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Abstract

We examine co-movements between biofuels and a wide range of commodities and
assets in the US, Europe, and Brazil. We analyze a unique dataset of 33 commodities and
relevant assets (between 2003 and 2016) which is unprecedented in the biofuels literature.
We combine the minimum spanning trees correlation filtration to detect the most important
connections of the broad analyzed system with continuous wavelet analysis which allows for
studying dynamic connections between biofuels and relevant commodities and assets and
their frequency characteristics as well. We confirm that for the Brazilian and US ethanol,
their respective feedstock commodities lead the prices of biofuels, and not vice versa. This
dynamics remains qualitatively unchanged when controlling for the influence of crude oil
prices. As opposed to the Brazilian and US ethanol, the European biodiesel exhibits only
moderate ties to its production factors. We show that financial factors do not significantly
interact with biofuel prices.

Keywords: biofuels, prices, minimum spanning tree, wavelet coherence
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In various studies of price connections between biofuels and related commodities, a
wide array of feedstock commodities has been used – corn, wheat, sugar cane, sugar
beet, rapeseed, soybean, sunflower or palm oil [1]. However, it is possible and likely that
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interconnections between biofuels and other-than-feedstock commodities as well as other
economic and financial variables play an important role as well [1–3]. Even though there
are several studies investigating the relationship between specific exchange rates and sys-
tems including oil and agricultural commodities [3–5], inclusions of stock indices, bond
rates and interbank interest rates are rare. Also the existing studies considering financial
variables did not explicitly include biofuels into the analyzed systems. An important
motivation behind utilizing a wide portfolio of assets (regardless the theoretical existence
or non-existence of links and connections among them) is the empirically found growing
correlation among all types of assets with different fundamentals, which has become even
more pronounced after the financial crises of the past decade, mainly due to financial-
ization of commodities [6–8]. Investigating the dynamics and evolution of connections
among biofuels and a wide range of other assets is thus novel and it is one of our main
contributions.

Here we show that while the price movements of feedstock commodities are good
predictors of biofuel prices for the US and Brazilian ethanol, this relationship is much
weaker in Europe. We also show that the financial factors suggested in the literature on
co-movement between oil and exchange rates [9–11], oil and stock market [12–14], and oil,
agricultural commodities and exchange rates [3] do not significantly interact with biofuels
prices. We find a clear market segmentation between conventional fuels and biofuels with
respect to prices and that there is a spatial segmentation for different biofuels.

Methods

Minimum Spanning Trees

The minimum spanning trees (MST) provide a metric to measure the interconnections
within a group of commodities and assets. The construction of MST builds on a sam-
ple pairwise Pearson correlation coefficient ρ̂ij between assets i and j. The correlation
coefficients are transformed into a distance measure [15]

dij =
√

2(1− ρ̂ij). (1)

Unlike ρ̂ij, the distance measure dij is a true distance measure fulfilling the axioms of
Euclidean metric and it ranges between 0 and 2. Specifically, the corner cases of the cor-
relation coefficient can be translated into the distance measure language in the following
manner:

dij =


0 perfect positive correlation;√

2 no correlation;

2 perfect negative correlation.

Since each correlation coefficient ρ̂ij is transformed into a distance measure dij, the cor-
relation matrix C is transformed into a distance matrix D:
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C =


ρ̂11 ρ̂12 . . . ρ̂1n
ρ̂21 ρ̂22 . . . ρ̂2n
...

...
. . .

...
ρ̂n1 ρ̂n2 . . . ρ̂nn

 ⇒ D =


0 d12 . . . d1n
d21 0 . . . d2n
...

...
. . .

...
dn1 dn2 . . . 0

 (2)

Using the values of D, we find the most important connections within a group of
commodities and assets according to the MST concept using the Kruskal’s algorithm
[16]. In short, the tree of the most important connections of the system are formed
by systematically eliminating the weakest links (the longest distances) between nodes
(commodities and assets) as long as the tree is not torn between more trees, i.e. as long
as it is possible to connect any two nodes using the remaining links. The number of
links decreases from k(k− 1)/2 for the correlation matrix to k− 1 for the final minimum
spanning tree, where k is the number of variables. Such correlation matrix filtration has
proved its worth in various applications across disciplines [17–20].

A potential issue of the MST analysis lays in a possible link instability, i.e. whether
the detected relevant link is in fact relevant or is present due to statistical noise. This
is usually an issue for systems with overall weak connections. In order to assess stability
(importance) of individual links, we employ the bootstrapping technique proposed by
[21]. In the procedure, the time series are re-sampled with repetition from the original
series while the variable of re-sampling is time, i.e. we re-sample from the time index
and reconstruct the analyzed series according to the new time structure. This way, the
pairwise correlation core is not distorted. The MST procedure is then applied on the
bootstrapped series and the relevant links are recorded. This is repeated 1000 times.
Resulting bootstrap values are obtained for each link in form of bij which is defined as
a ratio between the number of occurrences by the total of bootstrapped realizations so
that bij ∈ [0; 1]. The links with bij > 0.5 are denoted in our MST charts with an asterisk.

Wavelet Coherence

The most important connections in the analyzed system of commodities and assets iden-
tified through MST are further investigated in more detail using the wavelet coherence
framework, which is a significant generalization of the simple correlation analysis as it
allows for examination of the time evolution of the relationship between series as well
as its scale structure, i.e. whether the connection is important from different temporal
perspectives.

Wavelet analysis decomposes a time series into several components according to their
time and scale properties. Generally, a signal (time series) may be composed of individual
waves cycling at different speed, i.e. with different frequencies. Individual components of
the signal get separated in the frequency domain. A central feature of wavelet analysis
is that it captures both time and frequency characteristics, i.e. it decomposes the series
in both domains.

A wavelet ψu,s(t) is a real or complex-valued function given as

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (3)
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with a scale parameter s and a location parameter u. Under certain conditions [22], the
original series {xt} can be fully reconstructed from its wavelet transform Wx(u, s) defined
as

Wx(u, s) =

∫ +∞

−∞
x(t)

1√
s
ψ∗
(
t− u
s

)
dt, (4)

where ∗ represents a complex conjugate operator preventing an information loss during
the transformation. The degree of similarity between the wavelet shape and {xt} is
measured by the integral above. Frequently, multivariate economic applications of wavelet
analysis use the Morlet wavelet which, as a complex wavelet, enables studying multivariate
relationships between series. The Morlet wavelet is specified as ψM(t) = 1

π1/4 e
iω0te−t

2/2,
where ω0 denotes the central frequency of the wavelet. We set ω0 = 6 as it provides an
optimal balance between time and frequency components [23–26]. As an example of a
different wavelet used in energy economics we may consider Haar a Trous wavelet [13].

The wavelet framework can be generalized into a bivariate setting which is essential
for studying connections between various series. In the bivariate setting, the cross wavelet
spectrum is given by

Wxy(u, s) = Wx(u, s)W
∗
y (u, s), (5)

where Wx(u, s) stands for the continuous wavelet transform of series {xt} and W ∗
y (u, s)

marks a complex conjugate of the continuous wavelet transform [27]. As the cross wavelet
spectrum is generally complex, the cross wavelet power is given by |Wxy(u, s)|. It is
usually understood to be a measure of local covariance between two series at a given
frequency. Nonetheless, we cannot easily assess the strength of the detected co-movement
as the cross-wavelet power is not bounded (in the same logic as standard covariance). To
overcome such limitation, the squared wavelet coherence is introduced as

R2
xy(u, s) =

|S
(
1
s
Wxy(u, s)

)
|2

S
(
1
s
|Wx(u, s)|2

)
S
(
1
s
|Wy(u, s)|2

) , (6)

with S being a smoothing operator [28]. By definition, the value of the squared coherence
varies between 0 and 1. Moreover, the squared wavelet coherence corresponds to the
usual squared correlation coefficient for specific time and frequency. As the cross-wavelet
spectrum translates into the squared coherence, the information about the direction of the
relationship is lost. However, this information can be recovered from its phase difference
specified as

ϕxy(u, s) = tan−1

(
I
[
S
(
1
s
Wxy(u, s)

)]
R
[
S
(
1
s
Wxy(u, s)

)]) , (7)

with R and I representing the real and imaginary part operators, respectively. For
technical details, please refer to [29].

Wavelet coherence is limited by the same technical constraint as usual correlation –
it may suffer from the omitted variable bias as it does not control for a possible influence
of other variables [30]. Thus, we may observe a (seemingly) high coherence between
two variables while the observed relationship can in fact be caused by their mutual ties
to another variable. To overcome this issue, we follow [30] in using the partial wavelet
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squared coherence, an analogy of the partial correlation, defined as

RP 2
y,x1,x2

=
|Ryx1 −Ryx2R

∗
yx1|2(

1−R2
yx2

)2 (
1−R2

x2x1

)2 . (8)

Partial wavelet coherence evaluates the relationship between {y} and {x1} while control-
ling for the effect of {x2}, see [31] for details.

There are two main sources of uncertainty present when translating the time series
into the time-frequency domain of wavelet coherence. First, a high level of wavelet co-
herence at specific time and scale point does not guarantee strong relationship between
series at the given time-scale point. Statistical significance is inferred from Monte Carlo
simulations. Specifically, the null hypothesis set here is a red noise, i.e. an autoregressive
process of the first order. Such process has stable short-term memory autocorrelated
dynamics in both time and frequency domain. The 95% significance bands represented
by a thick black curve in the wavelet coherence contours are based on 1,000 simulations.
We thus follow the standard procedure set in the applied wavelet coherence literature
[28, 29]. Second, wavelets are being rescaled for specific scales during the procedure and
projected onto the time series. Such rescaling (stretching) meets a limit for higher scales
as the sample size is limited. Therefore, the beginnings and the ends of the analyzed
time series cannot be properly represented for high scales and the time series needs to be
padded by zeros to provide sufficient number of observations. This makes these regions
less reliable than the ones based on the actual data. The reliable regions of the time-scale
plane of the wavelet coherence are separated from the less reliable ones by the so-called
cone of influence which splits the plane into two – the less reliable with pale colors and
the reliable with full colors. The wavelet coherences shown in full colors can be thus
interpreted and commented on without issues [29].

In the same way as for the minimum spanning tree approach, an outcome of the
wavelet analysis is best understood from its graphical representation, which is discussed
and described in detail in the Results section. The computational process of our wavelet
analysis was done in MATLAB R2014b using packages by Aslak Grinsted and E. K. W.
Ng and T. W. Kwok.

Results

We have collected a wide system of time series of weekly nominal prices for 33 biofuels-
related commodities and assets over the period 2003-2016. This data was obtained
from Bloomberg, Thomson Reuters Eikon, Centro de Estudos Avancados em Economica
Aplicada (CEPEA), US Energy Information Administration (EIA), National Agency of
Petroleum, Natural Gas and Biofuels – Agencia Nacional do Petroleo, Gas Natural e
Biocombustiveis (ANP Brazil), US Federal Reserve, European Central Bank (ECB), and
ECONSTATS databases. Such a wide system can easily become over-specified. To avoid
this, we implement a two-step approach to the problem. We initially identify the most
relevant connections in the studied system and then we focus only on these to uncover
the specifics of the relationship between biofuels (namely the US and Brazilian ethanol,
and European biodiesel) and the identified relevant factors.
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In the first step of our approach, we examine the whole portfolio of assets suggested in
the literature [1] as potentially related to biofuels and we apply the method of minimum
spanning trees (MST) to identify the most relevant connections and co-movements be-
tween the factors during three major periods of the recent biofuels developments. While
the MST approach allows for considering co-movements among essentially unlimited
number of possible factors, it does not provide information on the direction of these
co-movements. Therefore, as the second step of our analysis, we take the most relevant
pairs identified by MST and we conduct an in-depth investigation of their mutual co-
movements using an extended wavelet coherence framework. Technical details for both
methodologies are given in the Methods section.

Minimum Spanning Trees

Inspecting Fig. 1, we observe that a core of the MST is formed by a compact group
of the stock indices. It follows from the interconnected nature of stock markets that
these indices are strongly correlated with stable mutual links. We see that not only stock
indices but also a number of other items gather according to their type. In broader terms,
there seems to be a group of agricultural commodities — a food branch — and a fuel
branch of the MST at the opposite sides of the network. On the one hand, a cluster of
the vegetable oils together with the ethanol feedstock commodities constitute the food
part of the tree. On the other hand, the fossil fuels and biofuels form the fuel branch.
While no other biofuel is connected to its feedstock, Brazilian ethanol makes a notable
exception. Its robust link to Brazilian sugar is evident already during this first studied
period (2003 – 2008).

The US ethanol and even biodiesel have stable links to their US fossil substitutes
and crude oil. This close relationship between the US ethanol and US gasoline prices
indicates that the US policies supporting ethanol use were still in their early stage and
their influence on prices of US ethanol feedstocks was not a binding factor for pricing of
ethanol. Instead, the US ethanol prices were determined by oil price, which experienced
stable strong growth during the whole 2003-2008 period. During this early period, the
ethanol production capacity was limited and the ethanol refinery industry was expanding
rapidly. The expansion was driven by high ethanol prices that in addition to increasing
crude oil prices reflected the blenders’ tax credit, the need for oxygenated fuel additives
replacing MTBE additives, which had been banned in some of the US states starting
from 2002, and government blending mandates operational since 2005.

As opposed to the exchange rates, which bridge the stock market cluster with the
fuel and food parts, interest rates do not seem to interact with a rest of a system a lot.
Brazilian retail fuels are not integrated into the fuel branch, they stand at the edge of the
network being only linked to LIBOR. The isolated position of the Brazilian fossil fuels is
implied by a specific setting of the national fuel market in Brazil [32]. Due to a decisive
influence of Petrobras on local fuel prices, Brazilian fossil fuels do not necessarily follow
the global markets’ development. As we will see during the whole studied period, they
do not usually integrate into the fossil fuel cluster. We should not forget about the four
purely food commodities which cannot be used to produce biofuels. These items do not
form any cluster and are only individually connected to different nodes of the network.

Our first period covered the era of rising food prices and an increasing global signif-
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Figure 1: Minimum spanning tree (2003 – 2008)
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Minimum spanning tree for the first period (2003 – 2008) is shown here. Col-
ors represent types of commodities – biofuels (green), ethanol feedstock (red),
biodiesel feedstock (pink), other agricultural commodities (purple), fossil fuels
(gray), stock indices (orange), exchange rates (yellow) and interest rates (blue).
Distances are shown and length of links between commodities is proportional to
the distances. Stability of links is tested using the bootstrapping procedure and
the stable links are marked by an asterisk. Most commodity types cluster nicely
together but with some notable exceptions. Brazilian ethanol is tightly connected
to Brazilian sugar but the remaining two biofuels are closely connected to the fuel
part of the tree rather than their producing factors.

icance of biofuels preceding the first world food crisis covered by our sample. We now
continue investigating our network’s development in a changed market environment. Af-
ter several years of accelerating agricultural and energy prices, these slumped quickly
during the second half of 2008 hand-in-hand with the global economic crisis. After the
bottom was reached in 2009, both energy and agricultural prices started a new rally up to
a new peak in February 2011. During this period, we expect to see signs of an established
biofuel production not only in Brazil but also in the US and Europe. Fig. 2 delivers a
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Figure 2: Minimum spanning tree (2008 – 2011)
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Minimum spanning tree for the second period (2008 – 2011) is shown here. Col-
ors represent types of commodities – biofuels (green), ethanol feedstock (red),
biodiesel feedstock (pink), other agricultural commodities (purple), fossil fuels
(gray), stock indices (orange), exchange rates (yellow) and interest rates (blue).
Distances are shown and length of links between commodities is proportional
to the distances. Stability of links is tested using the bootstrapping procedure
and the stable links are marked by an asterisk. Again, most commodity types
cluster nicely together but there are some notable differences compared to the
first analyzed period. Brazilian ethanol is still close to sugar but it has moved
closer to the exchange rate between USD and BRL and Brazilian gasoline. EU
biodiesel has moved closer to its producing factors and the US ethanol is now
closely connected to corn and wheat.

minimum spanning tree for this period. In this period, biodiesel gets closer to the veg-
etable oils cluster and the Brazilian ethanol remains close to the Brazilian sugar and the
USD/BRL exchange rate. Compared to the previous period, a major change occurs for
the US ethanol which moved to the food branch, connecting to corn. The US ethanol–
corn link is relatively strong (dij = 0.930) and stable. It reflects an important connection
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between the main US biofuel and its primary feedstock. As far as corn is concerned,
up to summer 2007, it faced a stable surplus supply situation except in years of major
weather problems and its price was not a limiting factor for ethanol price. However, with
a rapid expansion of ethanol production capacity driven by government policies, corn,
from mid-2007 through 2013, became the main limiting factor in the US ethanol supply
chain. This led to the increase in corn prices up to the breakeven level for ethanol pro-
ducers and the capacity expansion stopped. This was also connected with reaching the
so-called blending wall (the 10 percent limit on the ethanol content in gasoline).

Inspecting the minimum spanning tree in Fig. 3, we notice the central position of fossil
fuels cluster which clearly separates the US and EU biofuels on one side and Brazilian
ethanol on the other side. Exceptionally, both Brazilian fossil fuels get integrated into
the fuel cluster. The financial variables clearly connect the Brazilian ethanol and sugar-
based feedstocks to the rest of the system. While the clustering of financials and their
role as connectors between fossil fuels and Brazilian ethanol was outlined already during
2003-2011, it is particularly strong in the current period.

In accordance with the previous findings, the biofuels stay attached to their respective
feedstock clusters. However, their mutual links are rather weak. There exist very stable
interconnections between palm oil, rapeseed, and soybeans with biodiesel being attached
to both sunflower and palm oil at the same time as keeping close connection with fossil
fuels through Brent crude oil.

Wavelet Analysis

The minimum spanning tree analysis in the previous sections has shown that there is quite
noticeable dynamics of the evolution of the MST structure over time. Given the static
nature of each MST structure depending on the chosen time window for that particular
MST, there is a clear advantage in using continuous wavelet framework capturing the
co-movement among the prices of chosen commodities at each time point and at different
scales (frequencies) without a need to specify any particular time window or choosing a
particular fixed frequency. In other words, the continuous wavelet framework allows us to
study the time evolution of correlation between series without any parametrization due
to moving window length or possible structural breaks detection. Along the same line,
the possibility of studying the relationship at different scales uncovers more details and
provides more information about its dynamics, which would otherwise remain hidden or
averaged out over all scales (e.g. using standard correlation or regression frameworks).
Having identified several important links between biofuels and their feedstock, we ap-
proach these pairwise connections separately.

The output for each studied biofuel–feedstock pair is presented in form of two charts.
While the horizontal axes show time (in years), there is also the frequency scale (in days)
on the vertical axes. Coherence is indicated by color according to a spectrum shown at the
right edge. Pale colored corner areas are not of reliable interpretation. They result from
artificially adding zeros to the beginning and to the end of analyzed series compensating
for wavelet lengths. A central bright colored area delivers reliable results. Furthermore,
the regions with statistically significant coherence are bounded with a thick black curve.

In the left panel, we present the squared wavelet coherence between biofuel and a par-
ticular relevant feedstock commodity indicated by a combination of MST results and other
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Figure 3: Minimum spanning tree (2011 – 2016)
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Minimum spanning tree for the third period (2011 – 2016) is shown here. Col-
ors represent types of commodities – biofuels (green), ethanol feedstock (red),
biodiesel feedstock (pink), other agricultural commodities (purple), fossil fuels
(gray), stock indices (orange), exchange rates (yellow) and interest rates (blue).
Distances are shown and length of links between commodities is proportional to
the distances. Stability of links is tested using the bootstrapping procedure and
the stable links are marked by an asterisk. Again, most commodity types cluster
nicely together. The analyzed biofuels in a way completed their transition over
the last two periods. Specifically, the US ethanol is connected to corn and wheat,
the Brazilian ethanol is connected to Brazilian sugar and EU biodiesel forms a
bridge between biodiesel feedstock and fossil fuels.

considerations. Since there is no negative wavelet coherence, phase difference between the
series is indicated by directed arrows. Simply put, the arrows indicate a direction of the
relationship. Rightward pointing arrows mean that biofuel is positively correlated with
that particular feedstock while leftward pointing arrows indicate a negative relationship.
If the arrows point straight down, biofuel leads the price of feedstock by π/2. On the
contrary, the upward pointing arrows imply that price of biofuel is led by feedstock.
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In the right panel, we show the partial wavelet squared coherence. In the food–fuel
system, crude oil plays a role of an important price driver affecting both fuel and food
parts of the commodity system. In particular during the 2003-2008 period, both EU
biodiesel and US ethanol were part of fuels branch of MST with both Brent and WTI
crude oil being close to these biofuels. This close relationship diminished during crisis
period 2008-2011. However, in the following 2011-2016 period, biodiesel price became
again closely related to Brent crude oil price while keeping close to the well-defined MST
cluster of its oilseed feedstocks. Over all three analyzed periods, the Brazilian ethanol
was always consistently connected with the main fossil fuels MST cluster (including crude
oil) through financial factors (exchange rates and stock indices). Therefore, the wavelet
coherence output (left panel) is always supplemented by the partial wavelet coherence
chart (right panel) where crude oil is controlled for. The increase of the price co-movement
between oil and food commodities with the onset of the global food crises has been
previously indicated [33–35] and it is a central question of both earlier [36–38] and most
recent [39–41] literature dealing with the role of biofuels as an important link in the
development of food price dynamics.

Brazilian Ethanol

As documented by our previous MST analyses, Brazilian ethanol price is directly linked
to Brazilian sugar price, which may be taken as a best available market representation of
the value of sugarcane serving as ethanol feedstock. Moreover, their connection seems to
be quite strong and stable since it appears in majority of the constructed MSTs. Hence,
we are especially keen on exploring Brazilian ethanol (BR ethanol) correlation with local
sugar (BR sugar) price in more detail.

The left panel of Fig. 4 shows a strong relationship apparent for scales approximately
between 500 and 700 days, i.e. roughly between 1.5 and 2 years. Thus, we observe a
long-term relationship between Brazilian ethanol and Brazilian sugar that is remarkably
stable in time. Apart from this main relationship, we identify only several minor coherence
islands associated with relatively quick price interactions in the short term. For 2015,
we observe an intensive co-movement of ethanol and sugar on essentially all observed
frequencies. The phase arrows in the main significant region point to the right and
upwards indicating a positive correlation between ethanol and sugar prices with sugar
leading ethanol.

The right panel of Fig. 4 delivers the output of partial wavelet coherence when the
crude oil influence has been controlled for. Apparently, crude oil consumed only a small
portion of the overall correlation. The stable long-term relationship between Brazilian
sugar and ethanol reported in the left panel is distracted for a short period around 2008
after controlling for the crude oil influence. This time period overlaps with historical
heights of crude oil prices when a barrel of crude oil rocketed over $140 in July 2008.
This suggests that crude oil has a stronger effect on ethanol when the prices are high. Such
claim is well in line with the results detecting different non-linear relationships between
crude oil, biofuels, and their feedstocks, specifically with respect to high crude oil prices
[36, 42–46]. Our results describe the dynamics in more detail. Specifically, only the long-
term relationship is formed for the crude oil highs but there are no emerging short-term
correlations as a result of the crude oil spikes. The relationship between Brazilian ethanol
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Figure 4: Wavelet coherence for Brazilian ethanol and Brazilian sugar.
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Both wavelet squared coherence (left) and partial wavelet coherence (right) cor-
recting for the effect of WTI crude oil are shown. Coherence color spectrum is
shown at the right edge, i.e. the hotter the color the higher the coherence. Re-
gions with wavelet coherence statistically significant at 95% level are highlighted
by a thick black curve. The significance is tested against the null hypothesis of
a red noise and the procedure is based on 1,000 simulations. We find a stable
significant region at the scale of around 500 days, i.e. approximately 2 trading
years, which holds even after controlling for the crude oil influence. Orientation
of the phase shift arrows suggests that the sugar series lead the ethanol series,
i.e. the feedstock leads the biofuel and not vice versa.

and sugar thus remains remarkably stable in time, which has been reported in the MST
analysis as the connection between the Brazilian sugar and ethanol having been found
strong and reliable during all three analyzed periods.

Wavelet coherence between Brazilian ethanol and Brazilian sugar is noticeably less
sensitive to the correction for the effect of world crude oil price, as compared to US
ethanol and European biodiesel, which are covered in the two following subsections. This
reflects the insulation of Brazilian fuel markets from the world crude oil prices fluctuations
provided by the domestic wholesale oil price cap effectively enforced by the state-owned oil
producer, Petrobras, which sets a reference oil price for domestic refining [32]. Given that
this reference price was usually set below the world market price, this implicit subsidy to
gasoline provides a negative incentive for biofuel production which clashes with Brazilian
biofuel mandate and fuel tax/tax credit incentivizing biofuel.

US Ethanol

Our results (Fig. 5) show that the relationship between the US ethanol and corn (which
accounts for 90% of the US ethanol) consists of two strong dependencies of different
kinds. We find significant coherence areas associated with both short-term and long-
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term horizons. The long-term relationship approximately at the level of 500 days (almost
1.5 years) has been steadily present since the period following the food crisis of 2008.
Its rightwards pointing phase arrows tell us that the US ethanol has been positively
correlated with corn throughout the second half of the studied time frame. Compared to
the Brazilian case, the feedstock leadership is not as evident.

The other type of dependency is a collection of short-term price interactions which are,
however, much stronger compared to the Brazilian case. These time-limited episodes are
associated with very high corn prices in summer 2008, first half of 2011 and second half
of 2012. The first two cases coincide with food price crises of 2008 and 2011. The 2012
strong co-movement of ethanol and corn prices is associated with the 2012 US drought
which was the most severe drought in the US since 1956. Our results support the findings
of [47] and [48], who focus on the interplay of (weather influenced) grain commodities
storage and biofuels policies in the determination of prices of grains and ethanol.

Altogether, we find a stable long term relationship accompanied by several short-term
episodes associated with high corn prices especially between 2010 and 2013. This supports
the findings of the MST analysis which identified a strong and stable connection between
the US ethanol and corn mainly during the later two periods, i.e. after 2008. Throughout
the last decade, the relationship has always been positive with corn slightly leading the
price of ethanol. When the influence of crude oil is controlled for, we apparently lose
a part of correlation. Especially the long term relationship between ethanol and corn
gets somewhat reduced for the period of global food crisis 2008-2011. However, other
qualitative results do not get affected.

Comparison of price dynamics revealed by both MST and wavelet coherence results
for the US and Brazilian ethanol shows that in the US the Renewable Fuel Standards
(RFS) had a stronger impact than the corresponding Brazilian policies. This is because
in Brazil other factors like already mentioned upper bound on wholesale price of gasoline,
different taxations for biofuel and fossil fuel or subsidization of diesel [32] together with
a long term history of the world’s most developed biofuel market implied nonexistence of
pronounced RFS caused regime switch which we documented on the US data.

European Biodiesel

The minimum spanning tree analyses have indicated that biodiesel exhibited a price
behavior different from both the US and Brazilian ethanol – its position in the network
evolved vividly over the analyzed periods. Now we focus on the relationship between EU
biodiesel and rapeseed as its main European producing factor and possible influence of
Brent crude oil (Fig. 6).

In the left panel of the figure, we find a strong and stable relationship between biodiesel
and rapeseed. The relationship is positive and rapeseed leads the dynamics of biodiesel
according to the phase arrows direction. The connection is visible for high scales up to
approximately 1000 days, i.e. 4 years, which could be a reason why such connection
has not been detected by the MST analysis. The range of significant scales shrinks with
time and after 2014, the connection is gone apart from few small islands at lower scales.
However, this relationship between biodiesel and its main feedstock is mainly due to
the correlation of the constituents and crude oil. Specifically, the right panel of Fig. 6
uncovers that after controlling for the effect of Brent oil, the connection between rapeseed
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Figure 5: Wavelet coherence for US ethanol and corn feedstock
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Both wavelet squared coherence (left) and partial wavelet coherence (right) cor-
recting for the effect of WTI crude oil are shown. Coherence color spectrum is
shown at the right edge, i.e. the hotter the color the higher the coherence. Re-
gions with wavelet coherence statistically significant at 95% level are highlighted
by a thick black curve. The significance is tested against the null hypothesis of a
red noise and the procedure is based on 1,000 simulations. Similarly to the case
of Brazil, we find a relatively stable significant region at the scale of around 500
days, i.e. approximately 2 trading years. However, it is more weakened by con-
trolling for the crude oil effect and, importantly, the strong relationship emerges
only after the first food crisis, i.e. after 2008. For this period immediately after
2008, the positive correlation is evident for practically all scales. After 2011, the
connection weakens for lower scales. Orientation of the phase shift arrows sug-
gests that corn leads ethanol for most time-scale points. However, such leadership
is again weaker than for the Brazilian case.

14



Figure 6: Wavelet coherence for biodiesel and rapeseed feedstock

EU biodiesel and rapeseed feedstock
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Both wavelet squared coherence (left) and partial wavelet coherence (right) cor-
recting for the effect of WTI crude oil are shown. Coherence color spectrum is
shown at the right edge, i.e. the hotter the color the higher the coherence. Re-
gions with wavelet coherence statistically significant at 95% level are highlighted
by a thick black curve. The significance is tested against the null hypothesis of
a red noise and the procedure is based on 1,000 simulations. We find a stable
significant region at the scales above 300 days, i.e. above a trading year. Orien-
tation of the phase shift arrows suggests that the feedstock commodities lead the
biodiesel prices. However, this strong relationship is practically completely gone
after controlling for the Brent oil prices. This suggests that the emergent rela-
tionship between biodiesel and its feedstock is mainly due to indirect correlation
with crude oil.
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and biodiesel vanishes practically completely and it has been found due to an indirect
correlation, i.e. changes in Brent crude oil cause price changes in both rapeseed and
EU biodiesel but there is no direct long-lasting causality coming from rapeseed towards
biodiesel. Similar results of low correlation between prices of biodiesel and prices of its
feedstock are also characteristic for other feedstock besides rapeseed which we covered in
our exploratory analysis (these results are available upon request) and which we do not
report in this paper. Since the European retail fuel prices are higher than those in the
US (because of low US taxes) and Brazil (because of lower wholesale crude oil price in
Brazil) with fuel/food price ratios being higher in Europe than in the US, the European
biodiesel prices are aligned with fossil fuels rather than with foods.

Nonetheless, there are certain signs of a time-limited positive correlation between
biodiesel and its feedstock. During these episodes, feedstock led the price of biodiesel.
Compared to the results obtained for the Brazilian and US ethanol, we argue that the
price of European biodiesel is very weakly connected with prices of individual feedstock
commodities. Its price is primarily determined by a mix of factors including fossil fuels
prices and the price behavior of the whole oilseed cluster rather than only price of a single
dominant feedstock. In this respect, the European biodiesel market substantially differs
from the analyzed ethanol markets. The difference in the terms of close connection of
EU biodiesel with fossil fuels, as compared to Brazil and US ethanol close connection
to feedstock, may be explained by a key role played by government policies in the de-
termination of biofuel prices. In the case of Brazil and the US, the fossil fuel price is
not determining ethanol prices because the well defined mandates (particularly strong
in Brazil with the ethanol content of motor vehicle fuels being mandated as high as 27
percent recently) tend to isolate the fossil fuel markets and ethanol markets from each
other. This was not the case in the EU where especially during the initial period before
the global food crisis the biodiesel tax exceptions played important role. Following the
economic mechanism described in [39, 49], the continuing importance of co-movement of
EU biodiesel and fossil fuels prices is also supported by nonexistence of EU-wide binding
mandates as opposed to the situation in the US and Brazil.

Having analyzed the EU biofuel industry in the context of its main regulatory drivers,
we conclude that European biodiesel plays a different role than the US and Brazilian
ethanols do in their domestic markets. The difference has been demonstrated by the
results of the MST and wavelet analyses.

Discussion

Our paper is an integral part of the wide literature on biofuels-related price transmission.
The most comprehensive recent treatment and literature overview of this topic is pro-
vided in [39] which is complemented by a series of related papers [49–53] focused mainly
on biofuels policies and prices. Our analysis has focused on the world’s major biofuel
markets – Brazil, the US, and the EU. Our study covers 83% of the global ethanol pro-
duction and about 45% of the biodiesel production. We have studied the relationships
between ethanol, biodiesel, associated agricultural commodities, crude oil, relevant fos-
sil fuels, and a group of financial assets. In summary, we have succeeded in confirming
our initial hypotheses. First, we have described an interconnected system of the biofuel-
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related commodities. Moreover, we have commented on its evolution over the course of a
fourteen-year period. Second, we have documented a phase shift that initially occurred
between the mature Brazilian and belated US/European biofuel industries. Third, we
have demonstrated a positive price co-movement of ethanol and its respective production
factors. We have further showed that this relationship is stable in time with feedstock
leading the price of ethanol. Fourth, we have explained that the price of biodiesel did
not depend on a single feedstock commodity. Biodiesel weakly interacted with several
crops through more random price adjustments and with fossil fuels. Thus, the European
biofuel industry substantially differs from both the Brazilian and the US establishments.
Finally, the decoupling of US ethanol from the fuels cluster as observed in our MST
analysis illustrates an important role played by government policies in influencing bio-
fuels prices. In agreement with biofuels policy theoretical models of [39, 49], the firm
establishment of US ethanol mandates and suppression of tax incentives led to closer ties
between US ethanol and its feedstock prices. Similar policy argument of gradual shift
from tax incentives to mandates also explains the price co-movements of EU biodiesel.
The results of our MST and wavelet coherence therefore show a significant impact of
government policy decisions (in our case the choice of biofuels support instruments) on
market transmitted price behavior.

The main contribution of this paper lies in its innovative and comprehensive ap-
proach. Employed methods make as few ex ante assumptions as possible. In particular,
the wavelet coherence methodology represents a widely applicable non-parametric tool-
box without assuming any specific underlying model. The method is simply built on
a superposition of time and scale bounded effects. Our findings contribute to the cur-
rent biofuel policy discussion. Specifically, we stress the difference between ethanol and
biodiesel production processes. Eventually, we shed some light on the biofuel–feedstock
connections on the leading global markets.
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