Abstract

This paper analyzes the impact of monetary policy during periods of low and high financial stress in the US economy using a Threshold Vector Autoregression model. There is evidence that expansionary monetary policy is effective during periods of high financial stress with larger responses having a higher proportionate effect on output. The existence of a cost channel effect during periods of high financial stress implies the existence of a short run output-inflation trade off during financial crises. Large expansionary monetary shocks also increase the likelihood of moving the economy out of a high financial stress regime.
Keywords
Monetary policy, financial stress, threshold vector autoregression models

JEL Classification
F44, E44, E52

Address for correspondence:
(E) cama.admin@anu.edu.au

ISSN 2206-0332
Abstract

This paper analyzes the impact of monetary policy during periods of low and high financial stress in the US economy using a Threshold Vector Autoregression model. There is evidence that expansionary monetary policy is effective during periods of high financial stress with larger responses having a higher proportionate effect on output. The existence of a cost channel effect during periods of high financial stress implies the existence of a short run output-inflation trade off during financial crises. Large expansionary monetary shocks also increase the likelihood of moving the economy out of a high financial stress regime.

Keywords: Monetary policy, financial stress, threshold vector autoregression models

JEL Classification: F44, E44, E52

*Corresponding author. Email: jasmine.zheng@anu.edu.au. We are grateful for comments from an anonymous referee, Warwick McKibbin, Ippei Fujiwara and seminar participants at The Australian National University and colleagues at the Reserve Bank of Australia during Zheng’s internship. Fry-McKibbin and Zheng acknowledge financial support from ARC grant #DP120103443.
1 Introduction

In the last 40 years, the world economy has experienced several financial crises and periods of high financial stress. The major periods of high financial stress include: the 1977 international banking crisis; the 1984 savings and loans (S&L) crisis; the 1998 Asian financial crisis; and the 2007 subprime mortgage crisis. During most of these episodes, policy makers implemented expansionary monetary policies to alleviate financial stress and help move the economy towards recovery in terms of GDP growth. The recent crisis has only emphasized that financial market conditions are necessary in understanding growth and in forming subsequent policy responses to support growth as the interrelationship between financial conditions and growth are dependent on the state of the financial and macroeconomic regimes (Claessens, Kose, and Terrones (2011); Borio (2014)). As such, there is clear interest for policy makers in having a better understanding of the impact of these high financial stress episodes on the transmission mechanism of monetary policy and the macroeconomy.

This paper aims to examine the impact and effectiveness of conventional monetary policy via various transmission mechanism channels during periods of low and high financial stress in the US economy. A proposed method to deal with the interrelationships is the inclusion of financial conditions indexes such as the Federal Reserve Bank of Chicago’s Adjusted National Financial Conditions Index (ANFCI) in macroeconometric models (Hatzius, Hooper, Mishkin, Schoenholtz, and Watson (2010); Li and St-Amant (2010); Hubrich and Tetlow (2012)). The ANFCI as described in Brave and Butters (2011) is comprised of 100 indicators from money markets, debt and equity markets, and the banking system. Together, they cover concepts of financial market risk, liquidity and leverage and here are an indicator of financial stress.

A Threshold Vector Autoregression (TVAR) model is employed to capture the asymmetries in the effects of monetary policy on the US economy corresponding to a switch between the low and high financial stress regimes. The threshold variable chosen to endogenize the regime switching is the ANFCI. The economy is in the high financial stress regime if the financial stress conditions are higher than the estimated threshold value. Conversely, the economy is in the low financial stress regime if the financial stress conditions are lower than the estimated threshold value.

Using the TVAR framework, there are three questions that are the focus of investigation in this paper.
1. Do monetary policy shocks have different effects under the influence of the low and high financial stress regimes?

2. Do monetary policy shocks of different magnitudes have asymmetric output effects on the real economy and vice versa?

3. If the economy is in a low financial stress regime, do increases in the federal funds rate increase the probability of moving into the high financial stress regime and vice versa?

The empirical literature that analyzes the asymmetric effects of monetary policy on the economy mainly focuses on investigating the asymmetries of the effects of monetary policy in a business cycle context (i.e. recession and expansion) using variants of the Vector Autoregression (VAR) framework. Examples include Weise (1999), Garcia and Schaller (2002), Kaufmann (2002) and Peersman and Smets (2002). So far, the empirical literature examining the role that financial market developments play in explaining macroeconomic dynamics and business cycles has been limited. For example, Balke (2000) uses the TVAR framework and US data to examine the role of credit in monetary policy transmission. The study emphasizes the findings in previous studies that the interest rate pass-through at different stages of the credit cycle is asymmetric and contractionary shocks appear to have a greater impact than expansionary ones.

Research employing analysis similar to that conducted in this paper was undertaken by Li and St-Amant (2010) and Hubrich and Tetlow (2012). In Li and St-Amant (2010), the authors use a TVAR model to analyze the impact of different financial stress regimes on the transmission of monetary policy shocks in Canada. The empirical findings show that contractionary monetary policy shocks tend to have a larger effect on output than expansionary monetary policy shocks. Expansionary monetary policy shocks are also found to have larger effects on output in the high financial stress regime than in the low financial stress regime. However, they find that the effects of large compared to small shocks are similar in their proportionate impact. In Hubrich and Tetlow (2012), the authors analyze the impact of financial stress for the US macroeconomy by estimating a Markov-switching Vector Autoregression model using Bayesian methods. Their main findings suggest that there is evidence of nonlinearities in the relationship between financial stress and the US macroeconomy. The response of output to financial shocks is also found to be different during periods of high financial stress and in normal times, which are periods of low financial stress. Hence, this paper
aims to bridge the gap in the literature by estimating a TVAR model to capture the asymmetries in the impact of conventional monetary policy shocks in the US, dependent on the financial conditions. The use of the Adjusted National Financial Conditions Index provides a more comprehensive measure of the financial conditions in the US economy, compared to the single credit measure condition used in previous studies.

There is a myriad of theoretical models relating financial conditions to the macroeconomy through the concepts captured by the ANFCI of risk, liquidity and leverage (Hatzius, Hooper, Mishkin, Schoenholtz, and Watson (2010)), and various papers have analyzed the asymmetric relationship between financial sector developments, economic activity and the transmission mechanism channels of monetary policy shocks. Recent theoretical literature places emphasis on the nonlinear dynamics in these relationships. Specifically, the hypothesized nonlinearity in monetary policy in a financial setting is closely linked to the financial accelerator mechanism, introduced in Bernanke and Gertler (1989) which is in turn closely related to all three concepts of the ANFCI of financial market risk, liquidity and leverage.

The financial accelerator mechanism is defined as the nonlinear inverse relationship between the external finance premium (EFP) that borrowers have to pay when they seek external funding and the credit rating of the borrower. The nonlinearity in this relationship arises from the effects of the financial accelerator, which is expected to be stronger when the net worth of borrowers is lower. During periods of low financial stress, firms and households have ample internal funds and mostly do not require external funding. Moreover, the risk premium associated with bankruptcy during periods of low financial stress is low. During periods of high financial stress, a decline in cash flow (or liquidity) implies that firms and households have to seek external funding (leverage). The increase in risk premium associated with bankruptcy and the low net worth of these borrowers during periods of high financial crisis implies that any changes in monetary policy directly translates to large changes in the cost of credit (risk).

Bernanke and Gertler (1989) explore the possibility of a nonlinear credit channel of monetary policy by developing a two-sector model that allows allow for the financial accelerator effects, where negative shocks in the balance sheet have a greater impact on the economy than positive shocks in the balance sheet. The financial accelerator concept was empirically tested in Bernanke, Gertler, and Gilchrist (1996), which was also incorporated into the dynamic general equilibrium model developed by Bernanke, Gertler, and Gilchrist (1999). The possibility
of a nonlinear credit channel of monetary policy has also been noted in the literature by Azariadis and Smith (1998) and Ravn (2012).

Azariadis and Smith (1998) consider the relationship between credit and production in a simple nonmonetary overlapping generations model with production introduced and showed it is possible for two equilibrium financial regimes to exist. The authors develop a model that allows an economy to switch endogenously between a financially constrained regime that has heightened financial stress conditions, such as higher interest rates, and a deterioration of balance sheets of firms, and a financially unconstrained regime under reduced financial stress conditions. Ravn (2012) built a dynamic stochastic general equilibrium model with an explicit role for asset prices through the financial accelerator developed by Bernanke and Gertler (1989), assuming asymmetry in the relationship between the financial accelerator and the net worth of firms. The asymmetric financial accelerator is modelled by assuming different values of the elasticity of the external finance premium with respect to the net worth of firms. Therefore, when the entrepreneurs’ wealth is already low, such as during financial crises, the external finance premium reacts more strongly to small changes in net worth, thereby generating asymmetries in responses to monetary policy shocks.

Another monetary transmission channel closely linked to the credit channel of monetary policy is the supply-side cost channel advanced by Barth and Ramey (2001). The cost channel explains two empirical puzzles. First, it provides a means to explain the observed larger output effect of monetary policy shocks during periods of high financial stress compared to periods of low financial stress. Second, the price puzzle often observed in standard Vector Autoregression (VAR) models is not actually a puzzle but is a response of output to the supply side of monetary policy shocks. The cost channel hypothesis heavily relies on the role of net working capital in the production process. The net working capital consist of inventories and trade receivables, net trade payables. There is a general consensus that interest rate and credit conditions can affect firms’ long run ability to invest in fixed capital and produce final output. However, the authors argue that changes in the interest rate and credit conditions can also affect firms’ ability to produce final output by investing in net working capital. Insights from the credit channel help to better explain the cost channel mechanism. During periods of high financial stress with falling demand, firms are likely to be accumulating inventories, resulting in an increase in the stock of net working capital. With a decline in cash flow, firms are forced to turn to external funding.\(^a\)

\(^a\)This mechanism is not unrelated to Olivei and Tenreyro (2007) who show that impulse
During periods of low financial stress, the opportunity cost of internal funds increases directly with the federal funds rate. However, during periods of high financial stress when firms are forced to seek external funding, the marginal cost of financing increases substantially and in a nonlinear manner as described by the credit channel, due to information asymmetry in the credit markets. The increase in the cost of external financing results in an increase in the marginal cost of production for firms, which corresponds to a direct increase in prices. Using aggregate and industry level US data, Barth and Ramey (2001) also provide evidence supporting the existence of a cost channel in the US over the last 40 years, with a contractionary monetary policy shock increasing the price/wage ratio in a VAR model. Complementing Barth and Ramey (2001), general equilibrium models examining the supply side of monetary policy such as Christiano, Eichenbaum, and Evans (1997) explain this mechanism through the timing of payments to factors of production prior to revenue receipt leading to increased borrowing requirements and costs, again, also reflected in the financial conditions variables of leverage and liquidity.

The empirical results in this paper provide several insights into the relationship between the financial sector developments and the US economy. First, there is evidence of nonlinearity, dependent on financial stress conditions. Second, there is evidence of an increase in prices, consistent with a cost channel effect, in response to an expansionary monetary policy shock during periods of high financial stress. No dominant cost channel effect is found during periods of low financial stress. This implies that there is a short run output-inflation trade off during financial crises when policymakers are likely to be conducting expansionary monetary policies. Hence, the optimal course of monetary policy during financial crises should take into consideration of this short run output-inflation trade off. Third, strong evidence has been found of the existence of the credit channel and financial accelerator mechanism during periods of high financial stress, where the output response to monetary policy shocks is larger than periods of low financial stress. This finding implies that monetary policy shocks can be both effective and potent for the US economy during financial crises. Fourth, there is evidence that large expansionary monetary policy shocks have a proportionately higher impact on output than smaller expansions during periods of high financial market stress. Last, the empirical findings also suggest that large contractionary monetary policy shocks can increase the likelihood of the economy moving from responses for output can differ across the year in response to the uneven staggering of wage contracts
a low financial stress to high financial stress regime by a substantial amount. Likewise, large expansionary monetary policy shocks increase the likelihood of moving the economy out of a high financial stress regime.

The benchmark model is estimated from 1973 - 2008. Two additional models are examined which extend the end of the sample to include periods of the crisis corresponding to the Great Recession (ending 2012) and then the Recovery period (ending 2015). The crisis and recovery periods are defined based on the Federal Reserve first mentioning that quantitative easing would be withdrawn in 2013, indicating that the economy was seen to be recovering from this time.\footnote{http://www.federalreserve.gov/newsevents/testimony/bernanke20130522a.htm}

The comparisons to the benchmark period provide interesting results. For the crisis period, expansionary monetary policy during periods of high financial stress when the prevailing interest rate is at the zero lower bound has continued to be effective, through the lowering of interest rates and credit spreads, and shifting the US economy from a high financial stress to a low financial stress regime. The output-inflation trade off persists in this extended sample, providing evidence of a dominant supply-side cost channel effect during periods of high financial stress. By 2015, the ineffectiveness of conventional monetary policy is clearly evident.

The paper is organized as follows. Section 2 introduces the empirical model and details model specification and estimation issues. Section 3 presents the empirical results on the relationship between monetary policy and the financial stress regime, comparing expansionary monetary policy and contractionary monetary policy shocks across regimes. Section 4 examines the Great Recession and recovery period. Section 5 analyses the probability of regime switching, while Section 6 concludes.

2 Empirical specifications

2.1 Model

A Threshold Vector Autoregression (TVAR) approach is used in this paper to examine the asymmetric reactions to monetary policy shocks in the low and high financial stress regimes. An alternative to the TVAR model is the Markov-switching VAR (MSVAR) model proposed by Hamilton (1989) and commonly used to differentiate between recessions and booms. MSVAR models assume that the latent state is exogenous, implying that regime switching occurs due to movements in the unobservable variable. However, it is plausible for endogenous
movements amongst observable variables to lead to regime switching. The TVAR model allows regime switching to take place (see also Balke (2000)). For example, in the context of this paper, an increase in the federal funds rate can result in changes in the financial conditions in the economy, causing a switch in regime.

As the main objective of this paper is to examine monetary policy asymmetries in the low and high financial stress regimes, the threshold variable used in the model is the Adjusted National Financial Conditions Index. In the TVAR model estimated in this paper, there are two regimes, the low and high financial stress regimes, defined by a boundary which is equal to certain value of the threshold variable. The coefficients of the TVAR system are specific to each regime, where the process within each regime can be described by a linear model. The TVAR model can be described as follows in equation 1,

\[Y_t = B_1 + \gamma_1(L)Y_t + (B_2 + \gamma_2(L)Y_t)I(y^*_t - \theta > 0) + \epsilon_t, \]

where \(Y_t \) is a vector containing US data for real GDP, inflation, the commodity price index, federal funds rate, ANFCI and the exchange rate. Real GDP, the commodity price index and the exchange rate are in percentage log-deviations from a deterministic trend. \(I \) is an indicator function that equals one if the threshold variable \(y^*_t \) at lag order \(d \) (the delay parameter) is greater than the threshold \(\theta \) and zero otherwise. The delay parameter \(d \) implies that if the threshold variable \(y^*_t - \theta \) crossing the threshold value of \(\theta \) at time \(t - d \), the dynamics actually change at time \(t \). The lag polynomials \(\gamma_1(L) \) and \(\gamma_2(L) \) describe the dynamics of the TVAR system. With the threshold variable \(y^*_t - \theta \) as a function of US financial conditions (the ANFCI), which is an element in \(Y_t \), the TVAR describes both the evolution of \(Y_t \) and that of the financial stress regimes. This implies that shocks to the federal funds rate can determine whether the economy moves to a low or high financial stress regime.

By construction, the TVAR model implies that heteroskedasticity can be assumed across the two regimes as the process within each regime can be described by a linear model as in equation 2,

\[Y_t = B_1 + \gamma_1(L)Y_t + \epsilon_{1,t} + (B_2 + \gamma_2(L)Y_t + \epsilon_{2,t})I(y^*_t - \theta > 0). \]

2.2 Data and specification issues

Quarterly data for the time period spanning 1973Q1–2008Q4 are used in the baseline model of this paper. This period is chosen as in the majority of the
sample, the economy operates normally, with no issues relating to structural changes in the conduct of monetary policy, or relating to the abnormally high magnitude of the shocks hitting the economy. The main objective of this paper is to analyze the impact of conventional monetary policy during periods of high and low financial stress with an emphasis on the non-linearities of the model. Similar analyses for the period ending crisis period ending 2012Q4 and the recovery period ending 2015Q5 is undertaken but it is recognized that this period is constrained by the zero lower bound of the federal funds rate. Nonetheless, understanding the nonlinear dynamics of the adjustment of the economy to the different shocks is still of interest.c

The data consists of six variables and we assume the following recursive causal ordering: Real GDP; inflation; the commodity price index; the federal funds rate; the ANFCI; and the exchange rate. The exchange rate variable is a real trade weighted index, with an increase in the value of the index representing an appreciation of the US dollar. This ordering assumes that the financial market variables are more responsive to the macroeconomic variables contemporaneously than the macroeconomy is to financial markets. GDP is assumed not to respond to financial market conditions contemporaneously and is only able to be affected through the lag structure of the model. The core macroeconomic variables of inflation, commodity prices and interest rates respond to GDP and each other contemporaneously in causal order, with the federal funds rate responding to all of the macroeconomy each quarter. The ANFCI capture data releases that occur weekly, monthly and quarterly and is updated each Wednesday and it is assumed that the financial market indicator will quickly respond to the macroeconomy. Most of the elements of the financial conditions index are also likely to have a direct relationship with the federal funds rate, particularly as the federal funds rate is a benchmark in pricing, which makes its logical place in the order of variables after the federal funds rate. The exchange rate is the fastest moving variable, adjusting to both domestic and international conditions instantaneously, justifying the order of the financial market variables.

This ordering is essentially the same as that of Li and St-Amant (2010) and Hubrich and Tetlow (2012) who also incorporate financial market indices in their models. Alternative orderings were tried with the financial market variables

cThe federal funds rate hit the zero lower bound of 50 basis points since 2009Q1. The policy interest rate cannot be exactly zero as there would be various transaction costs detailed in Oda and Okina (2001). Krugman (1998) argues that a nominal rate of 0.43 percent is a good approximation of an economy that is facing liquidity trap conditions. Studies in the literature typically choose 50 basis points to be the zero lower bound (e.g., Iwata and Wu (2006)).
coming first followed by the macroeconomic variables. The results differed to those chosen for this paper. However, the ordering and set of results presented in the paper seem most sensible. An alternative strategy such as sign restrictions was not chosen as we wanted to allow for the possibility that the signs of responses might be different in the high and low stress regimes and we did not want to specify what they should be in this application.

Table A1 in Appendix A provides more information on the source of the data used in this paper. All variables are made stationary prior to the estimation of the TVAR. Hence, real GDP, the commodity price index and the exchange rate variables are defined in percentage log-deviations from a deterministic trend, and inflation is the annualized inflation rate. The chosen lag length of the TVAR model is one lag, determined by the Schwarz information (SC) and Hannan-Quinn (HQ) information criteria.

2.3 Transition variable

The transition variable is chosen to be the ANFCI which is constructed based on 100 indicators of financial activity by the Chicago Federal Reserve. The composition of the ANFCI indicator is from money markets (54% of the indicators in the index), debt and equity markets (26%), and the banking system (20%) and provides a broad overview of US financial conditions in terms of risk, liquidity and leverage in money markets and debt and equity markets as well as in the traditional and ‘shadow’ banking systems. A positive ANFCI value implies that financial conditions are tighter than the average, while a negative value implies the opposite.

In parallel with the ANFCI, the Chicago Federal Reserve also constructs a National Financial Conditions Index (NFCI). The difference between the two is that the ANFCI has the influence of economic conditions removed from the NFCI financial conditions measure. Brave and Butters (2012) also show that the ANFCI is a forward looking indicator of the NFCI and that the ANFCI provides a superior forecast of GDP growth. The ANFCI is chosen as the transition variable rather than the NFCI for this reason, and also because the index is more relevant for isolating pure financial conditions which should provide for a cleaner economic interpretation of the impulse response functions.

\footnote{The impulse response functions for the alternative ordering of the variables are available on request.}
2.4 TVAR model estimation and non-linearity tests

The threshold where switching occurs between the low and high financial stress regimes is determined endogenously by a grid search over possible values of the ANFCI threshold variable. The grid is constructed such that 20 percent of the upper and lower bound values are trimmed to ensure there are at least a minimum of 48 observations in each regime.e,f A TVAR model for each threshold gridpoint is estimated by ordinary least squares (OLS).g The estimated threshold value corresponds to the model with the smallest determinant of the variance-covariance matrix of the estimated residuals:

\[\theta^* = \arg\min_\theta \log |\Omega_\epsilon(\theta)|. \]

The estimated threshold value for the Adjusted National Financial Conditions Index is 0.2630. To put this threshold value into perspective, Figure 1 plots the Adjusted National Financial Conditions Index and its estimated threshold value. The estimated threshold value of 0.2630 accurately identifies some of the major high financial stress periods such as the Asian financial crisis in 1997 and the subprime mortgage crisis in 2007.h

It is also important to test if the chosen threshold value is meaningful by employing non-linearity tests to each equation of the TVAR system. The null hypothesis is that the coefficients of \(B_2 \) and \(\gamma_2(L) \) equal zero is expressed in equation 3 as follows:

\[H_0 = B_2 \text{ and } \gamma_2(L) = 0. \quad (3) \]

When the threshold is known, the null hypothesis can be tested using a Wald test. In this paper, the threshold is not identified under the null. Hence, according to Hansen (1996), standard inference cannot be applied and asymptotic p-values need to be derived.

eThe level of trimming of the grid is chosen arbitrarily. The standard level of trimming often used in the existing literature is between 15 and 20 percent.

fThe feature of the TVAR model is that there are two regimes (here, low and high stress), but the data can switch in and out of each regime through time. For example, inspection of Figure 1 shows that there are periods of high stress during the international banking crisis, the debt crisis, the savings and loan crisis, the Asian financial crisis and the subprime mortgage crisis, and during the rest of the time the level of financial stress is low. This means that a single demarcation date as would be identified by traditional structural break tests separating regimes is less applicable in the TVAR estimation.

gAn alternative method used in other papers is to arbitrarily fix the threshold value of the switching variable.

hNote that the value of the threshold is estimated using the benchmark sample period from 1973Q1 to 2008Q4, but is plotted against the sample period in the sensitivity analysis which extends to 2015Q4.
Let W^* be the sup-Wald statistic of all possible statistics over the grid:

$$W^* = \sup_{\theta} W(\theta).$$

As θ is not identified under the null hypothesis, the distribution of this sup-Wald statistic does not follow a χ^2 distribution. Asymptotic p-values are derived from the empirical distribution for the sup-Wald statistic using the bootstrap procedure of Hansen (1996, 1997).

Non-linearity is tested for each equation of the TVAR system. Table 1 presents the non-linearity test results of a linear VAR against a threshold alternative for each equation of the TVAR system. The non-linearity test results show that the real GDP equation display threshold effects, which is our key indicator of economic strength. Hence, there is evidence that the ANFCI is an appropriate threshold variable. More importantly, the non-linearity tests provide evidence that the estimated threshold value is meaningful in separating the high financial stress regime from the low financial stress regime which are statistically different from one another.
Table 1: Asymptotic p-values for sup-Wald statistics of non-linearity tests for each equation in the model. The threshold variable is the ANFCI

<table>
<thead>
<tr>
<th>Equation</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>0.046</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.182</td>
</tr>
<tr>
<td>Commodity price index</td>
<td>0.189</td>
</tr>
<tr>
<td>Federal funds rate</td>
<td>0.125</td>
</tr>
<tr>
<td>Financial conditions index</td>
<td>0.746</td>
</tr>
<tr>
<td>Exchange rate</td>
<td>0.730</td>
</tr>
</tbody>
</table>

2.5 Interpretation of results

Impulse response analysis is conducted to investigate the asymmetric effects of monetary policy shocks in the low and high financial stress regimes. Two sets of impulse responses are constructed – regime-dependent impulse responses and nonlinear impulse responses. This paper is most interested in the nonlinear impulse responses.

Regime-dependent impulse responses In the regime-dependent impulse responses, the economy is assumed to remain within the respective regime which was in place when the shock initially hits. Given that the process within each regime can be described by a linear model, the regime-dependent impulse responses can be obtained by using the estimated coefficients for each regime. These impulse responses are linear in shocks and are history independent. Regime-dependent impulse responses are useful in describing the behavior of the economy within each regime. However, using regime-dependent impulse response functions may not be sufficient to analyze the overall impact of a shock to the economy, particularly where a shock to the federal funds rate can result in a change in the financial conditions, resulting in a switch in regime.

Nonlinear impulse responses The second set of impulse response functions relaxes the above assumption that the economy remains in the same regime prevailing at the time of the shock. In this second set of impulse response functions, the economy is allowed to move from one regime to another. In particular, a shock to the federal funds rate can generate movements in the threshold variable,
the ANFCI, which then induce regime switching over the forecast horizon. When
the system is allowed to switch between regimes, the impulse response functions
depend on the initial state, size and sign of the shock. In order to measure the im-
pulse responses when the threshold variable is allowed to respond endogenously,
this paper computes the nonlinear impulse response functions following Koop,
Pesaran, and Potter (1996). Appendices B and C provide further information
on the algorithm used to compute the nonlinear impulse response functions and
the confidence bands respectively. The confidence bands calculated based on the
nonlinear impulse responses are available in Appendix D.

In the nonlinear impulse response functions, the economy is assumed to be
in one of the two regimes and are history-dependent. A shock to the federal
funds rate can result in changes in the threshold variable, the ANFCI, which
can then induce regime switching over the forecast horizon. When the system
is allowed to switch between regimes, the impulse response functions are sensitive
to the initial state, size and sign of the shock, and are thus shock-dependent.
The nonlinear impulse response of a variable y at horizon n can be defined as the
differences in two conditional expectations due to a shock at time t, dependent
on the economy being in a particular regime. This nonlinear impulse response is
denoted in equation 5,

$$IRF_y(n, u_t, \Omega_{t-1}) = E[y_{t+n}|\Omega_{t-1}, u_t] - E[y_{t+n}|\Omega_{t-1}], \tag{5}$$

where Ω_{t-1} is the information set at time $t - 1$. The size and sign of the shock
and the initial conditions of the regime that the economy is starting in, Ω_{t-1},
are required to calculate the impulse responses. The conditional expectations
$E[y_{t+n}|\Omega_{t-1}, u_t]$ and $E[y_{t+n}|\Omega_{t-1}]$ are computed by simulating the model.

The nonlinear impulse responses can be simulated through the following steps.
First, shocks for periods 0 to 60 are simulated using the Cholesky decomposition
of the variance-covariance matrix for the TVAR model. For given initial values
of the variables, these shocks are fed through the estimated model to produce a set
of simulated data series. The result from this step is a forecast of the variables
conditional on initial values and a particular sequence of shocks, denoted as the
baseline forecast. Second, the same procedure is repeated with the same set of
initial values and shocks, with the shock to the federal funds rate in period 0
fixed at 1 standard deviation. The shocks are fed through the model to obtain a
forecast of the variables. The impulse response function for a set of initial values
and particular sequence of shocks is then the difference between this forecast and
the baseline forecast. This simulation is repeated for 500 draws of the shocks to allow the shocks to average out. Subsequently, these impulse response functions are averaged over the respective regime history to produce an impulse response function conditional only on initial values.

3 Monetary policy and the financial stress regime

This Section uses the regime-dependent and the nonlinear impulse response analysis to answer two questions. First, do monetary policy shocks have different effects in the low and high financial stress regimes? Second, do monetary policy shocks of different magnitudes have asymmetric effects on the real economy, particularly on output? Section 3.1 outlines the case assuming that the regime does not change. The following Subsections examine the impact of expansionary and contractionary monetary policies on the economy in the low and high financial stress regimes. As nonlinear impulse responses are not symmetric in their impulses, different impulse responses can be expected from examining the impact of expansionary (Section 3.2.1) and contractionary (Section 3.2.2) monetary policies on the economy in the low and high financial stress regimes respectively. These latter Sections also compare the effects of federal funds rate shocks of different magnitudes.

3.1 Regime-dependent impulse responses

Given that the process within each regime can be described by a linear model, the regime-dependent impulse responses can be obtained by using the estimated coefficients for each regime. These impulse responses are linear in shocks and are history independent. Figure 2 shows the impulse responses during low financial stress and high financial stress regimes as a result of a 1 standard deviation decline in the federal funds rate, assuming that the economy stays in the regime prevailing at the time of the shock. The impulse responses shown are cumulated responses except for output, the federal funds rate, and the exchange rate.

A decline in the federal funds rate leads to an increase in output, loosening of financial conditions and an eventual depreciation in the exchange rate in both the low and high financial stress regimes. Prices increase in the low financial stress regime as expected with the increase in output. Prices initially decline for about a year before increasing.

A closer look at the impulse responses reveals significant differences across
regimes. First, the magnitude of the impulse responses differs strongly. The response in output increases by much more in the high financial stress regime than in the low financial stress regime. This is an indication that the financial accelerator effect as described in Bernanke and Gertler (1989), Gertler and Gilchrist (1994) and Bernanke, Gertler, and Gilchrist (1996) may be in place. The financial accelerator effect is expected to be stronger during financial crises when entrepreneurs’ wealth is low. More specifically, through the bank lending and balance sheet transmission channels, a monetary expansion that takes place in a high financial stress regime is expected to result in a larger increase in asset prices and larger decline in the external cost of funding (the external finance premium) than in the low financial stress regime. This implies that variables that describe the real economy such as output and inflation are expected to increase more in a high financial stress regime than in a low financial stress regime in response to monetary policy. This observation is similar to the results found by McCallum (1991), where the author finds that money supply shocks have a larger impact on output during periods in which the economy is experiencing tight credit circumstances. This finding and the results in McCallum (1991) are also consistent with the hypothesis put forward in Blinder (1987), where a tightening of monetary policy has stronger effects on the real economy when the credit is already

Figure 2: Impact of a 1 standard deviation decline in the federal funds rate in the low and high financial stress regimes over 60 quarters with no regime switching. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
tight but weak effects when credit is initially abundant.

Second, the observation of an initial decline in inflation in the high financial stress regime and not in the low financial stress regime is consistent with the cost channel effect suggested by Barth and Ramey (2001). When the economy is in a high financial stress regime with constrained credit, demand within the economy is expected to decline. The decline in demand means that firms are faced with accumulating inventories and accounts receivable as well as falling cash flow. Firms are forced to seek external financing due to the decline in internally generated funds as the stock of working capital rises. Insights from the credit channel suggest that a monetary expansion in a high financial stress regime decreases the cost of external financing by more than in a low financial stress regime. In fact, during periods when the financial stress is low, changes in monetary policy should not influence the cost of credit for borrowers. This implies that firms’ interest expenses on working capital and hence marginal cost of production and output prices are expected to decrease by much more in a high financial stress regime than in a low financial stress regime. Therefore, the expansionary monetary policy shock that may initially work through the demand channel may be propagated through the supply side channel eventually. The existence of a cost channel effect during financial crises when policymakers are likely to be conducting expansionary monetary policies suggests the existence of a short run output-inflation trade off.

Third, the standard exchange rate channel effects can be observed from the eventual depreciation of the exchange rate in both high and low financial stress regimes. However, following the decline in the federal funds rate, the depreciation of the exchange rate in the high financial stress regime has been immediate, but gradual in the low financial stress regime. This difference in the reaction of the exchange rate suggests that the exchange rate plays a particularly important role in boosting the economy during periods of high financial stress.

3.2 Monetary policy and financial stress

3.2.1 Expansionary monetary policy

The nonlinear impulse response functions from the estimation of the TVAR model with regime switching to a 1 and 2 standard deviation decline in the federal funds rate are shown in Figures 3 and 4. The impulses start from an initial state of either low or high financial stress respectively. As before, the impulse responses shown are cumulated responses except for output, federal funds rate, and the
Figure 3: Impact of a 1 standard deviation decline in the federal funds rate at different initial states over 60 quarters. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

A 1 standard deviation decline in the federal funds rate eventually leads to an increase in output in the low and high financial stress regimes. However, in the high financial stress regime, output decreases initially before gradually increasing to a level above that of the response of output in the low financial stress regime. This finding reinforces the results from the earlier estimated regime-dependent impulse response. The financial conditions in both regimes loosen as expected.

The decrease in the federal funds rate implies that US dollar deposits become less attractive relative to deposits denominated in foreign currencies. This leads to a decline in the value of the US dollar relative to other currencies. Hence, the exchange rate depreciates in both regimes, with the exchange rate depreciating to a larger extent in the high financial stress regime. The greater depreciation in the exchange rate in the high financial stress regime is particularly helpful in boosting the economy when it is initially in the high financial stress regime. This finding suggests that the exchange rate effect plays an important role in the recovery of the economy during periods of high financial stress.

Price responses differ across regimes. Prices increase in the low financial stress regime and decrease in the high financial stress regime. The increase in prices in the low financial stress regime following the increase in output is consistent

exchange rate.
with the demand channel of monetary transmission. Similarly, the decrease in inflation in the high financial stress regime once again confirms that the cost channel effect is in place during periods of high financial stress.

What is of most interest is that the impulse responses to a 2 standard deviation decline in the federal funds rate are similar in shape and signs to the impulse responses to a 1 standard deviation decline in the federal funds rate. However, the larger increase in output in the high financial stress regime compared to the low financial stress regime is clearer with a 2 standard deviation decline in the federal funds rate. This feature is demonstrated more clearly in Figures 5 and 6 which present impulse responses to 1 and 2 standard deviation declines in the federal funds rate in the low and high financial stress regimes respectively. Impulse responses for the 2 standard deviation shock are scaled down by a factor of two in order to allow direct comparison with the responses to a 1 standard deviation shock.

Overall, the impact of a 2 standard deviation decline in the federal funds rate on output is stronger than the 1 standard deviation decline in the federal funds rate, particularly in the high financial stress regime. This finding suggests that large expansionary monetary policies are effective and more potent during financial crises, via the credit channel, with the larger shock resulting in higher
economic growth, while the smaller shock is unable to stimulate the economy.

3.2.2 Contractionary monetary policy

The nonlinear impulse response functions to a 1 and 2 standard deviation increase in the federal funds rate starting from an initial state of low and high financial stress are displayed in Figures 7 and 8 respectively. Following the increase in the federal funds rate, output declines by more in the high financial stress regime compared to the low financial stress regime. This provides evidence that the credit channel effect exists during periods of high financial stress, regardless of the type of shock that takes place (see also Figures 3 and 4 for the expansionary monetary policy shock). Financial conditions tighten in both regimes.

Overall, prices decline in both regimes for both shock sizes apart from a slight rise in prices observed in the high financial stress regime in the event of the contractionary 2 standard deviation increase in the federal funds rate. Once again, prices respond asymmetrically and fall more in the high financial stress regime than in the low financial stress regime, which is also consistent with the larger decline in output observed in the high financial stress regime. This short duration increase in prices is again consistent with a cost channel effect due to an increase in the marginal cost of financing. The effect lasts for about a year.
Figure 6: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the high financial stress regime over 60 quarters. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

Figure 7: Impact of a 1 standard deviation increase in the federal funds rate at different initial states over 60 quarters. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
before prices begin their substantial fall.

In the medium and longer term, there is no evidence for the cost channel of the transmission of contractionary monetary policy as was evident in the event of the expansionary monetary policy shock in the high stress periods as shown in Figures 3 and 4 in Section 3.2.1. This result points to the general dominance of the demand channel of monetary policy transmission in the event of a contractionary monetary policy shock in both low and high stress regimes, as well as for the expansionary monetary policy in the low stress regime. While the price responses are indicative of a demand transmission channel of monetary policy, this does not imply that the cost transmission channel of monetary policy does not exist. Instead, it is likely that the demand channel effects dominate in this instance. The exchange rate appreciates in both regimes, with the appreciation in exchange rate stronger in the high financial stress regime than in the low financial stress regime. This difference in the appreciation of the exchange rate is more pronounced with a 2 standard deviation federal funds rate shock. Furthermore, the appreciation in the exchange rate also results in cheaper imported materials. Hence, any direct cost-side effects of a contractionary monetary policy may have been counteracted by the exchange rate effect.

Impulse responses to 1 and 2 standard deviation increases in the federal funds
rate in the low and high financial stress regimes are compared in Figures 9 and 10 respectively. In the low financial stress period, the difference in impulses for output is less pronounced with the economy responding positively in both cases. The figures show the devastating effects on output of a contractionary monetary policy during the high financial stress regime.

Figure 9: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the low financial stress regime over 60 quarters. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

4 The Great Recession and recovery

In this Section, the end of the sample is extended to analyze if the addition of the Great Recession period as well as the recovery period has any impact on the asymmetric effects of monetary policy. Two additional experiments are undertaken. First, the sample period is extended from 2008Q4 to 2012Q4. The period from 2009Q1 to 2012Q4 is characterized by very tight financial conditions initially, and rapid loosening of the financial conditions for the rest of the extended sample. Inflation remained relatively stable while the federal funds rate hit the zero lower bound. Second, the end of the sample is extended to 2015Q4 to analyze if the addition of the recovery period from the subprime mortgage crisis and the Great Recessions periods has any impact on the asymmetric effects of monetary policy. The recovery period is characterized from 2013Q1 to 2015Q4 and as
Figure 10: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the high financial stress regime over 60 quarters. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

mentioned earlier is defined based on the Federal Reserve first mentioning that quantitative easing would be withdrawn in 2013 indicating that the economy was seen to be recovering from this time. The data in the additional to the sample is characterized by mostly loosening financial conditions, coupled with low inflation and mild deflation at times, while the federal funds rate continues to remain at the zero lower bound.

The threshold value used in the estimations in this Section is fixed at 0.2630, which is the threshold value estimated in the baseline case using sample period of 1973Q1 to 2008Q4. There are two reasons for this. First, keeping the threshold value for the estimations at 0.2630 allows comparison with the baseline case. The baseline threshold is calculated using a relatively long and stable (with relatively small crisis perturbations), better reflecting a normally functioning US economy. As the threshold value is going to be data dependent and given the magnitude of shocks in the great recession period it is desirable to use the threshold estimated from a normal period of time. Confirming the validity of this assumption is that the threshold value estimated using the new sample of 1973Q1 to 2012Q4 is at 0.3975, which is found to be insignificant using the nonlinearity test of Hansen (1996). The higher estimated threshold value also reduces the number of observations in the higher financial stress regime to 43 observations, below
the minimum of 48 required in each regime to ensure stability. The results are contained in Figures 11 to 15. Only the results for the nonlinear expansionary monetary policy shocks are presented. The complete set of results including the regime specific and nonlinear impulse responses can be found in Appendices E and F.

The results from the extended samples from 1973Q1 to 2012Q4 and then from 1973Q1 to 2015Q4 provide some interesting insights into the impact of the Great Recession and recovery period on the asymmetric effects of monetary policy. First, the nonlinear impulse responses suggest that the effects of expansionary monetary policy shocks in the low and high financial stress regimes remain asymmetric. In particular, the response of output in the high financial stress regime in the sample ending in 2012 remains larger than the response of output in the low financial stress regime, providing evidence on the nonlinear credit channel effect of Bernanke and Gertler (1989). This finding also emphasizes the results from the previous Section that expansionary monetary policy is more potent and effective during periods of high financial stress than in periods of low financial stress. The additional sample periods from 2009Q1 to 2012Q4 are periods marked by extremely low interest rates. According to Krugman (1998), such periods provide a ‘good approximation to liquidity trap conditions’, implying that the interest rate channel of monetary policy shocks is eliminated. However, as argued by Mishkin (2009), the extremely low prevailing interest rates can be useful, helping to lower the interest rates on default-free securities and to lower credit spreads. This is reflected in the improvement in financial conditions in the high financial stress regime.\footnote{Similar results hold for the contractionary monetary policy case.} In contrast, the results for the sample period ending in 2015 also show asymmetries, but the response of output and prices to the expansionary monetary policy shock are now stronger in the low stress regime than the high stress regime, reflecting the impotence of traditional monetary policy in the recovery period.

Second, prices decline in the presence of expansionary monetary policy and rise in response to contractionary monetary policy\footnote{See Appendices E and F.} in the high financial stress regime for both the 2012 model and the 2015 model. This observation provides unambiguous evidence of a dominant supply-side cost channel effect in the high financial stress regime. Previously, using the sample from 1973Q1 to 2008Q4, prices decline in the presence of contractionary monetary policy only in the high financial stress regime. This suggests that the Great Recession period reinforced
the cost channel effect, leading to a short run output-inflation trade off. This result is consistent with the high cost of credit reflected in the Baa corporate bond rates that have remained high during the extended sample period from 2009Q1 to 2012Q4 despite the extremely low federal funds rate.

Third, the response of output to small and large monetary policy shocks are similar in magnitudes in both the low and high financial stress regimes, implying that a large monetary policy shock is no different from a small monetary policy shock during the extended sample period. Figure 15 illustrates this result for the sample period ending in 2015. In the previous Section, the response of output to large monetary policy shocks is found to be larger than the response of output to small monetary policy shocks. This result reflects the ineffectiveness for monetary policy over the extended sample from 2009Q1 to 2015Q4.

5 Monetary policy and regime switching

In this Section, the impact of monetary policy shocks on the probability of transiting between the low and high financial stress regimes based on the initial sample of 1973Q1 to 2008Q4 is examined. In particular, the following questions are of interest. First, suppose the economy is initially in the low financial stress regime, does a contractionary monetary policy shock increase the probability of moving
Figure 12: Impact of a 2 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 13: Impact of a 1 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 14: Impact of a 2 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 15: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2015Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
from the low to high financial stress regime? Second, suppose the economy is ini-
tially in the high financial stress regime, does an expansionary monetary policy
shock increase the probability of moving from the high to low financial stress
regime?

The probability of the economy being in the low financial stress regime, given
the information set, Ω_{t-1}, at time $t-1$, and a particular realization of an exoge-
nous shock u_t at time t, is denoted as:

$$P(\text{low financial stress regime}) = P[I(y_{t-d}^* \leq \theta)|\Omega_{t-1}, u_t].$$ (6)

Likewise, the probability of the economy being in the high financial stress regime
is denoted as:

$$P(\text{high financial stress regime}) = P[I(y_{t-d}^* > \theta)|\Omega_{t-1}, u_t].$$ (7)

The impulse response functions of the threshold variable are calculated for
each observation in the initial regime. The probability of regime switching is
estimated by calculating the number of times the switching variable crossed the
threshold value of 0.2630. Specifically, the probabilities of regime switching for
the economy starting in the low and high financial stress regimes can be computed
respectively as in equations 8 and 9 in the following manner.

$$P(\text{low financial stress regime}) = \frac{1}{n}\sum_{i=1}^{n} [I(y_{t-d}^* \leq \theta)|\Omega_{t-1}, u_t],$$ (8)

and

$$P(\text{high financial stress regime}) = \frac{1}{n}\sum_{i=1}^{n} [I(y_{t-d}^* > \theta)|\Omega_{t-1}, u_t].$$ (9)

Figure 16 displays the estimated empirical probability of transiting from the
low financial stress to the high financial stress regime under various shocks,
namely 1 and 2 standard deviation contractionary and expansionary monetary
policy shocks, and the baseline case of a zero shock. The results suggest that large
contractionary monetary policy shocks of 2 standard deviations can substantially
increase the likelihood of the economy switching from the low to the high financial
stress regime, with the probability rising by about 40%. In contrast, expansion-
ary monetary policy shocks do not substantially decrease the likelihood of the
economy switching to the high financial stress regime compared to the baseline
case of a zero shock.

The estimated empirical probability of transiting from the high to the low fi-
Figure 16: Empirical probability of switching from low to high financial stress regime over 30 quarters following small and large contractionary and expansionary monetary policy shocks.

Financial stress regime are plotted in Figure 17. The findings show that expansionary monetary policy shocks, particularly large ones, can substantially increase the likelihood of the economy switching from the high to low financial stress regime. The probability of moving from high to low stress regimes increases by almost 50% with a 2 standard deviation expansionary monetary policy shocks, showing that large expansionary monetary policy shocks can be helpful in moving the US economy towards a recovery from financial crises. These results imply that monetary policy shocks play an important role in the endogenous regime switching between the low and high financial stress regimes.

6 Conclusion

The objective of this paper is to examine the asymmetry in the impact of conventional monetary policy through various transmission mechanism channels in different financial regimes, namely the low and high financial stress regimes, in the US economy. A TVAR model, using financial conditions as the threshold variable, is estimated to capture the asymmetric effects of monetary policy and regime switching implied by the theoretical literature.

The empirical results shed some light on the relationship between financial sector developments and the US economy. There is evidence of nonlinearity in
the data, with a regime switch occurring if financial stress conditions reach the estimated threshold value. The findings in this paper generally suggest that monetary policy shocks play an important role in the US economy during financial crises. There is evidence of a greater output response to monetary policy shocks during periods of high financial stress. Large expansionary monetary policy shocks are also found to increase the likelihood of moving the economy out of a high financial stress regime. It is particularly interesting to note that there is evidence of a cost channel of monetary policy during periods of high financial stress consistent with the cost channel effect put forward by Barth and Ramey (2001), implying the existence of a short run output-inflation trade off during financial crises when policymakers are more likely to implement expansionary monetary policies. The existence of a dominant cost channel effect during financial crises highlight the need for policymakers to carefully weigh the output-inflation trade off in the short run when deciding on the magnitude of expansionary monetary policies to implement in an attempt to guide the economy out of a financial crisis.

The extension of the end of the sample from 2008Q4 to 2012Q4 provides further evidence that expansionary monetary policy is more effective and potent during periods of high financial stress compared to periods of low financial stress. The results suggest that expansionary monetary policy, during periods of high financial stress when prevailing interest rates are at the zero lower bound,
was effective up until 2012, likely due to the lower interest rates on default-free securities and lower credit spreads, shifting the US economy from a high to a low financial stress regime. The findings also provide unambiguous evidence of a dominant supply-side cost channel effect in the high financial stress regime, reinforcing the trade off between output and inflation during periods of high financial stress. However, the extension of the sample to 2015Q4 shows the extent to which traditional monetary policy became ineffective.

Future extensions of this empirical analysis will include examining the effectiveness of monetary policy when unconventional measures such as quantitative easing are used. This will involve explicitly accounting for the unconventional measures of monetary policy instruments that monetary authorities use. Future analyses will also extend this study to include more countries for comparison of experiences.

References

Appendix A: Data sources

Table A1: Data details and sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>Real Gross Domestic Product, 3 Decimal</td>
</tr>
<tr>
<td>Source: FRED</td>
<td>Mnemonic: GDPC96</td>
</tr>
<tr>
<td>Inflation</td>
<td>Consumer Price Index for All Urban Consumers: All Items</td>
</tr>
<tr>
<td>Source: FRED</td>
<td>Mnemonic: CPIAUCS</td>
</tr>
<tr>
<td>Commodity price index</td>
<td>Continuous Commodity Index</td>
</tr>
<tr>
<td>Source: Bloomberg</td>
<td>Mnemonic: CCI:IND</td>
</tr>
<tr>
<td>Federal funds rate</td>
<td>Effective Federal Funds Rate</td>
</tr>
<tr>
<td>Source: FRED</td>
<td>Mnemonic: FEDFUNDS</td>
</tr>
<tr>
<td>Financial conditions index</td>
<td>Adjusted National Financial Conditions Index</td>
</tr>
<tr>
<td>Source: Chicago Federal Reserve</td>
<td>Mnemonic: ANFCI</td>
</tr>
<tr>
<td>Exchange rate</td>
<td>Real Trade Weighted U.S. Dollar Index: Major Currencies</td>
</tr>
<tr>
<td>Source: FRED</td>
<td>Mnemonic: TWEXMPA</td>
</tr>
</tbody>
</table>

Appendix B: Algorithm for computation of nonlinear impulse responses

The computation of nonlinear impulse response functions (IRFs) follows Koop, Pesaran, and Potter (1996). A nonlinear impulse response function is defined as the impact of a one-time shock on the variables, \(Y_t \), in the model, conditioned on the history and/or the shock. The nonlinear IRF can be expressed as:

\[
IRF_y(n, u_t, \psi_{t-1}) = E[y_{t+n} \mid \psi_{t-1}, u_t] - E[y_{t+n} \mid \psi_{t-1}]. \tag{10}
\]

The response of a variable \(y \) at horizon \(n \) can then be calculated as the differences in two conditional expectations. First, the evolution of the VAR system
conditional on a certain history ψ_{t-1} following the shock u_t is simulated. Second, the evolution of the VAR system conditional on the same history, ψ_{t-1}, without imposing the shock u_t at time t is simulated and subtracted from the former computed conditional expectation. To obtain the impulse responses of the VAR system conditional on the regimes (above or below the threshold value), the simulations are repeated for a sufficient number of histories which correspond to the respective regime. Random shocks are allowed to hit the VAR system before and after the shock. The nonlinear IRF approach relies on the simulation of the VAR system under multiple sequences of the shocks. Taking an average of the conditional means of the generated nonlinear IRFs evens out the shocks that were used to generate the simulations. The result is the response of the system with history ψ_{t-1} conditional on the shock u_t only.

The following algorithm is used to compute the nonlinear IRFs.

1. Pick a history, ψ^r_{t-1}, corresponding to the chosen regime. This history comprises the actual value of all the lagged endogenous variables in the VAR at the chosen date. This implies that the realization of the threshold variable, r_{t-1}, is also randomly drawn from the selected regime.

2. The shocks are drawn from the variance-covariance matrix of the residuals and assume to be jointly distributed. A k-dimensional vector $u^{b}_{t+n}, n = 0, ..., p$ is drawn at each horizon, where k denotes the number of endogenous variables in the VAR. Hence, if a shock is drawn at horizon p, all k residuals for date p are collected.

3. The evolution of all variables in the VAR system over $n + 1$ periods is simulated using the coefficients that are estimated for both the low and high financial stress regimes and the shock process for $n + 1$ periods. This implies that the model is allowed to switch regimes over the forecast horizon. The resulting baseline path is denoted as $Y_{t+n}(t^r_{t-1}, u^{b}_{t+n})$.

4. Step 4 is essentially the same as step 3, with the shock sequence at $t = 0$ replaced by a shock of size η_j for the variable j and the contemporaneous shocks of other variables in the system. This $k \times 1$ vector is denoted as u^s_j. The resulting path is denoted as $Y_{t+n}(t^r_{t-1}, u^{b}_{t+n}, u^s_j)$.

5. Steps 2 to 4 are repeated R times to allow the shocks to average out. In this paper, R is set to 500 times.
6. Steps 1 to 5 are repeated B times to compute an average over the history of each regime, and to even out the R times of shock sequences. In this paper, B is set to 500 times.

7. The nonlinear IRF is then the difference between the two simulated forecasts assuming the shock u_j^b and assuming zero respectively.

$$IRF(n, \psi_{t-1}, u_j) = \left[Y_{t+n}(t_{t-1}^b, u_{t+n}^b, u_j^b) - Y_{t+n}(t_{t-1}^b, u_{t+n}^b) \right] / (B \times R). \quad (11)$$

Appendix C: Confidence bands for nonlinear impulse responses

The simulation of nonlinear IRFs is computationally intensive, taking several hours if R and B are set to 1000 simulations runs, even when using parallel computing to reduce computation time. If the number of bootstrap replications for the confidence bands are set to 1000 simulation runs, the entire process would be equivalent to a simulation of 10^9 repetitions. In this paper, R and B are reduced to 500 simulation runs, and the number of bootstrap repetitions is set to 500, for efficiency purposes. This allows the simulation of the bootstrapped confidence bands to be completed in approximately one week. The following algorithm is used to compute the bootstrapped confidence intervals.

1. Compute centered residuals, $\hat{u} - \bar{u}$, and generate bootstrap residuals, u^*, by drawing randomly with replacement from centered residuals.

2. Using the estimated parameters and errors from the TVAR structure, data is generated recursively.

3. Using the recursive dataset, the regression coefficients $B_1, \gamma_1(L), B_2, \gamma_2(L)$ and error terms are calculated from the TVAR with the assumption that threshold is equivalent to the estimated value ϕ.

4. Using the original dataset, but with the coefficients and errors from step 2, nonlinear IRFs are calculated using the algorithm listed in the previous Section for all combination of shocks and initial conditions.

5. Steps 1 to 3 are repeated Z times, set to 500 bootstrap repetitions in this paper, to generate a sampling distribution of the IRFs. The confidence bands are then drawn from the ordered bootstrap estimates at the respective significance levels.
Appendix D: Confidence bands for the impulse responses estimated from sample 1973Q1 – 2008Q4

This Appendix provides the confidence bands for the regime-dependent and non-linear impulse responses.
Figure 18: 68 percent confidence bands for a 1 standard deviation decline in the federal funds rate, where regimes remain fixed through the forecast horizon. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 19: 68 percent confidence bands for a 1 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 20: 68 percent confidence bands for a 2 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 21: 68 percent confidence bands for a 1 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 22: 68 percent confidence bands for a 2 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 23: 68 percent confidence bands for a 2 standard deviation decline in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2008Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 24: 68 percent confidence bands for a 1 and 2 standard deviation decline in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
Figure 25: 68 percent confidence bands for a 1 and 2 standard deviation increase in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
Figure 26: 68 percent confidence bands for a 1 and 2 standard deviation increase in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2008Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
Appendix E: Impulse responses for 1973Q1 – 2012Q4 sample

This Appendix provides the impulse responses estimated with an extended sample from 1973Q1 to 2012Q4.

Figure 27: Impact of a 1 standard deviation decline in the federal funds rate in the low financial stress and high financial stress regimes - regime dependent impulses. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 28: Impact of a 1 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 29: Impact of a 2 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 30: Impact of a 1 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 31: Impact of a 2 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2012Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 32: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

Figure 33: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
Figure 34: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

Figure 35: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
7 Appendix F: Impulse responses for 1973Q1 - 2015Q4 sample

This Appendix provides the impulse responses estimated with an extended sample from 1973Q1 to 2015Q4.

Figure 36: Impact of a 1 standard deviation decline in the federal funds rate in the low financial stress and high financial stress regimes - regime dependent impulses. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 37: Impact of a 1 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 38: Impact of a 2 standard deviation decline in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 39: Impact of a 1 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.

Figure 40: Impact of a 2 standard deviation increase in the federal funds rate at different initial states. The model is estimated from 1973Q1-2015Q4. Note: Solid lines refer to low financial stress regimes. Dotted lines refer to high financial stress regimes.
Figure 41: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

Figure 42: Impact of a 1 and 2 standard deviation decline in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.
Figure 43: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the low financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.

Figure 44: Impact of a 1 and 2 standard deviation increase in the federal funds rate in the high financial stress regime. The model is estimated from 1973Q1-2012Q4. Note: Solid lines and dotted lines refer to the 1 and 2 standard deviation decline in the federal funds rate respectively.