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1 Introduction

The standard assumption of perfect rationality rules out the possibility of agents
making mutually inconsistent decisions that may lead to situations of aggre-
gate disequilibrium, multiple equilibria or indeterminacy. These outcomes can
emerge in models that feature some sort of bounded rationality or heterogeneous
beliefs (not simply constrained into a known distribution) and that allow for
agents’ interaction and learning. Agent-based models (ABMs) represent a suit-
able and well-known example of this modeling strategy. This approach proved
to be able to replicate a wide range of stylized facts (see Delli Gatti et al., 2005;
Dosi et al., 2013; Lengnick, 2013, among many others) and to provide original
policy indications (Journal of Economic Behavior & Organization, 2008). The
Dynamic Stochastic General Equilibrium (DSGE) and the ABM approaches ap-
pear therefore at odd with respect to their conceptual pillars and the range of
possible implications. While it is possible to find examples of DSGE models
that incorporate some of the ABMs’ insights and modeling strategies1, to the
best of our knowledge the literature has not yet provided an original theoreti-
cal framework flexible enough to simultaneously include the defining features of
both approaches.

Recent developments and the applications of statistical mechanics tools in macro-
economics can open new perspectives in this direction.2 In this literature, the
macroeconomic system is structured as a continuum of states, each of them cor-
responding to a discrete value of a state quantity, such as production or price
levels. Microeconomic agents are classified into a grid of states (such as produc-
tion levels, pricing strategies adopted, leverage ratio, etc...) and stochastically
switch across them according to probability laws defined by the transition rates.
Each macroeconomic state can be associated to different configurations at the
micro-level. Since the evolution of the aggregate quantities depends on how the
agents spread over the micro-states, it is then possible to quantify a probabil-
ity for the macro-states. This method can work with any amount of available
information about the possible microeconomic configurations.

This analytical representation has proved to be able to replicate the results of
agent-based models with higher degree of heterogeneity (Chiarella and Di Guilmi,
2011; Di Guilmi et al., 2012; Di Guilmi and Carvalho, 2015) and can be there-
fore confidently applied in order to analytically solve this class of models.

This method is here applied to an ABM adapted from Russo et al. (2007) to
provide two main contributions. First, the paper introduces an original use
of the master equation in economics and finance, applying it to a set of mi-

1See Gobbi and Grazzini (2015) and the papers reviewed by Dilaver et al. (2016). From
this perspective the works by Per Krusell and co-authors are also relevant (see in particular
Krusell et al., 2012).

2See Alfarano et al. (2008); Aoki (1996, 2002); Aoki and Yoshikawa (2006); Foley (1994);
Lux (1995, 1998); Smith and Foley (2008); Weidlich (2000, 2008). In this paper we will refer
in particular to the seminal contributions by Aoki (2002) and Aoki and Yoshikawa (2006) and
the further developments by Di Guilmi (2008) and Landini and Uberti (2008).
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croeconomic strategies. This represents a relevant contribution to the vast and
growing literature about opinion dynamics (see Brock and Hommes, 1997; Lux,
2009, among many others) from a twofold perspective: first, the model is ex-
plicitly microfounded and, second, a closed form solution is identified, allowing
for a full analytical representation of the evolution of the macro-variables as
dependent on agents’ choices. The aggregate model preserves the behavioral
assumptions of the ABM by embodying them in the transition rates. Conse-
quently, the aggregated system inherits the disequilibrium dynamics from the
ABM model. For this reason, a side result is that our analytical model can
be regarded as an original alternative to model dynamical disequilibrium. We
define this innovative approach as Dynamic Stochastic Generalized Aggregation
(DSG-A).

The second contribution is in that the DSG-A approach is able to incorporate
infinite horizon optimization in a complex economic system, allowing for a com-
parison with the heuristic behavior of the standard ABM treatment. As a result,
we are able to model and discriminate between: a) rational incentives driving
microeconomic behavior and, via aggregation, the macroeconomic dynamics; b)
the uncertainty arising from irreducible complexity due to agents’ interaction.
This representation involves interaction at the microeconomic level and it could
not be reproduced by standard stochastic processes nor be included in a stan-
dard decision process under uncertainty. This allows us not only to identify a
multiple-equilibria system but also to qualitatively distinguish different types
of equilibria. Namely two kinds of equilibria emerge: the rational equilibrium,
where the system lies in a quasi-steady state defined by rationality principles,
and the uncertainty equilibrium, which is the result of the system complexity
and agents’ interaction. In the rational equilibrium the agents receive signals
that lead the macroeconomic system to stabilize, according to an optimization
rule identified by a social planner. The uncertainty equilibrium corresponds to a
sub-optimal configuration determined by the uncoordinated response of agents
to changes in the economic environment.

Anticipating some of the results, the analysis shows that full employment equi-
libria is attainable only in a context with perfect rationality. In both the heuris-
tic and the optimizing treatments, the model exhibits structural imbalances that
lead to periodic crashes when agents are boundedly rational or affect the long-
run trend in the other case. Even in the case of perfect rationality, the economy
can be caught in an uncertainty trap (Aoki and Yoshikawa, 2006, chap. 4).

The remainder of the paper is structured as follows. Section 2 introduces in very
general terms the methodology of aggregation and, in particular, the concept
of statistical entropy and master equation. This section also presents the two
treatments of the stochastic evolution of the agents: the heuristic (or zero-
intelligence) case and the full rationality case. Section 3 briefly presents the
model while section 4 shows how the assumptions of the model are embodied
into the analytical solution. Section 5 illustrates and contrasts the results of
the numerical simulations for the the heuristic case and the full rationality case.
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Section 6 analytically identifies the different types of equilibria and the transition
paths, presenting also a simple policy experiment. Finally section 7 offers some
concluding remarks.

2 Methodology

This section presents the main tools used by the DSG-A approach, in partic-
ular statistical entropy (subsection 2.1) and master equation (subsection 2.2).
Subsection 2.3 shows how different degrees of rationality and uncertainty are
incorporated into the transition rates in order to determine the stochastic evo-
lution of the system.

2.1 Entropy and inference

As the economy is populated by a very large number of dissimilar agents, an
analytical model cannot keep track of the conditions of every single agent at
each point in time. Therefore, a model should consider how many agents are in
a certain condition rather than which agents. The different possible conditions
of the microeconomic agents can be defined as micro-states. Assuming the state
of the macroeconomy to be dependent on the relative densities of agents in each
micro-state, it is possible to map the different configurations at the micro-level
into a given macroeconomic outcome. Consequently, the statistical distribution
of the agents can provide a probabilistic description of the evolution of the
macroeconomy. Maximizing the number of ways in which a particular macro
configuration can be obtained, we can identify the most likely dynamics of the
macroeconomy given our information on the micro-states.

The maximization of the system entropy, known in information theory as Max-
Ent (Jaynes, 1957), provides the most likely probability function for the number
of agents following a particular behavioral rule s, subject to the normalization
constraint and to additional constraints representing the available information.
As demonstrated in A, the resulting functional form for the probability distri-
bution is given by

Prob(ns) =
e−βVs∑
s e

−βVs
, (1)

where Vs is the payoff associated to the sth strategy. The quantity β is the inten-
sity of switching and measures the degree of uncertainty in the system: for β →
∞ there is no uncertainty and all agents follows the best-performing strategy; for
β → 0 the payoff plays no role and all the strategies have equal probability. This
functional form has become extremely popular in discrete choice model since the
pioneering work by Brock and Hommes (1997). Chiarella and Di Guilmi (2014)
show how this formulation can be endogenously derived by maximizing the sta-
tistical entropy. In this approach, β is the Langrange multiplier of the constraint
to the entropy maximization concerning the returns coming from the different
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states, rather than an exogenous parameter. As shown in the appendix, in the
case of two available strategies 1 and 2, β can be expressed as

β = (V1 − V2)
−1log

(
n1

1− n1

)
. (2)

It is easy to see that, provided that V1−V2 �= 0 and is finite, β → ±∞ when n1
goes to 0 or 1 (minimum uncertainty: all agents adopt the same strategy), while
β = 0 when n1 = 1/2 (maximum uncertainty: the two strategies are equally
likely).

2.2 Master Equation and dynamics

Consider a population of i = [1, ..., Nk] agents, where k identifies the subgroup,
for example firms or workers. At any point in time, an agent is in a state sk =
[1, ..., Sk] and adopts the associated strategy fsk in order to set the evolution
if its control variables xk ∈ RMk , where Mk is the number of control variables
for each type of agent. Thus the control variables of the individual i of type
k evolves according to the equations ẋi,k = fsk(xi,k). For the whole economy,
it is possible to identify a S ×mk functional matrix F and a mk-dimensional
control variable vector ẋ such that

ẋ(t) = F (x(t)). (3)

In order to reduce the dimension of the problem and aggregate the system, let
us indicate the probability of an agent to be in state sk as P (sk). The resulting
aggregated dynamical system is:

Ẋk =
∑
sk

fsk(Xk)P (sk), (4)

where Ẋk is the variation of the aggregate control variable. The above system
is the aggregated stochastic macro-rule originating from the set of micro-rules
(3).

Assuming that the stochastic process governing the switching of a specific j-type
agent is of the Markovian type3 we can use the master equation to model the
evolution of the probabilities P (s). Considering only two states s = [1, 2] and
dropping the subscript k to simplify the notation, the master equation for the
density ns of agents in state s is given by

dP (ns, t)

dt
= λ(t)P (ns−1/N, t)+γ(t)P (ns+1/N, t)− [λ(t) + γ(t)]P (ns, t) (5)

3It is worth remarking that the transition rates of the process are time varying and, as
a consequence, the assumption of Markovianity does not imply the memory-less property
at the agent level. In fact, the probability of transition of an agent depends on its current
endowment, which is the result of its previous history, and its current micro-state, which is
updated every period. On the use of Markov processes to represent the dynamics of ABMs
see Izquierdo et al. (2009).
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where λ and γ are the transition rates, respectively, in and out of state s.
Equation (5) is a balance flow equation between the probability of observing
a density equal to ns starting from a different density and the probability of
already having a proportion ns of agents in state s and observe any transition.

The transition rates are given by

λ(t) =(1− η)ζ(t), (6)

γ(t) =ηι(t). (7)

where η is the probability to be in state s, which is considered as exogenous for
the moment, while ζ and ι are the probabilities for a single agent of, respectively,
entering and exiting state s. The transition probabilities are dependent on the
behavioral assumptions of the model and the agent’s condition at any given
time.4

In order to asymptotically solve (5), we apply the approximation method intro-
duced by Aoki (2002), which splits the fraction of agents in state s, ns, into a
drift term m and an additive spread term u (divided by N1/2 to normalize its
standard deviation) as follows:

ns(t) = m(t) + u(t)N−1/2. (8)

For the case of a binary option for agents, it is possible to derive a system of
coupled equations for the generic term m and u:

dm

dt
= λ(t)m(t)− [λ(t) + γ(t)]m(t)2, (9)

du = −a(m)udt+ b(m)dW, (10)

where dW is a Wiener process.5

The system of equations (8), (9) and (10) defines the dynamical system for the
evolution of the agent distribution over the strategy set.

Accordingly, equation (4) can be re-formulated as follows

Ẋk(t) =
∑
sk

fsk(Xk(t))nsk(t). (12)

4The DSG-A makes use of endogenous and microfounded transition rates as opposed to
the standard approach in DSGE with heterogeneous agents, in which the heterogeneity is
modeled as an idiosyncratic exogenous stochastic process.

5Di Guilmi (2008) derives a solution of the master equation (5) composed of equation (9)
and a Fokker-Planck equation whose stationary solution is

P (u) = Ce−u2/2σ2

, (11)

such that P (u) ∼ N (0, λγ

(λ+γ)2
). As demonstrated by Gardiner (2002) and van Kampen

(1992), the stochastic process of the noise can be expressed as the Ito stochastic differential
equation (10).
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It is finally possibly to build a dynamical system to describe the model. This
system is composed by two subsystems: the subsystem of macro-equations (12),
which is nothing more than a weighted average of the rules of the system at
the micro level, and the subsystem of the master equations’ solutions that de-
termines the number of agents in the states according to equations (8), (9)
and (10). The first subsystem uses the proportions of agents in each state to
describe the time evolution of the macroeconomic variables, while the second
uses the transition rates, which are updated according to the response of agents
to changes in the macroeconomy, to provide the proportions of agents in the
different states.

2.3 Stochastic equilibrium

Since we are modeling the switching dynamics as a Markov process, it is possible
to identify the stationary distribution of the stochastic process in order to assess
the long-term properties of the system.

2.3.1 Equilibrium distribution

The master equation is in equilibrium when the probability inflows are equal
to the outflows. Following Aoki (2002, 44), in the case of two possible states
s = [1, 2], the probability function for n1, under this condition, is of the Gibbs
type, with the following functional form6

P (n1) = η =
eβg(n1)

eβg(n1) + e−βg(n2)
. (13)

This formulation for the stationary probability allows us to incorporate ad-
ditional information with respect to the result in (1). In (13), the economic
behavior is not simply measured by the payoff of the strategy but is modeled
by g(ns), which is a function evaluating the difference in the utility between the
different strategies.

In the standard opinion formation literature, the function g(ns) in (13) repre-
sents an assumed fitness function that quantifies the returns associated to the
particular strategy s. Alternatively, the suitable functional form for g can be
endogenously identified using the economic potential (Smith and Foley, 2008).
The potential is a functional that quantifies the likelihood of a state of the sys-
tem as a consequence of the states of its parts. From this perspective, it provides
a measure of uncertainty since it depends on how many combinations of agents’
choices are compatible with a given macroeconomic state. In particular, large
values of the potential signals that a particular macroeconomic state can be gen-
erated by a great number of different configurations at the micro-level, therefore

6This result stems from the Markov-Gibbs equivalence demonstrated by the Hammersley
and Clifford theorem (Clifford, 1990).
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the degree of uncertainty in the system is large.7 Consequently, the minima of
the potential represent possible absorbing states where the agents have no in-
centive to change strategy and the discontinuities can prevent the transition
from one equilibrium to another. Following Aoki and Yoshikawa (2006) and
Di Guilmi (2008), for systems with two micro-states, the potential is defined as

U = −2

∫ n1

0

g(x)dx− H(n1)

β
, (14)

where H is the statistical entropy, which in the Shannon formulation is given
by

H = −n1log(n1)− n2log(n2). (15)

As equation (14) shows, a negative relationship exists between the level of the
potential and the uncertainty, quantified by β. When the uncertainty is at its
maximum (β → 0) the potential is not defined and tends to infinity.

2.3.2 Agents’ behavior and stochastic equilibrium

The g function plays a relevant role in our story. It factors the degree of ratio-
nality in the determination of the stochastic equilibrium. We distinguish two
cases. In the first scenario, the heuristic case, the aggregate properties are the
results of the uncoordinated choices of agents, who behave like atoms. In the
second case, very much in line with Brock and Durlauf (2001), we identify the
proportions of agents in each group that maximize some measure of social wel-
fare by applying standard maximization tools.

Derivation of g: the heuristic case

The critical points are the solutions of the first order condition of equation (14)
with respect to n1, which is defined as

dU

dn1
= −2g(n1)− dH

dn1
β−1 = 0. (16)

Considering that n2 = 1−n1 and substituting (2) and (15) into (16), we obtain

g(n1) =
V1 − V2

2
. (17)

At the point of minimum uncertainty, g is equal to the relative value of the
payoffs, with an equal probability for the two alternatives.

Substituting (2) and (17) into (13), the probability (13) simplifies to

P (n1) =
eβg(n1)

Z =
e

V1−V2

2
log

(
n1

1−n1

)
(V1−V2)

−1

Z =
n1

1− n1

1

Z ,
7In statistical physics, the minimum of the potential are the points in which the free

energy of the system, and consequently the uncertainty, reaches a minimum. In an economy
this corresponds to a situation where incentives to take opposite actions offset each other and
the system reaches a statistical equilibrium.
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where Z =
∑

s P (ns). Under the assumption of heuristic behavior, the product
of the uncertainty variable β and the g function vanishes: if economic behavior is
quasi-random, the economic incentives are indistinguishable due to uncertainty.

Derivation of g: full rationality and optimization

Rationality is introduced in the model in order to preserve the probabilistic
nature of the aggregation method, allowing for a comparison with the heuristic
case. The decision rules for agents are the same as in the heuristic setting but we
furthermore assume that a social planner maximizes an objective function whose
arguments are the fractions of agents adopting a particular rule. In a treatment
similar to Brock and Durlauf (2001), the social decision maker optimizes an
intertemporal objective function controlling for the densities of agents in each
group.8 From this perspective, the g function becomes the outcome of a dynamic
intertemporal control problem specified as marginal net utility from available
alternatives. The fully rational optimization and the heuristic behavior can be
regarded as the extreme cases within the same modeling approach.

The social planner considers equation (12) for the macro-state Y as the state
equation of a standard intertemporal control problem. The control instruments
are given by the fractions of agents choosing a particular strategy.

Formally, the vector of the occupation numbers n quantifies the weights for a
collection of available strategies s = 1, ..., N . The intertemporal optimization
problem is defined by the following infinite horizon payoff stream

g (Y, ns) = max
n(t)

∫
∞

t0

e−θtψ(Y (t),n(t))dt, (18)

subject to the macroeconomic rule:

Ẏ (t) =
∑
s

fs(Y (t))ns, (19)

where ψ and θ are respectively the instant payoff function and the discount
factor. The steps required to obtain a closed form solution for the above problem
are:

1. to represent the optimization problem under the Hamilton-Jacobi-Belmann
equation, which provides a dynamic forward looking ordinary differential
equation for the discounted payoff function (18);

2. to calculate the first order condition with respect to n, subject to the
dynamics of the state variable given by eq. (19);

8This is a standard modeling strategy in macroeconomics, for example in the dynamic
programming applied to search and matching labor market (Trigari, 2006). In these models,
labor participation decision is modeled as an intertemporal problem of a planner that chooses
the optimal fraction of household’s working members. Optimality conditions provides dynamic
labor supply equations that depends on the expected net labor income. Similarly, we use the
densities of agents in each group as control variables, to be set by the social planner given
some dynamic constraints, in order to maximize the intertemporal utility/profits.
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3. finally, to find a closed form solution for g, i.e. the solution in time for
the dynamics of the value function found in step 2.

In economic terms, the problem boils down to the decision about the fractions of
individuals playing each of the available strategies. If applied at the individual
level, such a model would describe an agent playing a mixed-strategy. From a
frequentist or aggregate perspective, the solution for the g function is used to
describe a world where agents are guided by rationality principles while adopting
simple behavioral rules. This approach to rationality does not need a reduction
of the degree of complexity of the system and it is able to describe rationality
in a context of disequilibrium.

3 The Agent-Based Model

The model on which we test the above described tools borrows heavily from
Russo et al. (2007). This model provides a suitable environment for testing the
DSG-A because it includes different markets in a rather simple setting with
basic heuristic behavioral rules for agents.

Our model is composed by a large and close population of firms and workers
and the economic system is a circular flow of goods and money. Firms operate
in a monopolistically competitive market: they produce goods that are close
substitutes but, given market imperfections, can be sold at different prices.
Firms can be heterogeneous for level of production and price. Workers have
identical skills but, given labor market frictions, they can be characterized by
different reservation wages. They also can have different levels of wealth. Firms
set the production quantity, the selling prices and the labor demand. Within
the model information is incomplete and limited. Agents adaptively revise their
expectations each period according to a set of simple rules.

Firms heuristically determine the quantity to produce depending on whether
they sold the whole production in the previous unit of time or they have unsold
goods in stock Si. Namely, the ith firm decides to adjust the desired produced
quantity yi(t) with a simple dichotomic strategy:

yi(t) = yi(t− dt)×
{

(1 + δ) if Si(t− dt) = 0
(1− δ) if Si(t− dt) > 0,

(20)

where 0 < δ < 1. Assuming a linear production function yi(t) = li(t) with the
unitary labor productivity constant across firm and through time, in order to
produce the desired output each firm will demand a quantity of labor equal to

li(t) = yi(t). (21)

Also workers adaptively revise their strategy according to the previous period’s
state. Workers set satisficing wages ws according to their previous occupation
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status, which is a dichotomic variable occ equal to 1 if the worker was employed
and equal to 0 otherwise. Namely the satisficing wage of worker j is equal to

ws
j (t) = ws

j (t− dt)×
{

(1 + δ) if occj(t− dt) = 1
(1− δ) if occj(t− dt) = 0.

(22)

As the labor market opens, firms set vacancies according to the difference be-
tween labor demand and their current stock of labor force. If the difference is
positive new vacancies are to be filled, otherwise labor is destroyed. Then the
jth worker sends applications to a subset hw,j of randomly chosen firms, indi-
cating her satisficing wage. Firms collect randomly the workers curricula, then
sort them by satisficing wage and hire the cheapest workers. As a consequence,
a firm may not receive enough applications to satisfy its demand for new labor
and the actual increase in output will be smaller than the planned δyi. In the
case of a firm reducing its output, the most expensive employees will be laid off.

Once the quantity of labor is set and wage costs are known, firms set the goods
price for the current period. Firms are price-setters. Their decision is dependent
on the fact that they were or not able to sell all their production in the previous
unit of time. If a firm did not sell all its output, and thus it has accumulated
stocks, it will revise the price downward. The opposite decision is taken if its
stocks are equal to zero. Accordingly, the desired price p∗i (t) for firm is

p∗i (t) =

{
pi(t− dt)(1 + δ) if Si(t) = 0
pi(t− dt)(1− δ) if Si(t) > 0.

(23)

A firm will actually apply the variation calculated as in (23) if the resulting

price is at least equal to the production costs. Defining p1i =

∑
j∈hl,i

wj(t)

yi(t)
the

average cost over the subset hl,i of employed workers, the actual price for the
firm i at time t will be equal to

pi(t) =

{
p∗i (t) if p∗i (t) ≥ p1i (t)
p1i (t) if p∗i (t) < p1i (t).

(24)

The jth consumer wants to consume all her wealth. She looks for the cheapest
goods collecting a subset of posted prices from hj,y randomly chosen firms.
Then she sorts the prices and buys goods in the quantity compatible with her
endowment of wealth (given the prices). As such consumers can be supply-
constrained, if the amount of goods purchased from the firms they visit is below
the desired quantity. Worker’s wealth zj is increased in each period by the
amount of labor income plus a share of firms’ profits (equally allocated among
all households) less consumption. If the consumer is supply-constrained, the
wealth in excess of consumption is remunerated at the constant interest rate r
in each period. In the following period she will try again to spend all her wealth.
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4 Stochastic aggregated model

In this section we apply the aggregation method introduced in section 2 to the
model presented in section 3. Firms and workers are classified according to their
strategy or condition. The densities of agents in each condition determines the
evolution of the relevant macrovariables in our economy, namely production,
price, wage and consumption. The dynamics of these densities are identified by
a set of four master equations. Consequently, the dynamical system describing
the model is composed by four aggregate equations, as (12), and the solutions
of the master equations, given by (8), (9) and (10) for each of the macroeco-
nomic variables. The solutions of the master equations feature the transition
rates. These rates are specified in accordance to the behavioral rules of the
ABM and therefore constitute the link between the microeconomic level and
the macroeconomy.

The necessary steps in order to perform the aggregation are:

1. the identification of the states over the agents’ sub-groups. Namely, we
have k = {y, c, w, p} for, respectively, firms clustered for production level,
consumers, workers and firms clustered for price. Table 1 shows the states
representing agents choices;

2. the definition of the equations for the agents’ state variables according to
equation (3);

3. the specification of the transition rates to plug into the master equations.
In order to define the transition rates we need: first, to identify the transi-
tion probabilities and, second, to quantify the generic probability η for an
agent of being in one the two states. For the latter task we need to specify
the uncertainty variable β and the value functions g for, respectively, the
heuristic case and the rational case.

The remainder of this section presents the results of steps 2 and 3 while the full
detail of the derivation is provided in B and C.

4.1 Aggregate equations

In order to complete the first step we need to make use of the law of motion of the
variables at the micro-level defined in the previous section and then aggregate by
calculating a suitable weighted average with the weights given by the proportion
of agents in each the two states, determined by the master equation.

The equation governing the dynamics of aggregate production is the weighted
mean of the variation in production for firms that reduce production and firms
that increase production to an extent dependent on the matching the labor
market.
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To analytically approximate the imperfect matching generated by the ran-
dom procedure of the ABM, we use the matching function fl(un(t), yi(t)δ) =
un(t)

a(yi(t)δ)
b and the associated per-vacancy matching probability q(t) =

fl(t)
yi(t)δ

with un(t) and yi(t)δ denoting, respectively, the unemployed workers and

the new vacancies. As a consequence, for the analytical treatment, equation
(20) is re-expressed as

yi(t) = yi(t− dt)

{
(1 + fl(t)) if Si(t− dt) = 0
(1− yi(t)δ) if Si(t− dt) > 0.

(25)

Using (25), as detailed in C, the aggregate equation can be written as

Ẏ (t) = Y (t)δ [1 + q(t)]

[
ny(t)− 1

1 + q(t)

]
. (26)

With reference to the price decision, firms can be in two possible situations: a
fraction of np firms decide about the price according to the rule (23); the others
(1−np) firms are cost constrained and therefore adopt the price p1i . Considering
that the sign of price adjustment is the same as quantity adjustment since both
decision depends on the presence of inventories, the average change in price will
be equal to

Ṗ (t) = np(t)(sign(Ẏ )P (t)δ) + (1− np(t))(Ẇ (t) +W (t)− P (t)),

which can be rewritten as

Ṗ (t) = np(t)
(
sign(Ẏ )P (t)δ + P (t)−W (t)− Ẇ (t)

)
+ Ẇ (t) +W (t)− P (t).

(27)
If np → 1 the price adjustment follows the same procedure as quantity, if np → 0
the aggregate price grows as much as wages do.

For the workers’ decision about satisficing wage, given (22), the evolution of the
average wage can be written as

Ẇ s(t) = 2W s(t)δ

(
nw(t)− 1

2

)
. (28)

Finally, consumers can be classified in two states according to their demand
level: for a fraction nc of consumers, demand is set simply as the real wealth; the
others set their demand equal to firm’s supply because constrained. Accordingly,
the aggregate equation is:

C(t) = nc(t)Z(t) + (1− nc(t))
P (t)Y (t)

Nz(t)
, (29)

where Z is the wealth and Nz the number of consumers/workers. Equation
(29) states that aggregate consumption is the weighted mean between aggre-
gate wealth and aggregate supply. If nc goes to zero we have a fully supply-
constrained market. The model in aggregate is closed for the equation governing
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the evolution of consumers wealth. Defining the number of jobless workers as

1− Y (t)
Nz(t)

we have

Ż(t) = [rZ(t) +W (t)− C(t)]
Y (t)

Nz(t)
+ [rZ(t)− C(t)]

(
1− Y (t)

Nz(t)

)
. (30)

The first term in equation (30) is the wealth equation if workers are employed.
The second term is different as wage earning is assumed to be null if workers
are unemployed.

4.2 Transition rates

The transition rates are needed to define the four master equations (one for each
alternative for firms, workers and consumers), according to (5). The transition
rates are the product of the transition probability times the probability of being
in the relevant state. The transition probabilities are developed according to
the underlying behavioral assumptions of the model specified in section 3 and
detailed in B. The generic probability of being in a given state η is determined
according to (13), for which we need to the determine the uncertainty variable β
and the value function g for the heuristic case and for the rational optimization
case.

4.2.1 Heuristic behavior

The quantity β is computed according to equation (2) while g, in the heuristic
treatment, according to equation (17). Using the payoffs derived in B, with
some simple algebraic manipulations, we obtain: for firms’ choice about output:

βy = −(un(t)
a(Y (t)δ)b + Y (t)δ)−1log

(
ny(t)

1− ny(t)

)
, (31)

gy =
1

2

(
un(t)

a(Y (t)δ)b + Y (t)δ
)
; (32)

for the dynamics of price:

βp = −(sign(Ẏ (t))P (t)δ + P (t)−W (t)− Ẇ (t))−1log

(
np(t)

1− np(t)

)
, (33)

gp =
1

2

(
Ẇ (t) +W (t)− P (t)− sign(Ẏ (t))P (t)δ

)
; (34)

for the satisficing wage for workers:

βw = −(2W (t)δ)−1log

(
nw(t)

1− nw(t)

)
, (35)
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gw =W (t)δ; (36)

for consumers:

βc(t) =

(
P (t)Y (t)

Nz(t)
− Z(t)

)−1

log

(
nc(t)

1− nc(t)

)
, (37)

gc(t) =
1

2

(
P (t)Y (t)

Nz(t)
− Z(t)

)
. (38)

In the case of consumption, βc tends to infinity (minimum uncertainty) when
supply and demand are in equilibrium, that is PY

Nz
− Z = 0. As shown below,

a particularly interesting situation arises when, in such a situation of goods
market equilibrium, nc ≈ 1/2 pushing β to 0 (maximum uncertainty). In this
case numerical simulations can determine which of the two effects dominate.

4.2.2 Rational optimization

The optimal control is adopted for the real variables (firms’ supply and house-
holds’ consumption decisions) while price and wage setting are determined by
heuristic behavior. As shown below, this treatment sheds light to the outcome
when also the nominal variables are optimized. Since the stationary fraction of
agents choosing one strategy is determined by the stationary probability (13),
the social planner must solve a suitable g(n1) function, as to maximize the infi-
nite horizon of expected stream of profits and utility. The problem involves the
allocation of agents over two different populations (firms and workers). Conse-
quently, the goal of the social planner is to maximize the stream of expected
firms’ profits and expected households’ life-time utility subject, respectively, to
equation (26) and (30). As per equations (18) and (19), such objective functions
define the g functions for, respectively, quantity-setting firms and consumers:

gy = J(Y ) = max
ny

∫
∞

0

e−θt

[
ny(t)(−k) + (1− ny(t))

(
W (t)

P (t)
− 1

)]
dt, (39)

gc = J(Z) = max
nc

∫
∞

0

e−θt [nc(t)u(Z(t)) + (1− nc(t))u(Y (t))] dt. (40)

where θ is the household’s discount parameter. In the case of firms, 1− W (t)
P (t) are

unitary profits and k is a searching cost. In the household problem, u(Z) and
u(Y ) denote the current utility deriving from the available wealth and consump-
tion of firms’ production. We also define ny(t)(−k) as the marginal search cost

coming from the increase in production and (1−ny(t))
(

W (t)
P (t) − 1

)
as the profit

loss due to a decrease in production. In the same way, ncu(Z) + (1 − nc)u(Y )
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represent the net expected utility value given from current endowment, for not
supply-constrained consumers, and production levels, for supply-constrained
consumers.

We then apply dynamic programming to equations (39) and (40). The corre-
sponding Hamilton-Jacobi-Bellman equations are given by

− J(Y, t) = max
ny

e−θt

[
ny(t)(−k) + (1− ny(t))

(
W (t)

P (t)
− 1

)]
+ Jy(Y, t)Ẏ (t).

(41)

−J(Z, t) = max
nc

e−θt [nc(t)u(Z(t)) + (1− nc(t))u(Y (t))]+Jz(Z, t)Ż(t). (42)

We guess the solutions J(Y, t) = e−θtV (Y ) and J(Z, t) = e−θtV (Z). Observing
that JY (Y, t) = VY (Y ) and JZ(Z, t) = VZ(Z), the conditions become9

−V (Y )e−θte−θt = max
ny

[
ny(t)(−k) + (1− ny(t))

(
W (t)
P (t) − 1

)]
+

+ Vy(Y )eθte−θtẎ (t),
(43)

−V (Z)eθte−θt = max
nc

e−θt [ncu(Z(t)) + (1− nc)u(Y (t))] +

+ VZ(Z)e
−θte−θtŻ.

(44)

The result is an ordinary differential equation in the state variable. Substituting
the dynamical constraints (26) and (30) into respectively (43) and (44) and
taking the partial derivatives for ny and nc, the first order conditions can be
expressed as [

(−k) + 1− W (t)

P (t)

]
+ JY (Y )Y (t)δ = 0, (45)

u(Z(t))− u(Y (t)) + JZ(Z(t)− Y (t)) = 0. (46)

Substituting equations (45) and (46) into (41) and (42) for JY and JZ , and
assuming u(X) = X, we get two ordinary differential equations in the macro

9To verify this result, consider the dynamic programming equation in discrete time

J(xt, t) = maxytU(xt, yt, t) + J(xt+1, t+ 1),

subject to
xt+1 = h(xt, yt, t),

given x0. The expansion of the value function in Δt gives

J(xt, t) = maxytU(xt, yt, t)δt+ J(xt, t) +
∂J(xt, t)

∂xt

xt+Δt − xt

Δt
Δt+

∂J(xt, t)

∂t
Δt+ o(Δt).

Taking the limit Δt → 0 gives equations (41) and (42)
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variables Y and Z. Applying the standard solution method we get the closed
form solutions:

gy = V (Y ) = π(t)
q(t)

1 + q(t)
, (47)

gc = V (Z) =
θZ(t)
P (t) − Y (t)

N (W (t)
P (t) − 2nc(t))

θ(θ + 2(nc(t)− 1−r
2 ))

. (48)

where π(t) denotes the profits and q(t) = (N − Y (t))a(Y (t)δ)b−1 is equivalent
to the matching probability in the labor market, introduced in subsection 4.1.
Equations (47) and (48) are the solutions of the intertemporal Euler equation
for firms and households.

While in the zero intelligent behavior the product of β and g function van-
ishes, in case of rational behavior, the equilibrium dynamics depends on both
the g function, which embodies the rational behavior, and the uncertainty vari-
able β. Thus, the uncertainty and the state of the macroeconomy affect the
macroeconomic equilibrium and simultaneously determine the behavior of the
economic agents. We can therefore identify two types of equilibria, depending
on the fact that the effects of g and β offset each other or not. In the first
case, since g vanishes, agents’ incentives do not affect the resulting equilibrium,
which can be defined as uncertainty equilibrium. This equilibrium always arises
in the bounded rationality setting and occurs only when β ≈ 0 under the full-
rationality assumption. In the second case, the product βg does not vanish
in (13): rational incentives affect the distribution of firms across states. This
equilibrium corresponds to the optimal situation in which no further arbitrage
would be profitable: it can be therefore qualified as rational equilibrium.

Looking at the firms’ decision about production levels, equation (47) states that
the macroeconomy reaches the equilibrium (gy = 0) in two cases: null profits
or, more interestingly, full employment. The latter condition is analytically rep-
resented by the no-match situation q(t) = 0, not considering the uninteresting
no-match case in which no worker supplies labor service.

For households we have a more complex result. Households behavior is in equi-
librium if equation (48) is null. This leads to the macroeconomic condition:

Z(t)

P (t)
= θ−1Y (t)

Nz

(
W (t)

P (t)
− 2nc(t)

)
, (49)

which can be interpreted as the demand function in terms of real wealth for each
level of nc. More precisely, the demand depends negatively on nc since, when
nc > 0 part of the wealth in the system is not spent in consumption. When
consumers are fully supply constrained (nc = 0), the equilibrium condition

becomes Z(t)
P (t) = θ−1 Y (t)

Nz

W (t)
P (t) . This condition implies the general equilibrium

as all labor income Y (t)
Nz

W (t)
P (t) is consumed, there is no accumulation of wealth
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and the circular flow in the goods market is fully closed. Interestingly, if nc =
1/2 and the real wage is equal to productivity (W/P = 1), the (49) becomes
Z/P = 0: if consumers are wealth-constrained and supply-constrained in the
same proportion, there are no savings at the macroeconomic level.

5 Simulations

We run different series of simulations in order to study the dynamical system,
to compare the outcomes of the agent based model and the stochastic dynamic
aggregated model and to contrast the heuristic scenario with the optimizing
case.10

Simulation codes are written for Matlab and are available upon request. The pa-
rameter setting in the benchmark scenario is shown in table 3. For the stochastic
dynamic aggregation, the complete simulated system is composed by equations
(26) for production setting behavior, (27) for price setting behavior, (28) for
wage, (29) and (30) for consumers. The system is completed by (8) and the
coupled equations (9) and (10) for each of the agents’ densities nw, ny, np, nc.

The properties of the aggregated system are investigated in the baseline sim-
ulation presented in subsection 5.1. Then the stochastic aggregation is tested
by comparing the outcomes of the aggregate model with the ABM’s results in
subsection 5.2, which presents the results of a Monte Carlo experiment in the
form of impulse/response functions, represented as deviation from the baseline
simulation. Subsection 5.3 presents the results when g is optimally set.

The initial conditions for the aggregated system are set close to the macroeco-
nomic equilibrium with the real variables (consumption, real wages and produc-
tion) equal to 1 (see Table 2). The initial condition for the stochastic spread is
set to 0. Also for the ABM wages and prices are set equal to 1 and the initial
worker allocation for each firm as uniform distribution given a population of
100 firms and 500 workers.

10In order to approximate the continuous time, we apply the Euler-Maruyama procedure in
the interval t ∈ (T0, Tmax). Given the number of steps Nstep we can determine numerically
the solution with the discretization of time

h =
(T0 − Tmax)

Nstep

. (50)

Thus for example, we can approximate equation (20) in the following way:

y(i+ 1) = y(i) + h

[
y(i)δ [1 + q(i)]

(
ny(i)−

1

1 + q(i)

)]
. (51)

We generate the Wiener process with dW =
√

(h)u where u is distributed as a standardized
Gaussian distribution.
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5.1 Heuristic behavior

Figures 1-2 show the outcome of a single simulation including in the same charts
production, consumption and wealth for the aggregated system (figure 1) and
the dynamics of occupation numbers for each sub-sector (figure 2).

Fluctuations and crises are due to the fact that labor and goods market in-
corporate search frictions at the micro-level. It is worth stressing that the
macroeconomic effects of these real frictions originate from the interaction of
firm and workers. Labor market frictions determine a real wage above produc-
tivity (which is constant and equal to 1). As the real wage is constantly above 1,
the circular flow of the system is not in equilibrium and periodic macroeconomic
crisis are needed in order to re-balance the real-valued resources.

The dynamics of real variables display a quasi-stable disequilibrium in figure 1:
the aggregate production level stabilizes close to the full employment equilib-
rium but without reaching it. Agents over-save as real average wealth is higher
than 1. Moreover, real consumption always lies between supply and aggregate
wealth. This is simply due to the fact that consumption is a weighted mean
of supply (production) and demand (wealth). The system oscillates around the
equilibrium displaying endogenous crisis, heterogeneous in duration and depth.

Three different phases can be detected in the system dynamics. The first phase
(first box on the left in figure 1) can be identified by a deep recession where
consumption, wealth and production display a sudden drop, causing as a con-
sequence a fall in employment. The recession could be prolonged as the fall in
employment leads to a reduction in wealth. The second phase (second box from
left) is the subsequent recovery, where aggregate production, consumption and
wealth grow almost to full-employment equilibrium. The real quantities steadily
grow keeping consumption under production levels. This means that consumers
are not supply-constrained and, at the same time, they have excess income to re-
build their stock of wealth. When quasi-full-employment equilibrium is reached,
the economy enters the third phase (third box from left): wealth, consumption
and production oscillate just below the full-employment equilibrium. When con-
sumers accumulate enough wealth, aggregate demand increases, pushing firms
to increase prices. Higher inflation leads to wealth devaluation followed by a fall
in consumption level. The phase cannot be characterized as a recession since the
fall stops when consumption and wealth hit the production level, which seems
to act as a floor.

Figure 2 displays the dynamics of the occupation numbers in order to assess
their evolution during the different phases. The shaded areas mark phases in
which the production level is less than 95% of the full-employment equilibrium
level. During these phases, a growing proportion of firms reduces production.
The lower aggregate supply in goods market leads to an increase in the propor-
tion of supply-constrained consumers nc. Finally, due to the accumulation of
inventories, more firms decrease prices causing an increase in the proportion of
firms that are cost-constrained np.
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5.2 Monte Carlo experiments

In order to compare the outcomes of the ABM and the stochastic aggregation,
and in particular to contrast the different responses to shocks in the parameters,
we perform Monte Carlo simulations.

We follow a different approach from existing works (as for example Chiarella and Di Guilmi,
2011), comparing the results of the two solutions by testing their reaction to
an exogenous shock. This approach is consistent with the fact that we run two
different sets of simulations for the ABM and the aggregated model and, as a
consequence, the results of single simulations are not comparable.

Shocks are imposed on the initial conditions defined in table 2 for: a) the
aggregate production level Y (0) (−1%); b) the aggregate price level p(0) (+1%),
c) labor productivity (+1%) and d) the interest rate r (+1%). The plotted data
are obtained by subtracting the series generated in the baseline scenario to the
series with the shock in the parameters.11

In all experiments, but more clearly in the case of experiments a) and b) (figures
3-4), the aggregated model correctly predicts the sign of the reaction to the
shock, while the magnitude of the reaction and the speed of adjustment are in
some cases different. In particular, in the case of the shock in price the ABM
displays a slower convergence.12

Figure 3 reports the results for experiment a). When the initial condition of
employment is below the full employment level, the aggregate production and
consumption also start below their equilibrium level and converge to it in the
long run in both sets of simulations. When unemployment increases, workers
adjust the nominal wage while the real wage remain approximately constant.
This is due to the fact that firms lower their prices due to the accumulation of
inventories.

Figure 4 refers to experiment b). If the initial price is above its equilibrium
level, in both simulations the aggregate production drops due to a decrease in
real aggregate demand. The drop in real wages leads to a larger fall in all the
variables in the ABM case, which in the case of wealth prevents the adjustment
to the equilibrium level within the time-frame of the simulation.

In the case of the shock to the structural parameters (technology and interest
rate) the change in the ABM is introduced at a later stage and not at time 0
in order to appreciate the response of the system. In the case of a technology
shock in experiment c) (figure 5), the ABM and the DSG-A display comparable
dynamics. Production increases as expected, while real wage and wealth de-
creases at impact due to an increase in prices and a decrease in the number of
employed workers. This result is in accordance with the New-Keynesian DSGE

11The different time scale accounts for the conversion from continuous to discrete time as
specified in footnote 10.

12The difference in the speed of convergence can be reduced by a formal calibration of the
parameters aimed to a perfect match between the results of the two treatments. Given the
scope and the length of the present paper, this aspect will be investigated in future research.
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literature, in which negative impact on employment due to technology shock
is justified by price rigidities in goods or labor markets (see Liu and Phaneuf,
2013, for a survey). Aggregate consumption increases in both systems as a frac-
tion nc of consumers are constrained and the increase in supply allows for a
partial relaxation of market constraint.

Finally, figure 6 shows that the monetary shock has a positive impact on the
economy due mainly to the implicit adaptive expectations included in this model
and the fact that, in the absence of financial liabilities, monetary frictions creates
positive wealth effect, leading to an increase in the aggregate available income.

5.3 Rational optimization

This subsection presents the results for the model introduced in section 3 and
4, using equations (47) and (48). The initial conditions are the same as in table
2.

Figure 7 provides a detail of the simulation while figure 8 shows a larger time
span. Figure 9 visualizes the dynamics of gc and βc while figure 10 reports the
evolution of the proportion nc of households who are not supply constrained.
Jointly examining figures 7-10, it is evident that the system can generate two
possible equilibria. Figure 7 shows that, after the phasing-in period (until
around period 90), the system is in a rational equilibrium condition until around
period 650. In fact, in this time-span, gc is equal to 0, implying that there is no
relevant difference between the payoffs of the two consumption strategies, and
bc �= 0 (figure 9), which signals a low degree of uncertainty in the system. The
economic interpretation is straightforward: the economic system lies in a quasi-
stable equilibrium where uncertainty is low and consumers’ utility and firms’
profits are maximized. Thus, when the system is in the rational-equilibrium,
the βc variable, following the macro-variables’ dynamics, is far from zero as
expected. The rational equilibrium is associated with two emergent facts: em-
ployment is full as the production reaches the maximum level, with employment
equal to Nz = 500 and 1 unit of consumption per capita, and wealth lies near
production (figure 7). However, the endowment of real wealth is higher than
unity due to goods market frictions, allowing for a level of consumption higher
than aggregate production. As for the households behavior, nc (the proportion
of wealth-constrained households) fluctuates around 0.5 during the same period
(figure 10). The stability of this quantity (net of the stochastic noise) is due to
the fact that there are no incentives for the agents to change strategy.

Since we introduce rationality only in production and consumption decisions,
prices and wages are still set in a sub-optimal fashion. This setting, together
with the interaction in the goods and labor market, allows for real inefficiencies:
real salary is always higher than productivity. This affects the long run behavior
of the economy but in a different manner with respect to the heuristic case.
Figures 7 and 8 show that, around period 650, the rational equilibrium no longer
holds due to dynamic inefficiencies in the labor and goods market. Instead of
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periodic crisis, the system is caught in what we can identify as an uncertainty
trap (Aoki and Yoshikawa, 2006): a scenario in which increasing uncertainty
locks the macroeconomy away from the optimal equilibrium.

As shown by figures 7 and 8, households reduce consumption and increase sav-
ings. This creates a growing distance between wealth and the other variables.
Soon after period 650, wealth rapidly increases, diverging from the rational equi-
librium level. As the dynamics of gc and βc demonstrates, the system transi-
tions to the uncertainty equilibrium in which economic behavior is not rational
(gc �= 0), uncertainty is high, as shown by βc → 0 (figure 9) and consumers
become fully supply-rationed (nc → 0). The inefficiencies determine a growing
uncertainty, as βc approaches 0 until period 650, when it hits a peak since a large
fraction of consumers switch to the supply-constrained state. This determines a
discontinuity in gc (capped at 100 in the simulations), which subsequently takes
large negative values due to the negative denominator when nc → 0 in equation
(48). From around period 700, βc remains at 0 signaling high uncertainty.

With reference to equation (37), the simulations demonstrate that the effects
of the (dis)equilibrium in the goods market dominates the effects of the agents’
choices. In fact, in the rational equilibrium β �= 0 even when nc ≈ 1/2 because
P (t)Y (t)
Nz(t)

≈ Z(t), while we have uncertainty equilibrium even with nc = 0 due to

the disequilibrium in the goods market. These numerical results also integrate
the analysis of equation (49), showing that, even when g = 0, the inefficiencies
that are still present can lead to a shift in the pattern of evolution of the economy.
The analysis of section 6 below provides further insights on this point.

The results of this section can be summarized by the two following propositions:

Proposition 1. When agents behave as atoms, the real inefficiency affecting
the system is managed by the economy through periodic crises: agents recover
aggregate losses diminishing production, income and aggregate demand then re-
turning to the equilibrium level.

Proposition 2. When rational agents live in a complex interacting world with
real or nominal inefficiencies the economy can experience the uncertainty trap
in the long run.

In the heuristic treatment, since the behavior of agents is stochastic, small id-
iosyncratic shocks can trigger feedback effects at the agent-level that originate
the cyclical crises. In the optimization case, the accumulation of wealth is self-
sustaining, as shown by equation (48): the perceived relative pay-offs of the
consumption behaviors change and, in the absence of re-equilibrating mecha-
nisms for the nominal variables, this leads to a permanent difference between
wealth and consumption.
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6 Analytical identification of the equilibria

As a final step, we identify the critical levels of the proportion of supply-
constrained consumers that determine the transition from one equilibrium to
another. The visual inspection of figure 10 can be integrated by the analysis
of the potential, introduced in section 2. Besides identifying the critical points,
this study defines the possible transition paths between different attractors and
the conditions in which our artificial economy can be locked in the uncertainty
trap. We focus on the households subsystem since it allows us to describe the
evolution of wealth and consumption demand.

6.1 Identification of the equilibrium type and transitions

The potential function (14) for the number of not-rationed consumers is

U = −2

∫ nc

0

gc(t)dZ − H(nc, t)

β(nc, t)
, (52)

with gc defined by (48). The critical points of (52) are the equilibria for the
occupation number nc and therefore for aggregate wealth.

Considering equation (2) and (52), the first order condition is

U
′

= −2gc(t)− H
′

(nc(t))

β(nc(t))
+
β

′

(nc(t))

β(nc(t))2
= 0, (53)

With respect to the formula (16) presented in subsection 2.1, equation (53)

introduces the term β
′

(nc)
β(nc)2 . This term is not present in the heuristic treatment

and represents the additional knowledge available to the social planner, which
is not usable by the boundedly rational agents.

Since a closed form solution cannot be derived analytically, we evaluate it nu-
merically. Figures 11-13 display the results of the numerical analysis. Due
to the discontinuity around nc = 0.001, in order to make critical points and
discontinuities visible we need to split the plot in tree sub-regions: one near
nc = 0 and two around nc = 0.5. Figure 11 plots the whole function with the
zoom on the areas around the critical point for an overall assessment. Figure
12 provides a better details of the critical points. The potential has two local
minima at nc,1 = 0 and nc,2 = 0.48 and the two points are separated by a
discontinuity. Consequently, the transition between the two equilibria is not
possible. The first panel of figure 12 shows also a local maximum that splits
the region on the left. In the local minimum nc,1 = 0, from the simulations we
can verify that βc = 0 and gc �= 0 (figures 9 and 10): the uncertainty is max-
imal and the equilibrium is not rational. The middle panel of figure 12 shows
the neighborhood of nc,2 = 0.48, that is associated with g(nc) = 0 (figures 9
and 10) and can be therefore identified as a rational equilibrium. Also, since
limnc→nc,2

β(nc) = −∞, as the economy approaches the socially optimal point,
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uncertainty reduces. In the absence of nominal frictions the rational equilibrium
is therefore stable. The macroeconomic signal that agents receive drives them
not to change their behavior. Finally, we have a third extreme point locate in
nc = 0.51 that is a maximum. The critical points are clearly visible in figure 13
where the log(U

′

) is displayed.

6.2 Policy Implications

The model presented above is parsimonious and serves the purpose of illustrat-
ing the usefulness of the analytical tools. Nevertheless, it is possible to run a
simple policy experiment to assess how a policy maker can influence the type
of equilibrium that the system can achieve. Within the present framework, the
task of the policy maker is to prevent the system from being locked in the un-
certainty equilibrium or at least to reduce the likelihood of its occurrence. In
fact, in the uncertainty equilibrium, agents may have contrasting incentives and
this coordination failure can jeopardize the success of the policy measures. The
following analysis focuses on the impact of interest rate changes on the equilib-
rium condition in the household sector, being the interest rate the only policy
variable in the model.

The goal is to investigate the effect of a zero lower bound on the number and
the characteristics of the equilibria and to assess whether the rational and un-
certainty equilibria are affected by the level of the interest rate.

We run three different simulations of the potential function for r = [−0.005, 0, 0.005].
The equilibrium values for per-capita production and real wage are equal to 1
and 1.005, respectively, as obtained in the simulations, while δ = 0.005. Figure
14 replicates figure 13 for the different values of the interest rate, which is set
to 0.001 in the baseline scenario. Clearly, the number and the type of equilibria
change as r moves from positive to negative values. In case of a positive interest
rate the results do not substantially differ from the baseline simulations: the two
possible outcomes are rational and the uncertainty equilibrium. For r = −0.005
the system can avoid the uncertainty equilibrium and the only attractors are
the two rational equilibria in the neighborhood of nc = 0.5. Also the discon-
tinuity near the uncertainty equilibrium disappears, so the system can adjust
to the rational equilibrium in the long run. This is due to the fact that the
negative interest rate prevents the accumulation of wealth in the long period.
The uncertainty equilibria disappears also in the case of zero interest rate but
indeterminacy arises since no critical point can be identified.

To conclude, the zero lower bound can provide a source of indeterminacy and
can lead the economy into the uncertainty trap. If real factors of instability orig-
inating from the interaction of the agents are not eliminated, negative nominal
interest rates may be needed in order to curb the effects of uncertainty. While
this result is well known in macroeconomic theory, the DSG-A approach can
detect the conditions under such a situation occurs and determine the structure
of equilibria through the analysis of the potential.
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7 Conclusions

This paper tests the Dynamic Stochastic Generalized Aggregation approach
(DSG-A) as a methodology to map complexity arising from explicit agent in-
teraction into different levels of rationality in agents’ behavior. We apply the
DSG-A approach to a medium-scale ABM, providing two main contributions.
First, we estimate a set of macro equations starting from the micro behaviors
of different sets of agents (namely firms, workers and consumers). Building
from simple micro-behavioral rules, we elaborate a macro-model that is able to
qualitatively replicate the results produced of the ABM. This kind of method-
ology can be helpful in analytically evaluating the properties of complex models
obtaining reduced forms in order to validate and estimate ABMs.

The second contribution is in that, by assuming that the proportions of agents
adopting one or the other strategy are optimally set, it is possible to isolate
the effects of rational incentives and uncertainty. In particular, the numerical
and analytical treatments identify two types of equilibria: the rational equi-
librium where all the opportunities for welfare increase are exhausted, and the
uncertainty equilibrium, which is the result of the system complexity.

To summarize the results, in presence of market inefficiencies, the accumulation
of wealth determines over-saving and over-consumption leading to periodic crises
in the heuristic setting and to the uncertainty trap in the optimizing setting.
The analytical investigation and the simulations show that, in the optimizing
case for consumption, the system has two attractors, which are associated to,
respectively, an uncertainty equilibrium and a rational equilibrium. The anal-
ysis of the potential function is also applied in a simple policy exercise. In a
world where agents are rational but interact in a complex economy multiple
equilibria are possible and monetary policy can affect their number and quality.
In particular, the zero lower bound limits the capacity of the policy maker to
avoid the uncertainty trap.

This promising methodology can be employed to build more general analyti-
cal models including in principle the possibility to include standard structural
macroeconomic models (DSGE) as special cases. The full exploration of this
possibility is the next item of our research agenda. A comparison with DSGE
models can also involve the treatment of the transition rates. As mentioned
in the paper, the method presented here endogenously generates the transition
rates and could be used for a comparison with the empirically estimated rates
presented in DSGE with Markov switching. The approach can be also extended
by estimating the actual probability of the uncertainty trap in a real economy
by using a model calibrated with empirical data.
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A Entropy maximization

This appendix presents the solution of the system (13). The goal is to maximize
the Entropy:

H = −n1log(n1)− n2log(n2), (A.1)

subject to the constraints {
n1 + n2 = 1,

V1n1 + V2n2 = Ẏ .
(A.2)

The first constraint is a simple normalization constraint, while the second can be
considered as an accounting identity. For example, if V1 and V2 are the change
in production for the firms of, respectively, type 1 and type 2, the variation in
total output must be equal to ẏ. The Lagrangian for this problem is

− n1log(n1)− n2log(n2) + δ1(n1 + n2 − 1) + δ2(V1n1 + V2n2 − Ẏ ) (A.3)

The first order conditions are given by

dL

dn1
⇒ −log(n1)− 1 + δ1 + δ2V1 = 0, (A.4)

dL

dn2
⇒ −log(n2)− 1 + δ1 + δ2f2 = 0, (A.5)

dL

dδ1
⇒ n1 + n2 = 1, (A.6)

dL

dδ2
⇒ Ẏ = V1n1 + V2n2. (A.7)

Imposing the following identities

δ1 = 1− α,
δ2 = −β, (A.8)

the first two equations in (A.7) become

n1 =e−(α+βV1), (A.9)

n2 =e−(α+βV2). (A.10)

Substituting the above equations into the third in (A.7) we obtain

e−α =
1

e−βV1 + e−βV2

, (A.11)

which, substituted in the last of (A.7) gives

(V1 − Ẏ )e−βV1 + (V2 − Ẏ )e−βV2 = 0. (A.12)
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Rearranging we obtain an expression for β

β = (V2 − V1)
−1log

(
n1

1− n1

)
, (A.13)

Since

n1 =e−α(t)e−β(t)V1(t), (A.14)

n2 =e−α(t)e−β(t)V2(t). (A.15)

Then

p1 =
e−β(t)V1(t)

Z
, (A.16)

p2 =
e−β(t)V2(t)

Z
, (A.17)

where Z represents the partition function:

Z = e−V1(t)β(t) + e−V2(t)β(t).

B Derivation of the aggregate variables

B.1 Production

The firms are the micro units and production is the state quantity. Firms can
choose two different strategies, and, therefore, can be in two possible different
states, depending on the value of Si, as defined by (20). For firms in the first
state, the quantity is adjusted up if the stock S in the previous period is empty:
Si(t−dt) = 0. Otherwise, the quantity is set down if there was a supply excess:
Si(t − dt) > 0. The stock S is a signal of the fitness of the strategy to set the
quantity.

B.1.1 Dynamics

Firms are in state 0 if they revise their production upward and in state 1 oth-
erwise. The aggregate excess supply ratio is

wz(t) =
Y (t)P (t)

NzC(t)
, (B.1)

where P (t) is the aggregated price index, C(t) the aggregated nominal demand,
Nz is the expected number of visits and Y (t) is the aggregated supply. In the
aggregate this index must be equal to one. We assume that, due to the matching
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frictions, for each single consumer wz,j ∈ [0.75, 1.25]. Let us define the stock
variable as the excess demand

Si(t) = Yi(t)−
Nz∑
z=1

wz(t). (B.2)

We assume that each consumer is willing to spend all her endowment and that
the matching process in the market implies that probability distribution of wz

across consumers is uniform.

The equation governing the aggregated variable is the weighted mean of the
variation in production for firms that reduce production and firms that are able
to increase production, depending on the matching the labor market. Using
(25) the aggregate equation can be written as

Ẏ (t) = Y (t)δ (1 + q(t))

(
ny(t)− 1

1 + q(t)

)
. (B.3)

where q(t) = un(t)
a(Y (t)δ)b−1 is the matching probability in the labor market

for the unemployed worker.

B.1.2 Transition probabilities

Imposing equation (B.2) to be equal to zero, we can define the level of produc-

tion in correspondence to the threshold level of null excess demand as wz = Yi(t)
Nz .

Then, using the known cumulative probability of wz, we can define the proba-
bility to entry and exit to/from the state 1 respectively as

ζy(t) = F (w̄z(t)) = p(w̃z ≤ w̄zζ(t)) =
w̄z(t)− 0.75

0.5
, (B.4)

re

ιy(t) = 1− F (w̄z(t)) = p(w̃z ≤ w̄zι(t)) = 1− w̄z(t)− 0.75

0.5
. (B.5)

In case of production, the payoffs for the alternatives V1 and V2 used to derive
β, according to (2) and g for the heuristic treatment, according to (17), are,
respectively, V1 = ua(Y δ)b in case of the increasing strategy and V2 = −δY for
the decreasing strategy. The payoff V1 is simply represented by the matching
function since, given (21) and (25), the increase in production is bounded upward
by the number of workers that the firm can recruit on the job market.

B.2 Prices

Firms revise their price up (down) if S = 0 (S > 0).
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B.2.1 Dynamics

The law of motion of price is

Δpi(t) = pi(t− dt)×
{
δ if Si(t) = 0
−δ if Si(t) > 0

. (B.6)

A firm will actually apply the variation calculated as in (B.6) only if it is able
to cover at least the production costs. If we indicate with p1 this minimum
threshold we can write

p1i (t) =

∑
k∈hl

wk(t)

yi(t)
(B.7)

i.e. the numerator is the firm’s wage bill. So the actual price for the firm i at
time t will be equal to

pi(t) =

{
p(t− dt) + Δ(p)i(t) if p(t− dt) + Δ(p)i(t) ≥ p1i (t)
p1i (t) if p(t− dt) + Δ(p)i(t) < p1i (t)

. (B.8)

Considering that the sign of the price variation is the same of the variation in
the production, we can approximate (B.6) as

ṗi(t) =

{
pi(t)δ
−pi(t)δ

}
= sign(ẏi)pi(t)δ. (B.9)

Subtracting from both size of the (B.7) the expression −(ws(t)− 1+ pi(t− dt))
and rearranging we obtain

pi(t)− pi(t− dt)− ws
i (t− dt) = ws

i (t)− ws
i (t− dt)− pi(t− dt).

Approximating and rearranging again it is possible to write

ṗ(t) = ẇs(t) + ws(t)− p(t). (B.10)

A fraction np of firms set the price according to the rule (B.6); the remaining
firms are cost constrained and adopt the price p1i . Thus, the average change in
price will be equal to

ṗ(t) = np(t)(sign(ẏ)pδ) + (1− np(t))(ẇ
s(t) + ws(t)− p(t)),

which can be rewritten as

ṗ(t) = np(t)
(
sign(ẏ)p(t)δ + p(t)− ws(t)− ẇs(t)

)
+ẇs(t)+ws(t)−p(t). (B.11)

B.2.2 Transition probabilities

We can define a random variable as vp = P (t)−W (t) as the difference between
the aggregate price index and satisficing wage. We assume that vp ∼ N(0, 1)
and the transition probabilities are

ζp(t) = F (vp(t) < v̄p) =
1

2

[
1 + erf

(
vp(t)√

2

)]
, (B.12)
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ιp(t) = 1− ζp(t). (B.13)

Considering (24), the payoffs for the two conditions of price increasing and the
cost-constrained price are, respectively V1 = sign(Ẏ )Pδ and V2 = Ẇ +W − P .

B.3 Workers

Workers rise (reduce) their satisficing wage if they were employed (unemployed)
in the previous unit of time.

B.3.1 Dynamics

Workers set their satisficing wages ws
j given their occupational status:

ẇs
j (t) =

ws
j (t)δ if occj(t) = 1

−ws
j (t)δ if occj(t) = 0

. (B.14)

We follow Russo et al. (2007) and assume workers to have a complete market
power because they are able to extract all the surplus in the labor market
bargaining. Indeed, a worker earns his satisficing wage if hired, otherwise he
stays unemployed. At the aggregate level, (B.14) can be written as

Ẇ s(t) =W s(t)δ

(
nw(t)− 1

2

)
. (B.15)

B.3.2 Transition probabilities

At each point in time, a single worker can occupy one of the two states: “em-
ployed” (occ(t) = 1) or “unemployed” (occ(t) = 0). We are interested in speci-
fying the jump-process transition probabilities of the worker for the state “em-
ployed”. The hiring procedure is modeled as a random draw from a double urn.
The first draw decides whether a worker is employed or unemployed and the
second if the firm adjusts production quantity up or down. The possible com-
bined events are four: a) if the firm adjusts upward and the worker is employed
the probability is 1; b) if the firm adjusts downward and worker is employed
there is a positive probability to be fired; c) if the firm adjusts upward and the
worker is unemployed there is a positive probability to be hired; d) if the firm
adjusts downward and the worker is unemployed the probability is zero. To sum
up, the different four events are:

M1 = Y + ∩ occ(t− dt) = 1
M2 = Y − ∩ occ(t− dt) = 1
M3 = Y + ∩ occ(t− dt) = 0
M4 = Y − ∩ occ(t− dt) = 0

. (B.16)
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We define P (occ(t) = 1) as the probability to jump in the employed state.
This probability can be quantified as the conditioned probability over the four
distinct events defined by (B.16):

P (occt = 1) =

4∑
k=1

P (occt = 1|Mk)P (Fk). (B.17)

Defining ws as an arbitrary satisficing wage level, all the above considerations
can be formally expressed in the following way

P (occ(t)|M1) = 1
P (occ(t)|M2) = 1−M(w < ws)
P (occ(t)|M3) =M(w < ws)
P (occ(t)|M4) = 0

. (B.18)

Substituting these expressions in equation (B.17) we have

P (occ(t) = 1) =
P (Y +)P (occ(t) = 1) + (1−M(w < wv))P (Y −)P (occ(t) = 1)+
+M(w < wv)P (Y +)P (occ(t) = 0),

(B.19)

or

P (occ(t) = 1) = P (occ(t) = 1) [1−M(w < wv)] +M(w < wv)P (Y +). (B.20)

In this case we have a dynamic equation for the transition probabilities. We need
to specify the probability to be hired or fired. Firms collect workers satisficing
wage and sort them in ascending order. We assume that information about wage
distribution F (w) over the whole workers population is known. This means that
if in aggregate the economy opens a positive number of vacancies (dy/y > 0) the
aggregate system is evaluating the left tail distribution. Otherwise, if the system
is destroying jobs (dy/y < 0), the evaluation is on the right tail. The firms sort
the applications in the ascending order of the reservation wage. Let v be the
number of vacancies opened in the system at a given time; hence the probability
for a worker of being hired is equal to the probability of having a reservation
wage lower than the lowest v wages in the system. Analogously, if a worker is
employed in a firm that is reducing its labor force, his probability of loosing the
job is equal to the probability of having a reservation wage higher of a certain
threshold. We can assume that the right tail is populated by workers with a long
period of continuous employment, while the left tail represents those workers
coming from a relatively long period of unemployment and therefore forced to
demand a low wage in order to be hired.

We assume a standardized normal distribution for the variable x = −α/(Ẏ /Y 100).
The hyperbolic tangent provide us a behavior such as x → +∞ if Ẏ /Y → 0+
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and x→ −∞ if Ẏ /Y → 0−. Finally we can evaluate the cumulative probability
as F = 1/2− 1/2erf(x/

√
(2)).

If we consider the equation in continuous time we have

Ṗ (occ(t) = 1) = (η − P (occ(t) = 1))F. (B.21)

According to (22), the payoffs associated to the salary-increasing and salary-
decreasing strategies are, respectively, V1 =Wδ and V2 = −Wδ.

B.4 Consumers

For consumers in state 1 demand is set simply as the real wealth; for consumers
in state 2, demand is equal to the supplier firm’s output because constrained.

B.4.1 Dynamics

We set nc as the occupation number of the state 1 and aggregate equation is:

C(t) = nc(t)Z(t) + (1− nc(t))
P (t)Y (t)

Nz(t)
, (B.22)

where Z is the wealth. Equation (B.22) states that aggregate consumption is
exactly the weighted mean between aggregate wealth and aggregate supply. If
nc goes to zero we have a full constrained market.

Defining the number of jobless workers as 1− Y (t)
Nz(t)

, total wealth evolves accord-
ing to:

Ż(t) = [rZ(t) +W s(t)− C(t)]
Y (t)

Nz(t)
+ [rZ(t)− C(t)]

(
1− Y (t)

Nz(t)

)
. (B.23)

B.4.2 Transition probabilities

Let us define the variable vc = P (t)Y (t)
Z(t)Nz

. We assume that vc ∼ N(0, 1) and the
transition rates are

ζc(t) = F (vc(t) < v̄c) =
1

2

[
1 + erf

(
vc(t)√

2

)]
, (B.24)

ιc(t) = 1− ζc(t). (B.25)

For consumers who are not supply-constrained the payoff is simply given by the
consumption V1 = PY

N , while for those who accumulate involuntary savings the
payoff is given by the wealth: V2 = Z.
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C Derivation of macroeconomic equations

Taking production as an example and assuming away the matching constraint
in (B.3), consider the discrete time rule

yi(t) = yi(t− 1)×
{

(1 + δ) if Si(t− 1) = 0
(1− δ) if Si(t− 1) > 0

. (C.1)

Subtracting yi(t− 1) the left and right sides from the equal sign, dividing by dt
and assuming dt→ ∞, we get

ẏi(t) = y(t)×
{

+δ if Si(t− 1) = 0
−δ if Si(t− 1) > 0

. (C.2)

Then in order to get the macro rule for Y (t) we need to know time evolution
for ny(t) to get

Ẏ (t) = Y (t) [ny(t)δ − (1− ny)δ] = 2δY (t)

(
ny(t)− 1

2

)
(C.3)
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Tables and figures

Agent States Fraction Description

Firm’s price
p1

p0
np
1− np

Free adjustment

Unitary cost constrained

Firm’s quantity
y+

y−
ny
1− ny

Upward adjustment

Downward adjustment

Workers wage ws occ1

occ0
nw
1− nw

Upward adjustment

Downward adjustment

Workers’ consumption
c1

c0
nc
1− nc

Not rationed

Rationed

Table 1: Agents and States

Symbol and initial value Description
y = 480 Aggregate Production
p = 1 Price
w = 1 Wage
c = 1 Consumption
z = 1 Wealth
my = 0.5 Drift for production
sy = 0 Spread for production
mp = 0.5 Drift for price
sp = 0 Spread for price
mw = 0.5 Drift for wage
sw = 0.1 Spread for wage
mc = 0.01 Drift for supply constrained consumers
sc = 0 Spread for supply constrained consumers

Table 2: Initial conditions.
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Symbol and value Description
δ = 0.01, Price and wage adjustment rate
r = 0.1%, Interest rate
a = 0.5, Matching function parameter
b = 0.5, Matching function parameter
hw = hy = 3 Subset of firms for each workers/consumers in labor

and goods market
k = 0 Searching cost in goods market
N = 500 Consumers

Table 3: Parameters

Figure 1: Simulation of the system for the aggregated model. Black line: per-
capita production, light gray line: per-capita wealth, dark gray line: per-capita
consumption.

Figure 2: Simulation of the system for the aggregated model: occupation num-
bers. Light gray line: increasing-production firms (ny), dark gray line: not-
rationed consumers (nc), black line: not cost-constrained firms (np). Shaded
areas: periods in which the production level is less than 95% of the full-
employment equilibrium level.

35



Y ABM-Y

C ABM-C

Ws ABM-Ws

Z ABM-Z

0 5 10 15 20 25 30 35 40 45 500 1000 2000 3000 4000 5000

0 5 10 15 20 25 30 35 40 45 500 50 100 150 200 250 300 350 400 450 500

0 5 10 15 20 25 30 35 40 45 500 1000 2000 3000 4000 5000

0 10 20 30 40 500 1000 2000 3000 4000 5000

−0.5

0

0.5

−0.5

0

0.5

−0.05

0

0.05

−0.05

0

0.05

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

Figure 3: Shock in Production (−1%). Monte Carlo simulation with 1000 repli-
cations. Percentage deviation from baseline simulation and confidence intervals.
Left panels: DSG-A system; right panels: ABM.
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Figure 4: Shock in Prices (+1%). Monte Carlo simulation with 1000 replica-
tions. Percentage deviation from baseline simulation and confidence intervals.
Left panels: DSG-A system; right panels: ABM.
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Figure 5: Shock in labor productivity (+1%). Monte Carlo simulation with
1000 replications. Percentage deviation from baseline simulation and confidence
intervals. Left panels: DSG-A system; right panels: ABM.
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Figure 6: Shock in interest rate (+1%). Monte Carlo simulation with 1000 repli-
cations. Percentage deviation from baseline simulation and confidence intervals.
Left panels: DSG-A system; right panels: ABM.
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Figure 7: Simulation of the system for the aggregated model with optimization:
per-capita real variables (zoom on periods 0-700).
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Figure 8: Simulation of the system for the aggregated model with optimization:
per-capita real variables (burn-in period 0-100 omitted).
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Figure 9: Simulation of the system for the aggregated model with optimization:
value function gc (upper panel) and uncertainty index βc (bottom panel) for
supply-constrained consumers (burn-in period 0-100 omitted).
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Figure 10: Simulation of the system for the aggregated model with optimization:
proportion of households not supply constrained.
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Figure 11: Simulation of the system for the aggregated model with optimization:
potential function U (vertical axis) vs. nc (horizontal axis) with zoom around
the critical points.
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Figure 12: Simulation of the system for the aggregated model with optimization:
potential function U (vertical axis) vs. nc (horizontal axis). Detail around the
critical points.
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Figure 13: Simulation of the system for the aggregated model with optimiza-
tion: logarithm of the potential function U (vertical axis) vs. logarithm of nc
(horizontal axis). Detail around the critical points.
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Figure 14: Simulation of the system for the aggregated model with optimiza-
tion: logarithm of the potential function U (vertical axis) vs. logarithm of nc
(horizontal axis). Detail around the critical points for different interest rates.
Red line: r = −0.5 per cent, black line r = 0.5 per cent, blue line r = 0 per
cent.
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