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Abstract

Factor models are used in a wide range of areas. Two issues with
Bayesian versions of these models are a lack of invariance to ordering of
the variables and computational inefficiency. This paper develops invari-
ant and efficient Bayesian methods for estimating static factor models.
This approach leads to inference on the number of factors that does not
depend upon the ordering of the variables, and we provide arguments to
explain this invariance. Beginning from identified parameters which have
nonstandard forms, we use parameter expansions to obtain a specifica-
tion with standard conditional posteriors. We show significant gains in
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computational efficiency. Identifying restrictions that are commonly em-
ployed result in interpretable factors or loadings and, using our approach,
these can be imposed ex-post. This allows us to investigate several alter-
native identifying schemes without the need to respecify and resample the
model. We apply our methods to a simple example using a macroeconomic
dataset.

1 Introduction

Factor models have proven useful in many areas including psychology, genomics,
epidemiology, economics and finance and significant advances in computation
using Bayesian approaches (for example, Geweke and Zhou (1996), Aguilar and
West (2000) and Chib, Nardari, and Shephard (2006)) have made Bayesian
analysis of such models feasible for a range of applications. Two problems that
have hampered Bayesian inference in factor models are, first, the models are
not invariant to different ordering of the variables (see, for example, Lopes and
West (2004)) and, second, poor efficiency of computation algorithms (e.g., Chib
et al. (2006)).

This paper makes a number of contributions. i) We provide a formal expla-
nation for why extant specifications are not invariant, that is, why the evidence
in the model can change when the order of the variables changes. ii) This pa-
per presents an invariant specification. That is, the specification will result in
inference that does not depend upon the ordering of the variables. iii) We use
parameter expansions to develop an algorithm that is both easy to implement
and computationally efficient. The resulting posteriors have relatively simple
normal forms. iv) We demonstrate that there is not an identification problem
so much as a specification problem in these models. v) We show that some pop-
ular Bayesian models are overparameterized. This is not a criticism, as we use
parameter expansions to overparametarize our model also. However, we follow
the rules of Liu and Wu (1999) to ensure efficiency gains. It is not clear that
extant specifications do follow these rules and this may explain to some degree
the poor sampling.

Our proposed approach to obtaining invariant inference on the number of
factors and efficient computation uses a specification which is commonly used in
the frequentist literature (see, for example, Connor and Korajczyk (1986) and
Bai and Ng (2002)) combined with and extension of the parameter expansion
approach of Ghosh and Dunson (2009) in the static factor model and Koop,
Léon- Gonzélez and Strachan (2010 & 2013) in the vector error correction model
and instrumental variables model.

Reordering of variables involves groups of transformations of the parameters
in the model. We therefore use group theory to show why existing specifica-
tions are not invariant to reordering of the variables. Work to date considering
invariance has taken one of two approaches. The first approach attempts to re-
solve the issue by averaging over orderings (see for example Geweke (1996) and
Frithwirth-Schnatter and Lopes (2010)). To estimate k we would need to esti-



mate all orderings for all values of k. Averaging over orderings shows promise in
small dimensional settings, but as applications often have many variables (some-
times hundreds), the number of potential orderings to average over increases into
the trillions making an averaging approach computationally infeasible or at best
challenging. For example, Forni, Giannone, Lippi and Reichlin (2009) investi-
gate some 89 series and find there are between k£ = 12 and k& = 18 factors. In
this case, if we were to use a non-invariant Bayesian approach and average over
all orderings we would need to average over more than 237 trillion for £ = 12
and 3 million trillion models for £ = 18. It would seem more practical and
feasible to only have one invariant model to consider for each k.

Another approach, therefore, is to develop a single model that does not
depend upon the orderings. Examples of work taking this approach, besides
our paper, are Afmann, Boysen-Hogrefe, and Pape (2012) and Kaufmann and
Schumacher (2012). Our approach differs from that of ABmann, Boysen-Hogrefe,
and Pape (2012) and Kaufmann and Schumacher (2012) in that we explicitly
take the perspective of the factor model as a reduced rank regression model, such
as in Bai and Ng (2002), and use previous work that utilizes the geometry of that
model to develop an invariant model specification and inferential framework.
Taking this perspective leads us to the view that, contrary to general belief,
there is not an identification problem in the factor model but rather there is a
problem with the specification used.

As the invariant specification we develop has a structure that would be
difficult to compute, we use parameter expansions to develop a specification
that is simple to implement, in fact simpler than standard extant specifications.
A further benefit of this expanded specification is that the resulting sampler is
efficient. This parameter expansion may be viewed as a generalization of the
Ghosh and Dunson (2009) approach to computing factor models but with the
added benefit of invariance.

In Section Two we briefly outline the features of the static factor model
and discuss relationships, in particular mappings, among existing identifica-
tion schemes, two of which are popular non-invariant specifications used in the
Bayesian literature and one invariant specification used in the frequentist liter-
ature. In Section Three we present the identified parameters in the invariant
Bayesian specification of the static factor model and the priors for this model
from a singular value decomposition (SVD). We then introduce the full pa-
rameter expansion using invariant transformations to obtain the prior for the
‘expanded’ model. We present the posterior, sampling algorithm and the poste-
rior probability estimation for this ‘expanded’ model. Section Four presents a
small application to six exchange rates to demonstrate the effect of reordering
and efficiency of the proposed sampling algorithm in this paper. Section Six
provides some concluding comments and potential extensions.



2 Alternative specifications of the static factor
model:

In this section we outline some standard identification schemes that have been
used in static and sometimes dynamic factor models. This section provides an
incomplete overview of the literature but focusses the discussion on relevant
models. We use two Bayesian schemes to demonstrate issues of invariance. A
third approach, a frequentist approach, is an invariant specification but not
easily computable using Bayesian techniques in its current form.

A change in the order of the variables involves a transformation of the loading
matrix and this transformation involves a discontinuity. We demonstrate the
importance of this discontinuity for inference on the number of factors with a
simulation. We present the factor model developed using principle components
as in Bai and Ng (2002) and show how these could be estimated using Bayesian
methods. This gives a feel for the approach developed in the next section.
Finally, we show how to map from the principal components specification to the
other model specifications discussed in this section and this demonstration also
suggests how our specification can permit any of the others.

Noninvariant specifications: Denote the 1 x n vector of observables of
variables of interest by y;. A simple static factor model for y; with & < n factors
is

vy = f[ilte (1)
/
€ ¥ 0
(%) = ~e[a)) g
where f; is a 1 x k vector, A is an k x n matrix, ¥ = diag (¢3,...,02) and for
now we simply assume (2 is a general k£ X k symmetric positive definite matrix.
We can readily add exogenous variables to this specification however we ignore
these here for simplicity and to focus upon the specification issues. The variance
of y, is
E (yyy:) = NQA + 3.

The identification issues with this model are well understood. The unre-
stricted A, © and ¥ contain a total of nk +n + k (k + 1) /2 parameters which
can exceed the n (n + 1) /2 parameters in F (y;y;). Even if we assume Q = I,
we must restrict k < (n — 1) /2 as otherwise there would not be enough informa-
tion to estimate all of the parameters (Geweke and Zhou (1996)). There remains
a second identification problem as we can rotate f; and obtain an observation-
ally equivalent vector f;". That is, if U € O (k) = {U:U (k x k), U'U = I}
the orthogonal group, then rotate the parameters by f;" = f;U and A* = U'A
and we can see that the rotated parameters (f;, A*) and (f;, A) are not distin-
guishable since they both enter the likelihood as products: f;A* = f;A. For this
reason restrictions are imposed upon A and €2 to permit estimation. Note that
this argument uses a specification of f; and A that is overidentified and this
permits the observationally equivalent rotations. For the following discussion it



is useful to denote the first k£ columns of A by A;. Generally we will take the
matrix A; to represent the columns that are restricted to permit identification
of the factors and these may not always be the first & columns.

An identification scheme used, for example, in Geweke and Zhou (1996) sets
Q = I and restricts A = AT € T+ where T is the space of upper triangular
matrices with positive elements on the diagonal. We will also use the notation
TT for the identification scheme in this approach. Thus the specification is

y = fidt+e (3)
e X0
() = >0l ])
+ % *
0 + *
AT =
. . *
0 0 +
= (A A

where the plus signs denote parameters restricted to be positive and the asterisks
denote unrestricted elements. The first factor is identified as it is the only factor
entering the first variable. The next factor is identified as, besides the already
identified first factor, it is the only factor entering the second variable, and so
on. This structure requires the researcher to assume some knowledge about the
order of the variables with respect to the factors which imply the first & rows of
the loading matrix are linearly independent.

If we collect the diagonal elements of A} from the T specification into the
diagonal of an k x k matrix A}, we can transform to another specification that
is often used. Define f1 = fA} and AL = (AF)"'A* and A} = (AF) ' A}
such that f;" A" = fFA4A;'AT = f'AY and let Q' = AJ'A} be a diagonal
covariance matrix for the errors in the factor process. In this identification
scheme, A = A' € ! where ! is the space of upper triangular matrices with
ones on the diagonal. This gives us the second specification,

v = f'A'+e
el ¥ 0
(i) ~ >[5 a))
1 x - * ok *
0 1 * ok *
A =
0 0 1 = *
= [A1 A3

This specification has been used in, for example, Chib, Nardari and Shephard
(2006) and Aguilar and West (2000) and requires similar assumptions about the
orders of the variables as the previous specification.



Notice that these specifications have the same dimension of parameter space
as Y is the same, f; is always 1 X k, and the free elements of [AT, Q"] and
[A*, Q'] all have dimension (n — k) k + @ =nk — @ With all f;, the

total number of free parameters is then (7' + n) k — @ These non-invariant

identification schemes (and priors) used in Bayesian approaches result in speci-
fications that have more parameters than can be identified from the likelihood.
Thus they are still not identified under the likelihood, but are identified under
the posterior due to the informative priors on the overidentified parameters.

The source of the lack of invariance: A drawback of these two specifi-
cations is that they assume A; is nonsingular. In particular, they assume that
the first k variables in 1, are functions of all of the first k factors. As many
practitioners are aware, these assumptions have implications for evidence on al-
ternative values for k. Transforming the parameters by reordering the variables
involves groups of transformations with a discontinuity at the point |A;| = 0.
This discontinuity implies the transformation is non-homeomorphic and results
in the non-invariant and so non-unique inference. We provide a small simulation
study to provide a further illustration of the issue and to demonstrate that this
effect is neither ubiquitous nor a measure zero event. That is, the effect does
not occur at all points of the parameter space but nor is it only relevant at the
point |A1| = 0.

For our simulation study, let the model be as before but add an intercept,

yt:M+ftA+€t EtNN(O,E)

and let n =4, T = 600, k = 1 and use the following parameter values:

po= {w}=(01 18 25 25)
A = {N}=(c 065 020 0.20)
¢ € {0,0.025,0.05,0.075,0.10}
i = 1,2,3,4and ¥ = o?l,.

We assume the following set of priors:

M~ N(0,10)1(\ >0,)
Ai ~ N(0,10) i=2,34
pw; ~ N(0,10) i=1,2,3,4
o ~ IG(3,1) i=1,2,3,4.

For various values of ¢ and o2, we compute the marginal likelihoods for two mod-
els: a single-factor model with the ordering (1,2, 3,4) denoted as (1,2), so that
c is the loading for the first variable in the DGP Ay, and another single-factor
model with the ordering (2,1, 3,4) denoted as (2, 1), so that ¢ is the loading for
the second variable in the DGP Ay. The ordering (1, 2) is incompatible with the
identification scheme when ¢ = 0. The marginal likelihoods are computed via
the Chib’s method using 20 parallel chains each of length 10000. The results
are reported in Table 1:



Table 1: Bayes factors (relative numerical standard
errors) for the models under different orderings
BFu2)2) (NSEa2)/NSEq)

c 0% =0.05 0% =10.10 0% =0.20
0.00 || 11.5 (1.67) 10.07 (45.71)  7.39 (32.86)
0.025 | 1.32 (1.67)  2.51 (6.67)  6.69 (11.25)
0.050 || 1.01 (0.75)  1.31 (13.33) 2.46 (1.50)
0.075 | 1.02 (1.00)  1.01 (1.00)  1.49 (1.00)
0.100 || 1.00 (0.75)  0.99 (1.00) 1.11 (0.75)

As the marginal likelihood for the model with no factors is the same for both
orderings, we report in Table 1 the ratio of the marginal likelihoods for the model
under the ordering (2, 1, 3) to the model under the ordering (1,2, 3) . This is just
the Bayes factor for the models under the different orderings. If reordering had
no effect, that is, if the models were invariant to ordering, the Bayes factors
would all be one. Any difference from one is due to the lack of invariance.
Clearly around the point ¢ = 0 where the ordering (1, 2, 3) is incompatible with
the identification scheme, we see large differences of between 7 and 11 in the
marginal likelihoods. As ¢ increases the effect disappears although less quickly
for the larger o2. It appears that both of the parameters ¢ and o2 each play a
role in defining a metric for distance from the point ¢ = 0.

The results in these tables give an indication of how lack of invariance to
the ordering of the variables manifests in the evidence on k. Using real data we
tend to find the evidence is much stronger (see, for example, Lopes and West
(2004) and the empirical application in this paper).

Lack of invariance has an interesting and we think important effect upon
the quality of inference. In the parentheses in Table 1 we report the ratio of
the numerical standard errors for the marginal likelihoods computed under the
different orderings, (NSE(LQ)/NSE(QJ)). This ratio shows the second effect of
non-invariance; the poorer quality of the estimator of the marginal likelihood.
At low values of ¢ the numerical standard errors for the model (1,2) are much
larger for large o2 than for the models (2,1). The relative efficiency of the
estimator improves as we move away from ¢ = 0. Clearly if we are relying
upon marginal likelihoods for inference, we should have less confidence in our
conclusions in this case.

Given the above evidence, it would sensible to choose the ordering in which
the posterior mass for |A1] is far from zero. Unfortunately, this point cannot be
known a priori which brings us back to the solutions of either averaging over all
orderings or devising an invariant specification.

A common representation of the factor model is as a reduced rank regression
model. In reduced rank models the row and column space of the reduced rank
matrix are identified under the likelihood (Villani, 2005). The problem of in-
variance in the factor models stems from the transformation from these spaces
to the parameters in the model to be estimated, and from the transformation
between different models that can be estimated. These transformations do not



preserve the topology such that changing the specification used, or the ordering,
can result in a change in the evidence on the number of factors. To introduce
notation, denote the space of an m x k matrix H by sp (H). The support for
sp (H) is the collection of all k— planes in m— space. This collection is called the
Grassmann manifold which we denote by G m—r such that sp (H) € G m—r.
Gl,m—k is a compact subspace for which there exists a uniform Haar invariant
(to left and right orthonormal rotations) measure. The row and column space,
sp(F) € Grr—r and sp (') € G n—p, are identified.
The identification schemes T+ and ' impose an order on the variables.

Definition 1 Denote by T™% (m € {+,1}) ordering i of the variables and
denote a different ordering j by T™J.

Definition 2 In the ordering T™' the identification of the factors is achieved
by placing restrictions on the submatriz A}.

Theorem 3 (Discontinuity) The transformation from ™ to T™J has a dis-

continuity at ’Aj‘ =0.

Proof. See the Appendix I. m

To demonstrate this discontinuity with a simple example, consider a (2 x 1)
vector A = (cos (0),sin (0)) = (A1, A2) where 6 € [0,7). The specification T*
implies A = (1, A\2) where Ay = tan (f) under one ordering, ™!, with support
(—00,00) which includes A2 = 0. Changing the order we obtain A = (A, 1)
where \; = m = )\—12 is ordering ™2 which excludes the point Ay = 0. In
this case there is a discontinuity from ™! to T™2. As the support of § has a
boundary whereas that of Ao does not, [0,5) N (5, 7] as it excludes the point
0= 5 and so there is a discontinuity from T to G11. If, however, we used the
specification A = (cos (0) ,sin (0)) = (A1, A2) where 6 € [0, 7), then this simple
case the support of the angle # maps homeomorphically to the one dimensional
Grassmann manifold, G 1, and changing the order of the variables maps from
G1,1 to Gp,1 without discontinuities.

Transforming from sp (A’) to AT and to A! does not preserve the topology
of these spaces as the deformation ‘punches holes’ in the form at points where
|A1] = 0 as the transformation from the space to AT is discontinuous at this
point. Similarly, transforming between different orderings, changing between A4
and Ay, involves discontinuities at [A;] = 0. Without preservation of the topol-
ogy, the metric and therefore measure are not preserved hence the evidence on
k under alternative normalizations need not the same. This effect is naturally
most pronounced when the true parameter values are near the point of discon-
tinuity. As our small simulation exercise showed, if we move far enough away
from this point the effect is mitigated.

An invariant specification: Next we discuss a third specification that
used in the method of principal components (pc) to estimate the factors as in,
for example, Bai and Ng (2002) (hereafter BN). Denote this model by

Yo = [LOAT + ey



Stacking the observations over T we obtain
y= FPCAPC + ¢

where y = (), ¥h, ..., ¥y) s € = (], ¢h,..., &) and FPe = (e 3 ;C’)/.

In BN, the matrix FP¢ is estimated as proportional to the matrix of eigen-
vectors!' associated with the k largest eigenvalues of the matrix yy’. In other
words, they take a SVD of y as

Yy = USV/ = U1S1V1’ + UQSZX/Q/

where U = [U; Us] € O(T) are the eigenvectors of yy' = US?U’ and V =
Vi Va] € O(n) are the eigenvectors of y'y = V.S?V' and U'U = V'V = I,.
Setting the factors and loading matrices to F?¢ = U; where and AP¢ = S;V/,
then AP¢ has the unusual property of being orthogonal (but not orthonormal)
as APCAPY = S?. The orthonormal structure of FP¢ and orthogonal struc-
ture of AP¢ imply that the parameters are identified up to sign. That is,
FPeAPe = FPerpgAPC = FPS*APS* where FP¢ and FP®*, and AP® and AP®*
will have the same structure only for a diagonal matrix » with the i** diagonal
element equal to +1 or -1.2 This lack of identification is resolved by fixing the
sign of, say, the first row of U to be non-negative (but not simply positive). Such
a restriction gives a particular orientation of the vectors in U in their space, but
in no way restricts the space they span and, as the transformation involving
% is homeomorphic, we can regard U, S and V as identified for any practical
purposes and, in particular, our purpose. As there exists a specification that is
both identified and invariant to ordering, this raises the question as to whether
there is an identification problem. Rather, it appears there is a specification
problem that induces a lack of invariance.

We mention in passing that there is a difference in the error structure be-
tween the estimation of the factors by SVD and our proposed stochastic model
for y. The estimation method by principal components is referred to as approx-
imate because the errors are weakly correlated. We can characterize this weak
correlation in the following way. As y is a full rank matrix, estimating the ma-
trix FPCAP¢ by Uy S;1V] then implies € represents € + v where € = UpSyVy
and v is a matrix of independent errors (ie., E (vec(v)vec(Z)) = 0 and
E (vec (v)vec(v)') = It ® D where D is diagonal positive definite). The T' x n
matrix € is rank (n — k) while in our model the matrix ¢ is full rank. This
distinction does not seem to be of major importance.

This model is usually estimated using a nonparametric approach in that no
distribution is assumed for f7°, and sometimes no distribution is assumed for &;.
We are not aware of any attempt to estimate this specification using a Bayesian
approach but we discuss this possibility here as it most closely resembles the
specification we begin with prior to parameter expansion.

n fact, Bai and Ng use v/T times the eigenvalue of yy’. This proportional term is not
important for the discussion here so we ignore it.

2If k were not of this structure then the restriction APCAPS = S% would be destroyed by
the transformation. Thus this restriction implies identification against such a transformation.



The structures of FP¢ and AP¢ are difficult to implement in a Bayesian com-
putational approach. To permit Bayesian estimation one could introduce a
parameter expansion. That is, an unidentified orthonormal parameter, C' such
that C'C' = I, is introduced and F*P¢ = UC’ and A*P¢ = CSV such that
A*PEA*PY = CS2C" is now a full real matrix. We will use a similar idea in
developing our model for computation.

The restriction F*P¢ [*P¢ = [, implies that the support for the matrix of fac-
tors, F*P¢  is the Stiefel manifold which we denote as Vi, ., = {H (n x m); H'H = I,,,}
and so F*P¢ € Vi, 1 (for discussion, see Muirhead (1982)).

A purpose of this section is to show how we can move from one non-invariant
specification to another via simple transformations. The existence of this map-
ping is important as we will show how we can map from our invariant specifi-
cation to one of those in this section, which implies we can then map to both
specifications from ours. The transformation from one non-invariant specifica-
tion to another, with a given ordering of the variables, is possible because all of
the specifications impose the same restriction on the parameter space. That is,
they all assume that a particular set of k columns are linearly independent. This
assumption does not hold at all points in the parameters space when changing
the order of the variables so it is not possible to map homeomorphically between
specifications with different variable orderings.

It is possible to map from (FP¢, AP¢) to either T+ or T! with parameter
expansion. We show here the map from (FP¢, AP€) to either +. First, introduce

an k x k rank k matrix with @ free parameters k via

U1Sl‘/1/ = U11€H7151V11 =FA
where ' = Uk and A = /{_lSlVf.

Next take a QR factorization (see, for example, Schott (1997)) of A
A=CA" where C'C' =1, and AT e T
and define

FA = FTAT
where F™ = FC.

There are (T + N) k — k? identified parameters in Uy, S and V; while there

are (T'+ N)k — @ parameters in F* and AT. The above transformation
using the @ extra ‘expanding’ parameters in x show how T1 is an over-
parameterized specification. Liu and Wu (1999) show that improvements in
efficiency are achieved if the priors for the identified parameters and the ex-
panding parameters are independent, and if the transformations involved are
diffeomorphisms. These conditions do not seem to be met in the transforma-
tion (U1, S1,V1) — (F'T,AT). The QR factorization above requires the first &k
columns of A be of full rank which implies a discontinuity at points where this
does not hold which suggests a source of computational inefficiency. The Jaco-
bian for the transformation (Uy, S1, Vi, k) — (F', AT) has a somewhat complex

10



form and inverting it is not straightforward. At this point we have not been
able use this and the usual priors on (F", AT) to determine whether the implied
priors on k and (Uy, S, Vy) are independent.

In the following section we provide the technical details for the several con-
tributions of this paper. The reader who prefers not to read the technical details
in Section 3 and interested only in applying the approach may prefer to skip to
Section 4.

3 The invariant static factor model

In this section we develop the prior for the expanded model from independent
priors for the factors and the loading matrix. We begin with a statement of what
parameters are identified under the likelihood and show how there is not, in fact,
an identification problem in this model but there is a specification problem. By
this we mean that the parameters of the factor model are all identified. They
are not, however, readily computable as they have very non-standard structures.
Diffeomorphic transformations to standard structures permit invariant (order
independent) inference on the number of factors.

To this point we have said little about the priors for A and have only consid-
ered distributions for f; that have previously been used in the literature. In this
section we develop priors for A and f; by beginning with the parameters that
are identified under the likelihood and, via a series of parameter expansions, we
obtain the prior and posterior for the expanded model.

Stacking the y;, f; and &; into vectors and matrices y, F' and € we can write
the factor model as a reduced rank regression model

y=FA+e=1I+e¢ (4)

where the matrix II = FA has rank k. The reduced rank model in (4) has the
same structure as a one-mode analysis used in psychometrics (see, for example,
Magnus and Neudecker (1988)) for which frequentist approaches to estimation
are proposed. Bayesian inference in other reduced rank models, such as the
cointegrating vector error correction model and the overidentified simultaneous
equations model, has been extensively explored and this literature is informative
on how to approach the analysis of this model. Bayesian approaches most
relevant to this paper are Strachan and Inder (2004), Koop, Léon-Gonzélez and
Strachan (2010 & 2013).

To avoid such discontinuous transformations, in the next section we present
a specification that involves homeomorphic transformations, which permits in-
variant inference on the number of factors, and parameter expansions that leads
to simple and efficient sampling schemes. Taking a singular value decomposition
(SVD) of the reduced rank matrix F'A, we have

FA = USV’
Ui € Vir VieVin
Sy = diag(s1,82,...,8) where s; >0 V.

11



All of the parameters Uy, S1 and V; are identified and have, respectively, Tk —
@, k and nk — @ free elements.
We specify independent priors for Uy, S; and Vi with the form

(dS1) (UidUy) (V{dV1) co

f(S1) p
k
f(S1) « exp{f%‘tr52}2_k|5|n_kn(s?fs?),
i<j
X~ [ rso sy v,
= /<U’dU)— 2
cu = 1atq _T(%)’

k .
T k(k—1)/2 T_Z+1
b <2> -7 le > |

where Uy € V,.r and Vi € V,. y have uniform priors on Stiefel manifolds (for
further discussion see James (1954)). We give explicit expressions for ¢y and
co below. The diagonal elements of the matrix S; have a ‘standard’ prior which
we will show is implied by a normal for vec (A) ~ N (0, éINT) . The priors for
U, S1 and Vj are all proper. The term c) is included to permit shrinkage of A
towards zero or a more diffuse prior if desired.

We introduce the nonidentified parameters by two parameter expansions.
From the first expansion, we obtain a normal form for the loading matrix and
the second expansion results in a normal prior for the factors. These expansions
do not affect the proper, independent priors for U, S and V, uniform priors for
U and V', and the standard prior for S.

Map from the SVD parameters (Ui, S1.V7) to the expanded parameters
(U1, A*) by introducing the orthogonal matrix C' via the transformation

USiV! = ULC'CSV! = UA”
U,C" = U and CSV] =A*
where C'C = I, since C € O(r).

The expanding parameter C is given a uniform distribution on O (r) :
(C'dC') . Using results in, for example, Muirhead (1982), the prior now becomes

(dS1) (Uidly) (VidWy) (C'dC) (A%) (dA™) (U’dU)
CNCU P CNCU
* *\ _9 /A %
where p (A)—exp{ 2tTAA},

f(51)
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ev = [r @)

_ / £ (S1) (dSy) (V{avi) (C"dC)

k

- 2 k2
= . ;

’ / 2hr s
w = /(UldUn/(UdU)Fk(g),
QkW%
= [(cdo)y==""_,
R
k .
™Y k12 m—itl
F’“(z) -7 le[ 2 ]

and so A* = C'S1V{ has a normal prior distribution such that p* (A*) has a form
proportional to the density of a zero mean normal distribution with covariance
matrix é] ~r. The semi-orthogonal matrix U has a uniform distribution over
Vi r. In the new parameterization, FA = UA*, the matrix A* is has a ‘nice’
form and prior but U has a very non-standard form and so it would be difficult
to obtain draws.

To give the parameters a more standard form and prior distributions, we
transform from (U, A*) to (F, A) via the second parameter expansion. Introduce
the k x k rank k& matrix x with @ free parameters. x maybe, for example,
lower triangular or symmetric. This matrix is used to obtain the following
transformations:

UAN =Urk™'A* = FA

where F' = Uk and A = s~ 'A*. It is easier to work with the transformation
A = kr/ = F'F and write the Jacobian as

) BTNy )
J(F) = ok|pp| Tk
p(AF) = exp{f%trA/F/FA}

Clearly the presence of the determinant |F’F| in the above Jacobian would
complicate computation, particularly as we prefer to have a standard form such
as a normal distribution for F. Fortunately, we are free to choose the distribution
of A and so we let this matrix have a Wishart Distribution with degrees of
freedom such that the prior for A is proportional to

1 ke 1 —n—k—
exp{—ztrA}|A(T nk l)/2:exp{—2trF/F} |F’F|(T k=112
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When we introduce this into the full prior we obtain the following transformation
of the measure

(dA) (U'dU) (dA*)
CNCUCA

1
|A\(T7"7k*1)/2 exp {2257"/1} p* (AY)

1 ke
_ exp{QtrF’F}|F’F|(T FD2 0 (A, F)

(T—n—k— dA) (dF
xok | pr - (@—n—k=n/2 (A1) (dF)
CNCUuCA
1 dA) (dF
= exp {—trF'F} p (A, F) ka
2 CNCyuCAa
(T—n—k-1)/2 1 (T—n)k/2 I'—n
where ¢4 = |A| exp _itTA (dA) =2 Ty : .
We can summarize the transformations used to this point as
o = U5V
= U,0'CS VY
= UA"
= Urk A*
= FA
The resulting joint prior distribution for F' and A is given by
1 dA) (dF
p (A, F)(dA) (dF) = exp {—2tTF’F} exp {—%trA'F'FA} (dh) (dF)
c
c = 2_chcUcA.

The resulting conditional priors have convenient normal forms such that they
will be conjugate with the usual specification for the model for y. That is, the
conditional prior for A\ = vec(A) |F' is normal with zero mean and covariance
matrix V, = I"i ®(F'F)™". The conditional prior for f = vec (F) |A is normal
with zero mean and covariance matrix V p = [I + c,\AA’]71®IT. For the chosen
transformations and distributions for the unidentified parameters, C' and &,
we have results from Liu and Wu (1999) ensuring the sampler will converge.
Specifically, the transformations we use form locally compact groups and the
priors for the expanding parameters correspond to Haar measures. Further, the
expanding parameters are independent of the identified parameters.

Parameter expansions have been used in earlier work in factor models to
produce more efficient and simple sampling schemes (see, for a recent example,
Ghosh and Dunson, 2009) and to accelerate the EM algorithm in factor models
(Liu, Rubin and Wu, 1998). The approach in this paper is an application of
that developed in Liu (1994) and Liu and Wu (1999) and shares some of the
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features of Ghosh and Dunson (2009). However, a contribution of this paper
that distinguishes it from this earlier work is to use parameter expansion to
also achieve invariant inference. This builds upon earlier work on estimation
of reduced rank models (Koop, Léon-Gonzdlez and Strachan (2010) & (2013))
which is natural as the factor model can be represented as a particular type of
reduced rank regression model. However, relative to the standard reduced rank
regression model, the factor model has some unique features that complicate
estimation.

3.1 The full conditional posteriors

In this section we extend the model to allow exogenous variables and provide
priors for the other parameters in the model to obtain the conditional posterior
distributions that are used in the sampling algorithm.

The static factor model is often specified with exogenous variables, X. After
the parameter expansions in the previous section we obtained the matrix of
factors F' and the loading matrix A. The model can now be written as

Y = XB+FA+cwheree~N(0,H '®Ir)

= wvec(F)IA~N(0,Vy) and A =vec(A)|f ~N(0,V,)

vec (8) ~ N (0, Y@ (X'X)7! 1)
]

where V. = [I), + c,\AA’r1 ®@Ipand V, = Ini ® (F’F)71 . We assume each

diagonal element of H = diag {h;} has a gamma prior

b

hiv

p(h;) o« hj% exp { 2 } (dh;)

such that
p(H) o [H|™T exp {—;trH} (dH)
M

The likelihood function can be written as
1
Lo |H|"? exp [—2trH (Y —XB—FA (Y - X3 — FA)]
so that the conditional posteriors can be readily derived. First define

- { SZE[@ } - [ i }’WZ[(IT@@X) (I ® F)]

and f = vec(F). Vectorizing the T' X n error matrix ¢ gives the useful linear
forms for f and a. Let y = vec (Y), then let x = (I,, ® X) and w = (A’ ® I7),

vec(Y —XB—FA) = y— ([, @X)b—(N®Ir)f
= y—wf where y=y— b
= y— L X)b— (L F)\
= y—Wa.
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As the vectors f and a have normal priors and enter the likelihood lin-
early (conditional on the other parameters) the conditional posteriors result
from standard computations. Specifically, the conditional posteriors have the
following forms:

f|ﬂ7A7HaY ~ N(?7VF)
alF,HY ~ N (a,V,)
hila, '~ G (f1;,7)

where

f = VF (AH@IT) (y—l‘b)

Ve = [ANH+aL)AN + L] eI,
a = VW (H®Ip)y,
Ve = W@HeInW+V,"]™
yvolo— S5 ® X' Xeg 0
Va 0 el @ F'F
y = wec(Y),
W o= [LoX I,®F],
v = T+v,
o, = ggsi +% and € = (£1,...,&p) .

An important question in factor models is the number of factors, k. With
the parameter expansion specification above, we are able to use the Savage-
Dickey density ratio (SDDR) to compute the Bayes factors for k = 0 to k = k*,
By i+ (Verdinelli and Wasserman (1995)). The model with no factors occurs at
the point A = 0 and at this point the factor are excluded from the likelihood.
Under the priors we propose, the SDDR is computed as the ratio of the marginal
posterior for A at the point A = 0 and the marginal prior for A evaluated at the
same point. That is

mo p(A= 0|y)

SDDR = By~ = =

where my+ is the marginal likelihood for the model with k* factors.

With a sequence of S draws from the posterior, we can compute the condi-
tional posterior p (A|S, F, H,y) and the conditional prior p (A|F) at A = 0 to
estimate the required ratio as:

138 (A= 0180, FO, 1O, y)

BO,k* - %229:11) (A _ O‘F(l)) )

where ¢ = 1,..,S indicates the draws from the sampler after the burn-in. In
our results we report the log of the Bayes factor. Alternatively, we can report
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posterior probabilities. From Eo,k* we can compute the posterior probabilities
for each model from the prior probabilities p (k = k*) and the relation

p(k=0y) _ o p(k=0)
pk=Fk1y) M plk=k")

4 Empirical application

In this section present an empirical example to demonstrate the effect of lack of
invariance and that our approach achieves invariance. We also present evidence
on the efficiency of the sampling algorithm.

We use data on 6 daily international currency exchange rates relative to U.S.
dollar over a time period of 1045 business days beginning in January 2007 and
ending in December 2010. The returns are computed as y;; = 100(p;¢/pit—1—1),
where p;; denotes the daily closing spot rate. The six series are the Australian
Dollar (AUD), Euro (EURO), South Korean Won (KRW), Japanese Yen (JPY),
Canadian Dollar (CAD), and British Pound (GBP). These represent some of
the most heavily traded currencies over the period. The returns are plotted in
Figure 1.

We fit the data using the following static factor model:
Y = 1+ ftA +E+ Er v 1dIN (0, Z)

where y; is the vector of six observed currency returns, f; ~ #dN (0,1;) is a
1 x k vector of unobserved factors, A is an k& x n matrix of factor loadings.
We first impose the identification assumption that A is upper triangular with
positive diagonal elements:

ailr az1 a3 : Qg - Qp

0 axp azx sk D as,
A=1 o 0 as; . Y oase |
Ak, k—1
0 0 0 i ae i oap
where a;; > 0fori =1,..., k. We then compute the marginal likelihoods for four

models. Using the ordering (AUD, EUR, KRW, JPY, CAD, GBP), we compute
a single-factor model and then a two-factor model. Next, with the ordering
(AUD, KRW, EUR, JPY, CAD, GBP), we again compute a single-factor model
and then a two-factor model.

The log marginal likelihoods are computed via the Chib’s method using 100
parallel chains each of length 50000. The results are reported in Table 3. As
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Figure 1: Daily returns of the six currencies.

the two marginal likelihoods for the models with one factor are almost the same
(i.e., ordering made no difference) we only report one of these. The computed
marginal likelihoods for the two-factors provide striking evidence of the effect
of reordering. The log marginal likelihoods differ by about 142.

We can compute the log Bayes factors as the difference between the log
marginal likelihoods. Under the ordering (AUD, KRW, EUR, JPY, CAD, GBP),
there is a very strong preference for the two factor model over the one factor
model with a log Bayes factor of -63.6. However, under the ordering (AUD,
EUR, KRW, JPY, CAD, GBP), there is a very strong preference for the one
factor model with the log Bayes factor of 78.3. The reordering of the variables
has shifted the evidence on the number of factors in the opposite direction. The
invariant specification selects a model with two factors over the one factor model
with a log Bayes factor of -309.6.
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Table 3: Log marginal likelihoods and the corresponding
numerical standard errors for the competing models.

Model log marginal numerical
likelihood standard error
1-factor (AUD, KRW, EUR, JPY, CAD, GBP) -7572.9 3.40
2-factor (AUD, EUR, KRW, JPY, CAD, GBP) -7636.5 5.64
2-factor (AUD, KRW, EUR, JPY, CAD, GBP) -7494.6 1.16

Table 3 shows the numerical standard errors (NSEs) for the estimated log
marginal likelihoods under each ordering. The NSEs for the one and two factor
models for the invariant model are 0.23 and 0.25 respectively. These results
suggest, anecdotally at least, that the estimation of the log marginal likelihoods
is much more efficient under the invariant specification. The NSE for the one
factor model reduces from 3.4 to 0.23, a reduction of over 93%. The NSE for
the two factor model reduces from 5.64 for the first ordering, and 1.16 for the
second ordering to 0.25, a reduction of over 95% and 78%.

Figure 2 reports the inefficiency factors for blocks of parameters from the
model estimated with the Geweke and Zhou specification (GZ) and the parame-
ter expanded invariant model (PX). The inefficiency measures give an estimate
of the number of draws needed to have as much information about the posterior
as we would obtain from one independent draw. The smaller the inefficiency
factor the better is the sampler. It is clear that the parameters are generally
much more efficiently estimated using the expanded parameter specification.
These results is consistent with those found in Ghosh and Dunson (2009). The
distributions of both the loading matrix, A, and the factors, F', are less dis-
perse and lower for the parameter expanded model, but this is also true for the
idiosyncratic variances, H, and the exogenous variables coefficients, 3.

5 Concluding remarks

In this paper, we propose a specification for the static factor model that re-
quires no ordering restrictions and so the choice of number of factors cannot
depend upon the chosen ordering. By augmenting the posterior with a number
of unidentified parameters with appropriate priors, the model can be computed
using standard distributions and the draws are relatively efficient.

The specification we propose nests many of the existing and popular specifi-
cations used in factor analysis. Thus each of these specifications are attainable
directly from the output from estimating our specification.

Although for convenience we have only considered the static factor model,
this approach is readily extended to allow dynamics in the state equation. Such
an extension would involve using an informative prior on the space sp (F') such as
the orthogonal projective Gaussian distribution as used in Koop, Léon- Gonzdlez
and Strachan (2011). This would involve transforming from F to F. = RF
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Figure 2: Box and wisker plots of inefficiency factors for blocks of parameters:
(A, B, F, H) . The models were estimated using Gibbs sampling. G Z refers to the
model with the upper triangular A; with positive elements on the main diagonal,
and PX refers to the parameter expansion of the invariant specification.

where the matrix R captures the dynamics in F.. For example, R may be a
differencing matrix such that the rows of F' follow a random walk as

fex = fero1+ fr=3i_fi and so
10 --- 0
1 1 0

R =
11 - 1

Alternatively R = R (p) may be a function of parameters to allow richer dynam-
ics such as in autoregressive processes. For example, an AR (1) state equation

fex = pfei+fi= Eﬁzlpt_ifi and so
1 0 0
p 1 0
R(p) = :
ptfl pt72 1



The full matrix of factors then becomes F. = R (p) F' which implies a prior for
a process with a zero mean process with covariance matrix
(I + exAA) @ (R (p) R(p) -

Another implication of the invariance specification, which we have not ex-
ploited in this paper, is that we are able to compute the Bayes factors for the
number of factors using the Savage-Dickey density ratio. This approach requires
only the conditional posterior and the conditional prior for A. This greatly sim-
plifies the computation of the posterior probabilities. This approach cannot be
used in the non-invariant specifications as they exclude the point A = 0 from
the support of the loading matrix parameter.

In computing the models in this paper, it became evident that there is
a relationship between the computational efficiency and accuracy of marginal
likelihood estimates, and the proximity of the posterior to the point of disconti-
nuity. Models that are specified such that the posterior is invariant to reordering
tend to have lower numerical standard errors. The accuracy of estimation of
the marginal likelihood plays an important role in the confidence we have in the
conclusions we make. This relationship is a topic of current research.
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7 Appendix I

Proof of Theorem (1).
Denote by A? the k x n loading matrix under order 5. Partition A?, after
imposing one of the Bayesian invariant identifying restrictions, as follows:

A — A1 Aa Asgs
0 A Az

where A1y is a k1 X ki matrix, Ags and Asg are both ko X ko where ky + ko = k.
Under T+, Ay = Afl and Agy = A5L2 are lower triangular matrices with positive
diagonal elements. Under ', Aj; = A}, and Agy = A, are lower triangular
matrices with ones on the diagonal.

The ordering is imposed by the structure of the first k£ columns. We consider
changing the order of the variables such that the ordering is imposed by the
structure of the first &7 columns and the last k5 columns. Thus we will transform
A3 to meet the identifying restrictions. This will involve transforming from

(F,A) to (ﬁ, /N\) with the appropriate definition of the ko X ko matrix G in
[ A A Ags
FA = F
| 0 Az Ags
_ 5 [ I, O Iy, 0 A1 A2 Ags
0 G 0 G 0 Az Agg
= FA where

R
Fo=Fly g

i I, O A Aa Asgs
0 G 0 AQQ A23

[ A M A
0 Ay Ag

} and

Finally, to move the columns of A such that the identifying restrictions are
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placed upon the first & columns of the loading matrix, we reorder by

I, 0 0 I, 0 0
< | A A A 1
Al 0O 0 Iy, | = { 51 A;? A}i”} 0 0 I
0 I, 0 22 23 0 I, 0

_ { Ay Mg Ag } _ A
0 Ay A, TN

For reordering within the space T+, we first let Aoz = CAJ; be the QR
decomposition of Agg where C'C' = Ij,. The change in order implies G = C’
and G~ = C. For the space ', the change in order implies G = D~'C’ and
G~! = CD where D = diag{A2311, 2322, - - -, A\23.kok, | IS a diagonal matrix
and Aag;; is the i diagonal element of AJ;.

From these transformations we can demonstrate the implications of reorder-
ing and how |A;]| = 0 implies a discontinuity in this transformation. Consider
first the case of transforming from the space T+ to the space 7. If we use
the normalization with positive diagonal elements then after reordering we wish
to map back into the space *. Now consider the points where |Asz| = 0. In this

case the QR decomposition, Ayz = C'AJ;, will result in ‘A%‘g’ = |A§“3’ =0as A,
will have some zeros on the diagonal as it has reduced rank. Therefore, at the
point ‘A%3’ = |AJ;| = 0 the matrix A cannot meet the identifying restrictions,

that is A7 ¢ TTJ. The transformation is discontinuous and maps outside the
original space such that we cannot claim invariance.

The above result implies that within the space !, the change in order implies
D will have zeros on the diagonal such that G is not defined. This collection of
transformations, therefore, does not form a matrix or linear group and, again,
we cannot claim invariance.

We can demonstrate an alternative argument for lack of invariance by con-
sidering that the transformations implied by the transformations do not map
from a space onto itself. We show this in terms of the space spanned by the
loading matrix.

Each of the restrictions under ™% m € {+,1} implies that each of the k
(n x 1) vectors in A’ are tied to k coordinate axes such that sp (A’) cannot lie in
the space spanned by the remaining (n — k) coordinate axes. This is achieved
by forcing k rows of A’, A}, to be full rank. For example, the vectors may be
tied to the first k axes. The k— dimensional space of the matrix made up of the
first k coordinate axes is

I
PI—SP< g )Ekak

where Gy, ,—, is the Grassmann manifold, and the (n — k) — dimensional space
orthogonal to pr is pr1 € Gp_pr. If k> n —k, then let p; be any point in
G- such that pry Cpy,andif n—Fk > k, then let p; be any point in G,
such that p; C p;1. The support of the space p; = sp (A’) for all A € T™ is a
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subset of the Grassmann manifold, p; € S; C Gj p—r, since p ¢ S; is excluded.
That is, Gk pn—r = S; Up, and S; and p, are disjoint. However, pr € ;.

Any other ordering of the variables ™/ will have support S; such that
p1 € S;. Invariance requires that there exists a group of transformations from
the space, in this case S;, into itself. This group will be one to one of S; onto
S;. However, reordering involves changing the support of p; from S; to S;.

8 Appendix II

In this we derive the Savage-Dickey density ratio (SDDR) for a model with
k = k* factors to a model with k£ = k* — 1 factors by computing the marginal
posterior and prior for the smallest singular value, s, of the loading matrix. If
there is k — 1 rather than k factors in the model, then the (k X n) matrix A will
have rank k — 1. This restriction will occur at the point s; = 0.

To obtain these distributions, we begin with the conditional densities for A

p(Al6,y) and p (A|0)

where 0 is a vector of all other parameters in the model. Next, transform
from the loading matrix, A, to parameterize the restriction to lower rank as an
invariant function of the smallest singular value, s;. The transformation will
take the form

A=ad +a,00]

in which a; and §; are unit vector analytic functions of sp(«) and sp (9)
respectively and o’a = I_;. The matrix dimensions are o (kxk—1), ¢
(nxk—1),a; (kx1),0(1x1),and d, is (n x 1). At the point s, = 0 then
o = 0 and so the SDDR is computed as

Jp(a,8,0=0Jy)d(a,d)

SDDR = Tp(a,0,0=0)d(a,0)
_ plo=0ly)
p(e=0) "

To obtain the values p (o = 0]y) and p (o = 0), we approximate the integrals
by Rao-Blackwellizing. That is, with M draws from the posterior and N draws
from the priors of o and §, we compute

SMp (U = 0]al?, (S(i)7 g(i)’ y)

SDDR = —
2N4p (0 = 0ja,59,0%)

Thus we need expressions for the conditional posterior p (o = 0|, d,0,y) and
the conditional prior p (o = 0|a, d,0).
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Here is present how the transformation from A to («,d, ) is achieved. Let
the singular value decomposition of A be represented by

A = USV
!
- o m{& 00} ?
) 0 s O VI;,

= U151V1/ + ukskv;
U = [U w]eO(k), V=WV v, V3eO(n)

- Sy 0 0

- 0 Sk 0
where S7 is a diagonal matrix containing the k — 1 largest singular values of A
and the scalar si is the smallest singular value. Given A is an k X n matrix, this
defines the dimensions of all matrices and submatrices above. Next we introduce
an unidentified (k — 1) x (k — 1) orthogonal matrix 7" € O (k — 1) with uniform
distribution on O (k — 1) via

UlSlVl’ = UlSlTT’Vl' = aé/
a = U;ST and 6 = V| T.

Next, introduce two more unidentified parameters: 7,,75 € O (1) = {—1,1}.
Then transform the product ugspv), = UpTaTaSETsTsV), = ou_oélj_ where o | =
UpT e, O = TaSpTs, and d | = vpTs. Thus the restriction that A has rank £—1, so
that there is one less factor in the model, is parameterized by o = 0. Importantly
for computation, the Jacobian J (A, T, 7,,7s — «,0d,0) is not a function of o
and, at 0 = 0, is not a function of v, or §, .

To compute the SDDR, we need the conditional distribution for o given
(a,0). We have the conditional posterior for A = vec (A) (marginal of 3) as

ANF,H,Y ~ N (X, V3)
where
A = ViHF)y,
Va = (H+ CAIJQ)_I ® (F’F)_l.

Vectorizing A we have with d = vec (¢),

A = vec(A)=(I,®a)d+ (0L ®ay)o and so
((Led )= (n®a)d
= [((L®al) A~ (0L ®da)d]
= (o)

Q
Il

The conditional posterior distribution of ¢ is then

ola, 8, F,H,Y ~ N (3,V,)
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where
7 = (8@l
VU = (5l®0¢l)V)\((SL®O[L).

In a similar way, the conditional prior for ¢ is derived from the prior for A
and draws are obtained from the a Gibbs sampler consisting of the conditional
densities for f and A at the beginning of Section 4.

The Conditional Prior
The prior distribution for A = vec (A) is
A=wec(A)|f ~N(0,V,)

where V, = I, L @ (F'F)"".
The conditional prior distribution of ¢ is then

ola,d,F,~ N (0,V,)

where V= ( "® o/i) V, (0L ®ay). The Gibbs sampler for drawing A uses
the conditionals

f=wvec(F)|A~N(0,Vy) and A =wvec(A)|f ~ N (0,V,)

where Vo = [T, + exAN] ' @ Ir and V, = I, L @ (F'F) ™"
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