.
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Yet, the uniqueness of the orthogonalization is not the only concern. Even if there

is agreement to how to identify εt, each variable has N sets of IRFs, one for each of the

N shocks. In other words, each of the IRFs is conditional on each of the N shocks, and

so any characterizations of the IRF like half-lives, are similarly conditional. Once again,

when N = 1, this is not an issue as the unconditional IRF coincides with the conditional

one given there is only a single set of IRF. But when N > 1, it is not obvious which set

of the IRFs best represents the half-life of the variable of interest. At times, the half-life

conditional of different shocks in a multivariate framework is of interest (e.g. Ng, 2003).

In other situations, this is less satisfactory as it would appear overly restrictive to only be

unable to calculate the unconditional half-life. Therefore, even comparing half-life profiles

across univariate and multivariate specifications is not natural given the conditionality

under which these profiles are derived do not necessarily coincide.

From this perspective, it is hardly surprising that univariate testing of half-life is so

prevalent in the wider literature given such tasks are much easier to handle conceptually in

the univariate, relative to a multivariate, framework. To the extent that modern macroe-

conomic theory write down general equilibrium models which emphasize interconnection

and joint determination of many variables makes univariate testing less satisfactory and

somewhat inconsistent.

It turns out that while the IRF in a multivariate system is not invariant to how a

researcher orthogonalizes Σν , the variance of the IRF is invariant. This can be easily

verified by taking the variance of both the left and right hand side of the Wold form in

Equation (3),

V ar(yt) = B0Cεtε
′
tC

′B′
0 +B1Cεt−1ε

′
t−1C

′B′
1 +B2Cεt−2ε

′
t−2C

′B′
2 + . . .

= B0ΣνB
′
0 +B1ΣνB

′
1 +B2ΣνB

′
2 + . . . . (5)

This result suggests that a summary persistence measure, such as the half-life, derived

from working off the variance will be invariant to any arbitrary orthogonalization of Σν ,

because one can entirely sidestep the issue of orthogonalising Σν . Taking the square of

(4), we can write the square of the IRF as

φ(i)2 = BiΣνB
′
i. (6)

The cumulative squared IRF at horizon i, Φ(i), can be expressed as

Φ(i) = B0ΣνB
′
0 +B1ΣνB

′
1 +B2ΣνB

′
2 + . . .+BiΣνB

′
i

= φ(0)2 + φ(1)2 + φ(2)2 + . . .+ φ(i)2 (7)
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Note that as the horizon approaches infinity, the expression for the cumulative sum of

the squares of the IRFs, limi→∞ Φ(i), is the unconditional covariance matrix, and coincides

with the expression in Equation (5). So long as the real exchange rate is covariance

stationary, the expression is summable (i.e.
∑∞

i=0 φ(i)
2 < ∞). The above discussion

suggests working with the variance may yield a possible characterization of the half-life in

a multivariate framework. A related approach suggested by Chortareas and Kapetanios

(2013) adopts an alternative definition as the half-life as being the time it takes for half

the total volatility to subside. Let the real exchange rate be the kth variable in the vector

yt and ei be a selector vector of zeros apart from 1 as its ith element. Adopting an

alternative definition of half-life as the time taken for half the total volatility to subsize,

the cumulative volatility (CuVo) half-life, denoted h∗
CuV o, will satisfy

ekΦ(h
∗
CuV o)e

′
k =

limi→∞ ekΦ(i)e
′
k

2
.

To allow for non-integer values for h∗
CuV o, we can instead evaluate1

∫ h∗
CuV o

0

ekφ(i)
2e′kdi =

∫ ∞

h∗
CuV o

ekφ(i)
2e′kdi. (8)

The CuVo half-life sidesteps the issue of identifying shocks and only uses information

contained in the likelihood function (i.e. B and Σν) without any auxiliary identification

assumptions.2 Notice that as we focus attention on a single element, namely the cumu-

lative volatility of the kth variable, the issue of which IRF to focus on is sidestepped as

well. Therefore, the CuVo half-life provides an unconditional measure of persistence of

any variable of interest within the multivariate system.

Relation to Existing Work

One interpretation is that the CuVo half-life is a multivariate extension and generaliza-

tion of the cumulative volatility approach in AR models suggested by Chortareas and

Kapetanios (2013). In univariate environment, the CuVo half-life is exactly as suggested

by Chortareas and Kapetanios (2013). The link with Chortareas and Kapetanios is that

the object of interest should be characterizing an object closer to the autocovariance func-

tion (ACF), rather than the IRF. The discussion by Chortareas and Kapetanios occurs

1I follow Chortareas and Kapetanios (2013) to use linear interpolation between integer values of i to
work out the non-integer values of the half-life.

2A reader contrasting with the earlier univariate literature may wonder if it is possible to characterize
the persistence of the real exchange rate by considering the eigenvalues of the companion matrix (e.g.,
see Rossi, 2005). While the eigenvalues entirely characterizes the persistence of the variable in question
in a univariate system, this is not necessarily true in the multivariate system. The eigenvalues in the
multivariate system are influenced by all the variables in the system, and the largest eigenvalue may
not be associated with the variable of interest. For sake of argument, suppose in a bivariate VAR, one
variable is more persistent, while the other exhibits more white noise behavior. In this example, we learn
little about the persistence of the less persistent variable by characterizing the largest eigenvalue.
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through viewing the half-life through the IRF, like much of the half-life literature. This

distinction is not crucial because Chortareas and Kapetanios (2013) work within univari-

ate AR frameworks. However, recognizing the distinction between the ACF and the IRF

is important in allowing the generalization of Chortareas and Kapetanios (2013) results

into a multivariate setting. In particular, given the structure presented in Equation (1)

and Equation (2), the ith order ACF of the kth variable, which we denote ϑk(i) is

ϑk(i) = ekBie
′
kV.

where is the V is the unconditional variance of the variable of interest.3 To see the

distinction between a characterization of the ACF or the IRF, recall from Equation (4)

that the IRF, φ(i) = BiC. Therefore, we can rewrite the ACF as

ϑk(i) = ekBiCC−1e′kV

= ekφ(i)C
−1e′kV

In the univariate case, recall C = Σ
1/2
ν , which is a scalar. Therefore, in the univari-

ate case, the distinction between ϑk(i) and φ(i) only differs by a constant scaling factor,

V −1Σ
1/2
ν . This is why the distinction between characterizing the IRF or ACF in a univari-

ate environment is a matter of semantics. As should be clear by now, in the multivariate

case, the identification of C matters, and therefore the distinction between the ACF and

the IRF matters. The CuVo half-life, has a tigher link to the ACF through its evaluation

of sequences of ϑk(i)
2V −1Σν(k, k), where Σν(k, k) is the (k, k) element of Σν .

4

Recognizing that characterizing the half-life is a summary statement about the ACF

entirely sidesteps the issues about IRFs in multivariate models. While an N variable

multivariate model has N sets of IRFs, it still only has a single ACF per variable. The

CuVo half-life is analogous to evaluating the squared ACF, normalized by the inverse of

the variance of the variable of interest. Therefore, a subtle shift of the discussion from

the IRF to the ACF greatly clarifies the object of interest.

3We can calculate V if we rewrite the VAR in companion form, yt = Fyt−1 + ζt, where F =⎡
⎢⎢⎢⎣
A1 A2 . . . Ap

I 0 0 0

0
. . .

... 0
0 . . . I 0

⎤
⎥⎥⎥⎦ and Q =

[
Σν 0
0 0

]
, vec(R) = [I − F ⊗ F ]

−1
vec(Q), V = ekdiag(R)e′k.

4 It would seem equally valid to redefine the half-life as the cumulative standard deviation, given
standard deviations are in the units of the variable of interest and still retain the link to the ACF. The

resulting cumulative standard deviation half-life will be a factor of
√

1
2 or approximately seven-tenths of

the CuVo half-life. I will not pursue this further given such a scaling can be trivially implemented, as well
as the cumulative volatility has tighter links to existing work by Cogley, Primiceri, and Sargent (2010)
and Chortareas and Kapetanios (2013). Moreover, an adjustment which I will describe later, further
detailed in Footnote 5, will make this distinction between cumulative standard deviation and cumulative
volatility a second order issue. I thank James Hamilton for pointing out this possibility.
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The CuVo half-life is also related to work on measuring predictability or forecastability

(e.g., see Diebold and Kilian, 2001; Cogley, Primiceri, and Sargent, 2010). In particularly,

let i and j be forecast horizons where j >> i. The idea is that if a variable is more

persistent, then the degree of predictability at forecast horizon i will be more dissimilar

to the predictability at horizon j. Using notation that I have already introduced, an

example is Cogley, Primiceri, and Sargent’s R2 persistence statistic after i periods, which

we can view as a special case of Diebold and Kilian’s predictability statistic when j = ∞
and variable k is stationary,

R2(i) = 1− ekΦ(i)e
′
k

ekΦ(∞)e′k

where R2(i) measures the share of the forecastable variation in variable k after i

periods. R2(∞) = 0 by construction since in the infinitely long future, none of the

variation of variable k is forecastable. The CuVo half-life serves as an alternative re-

framing of these predictability and forecastability measures where we calculate how large

should i be before the statistic attains a value of one-half or R2(h∗
CuV o) = 0.5. This re-

framing to a half-life measure provides an interpretation where we relate the ideas of the

degree of persistence of a variable of interest to degree of predictability.

Uniqueness of the CuVo Half-Life

The definition of the traditional half-life is the time it takes for half the effect of a shock

has decayed. Let ρ̂AR1 is an estimated coefficient from an AR(1) regression of the real

exchange rate, it is well known that the traditional half-life, h∗
THL can be calculated

h∗
THL =

log(0.5)

log(ρ̂AR1)
. (9)

Calculation of traditional half-lives from an AR(1) holds intuitive appeal because de-

cay is monotonic, therefore solution to the half-life is unique. Even within univariate

environments, the calculation of half-life using higher order AR(p) models poses concep-

tual challenges because decay is not guaranteed to be monotonic, and empirical analysis

often does reveal non-monotonic decay. Non-monotonicity compromises the uniqueness

of the half-life, which partly explains the appeal of working with an AR(1). Some ex-

amples of such non-monotonic decay are hump-shaped IRFs (see Cheung and Lai, 2000)

and also multiple solutions as the IRF attains half the value of an initial shock multiple

times. Therefore, the traditional measure of half-life has a surfeit of issues to resolve once

we move away from an AR(1), and these are issues that are inherent even before one

considers the issue of how to incorporate multivariate information. Part of Chortareas

and Kapetanios’s motivation of suggesting working with the cumulative volatility is pre-

cisely to work with a monotonic object, and thus be able to calculate a unique half-life.
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Naturally, being also a multivariate generalization of their approach, the CuVo half-life

also similarly obviates the issues related to non-monotonicity. This can be verified by

observing Equation (7). Given that the diagonals of the matrices are variances and so

strictly non-negative, ekΦ(i)e
′
k is monotonically increasing in i, and therefore solution to

the CuVo half-life is unique.

An AR(1) Normalization

The CuVo half-life, however, does require a definitional change of the half-life before one

can compare the CuVo half-life with the wider literature. While there may be compelling

reasons to adopt a definitional shift given the traditional half-life struggles to deal with

non-monotonic processes as previously discussed, there is no common ground to do com-

parisons with the wider literature if there is no shift in the definition of the traditional

half-life. This is especially true if one is interested in comparing against the three to five

year consensus described by Rogoff (1996), where the vast majority of estimates of this

consensus occurs almost exclusively through the definition of the traditional half-life.

I thus propose a possible normalization of the CuVo half-life into a summary statistic

which can be made comparable to the traditional half-life, especially if one is not prepared

to compromise on a definitional change. The starting point of such a normalization is to

first recognize that there is at least agreement on how to characterize a traditional half-life

from an AR(1), which as per Equation (9), is the familiar h∗
THL = log(0.5)/log(ρ̂AR1). It

is also not difficult to verify that for a given ρ̂AR1, the traditional half-life is longer than

the CuVo half-life.

One suggestion to normalize the CuVo half-life is to recognize for a given AR(1)

regression with parameter ρ̂, this process has a unique CuVo half-life estimate due to the

monotonicity of the cumulative variance. Denote this estimate as h∗
CuV o(ρ̂). Suppose we

wanted to adjust a CuVo half-life estimate from an alternative model. This model may

be a AR process with richer dynamics or a multivariate process. Denote this h∗
CuV o(ϕ̂).

Given h∗
CuV o(ϕ̂), we can solve for ρ̂ where

h∗
CuV o(ϕ̂) = h∗

CuV o(ρ̂). (10)

We can then use ρ̂ by appealing to the traditional half-life estimate from an AR(1)

where we can convert the CuVo half-life to a cumulative volatility adjusted (CuVoA)

half-life where

h∗
CuV oA =

log(0.5)

log(ρ̂)
. (11)

The CuVoA half-life adjustment “converts” the CuVo half-life estimate into “units”

of the traditional half-life. This will facilitate comparison with the wider empirical litera-
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ture, especially is one was not prepared to accept the definitional change of the cumulative

volatility. The CuVoA half-life also retains all the properties of uniqueness and mono-

tonicity of the CuVo half-life given we are mapping relative to an AR(1) process.5

3 An Application to PPP

For the empirical application, I estimate half-lives of the real exchange rate for the G7

countries, Australia and New Zealand. All real exchange rates are expressed relative to

the U.S. dollar. They are constructed as the ratio of the U.S. CPI relative to the domestic

CPI adjusted for the domestic to U.S dollar exchange rate. I consider three additional

variables; relative inflation, relative interest rates, and relative real GDP growth rates to

the U.S.6

Generally, most of the countries have samples that starts in the 1960s, with the earliest

in 1960Q2 and all ending in 2017Q1.7 Whenever possible, I try to use the longest possible

sample. While this poses few issues with GDP and CPI data, there is often not a long

continuous span of time series for interest rates. I generally use a short term treasury bill

that has a long history, and if needed, use a relationship with an alternative interest rate

to backdate the sample as far as possible. Most of the CPI and interest rate data are

from the International Financial Statistics database. The GDP data is generally from the

World Economic Outlook database. I leave the specifics of data sources, coverage, and

construction to the online appendix.

For each of the countries, I estimate both univariate AR models and four variable VARs

to characterize the half-life of the real exchange rate using the CuVo half-life procedure

which I introduced, as well as the CuVoA half-life. I will produce two sets of results. In

one set, I use the Akaike Information Criterion (AIC) to select the lag order. For the AR

models, the AIC chooses two lags for every country except Japan, which it chooses one lag.

For the four variable VAR specifications, the AIC chooses one lag for every country. The

selection of one lag for the VAR models is of concern as there is evidence that criteria like

AIC may pick too low a lag order with misspecified models. Therefore, I report another

set of results where I will uniformly use four lags for all the AR and VAR models, with

the choice of four informed by the general rule of thumb for quarterly data.8 I do not

5 The CuVoA half-life also solves a slight issue of the CuVo measure described in Footnote 4, namely
whether to construct the persistence measure based on the variance or standard deviation. Normalizing
relative to a traditional half-life’s AR(1) means that whether one uses the cumulative standard deviation
or cumulative volatility, both map into the same CuVoA half-life as implied by a traditional half-life
AR(1), given all three produce unique solutions relative to their respective definitions of a half-life.

6While it is less clear whether to use relative variables, or just the raw variable for each country, the
use of relative variables for the empirical analysis decreases the number of variables in the VAR from
seven to four, thus preserving precious degrees of freedom within the VAR system.

7The sample start dates are as follows. Australia: 1960Q2, Canada: 1962Q1, France: 1964Q1, Ger-
many: 1970Q2, Italy: 1960Q2, Japan: 1960Q2, New Zealand: 1964Q1, and United Kingdom: 1960Q2.

8Wiriyawit and Wong (2016) and Kamber, Morley, and Wong (2017) show Monte Carlo evidence
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conduct unit root tests given the real exchange rate needs to be stationary for the half-life

to exist. Perhaps the most important issue uncovered by the prior literature, but relevant

in the current context, is that unit root tests are based entirely on a univariate AR(p) test

specification. It is not entirely clear how to reconcile conclusions from univariate tests to

the multivariate specifications for which I will be conducting the empirical application.

Moreover, it is known that there are a multitude of issues with regards to reconciling unit

root tests with the existence of a finite half-life (see, e.g. Engel, 2000). I will therefore

regard the exchange rate as mean-reverting for the empirical analysis.

Bias-Correction It is known that OLS estimates from autoregressive process are down-

ward biased, and this bias becomes more serious the closer the process is to non-stationarity.

This has emerged as a particularly important issue for half-life estimation because most

estimated real exchange rate dynamics are close to being non-stationary, and so these bi-

ases have a quantifiable impact on half-life estimates. While there are methods to correct

for the bias in AR models (e.g. Andrews and Chen, 1994), and some variants of such bias

adjustments have been applied in the estimation of half-lives (e.g. Murray and Papell,

2002; Cashin and McDermott, 2003), it is not entirely clear how one should proceed in

a multivariate settings. In my empirical application, I will utilize the “bootstrap-after-

bootstrap” procedure introduced by Kilian (1998) in order to correct for possible biases

and construct confidence intervals for the half-life estimates. In my application, I will

utilize the first bootstrap to approximate the bias and use this approximation to subse-

quently bias-correct the half-life estimates.9 The second bootstrap will be applied in order

to construct confidence intervals. To make the confidence intervals and bias-corrected es-

timates comparable between the univariate and multivariate models, I apply the same

bootstrapping and bias-correction procedure to both the AR and VAR models.

Empirical Results

CuVo Half-life Estimates Figures 1 and 2 present the estimated half-lives, with the

lag order chosen by AIC and four lags respectively. The estimated half-life from the

OLS coefficient is indicated with a cross, and the bias corrected estimate is indicated

with a solid circle. The whiskers indicate the width of the 90% confidence interval. If

any of the point estimates, or the upper whiskers are not presented, this indicates that

the estimated half-life is too large to be plotted on the chosen scale, and should be

where the true model is not in the set choice models due to issues like possible model misspecification
or moving average terms, lag order test may revert to choosing a very low lag order AR or VAR model.
Choosing rule of thumb lag orders, such as four for quarterly data, may then sometimes be a superior
alternative to using information criterion.

9The online appendix contains more specific details of the bootstrapping algorithm.
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interpreted as being close to infinity, or non-mean reverting.10 There is a large degree

of heterogeneity of half-life estimates across all the countries in the sample. Canada and

Japan stand out as having very long estimated real exchange rate half-life, though this

is less surprising given similar findings have previously been reported elsewhere (e.g., see

Obstfeld and Rogoff, 2001; Kilian and Zha, 2002; Murray and Papell, 2002). We can note

a number of similarities. In general, the estimated CuVo half-life from using a rule of

thumb four lags appears to be slightly shorter than their counterpart estimate using AIC,

which is always estimated with a lag order shorter than four. This suggest higher order

dynamics appear important in explaining mean reversion behaviour of the real exchange

rate. A striking observation, and perhaps the most important result within the context of

this paper, is that most of the estimated CuVo half-lives, especially after applying bias-

correction, are longer for the multivariate VAR model relative to the univariate AR model.

The confidence interval also appears to be wider for estimates from multivariate models

relative to the univariate AR models. The uncertainty around these half-life estimates,

while extremely wide, is not surprising and entirely consistent with the wider literature

(see Murray and Papell, 2002; Rossi, 2005, for specific examples). The key observation to

note is that relevant multivariate information appears to increase the estimated half-life

relative to a univariate model.

CuVoA Half-life Estimates We turn to estimates of the CuVoA half-life. As de-

scribed earlier, the purpose of implementing the adjustment is mainly to reconcile with

the definition of the half-life in the wider literature through a normalization to the AR(1)

of a traditional half-life. A key reconciliation is with the three to five years “remarkable

consensus” of the wider real exchange rate literature (see Rogoff, 1996) without necessar-

ily invoking a change of definition that the CuVo half-life entails. Figures 3 and 4 presents

these results. Given the CuVoA half-life is just a transformation of the CuVo half-life, it

should come as no surprise that Canada and Japan once again stand out for very long

half-lives. It is also unsurprising that multivariate information leads to a larger CuVoA

half-life estimate relative to a univariate model, given these once again reflects the results

we already know from the CuVo half-life. With the four lags specification, the multivari-

ate half-lives with the exception of Japan and Canada, while larger than their univariate

counterpart, are still largely within the three to five year consensus. This is not true from

the models which consider AIC lag selection. Once again, excluding Canada and Japan,

four of the six remaining countries have a multivariate half-life estimate which is slightly

10To preserve the readability of the Figure, I use a cut-off of 25 years if the confidence interval and
point estimates cannot be presented on the same scale. Note this means we regard even finite half-life like
hundreds or thousands of years as being non-mean reverting. To give some idea about the magnitudes
involved, an AR(1) model will require an AR parameter of 0.993 to yield a traditional half-life of 25
years with quarterly data. With the CuVo half-life, an AR(1) model will need a parameter of 0.997 to
correspond with a half-life of 25 years.
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higher than the consensus, as they are over five years, but under six years. However, mul-

tivariate information also substantially increases the estimated CuVoA half-life estimate

for Australia and Italy, suggesting a half-life of about thirteen and eight years respec-

tively. In general, once we consider multivariate information without a definitional shift,

reconciliation with the “remarkable consensus” is more mixed. With a rule of thumb four

lags, the results appear more consistent with this consensus range, though this consensus

appears to dissipate once we consider lag selection using AIC.

Multivariate Information and Reconciliation to the “Remarkable Consensus”

It is important to stress that whether one uses the CuVo or CuVoA half-life estimate does

not alter the empirical results that multivariate information is important. The extent of

which whether multivariate information matters for this “remarkable consensus” may be

definitional. If one can accept that we can compare the CuVo half-life with the wider lit-

erature, then a general conclusion is multivariate information often increases the half-life

estimate into the consensus range, undoing Chortareas and Kapetanios’ conclusion of a

lower half-life based on a definition change as they only estimated univariate models. If

one can only accept a comparison on the basis that the traditional half-life definition is

the right one, then it appears that the estimated CuVoA half-lives might be higher than

the consensus range, depending on model specification. Regardless of one’s persuasion,

it is clear that conclusions regarding half-life estimates may be altered based on multi-

variate information, and ideas developed within this paper may be an important step to

reconciling these results.

The Role of Bias-Correction To better understand the role of bias-correction on

persistence, we can study the largest eigenvalue within the estimated AR and VAR sys-

tem, with the caveat that the largest eigenvalue may not necessarily be driven by the

real exchange rate, and so such analysis is merely indicative. Figure 5 plots the largest

eigenvalue from the estimated models in the empirical analysis. Models estimated using

four lags appear to have less persistence, given the modulus of the dominant eigenvalue

appears smaller, consistent with our previous analysis that higher order model are more

likely to evidence quicker mean reversion. While bias-correction will by construction re-

sult in a larger estimated half-life, we observe, especially in specifications which use AIC

to conduct lag order selection, a number of instances that the bias-uncorrected multivari-

ate model evidences more persistence than the bias-corrected univariate counterpart. On

some level, this suggests that even bias-correcting the univariate AR model may not be

sufficient on its own in producing more persistence relative to considering relevant multi-

variate information. More generally, the analysis of the largest eigenvalue suggest that the

univariate AR models, perhaps through omission of relevant multivariate information, are

much less persistent than the VAR models, and these difference in persistence are further
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exacerbated when we correct for the bias in the least squares estimates. These results are

fully consistent with the previous empirical analysis.

Granger causality Given the preceding exercise suggests multivariate information as

being important for the estimation of the half-life, we delve deeper into the content of the

multivariate information. A straightforward test for whether multivariate information is

relevant is to conduct a Granger causality test. In particular, if variables Granger cause

the real exchange rate, then we can conclude that the data supports that the multivariate

information is relevant. A related consideration is Granger causality is only a sufficient,

but not necessary, condition for whether a variable has relevant informational content to

forecast the real exchange rate. For example, a variable may not Granger cause the real

exchange rate, but Granger causes a variable which Granger causes the real exchange

rate. Such a variable in question still has relevant multivariate information for forecasting

the real exchange rate and this has been variously described as Granger causal prior (e.g.,

see Jarociński and Maćkowiak, 2017), or “indirect” Granger causality (see, e.g. Dufour

and Renault, 1998), and is a much more challenging condition to establish and test for

relative to Granger causality. I thus test conduct standard Granger causality test, as well

as the long horizon Granger causality tests introduced by Dufour, Pelletier, and Renault

(2006), with the latter used as an attempt to understand if such indirect and complex

forms of relevant multivariate information exist.11 Table 1 presents the results of the

Granger causality tests. Once again, the lag order is selected either through AIC or by

applying a uniform rule of thumb of four lags. If the null of a variable not Granger

causing the real exchange rate can be rejected, the appropriate entry in the Table is

marked. When we consider the standard Granger causality tests, it appears apart from

Canada and Italy, at least one variable does Granger cause the real exchange rate. When

we apply the test of Dufour, Pelletier, and Renault (2006) to test for “indirect” causality,

the evidence for whether the multivariate information is relevant is much stronger. In

particular, when we consider the four lag test specification, we often find two out of the

three variables as being relevant multivariate information for the real exchange rate. On

the basis of the Granger causality tests, it would suggest that the longer estimated half-

lives from the multivariate models are because there is genuine multivariate information

which has been incorporated into the half-life characterization. The Granger causality

tests provide strong evidence that the considered multivariate information is empirically

important. Multivariate information should therefore be part of the characterization of

the persistence of the real exchange rate because they are empirically relevant.

11The test by Dufour, Pelletier, and Renault (2006) are largely standard Granger causality test, but
instead of regressing against yt, regress against yt+h to establish if there is Granger causality at horizon
h. I test for this form of “long horizon” Granger causality from h = 1, 2 . . . 6, and conclude there is
“indirect” causality if the null can be rejected for at least one of the tested horizons.
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4 Monte Carlo Exercise

So far, the paper has presented methods of estimating half-life in multivariate systems.

The empirical application of PPP for a group of G7 countries, Australia and New Zealand

generally provides support that it is important to consider multivariate information when

studying the persistence of the real exchange rate. I now conduct a Monte Carlo exercise

to better understand the empirical results.

To conduct the Monte Carlo exercise, I choose a standard two country open economy

Dynamic Stochastic General Equilibrium (DSGE) model as introduced by Lubik and

Schorfheide (2006) as the Data Generating Process (DGP). The model featuring optimiz-

ing households, monopolistically competitive firms and a monetary and fiscal authority in

each country. The DGP is parametrized using the posterior mode of the estimated model

which is estimated using Euro Area and U.S. data on the sample used by Lubik and

Schorfheide (2006).12 The choice DSGE model is natural given many of its features are

ubiquitous in a variety of open economy DSGE models (e.g. Bergin, 2006; Jacob and Peers-

man, 2013). Moreover, given that Lubik and Schorfheide (2006) estimate their model on

Euro Area-U.S. data, the parameterization at least provides simulated data which match

observed time series dynamics. Model details are as per Lubik and Schorfheide (2006)

(pages 318-326), with the exact parametrization of the DGP in the online appendix.

For each Monte Carlo sample of simulated data, I generate seven observables from

the DSGE model; domestic and foreign output growth, domestic and foreign inflation

rates, domestic and foreign interest rates, and the real exchange rate. I then fit both

an AR model on the real exchange rate and a VAR on the seven variables to study the

role of multivariate information. I use the linearized solution of the DSGE model as the

DGP, so that the underlying DGP can be well approximated by a linear model.13 An

important issue to note is that the underlying DGP has a VARMA representation as its

reduced form. Therefore, while the AR model is misspecified due to omitted multivariate

information, the estimated VAR may also be misspecified because it does not feature MA

terms. Nonetheless, it is known that the omitted state variables may simply result in

a re-parameterized model of fewer variables, where a potential ARMA structure or long

order AR model may be able to approximate the underlying DGP (e.g., see Wallis, 1977;

Kapetanios, Pagan, and Scott, 2007). This point suggests that we should not immediately

condemn the AR model to failure, given the theoretical possibility exists that a very high

order AR model may be able to approximate the multivariate DGP.

12I used the Dynare code on Frank Schorfheide’s website to estimate the model and subsequently
simulated the model parameterized using the posterior mode. I thank both Frank Schorheide and Thomas
Lubik for making the code available.

13Ahmad, Lo, and Mykhaylova (2013) show nonlinear dynamics can be particularly striking from the
perspective of nonlinear tests when they generate data from a DSGE model from it higher order, and
nonlinear, solution. Given the focus on the paper to first propose a solution to measure persistence within
multivariate linear systems, I will not pursue the idea of nonlinearity.
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I report the estimated CuVo half-life. The choice between reporting the CuVo half-

life or CuVoA half-life is less crucial within the Monte Carlo experiment as we are only

investigating whether the fitted models can capture the persistence of the real exchange

rate within the DGP. In particular, if one can pin down the underlying autocovariance

structure, or the ACF, in the DGP, then one will estimate the correct CuVo half-life as

per the underlying DGP, as this is just a summary statistic of the DGP’s ACF.

I first simulate a long Monte Carlo sample with 200,000 observations in order to study

the asymptotic properties of the persistence estimates and these results are presented in

the top panel of Figure 6. Because degrees of freedom issues are irrelevant in such a

sample, and possible VARMA dynamics may be approximated with an arbitrarily high

AR lag order, I thus estimate both the VAR and AR model with 100 lags.14 The CuVo

half-life using the multivariate VAR model is close to being unbiased, falling short of the

DGP CuVo half-life by only about one period (i.e. one quarter with quarterly data).

The AR models, by omitting multivariate information, results in an extremely downward

biased estimate of CuVo half-life, with the estimated CuVo half-life less than half of

that of the DGP’s. On the basis of the large sample Monte Carlo, I conclude that even a

very high order univariate model is sufficient to offset the omission of relevant multivariate

information in population. Therefore, measures of persistence from univariate models will

systematically underestimate the persistence of the real exchange rate given an underlying

multivariate DGP.

To understand small sample issues, I also simulate 2000 Monte Carlo samples, each

with 250 observations. These results are presented in the second and third panel. The

CuVo half-life has a distribution which is possibly of an unknown form. Because the

least we know is that the distribution of the CuVo half-life should be extremely skewed,

taking the mean across Monte Carlo draws is not a meaningful way to understand the

small sample distribution. Therefore, to get an idea of the possible central tendency

of the estimated half-life in small samples, I present two summary statistics. The first

calculates the median estimated half-life across the 2000 Monte Carlo samples and is

presented in the middle panel. The second approach calculates the mean across the the

interquartile range, and thus attempts to understand the distribution without the skewed

tail. While neither will be entirely suitable statistics for the task at hand, they at least

provide some information to understand the small sample properties. I choose the lag

order of the AR and VAR model similar to how I conducted the empirical exercise. I

either choose four lags as a rule of thumb for quarterly data, or use the AIC, of which

14Given weak identification issues of MA terms are an important issue on its own and would warrant
a separate research agenda, I will not pursue studying MA terms in the Monte Carlo exercise. Note
that if one could sidestep all the weak identification issues of fitting MA terms, then one can estimate
a model with MA terms and apply the ideas introduced in this paper to estimate half-lives with mul-
tivariate information, as long as the estimated VARMA is stationary and has a vector moving average
representation.
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the results are presented with p in the parenthesis. Once again, we observe the CuVo

half-life, estimated using multivariate models is less biased. Interestingly, without bias-

correction, both multivariate and univariate models are almost as severely downward

biased in terms of their CuVo half-life. The bias-correction helps push the multivariate

models towards the true CuVo half-life. It is not surprising that bias-correction helps to

produce less biased persistence measures, given these corrections are meant to solve small

sample issues. It is however somewhat more surprising that, at least within the context

of the Monte Carlo exercise, the correction only has a tangible effect of producing less

bias with the multivariate models relative to the univariate ones.

Overall, I make two key observations based on the Monte Carlo exercise. First, in a

multivariate DGP environment, multivariate models produce less biased measures of real

exchange rate persistence relative to univariate models. This result is consistent with the

empirical analysis where we find more persistent real exchange rates with multivariate

models. One interpretation consistent with the Monte Carlo exercise and the empiri-

cal analysis is that the lower half-lives estimated from univariate models could thus be

attributed to omitting relevant multivariate information. Therefore, the practical impli-

cations are clear. Unless one believed the real exchange rate is generated as a univariate

process and not through some general equilibrium or multivariate structure, then one

should consider a multivariate approach when estimating the half-life of the real exchange

rate. Omitting relevant multivariate information can result in a large downward biases

in estimated persistence resulting from the omitted information. Second, the lower real

exchange rate persistence estimated from univariate models is not a small sample issue.

Our large sample Monte Carlo exercise suggests that the downward bias in persistence

estimated through univariate models does not vanish asymptotically. On the other hand,

it appears that at least in an asymptotic sense, the multivariate model can eventually

uncover the true real exchange rate persistence.

5 Application to SVAR with Identified Shocks

While the identification of particular shocks is unnecessary for the calculation of the

multivariate half-life measures, the ideas within this paper can be trivially extended if

one wishes to identify particular shocks within a multivariate framework. To illustrate

such an application, I will present an empirical example of a model proposed by Ng

(2003), which is a five variable SVAR which has five identified shocks. The interested

reader is referred to the relevant paper for the underlying motivation of the restrictions

which underpin the identification scheme.

The model has two countries, a large country, A, and a small open economy, B. The

model has inflation rates and GDP growth of both countries, as well as the real exchange
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rate between the two countries.15 Using notation introduced much earlier in the article in

Equation(3), she proposes the following identification scheme for the five variable VAR.

yt = B0Cεt +B1Cεt−1 +B2Cεt−2 + . . .⎛
⎜⎜⎜⎜⎜⎜⎝

πA
t

πB
t

gAt

gBt

qt

⎞
⎟⎟⎟⎟⎟⎟⎠

= B0

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 0 0 0 C15

0 C22 0 0 C25

C31 0 C33 0 C35

C41 C42 0 C44 C45

C51 C52 C53 C54 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

εA0t

εB0t

εA1t

εB1t

εGt

⎞
⎟⎟⎟⎟⎟⎟⎠

+B1Cεt−1 +B2Cεt−2 + . . .

where the superscripts A and B refer to country A and B, and πt, gt and qt are

inflation, GDP growth and the real exchange rate respectively. The second line of the

exposition expands on the C matrix, which identify the εt vector of structural shocks. ε0t

are country specific shocks, while ε1t are sticky price shocks. The key difference which

distinguishes sticky price shocks and the country specific shocks is that the latter has an

instantaneous effect on prices, whereas the sticky price shocks only have a delayed effect

on prices. Finally, εGt represent global shocks. The idea behind Ng’s identification scheme

is probably best interpreted as a semi-structural attempt to understand the differences

between real and nominal shocks, which are analogous to the country specific and the

sticky price shocks respectively.

The idea of sticky price shocks motivates the restrictions C13 = C24 = 0. As a global

shock affects both countries, the identification scheme assumes that the global shock has

no impact on the real exchange rate, given it is a relative price, motivating C55 = 0.

Finally, all the other zero restrictions reflect the fact that shocks that originate in the

foreign country do not have an instantaneous impact on the domestic country. This in

principle will place 11 restrictions on the model, which is one more than needed to just

identify the VAR. Ng thus proposes to leave C41 free, arguing the with country A being

assumed to be larger than country B, country specific shocks in country A can have

an instantaneous impact on country B. The matrix C encompasses 10 identifying zero

restrictions, and thus satisfies the right number of restrictions for the structural model to

be just identified from the reduced form VAR.

Certainly, it can never be stressed enough that the credibility of any SVAR analysis

depends on how tenable are the underlying identifying restrictions. My objective is neither

to support nor object to the tenability of the current identification scheme, but instead

aim to use a prior published piece to serve as an empirical example. Therefore, how

seriously one should take the results of any empirical result presented within the SVAR

15Ng’s analysis uses monthly data, and thus uses industrial production as a proxy of output. I will use
GDP growth and also quarterly data to be somewhat consistent with my previous empirical analysis.
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analysis is always subject to the same caveats about the plausibility of any identification

scheme.

For the empirical example, I will present results from the Canadian-U.S. and U.K-U.S.

real exchange rate. Country A is thus the U.S. for both models, with country B being

either Canada or the U.K. The VAR is once again estimated with four lags.16 We first

calculate the CuVo half-life of the real exchange rate, conditional on the five identified

shocks. Reusing the previously introduced notation, let φ(i) be the IRF at the horizon i

and Γm,n(i) be the cumulative squared IRF of themth variable to the nth shock. Therefore,

Γm,n(i) =
i∑

k=0

enφ(k)
2e′m.

Then the conditional CuVo half-life of variable m to shock n, denoted h∗
CuV o|εnt will

satisfy

Γm,n(h
∗
CuV o|εnt ) =

limi→∞ Γm,n(i)

2
.

If one wishes to work with the CuVoA half-life, it is also straightforward to convert

the conditional CuVo half-life into a conditional CuVoA half-life, by once again applying

Equations (10) and (11).

The top panels of Figure 7 presents the estimated half-life, conditional on each of the

five identified shocks. I will present the conditional CuVoA half-life estimates, based on the

bias-corrected VAR coefficients. The horizontal dotted line marks out the unconditional

CuVoA half-life, as calculated from the procedure proposed earlier in the paper. The

unconditional CuVoA half-lives are about sixteen and four and a half years respectively

for the Canada-U.S. and the U.K-U.S. real exchange rate.17 We observe that for both

countries, the global shock has the longest CuVoA half-life estimate. In fact, for both

the Canadian-U.S., and U.K.-U.S. models, the persistence of the global shock is by far

the most persistent shock, with a CuVoA half-life estimate that is nearly twice that

of the next most persistent shock. Intuitively, the unconditional persistence should be

a weighted average of the conditional persistence across all shocks, with the weights

depending on the relative importance of the shocks. To get an idea of the importance of

the shocks, the bottom panel presents the forecast error variance decompositions of the

five shocks. I present the 20 quarters ahead and the asymptotic forecast error variance

decomposition. While the Canadian sticky price shock is the most important shock for the

Canada-U.S. real exchange rate, the U.S. country specific shock is the most important

shock for the U.K.-U.S. real exchange rate. Both of these shocks explain over 50% of

16Like the main empirical analysis, the Canadian-U.S. sample is from 1962Q1 to 2017Q1. The U.K.
sample is 1960Q2 to 2017Q1.

17These unconditional CuVoA half-life estimates are similar to the analysis in Figure 4, but differ only
to the extent that the information sets used in the VARs deviate slightly.
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the variance of their respective real exchange rate. The global shock, while is the most

persistent, is unimportant relative to the other four shocks. This explains why while

the global shock is found to have the most persistent impact on the real exchange rate,

the unconditional CuVoA half-life is not weighted towards the high persistence of the

global shock, but instead towards its most important shock. In fact, for the U.K.-U.S.

real exchange rate, the conditional CuVoA half-life to the U.S. country specific shock is

nearly equal to the unconditional CuVoA half-life, reflecting the fact that it derives it

unconditional persistence from its most important shock.

Overall, this section illustrates that the ideas proposed in this paper can be readily

extended to VARs with identified shocks. Even if the approach of estimating the uncondi-

tional half-life in multivariate systems can occur without identifying any of the underlying

shocks, one can always identify shocks, and then reconcile the conditional persistence to

the unconditional persistence. Therefore, the ideas presented in this paper do not in any

way restrict, and probably expand, the type of analysis which one can perform even if

one chooses to work with a fully or partially identified VAR.

6 Conclusion

Measuring persistence is an integral part of summarizing data dynamics. Half-life char-

acterization is a widely-cited summary measure of persistence, and has commanded wide

attention within the real exchange rate literature. The goal of this paper is to propose an

approach to characterize half-life in multivariate models. Modern macroeconomic models

are often multivariate and general equilibrium in nature, and thus provides a natural role

for tools to measure persistence in multivariate environments. To the extent that these

models are often written down to explicitly match the observed data dynamics suggest

such exercises form has an integral role in matching theory with data.

An empirical application of real exchange rates for G7 countries, Australia and New

Zealand suggest that accounting for multivariate information is empirically important.

The empirical findings suggest half-lives estimated from multivariate models are usually

longer than its univariate counterpart. A Monte Carlo simulation using a DSGE model is

also consistent with the empirical results, where the omission of multivariate information

can play a crucial role in severely underestimating the persistence of the real exchange

rate.

While the empirical exercise provides compelling evidence that considering relevant

multivariate information matters in measuring the persistence of the real exchange rate,

it is a broader empirical question whether there might be other sources of multivariate

information which may also matter, but have been neglected in the empirical exercise.

The ideas introduced in this paper can serve as a good starting point for such analysis.
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Table 1: Granger Causality Tests

Lag Order of Test Equation

AIC Four Lags

Granger

Causality

“Indirect”

Causality

Granger

Causality

“Indirect”

Causality

Australia Relative Inflation X X X

Relative GDP Growth X

Relative Interest Rates X X

Canada Relative Inflation X X

Relative GDP Growth X

Relative Interest Rates

France Relative Inflation X X X

Relative GDP Growth

Relative Interest Rates X X X

Germany Relative Inflation

Relative GDP Growth X

Relative Interest Rates X X X

Italy Relative Inflation X X

Relative GDP Growth

Relative Interest Rates X

Japan Relative Inflation X X

Relative GDP Growth

Relative Interest Rates X X X

New Relative Inflation X

Zealand Relative GDP Growth

Relative Interest Rates X X X X

United Relative Inflation X X

Kingdom Relative GDP Growth X X

Relative Interest Rates X X X X

Notes: All variables are relative to the U.S. Test equation includes lags of all the variables

and the lags of the real exchange rate all regressed on the real exchange rate. The test for

Granger causality is a standard test where the covariates are regressed on the current real

exchange rate. The test for “indirect” causality is a test of the same covariate against the

h step ahead real exchange rate, where h = 1, 2 . . . 6 (see Dufour, Pelletier, and Renault,

2006). The lag order is either selected using AIC or set at four lags. An X in the Granger

causality column indicates that the variable Granger causes the real exchange rate at 10%

level of significance. An X in under the “indirect” causality column indicates the variables

Granger cause the real exchange for at least one of the horizons, h = 1, 2 . . . 6, at the 10%

level of significance.
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Figure 1: Estimated Cumulative Volatility (CuVo) half-life, Lag Order Selected by AIC

Notes: CuVo Half-life expressed in years. The whiskers represents the bounds of the 90%
confidence intervals of the estimated CuVo Half-life. Any unpresented bound or point
estimate should be interpreted as infinitely and non-mean reverting.
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Figure 2: Estimated Cumulative Volatility (CuVo) half-life, Lag Order Set to Four Lags

Notes: CuVo Half-life expressed in years. The whiskers represents the bounds of the 90%
confidence intervals of the estimated CuVo Half-life. Any unpresented bound or point
estimate should be interpreted as infinitely and non-mean reverting.
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Figure 3: Estimated Cumulative Volatility Adjusted (CuVoA) half-life, Lag Order Se-
lected by AIC

Notes: CuVoA Half-life expressed in years. The whiskers represents the bounds of the
90% confidence intervals of the estimated CuVo Half-life. Any unpresented bound or
point estimate should be interpreted as infinitely and non-mean reverting.
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Figure 4: Estimated Cumulative Volatility Adjusted (CuVoA) half-life, Lag Order Set to
Four Lags

Notes: CuVoA Half-life expressed in years. The whiskers represents the bounds of the
90% confidence intervals of the estimated CuVo Half-life. Any unpresented bound or
point estimate should be interpreted as infinitely and non-mean reverting.
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Figure 5: Modulus of Largest Eigenvalue of Companion Matrix
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Figure 6: Results from Monte Carlo Experiment

Notes: CuVo half-life estimates are in years. Underlying DGP is a two country open
economy DSGE model by Lubik and Schorfheide (2006). The dotted line represents the
CuVo half-life from the underlying DGP. The number is parenthesis indicates the number
of lags in the AR or VAR model. p in the parenthesis indicates the lag order is chosen
by AIC. The bar represents the half-life estimates from the various exercises. The VAR
model is estimated with the seven observables generated from the DGP, with the bar
representing the estimated half-life from the real exchange rate. AR represents half-life
estimates of the real exchange rate from an AR model. Bias-correction is done via a
bootstrap as per the first step bootstrap described by Kilian (1998). Summary statistics
from the T = 250 Monte Carlo experiments are done from 2000 Monte Carlo samples.
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Figure 7: Conditional CuVoA Half-lives and Variance Decomposition of the Canadian-
U.S. and U.K-U.S. Real Exchange Rate

Notes: The left and rights panels presents results of the Canada-U.S. and U.K.-U.S. real
exchange rate to the various identified shocks. The top panels present the conditional
CuVoA half-life estimate, while the bottom panels presents the forecast error variance
decomposition. ε0t and ε1t refer to country specific and sticky price shocks respectively.
The superscript refer to the countries U.S., Canada and the U.K. εGt refers to global
shocks.
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A1 Raw Data Sources

All the data are from the OECD Economic Outlook and the IMF’s International Finance

Statistics (IFS). The data is accessed through Haver Analytics. Haver Analytics is a

subscription based system which aggregates various databases. For Germany, the data

is sourced through Haver Analytics’ G10 database because it combines pre and post

unification data, and so allows for a longer span of data for Germany to enter the empirical

analysis.

CPI

IFS Canada, France, Italy, Japan, Australia and New Zealand

Bureau of Labor Statistics U.S.

Bundesbank with adjustment by Haver Germany

Office for National Statistics, Retail Price Index United Kingdom

Nominal Exchange Rate Relative to the U.S.

IFS Australia, Canada, Japan, New Zealand and United Kingdom

Legacy Exchange Rates, Haver Analytics G10 Databank with Source Data

from Federal Reserve Bank Germany, Italy and France

GDP

OECD Outlook, Real GDP (volume) U.S., Canada, France, Italy, Japan, United

Kingdom, Australia, New Zealand

Deutche Bundesbank, Accessed through Haver Analytics G10 Databank Ger-

many

Short Term Interest Rate

Whenever possible, a 3 month bank bill is taken to be the domestic interest rate. To get

the longest possible span of interesr rate data, another long span of interest rate data is

usually taken to backcast using a linear regression. While I do try as much as possible to

use another short term interest rate, sometimes a long rate is used for the backcasting.

In principle, given interest rates tend to co-move, this should provide enough information
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to construct a long span of data for short term interest rates. Table A1 describes the

main interest rate series used, and if backcasted, the series used to backcast using a linear

regression. All the data is from IFS, except Germany, which is from the G10 databank of

Haver Analytics.

Table A1: Interest Rates Data Sources

U.S.
3-Month Treasury Bill
Canada
3-Month Treasury Bill Yield
France
Treasury Bill Rate: 13 weeks
Backcast Using: Money Market Opening Rate: Day-to-Day Loans Against Private Bills
Germany
Base Rate (formerly discount rate)
Italy
3-12 Month Weighted New Treasury Bill Rate (%)
Backcast Using: 9-10 Year Government Bond Yield (%)
Japan
Financing Bill Rate (% Per Annum)
United Kingdom
91-Day Treasury Bill Tender Rate
Backcast Using: London Clearing Banks: Instant Access Deposits
Australia
Money Market Rate: Short-Term, Weighted Average of Loans Outstanding
Backcast Using: 10-Year Government Nonrebate Bond Yield (%)
New Zealand
3-Month Treasury Bill Tender Rate
Backcast Using: 5+ Year Government Bond Yield to Maturity
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A2 Bias Correction and Construction of Confidence

Intervals

Almost all of this discussion draws on and repeats the algorithm section of Kilian (1998,

page 220). Let

yt = ĉ+ Â1yt−1 + Â2yt−2 + . . .+ Âpyt−p + ν̂t (A.1)

be the estimated VAR model where y represents the vector of variable in the VAR,

and ĉ, ν̂t and Âi, i ∈ {1, 2, . . . , p} are respectively the matrices or vectors of the constants,

residuals and estimated VAR coefficients obtained by fitting the VAR equation using least

squares. Let T be the length of the sample. I then apply the following steps.

1. Simulate 1000 datasets, each of length T , centring the DGP from Equation (A.1)

and sampling with replacement from the empirical distribution of the residuals, ν̂t.

Let A∗ be the mean of the VAR coefficients across the 1000 simulated datasets.

Approximate the bias Ψ = A∗ − Â.

2. Calculate the modulus of the largest root of the companion matrix. Denote this as

m(Â). If m(Â) ≥ 1, set Ã = Â. Otherwise, set δ1 = 1 and δi+1 = δi − 0.01. Let

Ā(i) = Ã − ΨΠi
j=1δj. Iterate on i = 1, 2, . . . until m(Ā(i)) ≤ 1, then set Ã = Ā(i).

This step retains the stationarity of the bias-adjusted DGP as one can get arbitrarily

close to the unit circle. Use Ã to construct the bias adjusted half-life estimate.1

3. Replace Â with Ã in Equation (A.1), and generate 2000 bootstrap samples. Use

the 2000 bootstrapped samples to calculate the confidence interval of the half-life

estimate.

1In the empirical exercise, the estimated VAR coefficients, Â, always imply stationarity. Therefore,
despite not testing for unit roots, this implies that the half-life exists, at least under the condition of
stationarity of the estimated AR or VAR coefficients in the empirical exercise.
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A3 Parameterization of Monte Carlo DGP

A DSGE model is used as the Data Generating Process (DGP) for the Monte Carlo

exercise. The model is a two country New Keynesian DSGE model used by Lubik and

Schorfheide (2006). The reader is referred to the relevant pages of their paper for details

of the model. The structure of the model can be found on pages 318-326 of their paper.

The model has an underlying structure of what is now considered a standard two country

open economy DSGE model. I use the same priors as Lubik and Schorfheide (2006), with

the model estimated on their dataset for Euro-U.S. data. The Dynare code to estimate

their model and the dataset can be found on Frank Schorfheide’s website. The DGP

is parametrized using the posterior mode. In Table A2, I report the parameterization

of the parameters in the DGP which I had subsequently used to generate data. The

notation used in Table A2 correspond with Lubik and Schorfheide’s notation for ease of

cross referencing.
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Table A2: Parameterization of Lubik and Schorfheide (2006) two country model used for
DGP

θH Fraction of home producers adjusting prices to steady state inflation 0.62
θF Fraction of domestic importers adjusting prices to steady state inflation 0.42
θ∗H Fraction of foreign importers adjusting prices to steady state inflation 0.90
θ∗F Fraction of foreign producers adjusting prices to steady state inflation 0.59
τ Coefficient of relative risk aversion 3.95
h Habit persistence 0.48
α Import share 0.19
η Intratemporal substitution elasticity between home and foreign consumption goods 0.29
ψ1 Coefficient on inflation on home monetary policy rule 1.53
ψ2 Coefficient on output growth on home monetary policy rule 0.61
ψ3 Coefficient on nominal exchange rate on home monetary policy rule 0.03
ψ∗
1 Coefficient on inflation on foreign monetary policy rule 1.55

ψ∗
2 Coefficient on output growth on foreign monetary policy rule 0.70

ψ∗
3 Coefficient on nominal exchange rate on foreign monetary policy rule 0.02

ρA AR(1) coefficient on the home technology shock 0.81
ρR AR(1) coefficient on for interest rate smoothing in home monetary policy rule 0.74
ρG AR(1) coefficient on home government spending 0.91
ρ∗A AR(1) coefficient on the foreign technology shock 0.89
ρ∗R AR(1) coefficient on for interest rate smoothing in foreign monetary policy rule 0.78
ρ∗G AR(1) coefficient on foreign government spending 0.91
ρZ AR(1) coefficient on worldwide technology shock 0.51
r(A)Steady state real interest rate 0.00
γ Steady state growth rate 0.41
π(A)Annualized steady state inflation 6.65
σA Standard deviation of the home technology shock 1.55
σG Standard deviation of home government spending shock 0.50
σR Standard deviation of home monetary policy shock 0.18
σ∗
A Standard deviation of the foreign technology shock 1.16

σ∗
G Standard deviation of foreign government spending shock 0.55

σ∗
R Standard deviation of foreign monetary policy shock 0.17

σZ Standard deviation of worldwide technology shock 0.34
σE Standard deviation of PPP shock 4.42
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