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Abstract

Substitution elasticities quantify the extent to which the demand for inputs responds to changes

in input prices. They are considered particularly relevant from the perspective of cost man-

agement. Because the crisis has drastically altered the economic environment in which banks

operate, we expect to find changes in banks’ substitution patterns over time. This study uses

a dynamic demand system to analyze U.S. commercial banks’ substitution elasticities and ad-

justment time to input price changes during the 2000 – 2013 period. After the onset of the

crisis, banks’ response to input price changes became more sluggish and the substitutability of

most input factors decreased significantly. Yet the substitutability of labor for physical capital

rose remarkably, which we attribute to the continuing adoption of online banking technolo-

gies. Our results confirm that, with only few exceptions, the crisis has significantly reduced the

substitutability of banks’ input factors and thereby the possibilities for cost management. Nev-

ertheless, we find that even after the onset of the crisis banks continued to control their costs by

substituting labor for purchased funds and – to a lesser extent – labor for physical capital and

core deposits for purchased funds. The results are consistent across banks of different sizes.
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1. Introduction

Substitution elasticities quantify the extent to which the demand for inputs responds to

changes in input prices. They are considered particularly relevant from the perspective of cost

management. For example, when the input price of one or more inputs increases, firms can mit-

igate higher total costs by replacing the inputs by substitutes whose prices have increased to a

lesser extent. For banks – whose typical input factors are purchased funds, core deposits, labor

services and physical capital – positive substitution elasticities are also favorable for liability

and liquidity management. For example, the supply of purchased funds is subject to market

disruptions outside the bank’s control and can therefore be relatively volatile. Consequently, the

ability to substitute between purchased funds and core deposits might improve a bank’s abil-

ity to control liquidity risk. Another motivation to study input price elasticities is the relation

between changes in firms’ substitution elasticities and firms’ behavioral shifts in response to

economic and regulatory changes (Considine, 1989b; Noulas et al., 1990; Pantalone and Platt,

1994; Stiroh, 1999; Steinbuks, 2012).

The goal of this study is to assess the effect of the crisis on U.S. commercial banks’ substitu-

tion elasticities. The global financial crisis started with the fall of Lehman Brothers in September

2008 and was preceded by the U.S. credit crisis of 2007 – 2008 (Guillén, 2009). Because the

crisis has drastically altered the environment in which banks operate, we expect to find changes

in banks’ substitution patterns over time (Noulas et al., 1990; Pantalone and Platt, 1994; Stiroh,

1999).

The standard approach to estimate substitution elasticities is based on static demand sys-

tems, such as the ones implied by a long-run cost function or a short-run restricted variable cost

function. The latter cost function implies a static partial equilibrium with respect to the vari-

able inputs, conditional upon the level of one or more quasi-fixed inputs (Hughes and Mester,

1993; Mester, 1996; Hunter and Timme, 1995). In this case only short-run elasticities can be

derived. Long-run cost functions, by contrast, assume that all inputs are completely variable

and observed at their long-run equilibrium levels (e.g. Pindyck and Rotemberg, 1983; Hunter

and Timme, 1995). Yet it is well-known that input factors such as labor and capital are not fully

flexible in the short run due to the existence of adjustment costs, technological constraints and

institutional rigidities, among others. Static demand systems are not only misspecified, but also

overlook dynamics that are interesting in themselves. The dynamics provide information about

the speed at which input price changes are incorporated in the demand for inputs (known as the
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lag time) and shed light on the availability of substitutes in the short run and long run.

To analyze the effect of the crisis on U.S. commercial banks’ substitution elasticities, this

study opts for a dynamic approach based on the Dynamic Logit Demand (DLD) system (Consi-

dine and Mount, 1984; Considine, 1989a; Shui et al., 1993; Jones, 1995, 1996; Brännlund and

Lundgren, 2004; Steinbuks, 2012). The DLD system provides insight in the short-run (SR) and

long-run (LR) effects of changes in input prices on the demand for these inputs, as well as the lag

time. In contrast to the logit model of discrete choice, the logit demand system does not assume

independence of irrelevant alternatives (Considine, 1989b, 1990). Consequently, the estimated

elasticities are fully unrestricted. Several empirical studies have confirmed that the DLD sys-

tem naturally satisfies the properties of a proper demand system and that it is more suitable for

estimating SR and LR elasticities in empirical applications than the dynamic translog demand

system (Jones, 1995; Urga and Walters, 2003). Motivated by its favorable properties, we use

the DLD system to analyze U.S. commercial banks’ SR and LR substitution elasticities and lag

times during the period 2000 – 2013. We estimate a DLD system to obtain SR and LR substitu-

tion elasticities, as well as median lag times. To our best knowledge, we are the first to analyze

the dynamics of banks’ response to changes in input prices.

Because the definition of the start of the crisis might affect the analysis (Mierau and Mink,

2013), we determine the pre-crisis and crisis sample endogenously using the ‘sup-Wald’ method-

ology of Andrews (1993). The sup-Wald test divides our sample into a pre-crisis sample (2000

– 2008) and a (post-)crisis sample (2009 – 2013). During the first period, banks’ median lag

time was about 4.3 years and most input factors were inelastic substitutes, both in the SR and

the LR. Banks’ median lag time increased by more than 50% after the onset of the crisis (to

6.5 years). The SR and LR substitutability of most input factors decreased significantly. Yet the

substitutability of labor for physical capital rose remarkably, which we attribute to the continu-

ing adoption of online banking technologies. Our results confirm that, with only few exceptions,

the crisis has significantly reduced the substitutability of banks’ input factors and thereby the

possibilities for cost management. Nevertheless, we find that even after the onset of the cri-

sis banks continued to control their costs by substituting labor for purchased funds and – to a

lesser extent – labor for physical capital and core deposits for purchased funds. The results are

consistent across banks of different sizes.

Both the static and the dynamic translog demand systems produce results that are difficult to

interpret because they violate elementary economic laws. Moreover, if we had used a static logit
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demand system, we would have falsely concluded that the substitution elasticities had hardly

changed after the onset of the crisis. Hence, our results emphasize the need to employ proper

dynamic demand systems to estimate substitution elasticities.

The setup of the remainder of this study is as follows. Section 2 uses the existing literature

to formulate several effects that we expect to find in our empirical analysis. The econometric

methodology is discussed in Sections 3 and 4. Section 5 provides a description of the data

on U.S. commercial banks, while Section 6 provides estimates of the DLD system and the

associated estimatates of SR and LR substitution elasticities. Several robustness checks are

performed in Section 7. Finally, Section 8 concludes. An online appendix with supplementary

material is provided.

2. Background

According to the intermediation model of banking, banks use labor and physical capital to

attract deposits (Klein, 1971; Monti, 1972; Sealey and Lindley, 1977). Deposits are used to fund

loans and other earning assets. The production function underlying the intermediation model

typically needs a dollar of deposits to generate a dollar of loans and other earning assets, net of

reserve requirements. Empirical banking studies typically assume that banks operate according

to the intermediation model of banking and assume a production technology consisting of, for

instance, four inputs (purchased funds, core deposits, labor services, and physical capital) and

five outputs (consumer loans, real estate loans, business and other loans, securities and off-

balance sheet items); see e.g. Wheelock and Wilson (2012).

2.1. Substitutability of banks’ input factors

Given the nature of banks’ production function, banks’ financial and non-financial inputs

are expected to be at best weak substitutes. For example, labor and physical capital may each be

weak substitutes for purchased funds because a heavier reliance on purchased funds could allow

a bank to generate the same amount of earning assets with a smaller amount of core deposits,

thus economizing on branch offices, ATMs, and bank tellers needed to attract and retain core

deposits. The financial and non-financial inputs can also be complements though (e.g. Wu et al.,

2012). For example, more branch offices (a major component of physical capital) might be

needed to attract more core deposits. Similarly, more deposits could require more loan officers

to allocate the funds efficiently.
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The non-financial inputs physical capital and labor could be substitutes for each other be-

cause investments in technology (in the form of ATMs, computers, automatic credit scoring,

online banking services and other technology) can allow fewer tellers and loan officers to serve

the same number of bank customers. There is also another reason why labor and physical capi-

tal might act as substitutes for each other. A bank that relies more on off-balance-sheet business

would assign relatively more staff to managing such activities rather than to traditional retail

banking activities that rely on brick-and-mortar offices. The latter mechanism also suggests a

reason why labor could be a substitute for core deposits.

It is obvious that the financial inputs (core deposits and purchased funds) can act as sub-

stitutes for each other, but we might observe differences between small and large banks. As

observed by Noulas et al. (1990), large banks in the U.S. typically operate according to a dif-

ferent business model than small banks. In particular, small banks tend to have less access to

national money market funding (purchased funds) and thus are more constrained by their lo-

cal market conditions. In addition, small banks have less opportunity to diversify than large

banks, which can affect some of their input and production decisions. This might also affect

the substitutability of the other input factors. More generally, the theoretical literature has ar-

gued that small and large firms are likely to differ in terms of production technology (Dupuy

and De Grip, 2006). Several empirical studies have indeed revealed significant differences in

substitution elasticities between large and small firms in various industries (e.g., Noulas et al.,

1990; Lever, 1996; Dhawan, 2001). However, for banks this argument could be less relevant,

since all banks face fundamentally the same production technology for traditional core banking

activities (i.e., taking deposits and making loans). Although the largest banks heavily rely on

trading and off-balance-sheet activities, it is a priori unclear whether this will be reflected in the

empirical results given that the U.S. banking market is dominated by smaller banks with a more

traditional focus.

Several studies have analyzed banks’ and thrifts’ substitution elasticities (e.g. Humphrey,

1981; Obben, 1993; Hancock, 1986; Noulas et al., 1990; Pantalone and Platt, 1994; Hunter and

Timme, 1995; Stiroh, 1999; Wu et al., 2012). More recently, substitution elasticities have also

been analyzed for microfinance institutions (Hartarska et al., 2013). These studies confirm that

typical input factors such as labor, physical capital, purchased funds and core deposits tend to

be inelastic substitutes.
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2.2. The effect of the crisis

The literature has associated changes in banks’ and thrifts’ substitution elasticities with

behavioral shifts in response to economic and regulatory changes (Noulas et al., 1990; Pantalone

and Platt, 1994; Stiroh, 1999). For example, Noulas et al. (1990) documents a higher degree of

substitutability among bank input factors after deregulation. Also in other industries, economic

and regulatory changes have been associated with changes in substitution elasticities; see e.g.

Considine (1989b) and Steinbuks (2012) who analyze the changes in interfuel substitutability

in response to policy changes.

Also the global financial crisis that started with the fall of Lehman Brothers in September

2008 is likely to have affected banks’ substitution elasticities. That is, the crisis and the Fed-

eral Reserve’s subsequent quantitative easing sharply altered banks’ mix of inputs and outputs.

During the pre-crisis years, commercial banks’ aggregate federal funds sold rose steadily from

$ 280 billion in 2000 to $ 443 billion in 2005, while federal funds purchased rose from $ 475

billion to nearly $ 668 billion. Total borrowed funds (considered a substitute for core deposits)

likewise grew, along with total deposits and total assets, as shown in Table 1.

Following the onset of the crisis, federal funds sold declined from $ 688 billion in 2008

to less than $ 402 billion the following year – a 41% decline – while federal funds purchased

fell from $ 804 billion to $ 551 billion over the same period. This new pattern has persisted

in subsequent years, with federal funds sold totaling $ 356 billion and federal funds purchased

totaling just $ 294 billion at year-end 2014, despite continued general growth of total deposits

and total bank assets. Borrowed funds exhibited a similar decline.

This sharp reduction in federal funds volume was driven in large part by the payment of

interest on bank reserves by the Federal Reserve beginning in late 2008 (Ihrig et al., 2015); for

the first time in U.S. history, banks could earn a higher yield on reserves compared to lending in

the federal funds market. Following this change, aggregate reserves held by banks on the Fed’s

balance sheet rose dramatically from $ 14 billion in 2007 to $ 2.6 trillion in late 2014 (Ihrig

et al., 2015, p. 185). This exogenous change in pricing and market conduct should be expected

to alter measurable characteristics of banks’ cost functions, including both the elasticities of

substitution among inputs and the lag time, though the directions of such changes are difficult

to predict on purely theoretical grounds.

Historically, large U.S. banks have been net borrowers of federal funds while smaller banks

have been net lenders. Thus, the reduction in aggregate federal funds purchased would be ex-
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pected to show up among large banks disproportionately, while the reduction in aggregate fed-

eral funds sold (an asset-side item or output) should appear relatively more among smaller

banks. This difference between small and large banks might show up in their substitution elas-

ticities.

2.3. Online banking

One of the most notable technological shifts concurrent with, but largely unrelated to, the

crisis is the adoption of online banking technology in the form of transactional web sites and,

more recently, mobile banking apps. This trend has been discussed as reducing banks’ unit costs,

enhancing consumers’ convenience and choice, and providing a means of product differentiation

(DeYoung et al., 2007; He, 2015). While intuition might suggest that online banking could

permit banks to substitute away from physical branch offices, DeYoung et al. (2007) report

contrary evidence that the online delivery channel has been used mainly as a complement to,

rather than as a substitute for, branches.

DeYoung et al. (2007) also found that the adoption of transactional banking web sites was

associated with other shifts in input mix and with systematic changes in input prices. In particu-

lar, online banking was correlated with increased use of brokered deposits (a subset of purchased

funds) and with movements of deposits from checking accounts to money market deposit ac-

counts, all of which imply an increased average funding cost for the adopting banks. Likewise,

online banking was associated with higher average wage rates for bank employees.

While adoption of this new technology is endogenous, reflecting deliberate strategic choices

by banks (He, 2015), those choices comprise rational responses to changes in available technol-

ogy that are largely exogenous to any individual bank. Systematic input price changes, such as

in wage rates, might reflect unobserved heterogeneity in the corresponding input that would be

required to adopt and maintain the new technology at the bank level. All of these changes could

potentially alter empirical estimates of input substitution elasticities and lag times, further mo-

tivating assessment of a potential shift over time in our sample, though potentially confounding

an interpretation of such shifts as due solely to the crisis rather than to technological factors.

2.4. Expected effects

Based on the literature and the discussion in Sections 2.2 and 2.3 above, we expect that

banks’ substitution elasticities changed after the onset of the financial crisis. As explained

before, however, it is difficult to predict the changes in substitutability on purely theoretical
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grounds. More intuitively, we expect that the post-onset regulatory response resulted in reduced

SR and LR substitutability among banks’ input factors, reflecting the stressful environment of

the crisis. At the same time we anticipate that the substitution of labor for physical capital

continued to persist after the onset of the crisis, reflecting the continuing adoption of online

banking. Hence, we expect the substitution elasticity of physical capital with respect to labor to

remain relatively high over time.

Regarding banks’ speed of adjustment to input price changes, we can think of two scenarios.

On the one hand, financial stress could have made banks’ response to input price changes more

sluggish, resulting in a longer lag time. On the other hand, financial stress could have made it

more urgent for banks to adjust as promptly as possible to changes in input prices, resulting in

a shorter lag time after the onset of the crisis.

Because of the aforementioned differences between small and large banks, we expect to

find differences in the way their input factor substitutability was affected following the crisis.

However, it is not a priori clear what the sign and magnitude of this difference will be and

whether it will apply to all input factors. We will leave this as an empirical question.

3. Dynamic logit demand system

The literature has proposed several dynamic demand systems. For example, we could esti-

mate an equilibrium model consisting of a SR restricted variable cost function, variable input

demand (or input-output) equations and shadow-value equations for quasi-fixed inputs (e.g.,

Morrison, 1988; Considine, 2000; Considine and Larson, 2012). However, this approach does

not always yield economically plausible results (Friesen, 1992a). Alternatively, we could esti-

mate a dynamic translog demand (DTD) system (Holly and Smith, 1989; Jones, 1995; Esho and

Sharpe, 1995; Allen and Urga, 1999; Urga, 1999; Urga and Walters, 2003). However, also this

approach can turn out problematic (Considine, 1989a; Jones, 1995; Urga and Walters, 2003).

A well-defined input demand system is characterized by non-negative conditional input de-

mand functions that are symmetric and zero-degree homogenous in input prices. Furthermore,

the resulting LR elasticities should be larger in magnitude than SR elasticities according to the

Le Chatelier principle (e.g., Considine, 2000; Rossana, 2007). The literature has shown that it

is often easy to specify a dynamic logit demand (DLD) system that satisfies these requirements

(Considine and Mount, 1984; Considine, 1989a; Shui et al., 1993; Jones, 1995, 1996; Brännlund

and Lundgren, 2004; Steinbuks, 2012). This section discusses the DLD demand system and the
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estimation of U.S. banks’ SR and LR substitution elasticities and lag times.

3.1. Specification and estimation

We assume a production technology consisting of four inputs and five outputs (Wheelock

and Wilson, 2012). The choice of inputs and outputs is based on the intermediation model for

banking (Klein, 1971; Monti, 1972). The four inputs we consider are purchased funds, core

deposits, labor services, and physical capital. The corresponding input prices are the price of

purchased funds of bank i = 1, . . . ,N in year t = 1, . . . , T (P1,it), the core deposit interest rate

(P2,it), the wage rate (P3,it), and the price of physical capital (P4,it). The demand for input k is

denoted by by Qk,it, for k = 1, . . . , 4. Total costs (Cit) are defined as the sum of expenses on

purchased funds, core deposits, personnel expenses, and expenses on physical capital. The five

outputs that we look at are consumer loans (with output quantity Y1,it), real estate loans (Y2,it),

business and other loans (Y3,it), securities (Y4,it) and off-balance sheet items (Y5,it). The analysis

below is easily adjusted to the case of less, more or different inputs and outputs.

The logit input demand system is based on the assumption of cost-minimizing behavior,

such that Q j,it = ∂Cit/∂P j,it and w j,it = ∂log(Cit)/∂log(P j,it) according to Shephard’s lemma.

We emphasize that the assumption of cost minimization is also made in studies that estimate

substitution elasticities using a (static or dynamic) translog cost function. The logit demand

system is specified in terms of the j-th cost share w j,it for bank i at time t. Allowing for multiple

outputs, non-neutral technical change and non-homotheticity, the cost shares in the static version

of the model have the form

w j,it = exp( f j,it)/
4∑

k=1

exp( fk,it), (1)

where

f j,it = α jBHCit +

4∑
k=1

β jklog(Pk,it) +
5∑
ℓ=1

γ jℓlog(Yℓ,it) +
∑

t

δ jtdt + e j,it. (2)

To allow for differences in cost technology between independent banks and banks that are part of

a bank-holding company, we follow Wheelock and Wilson (2012) and include a binary variable

(BHCit) indicating whether bank i is part of a bank holding company in year t.1 Furthermore,

1About 85-90% of U.S. Commercial banks is part of a bank holding company. Source: Call Reports 2000 –
2013.
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dt is a time dummy for year t, α j, β jk, γ jℓ and δ jt (vectors of) coefficients, and e j,it a mean-zero

error term that is uncorrelated with the explanatory variables.

From Equation (2), we observe that the cost shares are guaranteed to be non-negative thanks

to their exponential form, which ensures that the input demand functions are non-negative. As

shown by Considine (1990), zero-degree homogeneity in input prices symmetry of the condi-

tional demand functions translate into the restrictions
∑n

k=1 β jk = 0 for all j and w̄ jβ jk = w̄kβk j

(known as Slutsky symmetry), respectively. Here the w̄ js denotes the mean cost shares. The

parameter constraints can easily be imposed in the estimation stage of the logit demand sys-

tem. With the 4-th input arbitrarily chosen as the numéraire and zero-degree homogeneity and

symmetry imposed, the reduced-form share-equation system reduces to

log(w j,it/w4,it) = (α j − α4)BHCit +

j−1∑
k=1

(β∗k j − β∗k4)w̄ jlog(Pk,it/P4,it) (3)

+
(
−

j−1∑
k=1

w̄kβ
∗
jk −

4∑
k= j+1

w̄kβ
∗
jk − w̄ jβ

∗
j4

)
log(P j,it/P4,it)

+

3∑
k= j+1

(β∗jk − β∗k4)w̄klog(Pk,it/P4,it)

+

5∑
ℓ=1

(γ jℓ − γ4ℓ)log(Yℓ,it) +
T∑

t=1

(δ jt − δ4t)dt + e j,it − e4,it [ j = 1, 2, 3],

where β∗jk = β jk/w̄k for j , k. The symmetry and linear homogeneity then translate into β∗jk = β
∗
k j

for j , k and β∗j j = −
∑

k, j β
∗
jkw̄k/w̄ j. The identifying restrictions that we impose are γ4ℓ = δ4t =

0. The substitution elasticities that we will obtain later are not influenced by these restrictions

as noted by Considine (1990).

The extension to the dynamic logit demand (DLD) system is made by adding the lagged log

input quantity of input factor j to Equation (2), which then changes into

f j,it = α jBHCit +

4∑
k=1

β jklog(Pk,it)+
5∑
ℓ=1

γ jℓlog(Yℓ,it)+
∑

t

δ jtdt +

4∑
p=1

λ jplog(Qp,it−1)+ e j,it. (4)

To achieve identification, each row of the matrix of adjustment coefficients (λ jp) j,p has to sum

to the same constant (Moschini and Moro, 1994). If we choose this constant to be zero, we can

simply add the lagged values of log(Qp,it/Q4,it−1) for p = 1, 2, 3 to each share equation in (3).

The literature has focused on a simplified version of Equation (4) by imposing λ jp = 0 for p , j

and λ j j = λ, such that all share equation have a common adjustment coefficient. This is also the
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model that will be selected by a specification search in our empirical example. We will therefore

focus on this version of the DLD model in the sequel.

In Considine and Mount (1984) it is shown that the DLD model is a reduced-form equation

based on a structural dynamic Treadway-type of model with adjustment costs, providing a for-

mal theoretical motivation of the dynamic extension (Treadway, 1971, 1974). The use of this

estimator is motivated in more detail in the appendix with supplementary material.

The literature has estimated logit demand system by means of Zellner’s iterative SUR-GLS,

because of its invariance with respect to the choice of the normalizing input (Considine and

Mount, 1985).2

3.2. Substitution elasticities

We follow Frondel (2004, 2011) and focus on the own-price and cross-price elasticities of

demand.3 On the basis of the dynamic extension of (3), the SR elasticities take the form

ES R
j j =

∂log(Q j,it)
∂log(P j,it)

= w̄ jβ
∗
j j + w̄ j − 1, ES R

jk =
∂log(Q j,it)
∂log(Pk,it)

= w̄kβ
∗
jk + w̄k [ j , k], (5)

where w̄ j denotes the mean j-th cost share (Considine and Mount, 1984; Anderson and Thursby,

1986). The resulting price elasticities for each input sum to zero and satisfy Slutsky-symmetry;

i.e.,
∑4

k=1 ES R
jk = 0 and (ES R

jk + w̄k)w̄ j = (ES R
k j + w̄ j)w̄k.

Frondel (2011) refers to the cross-price elasticity as a ‘one-price-one-factor’ elasticity of

substitution, which provides a measure of absolute substitutability. We will later repeat the entire

analysis using Morishima elasticities (known as ‘one-price-two-factor’ elasticities of substitu-

tion), which measure relative substitutability of input factors. We do not report the Allen-Uzawa

partial elasticities of substitution. Blackorby and Russell (1989) show that, with more than two

inputs, the latter elasticities do not measure substitutability in the sense of Hicks (1932). More-

over, as a qualitative measure they provide no additional information in addition to the cross-

price elasticities of demand. Stiroh (1999) confirms that the Allen-Uzawa elasticities can be

misleading about the magnitude of substitution effects in empirical applications.

As pointed out by Considine and Mount (1984), the LR elasticities in the DLD model with

2An explanation for the invariance is that, under normality, iterative SUR-GLS estimation of logit demand
systems is equivalent to maximum likelihood (ML) estimation; see Considine and Mount (1985). Maximum like-
lihood, in turn, is known for its invariance since Barten (1969). He showed that ML estimates of the parameters
in singular n-equation systems with i.i.d. normally distributed errors can be derived from ML estimation of n − 1
equations and that the resulting ML estimates are invariant to the omitted equation.

3This choice is motivated in more detail in the appendix with supplementary material.
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common adjustment coefficient λ can be expressed in terms of the SR elasticities and λ as

ELR
jk = ES R

jk /(1 − λ). (6)

It is readily seen that the LR price elasticities for each input sum to zero and satisfy-Slutsky

symmetry whenever the SR elasticities do so. Furthermore, the SR and LR elasticities satisfy

the Le Chatelier principle for λ > 0.

4. Estimation strategy

Our way of estimating the DLD system of Section 3 extends the existing literature by al-

lowing for structural change. We estimate the DLD model separately for a pre-crisis period and

a (post-)crisis period. These two subperiods are identified by an endogenous-break test. This

approach results in time-varying substitution elasticities.

4.1. Coefficients and confidence intervals

In line with the literature, we estimate the DLD system using iterative SUR-GLS (Consi-

dine and Mount, 1984; Considine, 1990) because of its invariance with respect to the choice

of the normalizing input factor. Throughout, we apply a special bootstrap procedure to consis-

tently estimate confidence intervals for the model coefficients and the associated elasticities.

The bootstrap is a block wild bootstrap, applied to the estimated residuals of the DLD’s cost-

share equations (Cameron et al., 2008). The resulting critical values and confidence intervals

are robust to time series correlation and heteroskedasticity in the errors of the share equations,

as well as to contemporaneous correlation between the error terms of different cost-share equa-

tions.4 Our bootstrap is an extension of the bootstrap procedure proposed by Eakin et al. (1990),

who emphasized the need for substitution elasticities that are non-linear functions of the model

parameters. In our setting, the need to account for heteroskedasticity, autocorrelation and con-

temporaneous cross-equation correlation provides additional motivation for using the bootstrap.

4.2. Endogenous structural break

The sup-Wald test proposed by Andrews (1993) is a natural candidate to test whether the

DLD system is affected by structural change. This test is an extension of the traditional Chow

4More specifically, the bootstrap is based on block-bootstrapping the residuals of the DLD model. It resamples
the residuals over groups using blocks that contain all T observations for the chosen group. The resampled blocks
are the same in each share equation to allow for contemporaneous correlation between the error terms of different
cost-share equations.
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and Quandt tests, which detect structural change at a given (exogenously determined) point in

time (Chow, 1960; Quandt, 1960). The break year is endogenously determined by the sup-Wald

test.

The sup-Wald test runs as follows. Given break year t∗, the dynamic version of Equation (3)

is estimated for the subsamples tstart − (t∗ − 1) and t∗ − tend.5 For each possible break year t∗, we

estimate the DLD system for the two subsamples determined by that break year. The coefficients

of the DLD system are allowed to differ across the two subsamples. Given M possible break

years, we thus obtain M Wald statistics. The sup-Wald statistic is obtained as the largest Wald

statistic over each of the M possible break points. Furthermore, the value of t∗ at which the

maximum occurs is the potential break year.

To obtain accurate finite-sample critical values for the sup-Wald test applied to panel data,

we will not rely on the critical values tabulated by Andrews (1993). Instead, we proceed as in

Diebold and Chen (1996) and use the bootstrap approach under the null hypothesis of structural

stability to obtain critical values and p-values. The latter values can be used to determine the

statistical significance of the structural break in the year with the largest Wald statistic. Once

a significant structural break has been detected, the DLD system and the associated elasticities

can be estimated for the resulting two subsamples.6

4.3. Oaxaca-Blinder decomposition

The expressions for the substitution elasticities in Equation (5) involve both model coeffi-

cients and cost shares. Hence, changes in substitution elasticities over time are due to changes in

(average) cost shares w̄k (reflecting changes in input mix/prices) or due to changes in the coef-

ficients β∗jk and λ of the DLD system. We apply an Oaxaca-Blinder decomposition to assess the

relative importance of these two sources of change (Oaxaca, 1973; Blinder, 1973; Frondel and

Schmidt, 2006). Assuming that the sup-Wald test identifies a break year, the Oaxaca-Blinder

decomposition divides the change in elasticities after the break year into two counterfactual

components: one that indicates how the ease of substitution is affected by the observed varia-

tion in input mix/prices (given the same initial cost parameters) and one that reflects the change

due to changes in the cost parameters (given the same initial cost shares).

5In the second sample we use the year t∗ − 1 to obtain the values of the lagged input quantity.
6We notice that there are tests to locate multiple structural breaks during the sample period (e.g., Bai and Perron,

1998, 2003). However, our samples are not sufficiently long to allow for multiple breaks and we therefore confine
our analysis to the test for a single break point. Also, the global financial crisis provides an economic basis (as
opposed to a purely statistical reason) for expecting a single “most significant” break point.

12



The Oaxaca-Blinder decomposition works as follows. We write the SR elasticity (evaluated

in the average cost shares) as ES R
jk = ES R

jk (η, w̄) to emphasize its dependence on η (the parameter

vector of the underlying DLD system) and w̄ (the vector of average cost shares). Let η(0) and

w̄(0) refer to the first subsample and η(1) and w̄(1) to the second subsample. We can write

ES R
jk (η(1), w̄(1)) − ES R

jk (η(0), w̄(0))︸                                 ︷︷                                 ︸
total difference

=
[
ES R

jk (η(1), w̄(1)) − ES R
jk (η(1), w̄(0))

]︸                                   ︷︷                                   ︸
same parameters, different cost shares

+
[
ES R

jk (η(1), w̄(0)) − ES R
jk (η(0), w̄(0))

]︸                                   ︷︷                                   ︸
same cost shares, different parameters

.

The first component on the right-hand side of the Oaxaca-Blinder decomposition reflects the

impact of changes in input mix/prices on the elasticity change. The second component captures

the influence of changes in the cost parameters. We use the same technique to decompose the

difference in long-term substitution elasticities.

5. U.S. banking data

We use year-end Call Report data to create a sample of U.S. banks covering the years 1998

– 2013.7 Although we are actually interested in estimating the DLD system over the years 2000

– 2013, we add the year 1999 because of the lagged quantity variable in the DLD system. We

assume the same four-input and five-output production technology as in Section 3. We deflate

all level variables by expressing them in prices of the year 2000 using the All Urban Consumer

Price Index. In the supplementary material it is explained how the Call Report Data have been

used to obtain the input and output quantities and prices.

We confine the analysis to commercial banks with a physical location in a U.S. state and

subject to deposit-related insurance. We filter out bank-year observations with extreme input

prices by removing observations that fall below the 1% sample quantile or exceed the 99%

sample quantile. We also remove bank-year observations with inconsistent values. Because we

are interested in bank behavior over time, we construct a balanced sample containing all banks

with complete observations during the years 1998 – 2013. An unbalanced sample will result

in subsamples that do not contain the same group of banks. A balanced sample, by contrast,

ensures that any changes over time are truly due to changes in bank behavior and not due to

dynamic selection and is in line with many other banking studies (Dinç, 2005; Akhigbe and

McNulty, 2011; Jaremski and Rousseau, 2013; Cai et al., 2014). The balanced sample contains

7All U.S. banks have reported financial data on a quarterly basis since the mid-1980s. We use annual data
because the quarterly data contains a huge amount of missing observations, due to which it is very difficult to
create a sufficiently long balanced sample. We therefore follow Koetter et al. (2012) and consider year-end data.
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3,361 unique banks and 47,054 bank-years. Because survivorship bias is a potential problem

for a balanced sample, we will later confirm the representativeness of our balanced sample by

means of a comparison with the unbalanced sample. The unbalanced sample contains 8,910

unique banks and 90,496 bank-years. In the sequel we will work with the balanced samples,

unless explicitly mentioned otherwise. Sample statistics will be presented in the next section,

after we have identified a structural break.

6. Empirical results

This section provides estimation results for the DLD system and the corresponding cross-

price and own-price elasticities of demand.

6.1. Endogenous structural break

We start with estimating the DLD system using the balanced 2000 – 2013 sample, while

allowing for a structural break around the start of the global financial crisis. In line with Andrews

(1993), we allow for potential lead-lag effects of the crisis and thus consider five possible break

years: t∗ = 2006, 2007, 2008, 2009, 2010. We refer to Section 4.2 for the exact definition of

break year.

To perform the sup-Wald test, we proceed as outlined in Section 4.2. The sup-Wald test

detects a highly significant break for t∗ = 2009, thus dividing the 2000 – 2013 period into a

pre-crisis period (2000 – 2008) and a (post-)crisis period (2009 – 2013). The first and second

panels of Table 2 provide sample statistics for the (un)balanced subsamples. The balanced and

unbalanced samples do not substantially differ in terms of sample means, although the scale of

banks in the balanced sample is a bit larger than in the unbalanced sample. A comparison of the

sample means over the two subperiods indicates a substantially larger bank scale in the second

subsample, which can be explained from the consolidations that took place after the onset of

the crisis (Dunn et al., 2015). We also observe a substantial decline in the prices of purchased

funds and core deposits after the onset of the crisis, which reflects the actions taken by the Fed

to boost the U.S. economy. The wage rate increased after the onset of the crisis. This could be

due to the lower-level personnel that was laid off because of the crisis or because of the adoption

of online-banking technologies that made some of the personnel redundant. The average share

of core deposits in total costs is substantially lower in the second subsample, while the average

cost share of labor services is considerably higher during the latter period.
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6.2. DLD system with common adjustment coefficient

Because the full DLD system only worsens the value of the Akaike Information Criterion

(AIC), we focus on the DLD model with common adjustment coefficient throughout. To illus-

trate the negligible impact of adding extra adjustment coefficients to the model, Table 3 reports

the estimated adjustment coefficients for the two subperiods as selected by the sup-Wald test.

We see that the values of λ jp are close to zero for j , p and that the λ j j very little across share

equations. Hence, the lag time is virtually the same across share equations. This result explains

why the full DLD model does not lead to a better model in terms of the AIC. We therefore use

the more parsimonious DLD model with common adjustment coefficient in our entire analysis.

6.3. Estimation results for the DLD system

We use Zellner’s iterative SUR-GLS to estimate the DLD system separately for the two sub-

periods identified by the sup-Wald test. The associated system R2 ranges between 0.91 – 0.96.

The coefficients of the dummy variable that indicates whether a bank is part of a bank hold-

ing company has little significance across the three cost-share equations, suggesting limited

cost-share heterogeneity across banks. The second column of Table 4 shows that the pre-crisis

adjustment parameter λ̂ (see Section 3.1) is significant and equals λ̂ = 0.85 ([0.58, 0.65]), cor-

responding to a half-life of 4.3 ([4.1, 4.5]) years. During the crisis sample, however, the value of

λ̂ is significantly higher and equal to λ̂ = 0.90 ([0.35,0.0.48]), corresponding with a median lag

time of about 6.5 ([6.1,7.0]) years. Hence, we observe significantly slower adjustment of cost

shares to changes in input prices after the onset of the crisis. Banks’ median lag time increased

by more than 50% after the onset of the crisis. As conjectured in Section 2, the decrease in lag

time shows that the crisis made banks’ response to input price changes more sluggish.

6.4. Elasticity estimates

Table 5 reports the estimated SR and LR own-price and cross-price substitution elasticities

based on the DLD system.8

We start with a discussion of the pre-crisis period, during which all SR elasticities are rel-

atively low in magnitude. The LR elasticities are substantially higher. For example, purchased

funds are an elastic substitute for labor services. We can explain this finding by observing that

a heavier reliance on purchased funds allows banks to generate the same amount of earning as-

sets with a smaller amount of core deposits, thus economizing on bank tellers (as well as branch

8We have used the sample means of the cost shares to calculate the elasticities according to Equation (5).
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offices and ATMs) needed to attract and retain core deposits. We also observe that, in the LR,

purchased funds and core deposits are unit elastic substitutes. As explained in Section 2, it is

evident that purchased funds and core deposits can act as substitutes. However, we observe a no-

table asymmetry here: purchased funds are much more elastic with respect to core deposits than

vice versa. A possible explanation for this asymmetry is banks’ limited influence on depositor

behavior (Noulas et al., 1990). Also the LR cross-price elasticity between physical capital and

labor services is relatively high. Investments in technology (in the form of ATMs, computers,

online banking services and other technology) can allow fewer tellers and loan officers to serve

the same number of bank customers. Alternatively, a bank that relies more on off-balance-sheet

business could assign relatively more staff to managing such activities rather than to traditional

retail banking activities that rely on brick-and-mortar offices. All other LR cross-price elastici-

ties are relatively low. The cross-price elasticities related to deposits and labor services are the

only negative ones. The latter two inputs turn out highly inelastic complements. As explained

in Section 2, more deposits could require more loan officers to allocate the funds efficiently. In

sum, we observe that most input factors tend to be inelastic substitutes, both in the SR and the

LR. This result is in line with earlier studies on U.S. banks’ substitution elasticities, such as

Noulas et al. (1990) and Hunter and Timme (1995).9 It is also consistent with the properties of

the bank production function discussed in Section 2.

Table 5 shows that most substitution elasticities are smaller in magnitude after the onset of

the crisis, especially in the LR. This pattern reflects reduced input factor substitutability after

the start of the crisis. The associated Oaxaca-Blinder decomposition is displayed in Table 6,

together with bootstrap-based confidence intervals. Table 6 shows that the elasticity drop is

generally due to a combination of changes in input mix/prices and changes in the cost parame-

ters. Only a few elasticities exhibit a significant increase after the onset of the crisis. In the SR,

this holds for the two cross-price elasticities with respect to core deposits and labor services.

The latter two inputs are highly inelastic complements before the crisis, but become perfectly

inelastic after the onset of the crisis (with cross-price elasticities that are no longer significantly

different from zero). Also before the crisis the substitutability of these two inputs is extremely

9In their study of U.S. banks, Hunter and Timme (1995, Table 2) obtain substitution elasticities from two
different specifications: a SR restricted variable cost function and a LR total cost function based on the restrictive
assumption that input factors are observed at their LR equilibrium levels. They establish substantial quantitative
differences in the substitution elasticities between the two models. The differences between SR and LR elasticities
that we find are in line with the more ad hoc results of Hunter and Timme (1995) and once more emphasize the
need to employ dynamic cost models.
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low, so the economic relevance of the change is only minor. In the LR, also the cross-price

elasticities of physical capital and labor increase after the onset of the crisis. While the increase

in the cross-price elasticity of labor services with respect to physical capital is economically

speaking modest, the rise in the cross-price elasticity of physical capital with respect to labor

services is both statistically and economically substantial. Hence, while the crisis reduced the

substitutability of most pairs of input factors, the substitutability of labor services for physical

capital exhibits a substantial rise after the onset of the crisis. From the Oaxaca-Blinder decom-

position we see that the increase in the cross-price elasticity of physical capital with respect

to labor services is due to changes in the input mix/prices, which offsets the decrease due to

changes in the cost parameters. In the light of the discussion in Section 2, the latter increase is

likely to reflect the continuing adoption of online banking technologies.10

The generally low degree of substitutability among banks’ input factors implies that there

are only limited opportunities for substituting inputs to mitigate an increase in total costs due to

an increase in one or more input prices. This limits banks’ possibilities for cost management.

However, three elasticities remain relatively high after the onset of the crisis, especially in the

LR. Besides the aforementioned elasticity of physical capital with respect to labor services,

these are the elasticity of purchased funds with respect to labor services (which is not signifi-

cantly different from unity in the LR, reflecting perfectly elastic substitutes) and the elasticity

of purchased funds with respect to core deposits (which is significantly less than unity in the

LR, but still relatively high). Hence, even after the onset of the crisis banks continued to control

their costs to some extent by substituting labor for physical capital and purchased funds, and

core deposits for purchased funds.

6.5. Comparison to alternative demand systems

We compare the results based on the DLD system with three alternative demand systems:

the static translog, the dynamic translog and the static logit.

Dynamic translog demand (DTD) systems are dynamic extensions of the well-known static

translog model (Holly and Smith, 1989; Friesen, 1992b; Allen and Urga, 1999; Esho and

Sharpe, 1995; Urga, 1999; Urga and Walters, 2003). The appendix with supplementary material

provides a detailed description of the DTD system of Allen and Urga (1999), Urga (1999) and

Urga and Walters (2003). The (dynamic) translog and logit demand systems are not nested. Con-

10We notice that the own-price elasticities of demand are all negative due to the quasi-concavity that turns out
to hold globally; i.e., the DLD system’s eigenvalues are non-positive.
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sequently, information criteria such as those of Akaike or Schwarz cannot be used to compare

the goodness-of-fit of the two models. However, we can make a qualitative comparison between

the two systems based on their theoretical properties and a quantitative comparison based on

both systems’ estimation results. The qualitative comparison is in the appendix with supple-

mentary material. The quantitative comparison is made below. It is important to notice that the

LR elasticities provided by the DLD system are based on the conventional static translog cost

function. Many studies estimating substitution elasticities are based on a similar cost function.

For the quantitative comparison we have estimated a DTD system for both the pre-crisis

and the (post-)crisis samples, using Zellner’s iterated SUR-GLS again.11 The estimation results

can be found in the appendix with supplementary material. The estimated adjustment parame-

ter of the DTD system is significant at the 5% level during both subperiods and confirms the

presence of lagged adjustment of the demand for inputs to changes in input prices. The asso-

ciated average substitution elasticities are displayed in Table 7, together with 95% confidence

intervals based on the bootstrap. Table 7 reveals multiple violations of the Le Chatelier princi-

ple. Because the elasticities in the DTD system take the form of ratios that have one or more

cost shares in the denominator, very large elasticities can arise when cost shares are close to

zero. This becomes most apparent during the pre-crisis period, when the elasticities related to

changes in the input factor with the smallest cost share (physical capital) have very confidence

intervals (resulting in elasticities that are not significantly different from 0). In the pre-crisis

sample, the SR (LR) own-price physical capital’s own-price elasticity is positive in 6% (7%) of

the bank-year observations, reflecting the violation of quasi-concavity. The average own-price

substitution elasticity for physical capital in Table 7 still has the required negative sign despite

these positive observations, but this is merely due to the many negative outliers. Negative cost

shares for physical capital occur in 17% of the bank-year observations in the pre-crisis sample.

Because the translog demand systems do not satisfy the required theoretical properties, it is

difficult to give an economically sensible interpretation to the associated elasticities.

7. Robustness checks

To analyze the impact of ignoring the lagged adjustment of the demand for inputs to changes

in input prices, we have also estimated a static logit demand (SLD) system for both the crisis

11The sup-Wald test applied to the DTD system detects a structural break in t∗ = 2009.
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and the (post-)crisis samples.12 During both periods, the R2 of the two static demand systems

is much lower than that of the corresponding dynamic logit demand system (0.56 and 0.74 vs.

0.91 and 0.95). The corresponding elasticities do not exhibit much of a change after the onset of

the crisis.13 Hence, if we had used the static demand system, we would have falsely concluded

that the substitution elasticities had hardly changed after the onset of the crisis, emphasizing the

need for dynamic demand systems.

In Section 2 we addressed the potential influence of bank size on the substitutability of

banks’ input factors. To investigate the impact of bank size on the change in elasticities after

the onset of the crisis, we have considered the full sample period and estimated an extended

version of the DLD model. In this extended specification the coefficients depend on both time

and bank size. In this way, the extended DLD system captures both time-varying and bank size-

dependent substitution elasticities and adjustment coefficients. However, the coefficients of the

interaction variables involving bank size do not turn out significant. Consequently, the effect

of bank size on the substitution elasticities is only minor. We notice that Noulas et al. (1990)

found certain elasticity differences between small and large banks, but no systematic ones. The

lack of such systematic differences is confirmed by our results and could reflect the fact that all

banks face fundamentally the same production technology for traditional core banking activities

(i.e., taking deposits and making loans) as we observed in Section 2. Although the largest banks

heavily rely on trading activities and off-balance-sheet activities, it is possible that this does not

show up in the estimation results because the sample of banks is dominated by smaller banks

with a more traditional focus.

We have also estimated the DLD system using the unbalanced dataset. This leads to elastic-

ities that are very similar as the ones we obtained on the basis of the balanced dataset. Hence,

survivorship bias does not seem to be an issue in this study.

We have redone the entire analysis using Morishima elasticities, thereby focusing on relative

instead of absolute substitutability of input factors. Most Morishima elasticities also exhibit a

significant drop in magnitude after the onset of the crisis.

More details of the robustness checks are given in the appendix with supplementary mate-

rial.

12The sup-Wald test applied to the SLD system detects a structural break in t∗ = 2009.
13To save space these elasticities are not reported. They are available upon request.
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8. Conclusions

We have estimated U.S. commercial banks’ substitution elasticities during the period 2000

– 2013 using a dynamic logit input demand system. This system allows the demand for any

input factor to adjust with a lag to input price changes, where the speed of adjustment (known

as the lag time) is estimated from the data.

An endogenous-break test divided the sample into a pre-crisis period (2000 – 2008) and a

crisis period (2009 – 2013). During both periods most input factors turn out inelastic substi-

tutes, both in the short run and the long run. Banks’ median lag time increased by more than

50% after the onset of the crisis (from 4.3 to 6.5 years), which shows that banks responded

more sluggishly to input price changes after the onset of the crisis. The short-run and long-run

substitutability of most input factors decreased significantly due to a combination of changes

in the input mix/prices and changes in the cost parameters. Yet the substitutability of labor for

physical capital rose remarkably due to changes in the input mix/prices, which we attribute to

the continuing adoption of online banking technologies. The results are consistent across banks

of different sizes.

Our results confirm that, with only few exceptions, the crisis has significantly reduced the

substitutability of banks’ input factors and thereby the possibilities for cost management. Nev-

ertheless, we find that even after the onset of the crisis banks continued to control their costs by

substituting labor for purchased funds and – to a lesser extent – labor for physical capital and

core deposits for purchased funds.
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Table 1: Aggregate Trends in Selected Balance-Sheet Items

Year Federal
Funds Sold

Federal Funds
Purchased

Borrowed
Funds

Total Deposits Total Assets

2014 356 294 1,198 10,953 14,494
2009 402 551 1,483 8,338 11,829
2008 688 804 2,079 8,082 12,309
2005 443 668 1,425 6,073 9,041
2000 280 475 1,047 4,180 6,246

Note: Dollar figures are in billions of USD for all U.S. commercial banks. Source: FDIC, Historical Statistics
on Banking.
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Table 2: Sample statistics

unbalanced balanced
2000 – 2013 2000 – 2008 2009 – 2013 2000 – 2013 2000 – 2008 2009 – 2013

P1 3.3% 4.0% 1.9% 3.3% 4.0% 1.9%
1.6% 1.4% 1.0% 1.6% 1.3% 1.0%

P2 1.8% 2.2% 0.8% 1.7% 2.2% 0.8%
1.1% 1.0% 0.5% 1.0% 0.9% 0.5%

P3 46.4 45.2 48.7 44.4 43.3 46.4
13.6 12.8 14.1 11.1 10.5 11.7

P4 34.9% 34.7% 34.2% 31.1% 31.3% 30.6%
35.2% 33.8% 35.3% 25.7% 25.1% 26.7%

Y1 91,036 75,067 132,715 114,699 99,114 142,754
1,997,441 1,602,241 2,739,784 2,409,783 2,135,570 2,837,206

Y2 212,771 192,431 273,490 304,137 271,070 363,658
4,122,369 3,696,205 5,129,253 5,480,408 4,977,850 6,284,263

Y3 366,857 322,823 486,126 472,955 391,906 618,842
5,742,327 4,693,702 7,836,373 7,590,142 6,204,257 9,591,293

Y4 216,838 166,922 350,504 289,885 211,762 430,506
4,044,764 2,710,703 6,285,750 5,304,788 3,524,933 7,510,031

Y5 17,619 15,011 24,797 25,145 20,879 32,823
393,771 319,563 541,359 522,944 429,330 658,682

w1 15.5% 16.8% 12.3% 14.7% 16.2% 12.1%
9.1% 9.4% 7.5% 8.5% 8.7% 7.4%

w2 29.6% 34.5% 18.4% 29.2% 35.1% 18.4%
13.3% 11.7% 9.4% 13.3% 11.3% 9.2%

w3 44.1% 38.9% 56.1% 45.3% 39.0% 56.5%
13.8% 11.1% 11.8% 13.7% 10.4% 11.5%

w4 10.8% 9.8% 13.1% 10.9% 9.7% 13.0%
4.5% 4.1% 4.7% 4.4% 3.8% 4.6%

TC 38,234 38,894 38,568 51,617 52,825 49,444
694,302 710,223 681,954 925,159 972,341 833,551

ROA 0.8% 0.9% 0.7% 1.0% 1.1% 0.8%
1.1% 1.0% 1.1% 0.7% 0.6% 0.8%

EQ/T A 10.7% 10.6% 10.7% 10.6% 10.5% 10.7%
3.9% 3.9% 3.1% 3.0% 3.1% 2.7%

AC 3.9% 4.3% 2.9% 3.8% 4.3% 2.8%
1.2% 1.1% 0.9% 1.2% 1.0% 0.8%

# banks 8,554 8,169 5,723 3,361 3,361 3,361
# years 14 9 5 14 9 5
# bank years 90,116 62,433 26,343 47,054 30,249 16,805

Notes: This table reports sample statistics for balanced and unbalanced samples covering the full sample period
(2000 – 2013), the pre-crisis period (2000 – 2008) and the (post-)crisis sample (2009 – 2013). All level variables
have been deflated and are expressed in prices of the year 2000, in units of $ 1000. Ratio variables are expressed
in %. Abbreviations: Pi: price of input i = 1, 2, 3, 4 (1: purchased funds; 2: core deposits; 3: labor services; 4:
physical capital); Yk: level of output variable k = 1, 2, 3, 4, 5 (1: consumer loans; 2: real estate loans; 3: business
and other loans; 4: securities; 5: off-balance sheet items); wi: value of i-th cost share; TC: total costs; AC:
average costs.
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Table 3: Estimated adjustment matrix

2000 – 2008 2009 – 2013
p.e. 2.5% 97.5% p.e. 2.5% 97.5%

λ11 0.8393 0.8322 0.8463 0.8832 0.8752 0.8906
λ12 -0.0411 -0.0460 -0.0363 -0.0130 -0.0182 -0.0080
λ13 -0.0388 -0.0431 -0.0346 -0.0118 -0.0164 -0.0077
λ22 0.8541 0.8462 0.8619 0.9106 0.9036 0.9174
λ23 -0.0290 -0.0359 -0.0221 -0.0282 -0.0345 -0.0217
λ33 0.8123 0.8010 0.8226 0.8829 0.8735 0.8916

Notes: This table reports point estimates (p.e.) and 95% confidence intervals (2.5%: lower bound of confidence
interval; 97.5%: upper bound of confidence interval) for the symmetric adjustment matrix (with zero row-sums)
in the extended the DLD system applied to the pre-crisis sample (2000 – 2008) and the (post-)crisis sample
(2009 – 2013). The confidence intervals are based on the bootstrap with B = 1, 000 bootstrap runs and robust
for heteroskedasticity, autocorrelation and contemporaneous correlation between the error terms of the model
equations.
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Table 4: Estimation results for DLD systems

2000 - 2008 2008 - 2013

p.e. 2.5% 97.5% p.e. 2.5% 97.5%
β∗12 -0.5601 -0.5885 -0.5302 -0.6662 -0.7006 -0.6328
β∗13 -0.5687 -0.5952 -0.5428 -0.8067 -0.8225 -0.7902
β∗14 -0.6771 -0.7241 -0.6376 -0.8842 -0.9195 -0.8456
β∗23 -1.0261 -1.0362 -1.0166 -0.9952 -1.0027 -0.9859
β∗24 -0.9115 -0.9300 -0.8918 -0.9281 -0.9483 -0.9084
β∗34 -0.7169 -0.7378 -0.6948 -0.8339 -0.8473 -0.8212
interc1 -0.8329 -0.9420 -0.7271 -0.3645 -0.4831 -0.2557
γ11 -0.0093 -0.0148 -0.0038 0.0086 0.0033 0.0139
γ12 0.0141 0.0083 0.0206 0.0056 -0.0006 0.0117
γ13 0.0474 0.0401 0.0549 0.0068 -0.0011 0.0148
γ14 0.0080 0.0028 0.0136 0.0028 -0.0031 0.0080
γ15 -0.0283 -0.0345 -0.0228 -0.0288 -0.0350 -0.0225
δ11 0.0907 0.0759 0.1079 0.2205 0.2032 0.2385
δ12 0.0207 0.0069 0.0358 0.1458 0.1302 0.1627
δ13 -0.1437 -0.1580 -0.1301 0.1637 0.1479 0.1795
δ14 -0.1561 -0.1691 -0.1426 0.0282 0.0140 0.0409
δ15 -0.1613 -0.1750 -0.1462
δ16 -0.0487 -0.0621 -0.0347
δ17 0.0404 0.0275 0.0533
δ18 0.0347 0.0231 0.0469
BHC.dum1 0.0154 0.0018 0.0305 -0.0054 -0.0221 0.0110
interc2 0.7932 0.7173 0.8717 0.6196 0.5293 0.6997
γ21 -0.0125 -0.0165 -0.0084 -0.0070 -0.0108 -0.0034
γ22 0.0170 0.0125 0.0214 0.0173 0.0135 0.0213
γ23 0.0171 0.0116 0.0228 -0.0010 -0.0061 0.0042
γ24 0.0093 0.0050 0.0134 0.0072 0.0040 0.0107
γ25 -0.0258 -0.0303 -0.0212 -0.0158 -0.0205 -0.0119
δ21 0.0330 0.0208 0.0451 0.0767 0.0647 0.0885
δ22 0.0591 0.0476 0.0706 0.0646 0.0540 0.0758
δ23 0.0076 -0.0032 0.0175 0.0585 0.0497 0.0674
δ24 -0.0187 -0.0288 -0.0086 0.0447 0.0370 0.0529
δ25 -0.0613 -0.0720 -0.0505
δ26 -0.0543 -0.0655 -0.0430
δ27 -0.0277 -0.0374 -0.0178
δ28 0.0002 -0.0090 0.0097
BHC.dum2 -0.0072 -0.0187 0.0044 -0.0090 -0.0219 0.0040
interc3 0.3855 0.3136 0.4647 0.3991 0.3362 0.4630
γ31 -0.0037 -0.0069 -0.0003 -0.0045 -0.0078 -0.0014
γ32 0.0041 0.0007 0.0077 0.0039 0.0004 0.0076
γ33 0.0022 -0.0025 0.0068 -0.0016 -0.0064 0.0033
γ34 -0.0036 -0.0069 -0.0002 -0.0058 -0.0087 -0.0027
γ35 -0.0018 -0.0054 0.0019 0.0039 -0.0004 0.0079
δ31 0.0333 0.0222 0.0449 0.0094 -0.0015 0.0203
δ32 0.0226 0.0117 0.0331 0.0063 -0.0030 0.0158
δ33 0.0280 0.0182 0.0373 0.0141 0.0060 0.0229
δ34 0.0131 0.0030 0.0222 -0.0020 -0.0108 0.0064
δ35 0.0059 -0.0043 0.0158
δ36 0.0129 0.0029 0.0227
δ37 0.0143 0.0055 0.0233
δ38 0.0349 0.0268 0.0435
BHC.dum3 -0.0084 -0.0181 0.0011 -0.0072 -0.0182 0.0042
λ 0.8501 0.8429 0.8573 0.8995 0.8924 0.9059
system R2 0.91 0.95

Notes: This table reports point estimates (p.e.) and 95% confidence intervals (2.5%: lower bound of confidence
interval; 97.5%: upper bound of confidence interval) for the DLD system applied to the pre-crisis sample (2000
– 2008) and the (post-)crisis sample (2009 – 2013). The coefficients correspond to the dynamic version of the
share equation system of Equation (3). The confidence intervals are based on the bootstrap with B = 1, 000
bootstrap runs and robust for heteroskedasticity, autocorrelation and contemporaneous correlation between the
error terms of the model equations.
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Table 5: Substitution elasticities based on the DLD system

SHORT RUN LONG RUN

2000 – 2008
PF CD LS PC PF CD LS PC

PF -0.3541 0.1545 0.1684 0.0312 -2.3620 1.0306 1.1231 0.2082
L -0.3705 0.1445 0.1580 0.0267 -2.5045 0.9538 1.0495 0.1768
U -0.3374 0.1650 0.1784 0.0350 -2.2286 1.1109 1.2042 0.2368
CD 0.0712 -0.0695 -0.0102 0.0086 0.4748 -0.4638 -0.0681 0.0571
L 0.0666 -0.0745 -0.0141 0.0068 0.4394 -0.4991 -0.0945 0.0452
U 0.0760 -0.0646 -0.0065 0.0105 0.5118 -0.4319 -0.0436 0.0691
LS 0.0698 -0.0092 -0.0880 0.0274 0.4656 -0.0613 -0.5869 0.1826
L 0.0655 -0.0127 -0.0941 0.0253 0.4351 -0.0850 -0.6230 0.1720
U 0.0740 -0.0058 -0.0826 0.0295 0.4992 -0.0392 -0.5547 0.1936
PC 0.0522 0.0311 0.1105 -0.1938 0.3485 0.2073 0.7372 -1.2930
L 0.0446 0.0246 0.1023 -0.2025 0.2959 0.1643 0.6944 -1.3365
U 0.0586 0.0380 0.1191 -0.1855 0.3963 0.2511 0.7819 -1.2548

2009 – 2013
PF CD LS PC PF CD LS PC

PF -0.1857 0.0614 0.1091 0.0151 -1.8481 0.6115 1.0864 0.1501
L -0.1989 0.0551 0.1002 0.0105 -2.0083 0.5416 0.9784 0.1023
U -0.1734 0.0676 0.1185 0.0201 -1.6970 0.6811 1.2017 0.2010
CD 0.0404 -0.0525 0.0027 0.0094 0.4023 -0.5223 0.0268 0.0932
L 0.0363 -0.0570 -0.0016 0.0067 0.3563 -0.5790 -0.0148 0.0686
U 0.0445 -0.0482 0.0080 0.0119 0.4480 -0.4733 0.0795 0.1169
LS 0.0234 0.0009 -0.0459 0.0216 0.2330 0.0087 -0.4571 0.2154
L 0.0215 -0.0005 -0.0488 0.0199 0.2098 -0.0048 -0.4949 0.2011
U 0.0254 0.0026 -0.0431 0.0233 0.2577 0.0259 -0.4222 0.2290
PC 0.0140 0.0132 0.0938 -0.1210 0.1395 0.1317 0.9336 -1.2048
L 0.0098 0.0095 0.0862 -0.1288 0.0951 0.0970 0.8718 -1.2543
U 0.0187 0.0169 0.1010 -0.1135 0.1868 0.1651 0.9926 -1.1570

Notes: This table displays point estimates and 95% confidence intervals for the SR and LR own-price and cross-
price elasticities based on the dynamic version of the share equation system of Equation (3). The elasticity’s
point estimates are given in bold face. The lower (‘L’) and upper (‘U’) bounds of the associated 95% confidence
intervals are given in normal font. The confidence intervals are based on the bootstrap with B = 1, 000 bootstrap
runs and robust for heteroskedasticity, autocorrelation and contemporaneous correlation between the error terms
of the model equations. The input factors in the rows of the table refer to the input factor whose demand changes
in response to a % change in the price of the input factor in the columns of the table. For example, the elasticity
in the row captioned ‘PF’ and the column captioned ‘CD’ refers to the % change in purchased funds, in response
to a % change in core deposits. Abbreviations: PF = purchased funds; CD = core deposits; LS = labor services;
PC = physical capital.
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Table 6: Oaxaca-Blinder decomposition of differences in substitution elasticities (2000 – 2008 vs. 2009 – 2013)

SHORT RUN LONG RUN

diff diff.ec diff.tech diff diff.ec diff.tech
PF-PF 0.1684 0.0182 0.1502 0.5139 0.1813 0.3326
L 0.1503 0.0124 0.1303 0.3285 0.1232 0.1294
U 0.1866 0.0242 0.1695 0.7013 0.2408 0.5504
PF-CD -0.0931 -0.0558 -0.0373 -0.4191 -0.5554 0.1363
L -0.1033 -0.0614 -0.0514 -0.5197 -0.6185 -0.0107
U -0.0824 -0.0501 -0.0227 -0.3246 -0.4919 0.2816
PF-LS -0.0592 0.0337 -0.0929 -0.0367 0.3354 -0.3721
L -0.0718 0.0309 -0.1043 -0.1552 0.3020 -0.4688
U -0.0473 0.0366 -0.0824 0.0846 0.3710 -0.2741
PF-PC -0.0161 0.0039 -0.0200 -0.0581 0.0387 -0.0968
L -0.0221 0.0027 -0.0251 -0.1102 0.0264 -0.1397
U -0.0102 0.0052 -0.0150 -0.0055 0.0518 -0.0539
CD-PF -0.0308 -0.0136 -0.0172 -0.0726 -0.1353 0.0628
L -0.0361 -0.0150 -0.0237 -0.1300 -0.1507 -0.0049
U -0.0252 -0.0122 -0.0104 -0.0186 -0.1199 0.1297
CD-CD 0.0171 0.0103 0.0067 -0.0585 0.1030 -0.1615
L 0.0114 0.0078 0.0011 -0.1186 0.0788 -0.2260
U 0.0230 0.0126 0.0131 -0.0008 0.1261 -0.0968
CD-LS 0.0129 0.0008 0.0121 0.0949 0.0083 0.0866
L 0.0076 -0.0005 0.0076 0.0489 -0.0046 0.0508
U 0.0183 0.0025 0.0165 0.1488 0.0246 0.1255
CD-PC 0.0008 0.0024 -0.0016 0.0361 0.0240 0.0121
L -0.0021 0.0017 -0.0041 0.0106 0.0177 -0.0081
U 0.0035 0.0031 0.0007 0.0608 0.0301 0.0310
LS-PF -0.0464 -0.0079 -0.0385 -0.2326 -0.0784 -0.1542
L -0.0509 -0.0085 -0.0432 -0.2683 -0.0867 -0.1943
U -0.0423 -0.0072 -0.0342 -0.1990 -0.0706 -0.1137
LS-CD 0.0101 -0.0008 0.0109 0.0700 -0.0079 0.0779
L 0.0066 -0.0024 0.0068 0.0453 -0.0235 0.0457
U 0.0134 0.0005 0.0149 0.0951 0.0044 0.1129
LS-LS 0.0421 0.0031 0.0390 0.1298 0.0308 0.0990
L 0.0367 0.0017 0.0332 0.0899 0.0166 0.0462
U 0.0479 0.0047 0.0452 0.1707 0.0484 0.1491
LC-PC -0.0057 0.0056 -0.0113 0.0328 0.0556 -0.0227
L -0.0085 0.0051 -0.0138 0.0164 0.0519 -0.0369
U -0.0032 0.0060 -0.0090 0.0483 0.0591 -0.0095
PC-PF -0.0382 -0.0047 -0.0335 -0.2090 -0.0469 -0.1620
L -0.0458 -0.0063 -0.0421 -0.2725 -0.0628 -0.2338
U -0.0303 -0.0033 -0.0251 -0.1453 -0.0320 -0.0903
PC-CD -0.0179 -0.0120 -0.0058 -0.0757 -0.1196 0.0439
L -0.0251 -0.0153 -0.0148 -0.1275 -0.1500 -0.0295
U -0.0108 -0.0086 0.0027 -0.0256 -0.0881 0.1127
PC-LS -0.0167 0.0290 -0.0457 0.1965 0.2882 -0.0917
L -0.0283 0.0266 -0.0559 0.1267 0.2691 -0.1488
U -0.0064 0.0312 -0.0365 0.2629 0.3064 -0.0382
PC-PC 0.0728 -0.0122 0.0850 0.0882 -0.1217 0.2099
L 0.0620 -0.0163 0.0747 0.0293 -0.1636 0.1450
U 0.0836 -0.0083 0.0969 0.1423 -0.0820 0.2742

Notes: This table provides an Oaxaca-Blinder decomposition for the difference in short-run and LR substitution
elasticities between the pre-crisis and (post-)crisis periods. Three components are reported: the total difference
(‘diff’), the change due to changes in the economic environment (‘diff.ec’) and the difference due to changes
in the cost technology (‘diff.tech’). The table displays both point estimates and 95% confidence intervals. The
point estimates are given in bold face. The lower (‘L’) and upper (‘U’) bounds of the associated 95% confi-
dence intervals are given in normal font. The confidence intervals are based on the bootstrap with B = 1, 000
bootstrap runs and robust for heteroskedasticity, autocorrelation and contemporaneous correlation between the
error terms of the model equations. All underlying elasticity estimates are based on the dynamic version of the
share equation system of Equation (3). Abbreviations: PF = purchased funds; CD = core deposits; LS = labor
services; PC = physical capital.
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Table 7: Substitution elasticities based on the DTD system

SHORT RUN LONG RUN

2000 – 2008
PF CD LS PC PF CD LS PC

PF -0.7119 0.3334 0.4148 -0.0363 -0.6735 0.3135 0.4114 -0.0514
L -0.8194 0.2596 0.2973 -0.0929 -0.8107 0.2125 0.2564 -0.1271
U -0.6018 0.4110 0.5133 0.0187 -0.5233 0.4121 0.5406 0.0193
CD 0.1380 -0.3974 0.2437 0.0158 0.1338 -0.3407 0.1915 0.0155
L 0.0963 -0.2953 0.0460 0.0000 0.0783 -0.1989 -0.0784 -0.0046
U 0.1575 -0.1767 0.1515 0.0316 0.1587 -0.0594 0.0564 0.0358
LS 0.1487 0.0981 -0.2962 0.0494 0.1475 0.0113 -0.2174 0.0587
L 0.1064 0.0781 -0.3505 0.0208 0.0923 -0.0287 -0.2825 0.0222
U 0.1857 0.1253 -0.2398 0.0721 0.1955 0.0439 -0.1297 0.0889
PC 2.2079 0.5967 -3.1031 0.2984 2.7929 0.6518 -4.1078 0.6632
L -4.0322 -0.9317 -6.2318 -3.9636 -5.2010 -1.3668 -8.2373 -4.7464
U 3.9127 1.7976 7.3187 1.7137 5.1645 2.2916 9.4704 2.4603

2009 – 2013
PF CD LS PC PF CD LS PC

PF -0.6151 0.2259 0.3953 -0.0060 -0.5085 0.2348 0.3028 -0.0291
L -1.1809 0.0865 -0.4360 -0.2023 -1.2682 0.0550 -0.8905 -0.3171
U 0.3565 0.4109 0.9038 0.1124 0.8945 0.5003 0.9880 0.1375
CD 0.0706 -0.9215 0.7917 0.0593 0.0694 -0.9632 0.8352 0.0586
L 0.0342 -0.6929 -0.2300 0.0316 0.0200 -0.6405 -0.5705 0.0211
U 0.1346 0.1119 0.5457 0.1041 0.1623 0.4189 0.4886 0.1205
LS 0.0447 0.0975 -0.2162 0.0740 0.0347 0.0623 -0.1753 0.0783
L 0.0328 0.0905 -0.2382 0.0576 0.0165 0.0465 -0.2018 0.0573
U 0.0590 0.1136 -0.2019 0.0895 0.0521 0.0786 -0.1483 0.0977
PC -0.0046 0.2174 0.8011 -1.0138 -0.0316 0.2234 0.8479 -1.0396
L -0.1288 0.1246 0.6200 -1.1908 -0.2081 0.0985 0.6015 -1.2869
U 0.1062 0.3150 1.0057 -0.8580 0.1202 0.3683 1.1420 -0.8231

Notes: This table displays the point estimates and 95% confidence intervals for the SR and LR own-price and
cross-price elasticities, based on the DTD system. The elasticity’s point estimates are given in bold face. The
lower (‘L’) and upper (‘U’) bounds of the associated 95% confidence intervals are given in normal font. The
confidence intervals are based on the bootstrap with B = 1, 000 bootstrap runs and robust for heteroskedasticity,
autocorrelation and contemporaneous correlation between the error terms of the model equations. The input
factors in the rows of the table refer to the input factor whose demand changes in response to a % change in
the price of the input factor in the columns of the table. For example, the elasticity in the row captioned ‘PF’
and the column captioned ‘CD’ refers to the % change in purchased funds, in response to a % change in core
deposits. Abbreviations: PF = purchased funds; CD = core deposits; LS = labor services; PC = physical capital.
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1. Call report data

Table 1 provides an overview of the variables used in the empirical analysis and the Call

Report series that have been used to create them.

2. Properties and comparison

This appendix discusses the dynamic generalized translog demand system of Allen and Urga

(1999) and Urga and Walters (2003) and provides the estimated model coefficients that were not

reported in the main text.

2.1. Theoretical properties

The cost shares in a translog cost model may turn out negative. Several other limitations

of the translog cost function – which are ironically due to its flexibility – become particularly

apparent in the estimation of input price elasticities. The own-price elasticities of demand may

become positive instead of negative, which happens if the cost function is not quasi-concave in

certain points. Quasi-concavity holds if the matrix of second-order partial derivatives of cost

is negative semi-definite and implies non-negative own-price elasticities. Violations of quasi-

concavity have been reported in several translog studies; see e.g. Urga and Walters (2003) and

Ogawa (2011). Violation of quasi-concavity is particularly likely for inputs with a small cost

share, in the presence of limited substitution opportunities, or with a high relative input price

variance (Considine, 1989a,b). Ogawa (2011) points out that substitution elasticities are biased

if the observations violating quasi-concavity are not excluded from the analysis. When the esti-

mated elasticities do not satisfy the required theoretical properties, their economic interpretation

is unclear.

Thanks to their functional form, both the static and the dynamic logit demand systems have

non-negative cost shares by definitions. The resulting conditional demand functions are degree-

zero homogenous and symmetric in the observed cost shares. The non-negativity of the cost

shares contributes to more stable concavity conditions relative to other functional forms such as

the translog cost function. Furthermore, the share equations’ exponential form makes normality

more likely than in share equation models with additive errors. Additionally, the DLD system

has the favorable property that the LR substitution elasticities are always larger in magnitude

than their SR counterparts (provided that both are evaluated in the LR cost shares), implying that

the Le Chatelier principle holds. Because the substitution elasticities based on the (dynamic)

logit demand system behave according to the desired theoretical properties, their interpretation

is straightforward.
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2.2. Model description

We start with imposing, in the long-run, linear homogeneity in input prices by normalizing

total costs and input prices with the price of purchased funds (P1,it). Throughout, variables with

a tilde have been normalized with the price of purchased funds prior to taking the logarithmic

transformation. This results in the following long-run cost function for bank i in year t:

log(C̃it) = αi +

4∑
j=2

β j,plog(P̃ j,it) + (1/2)
4∑

j=2

4∑
k=2

β jk,pplog(P̃ j,it)log(P̃k,it) (I)

+

4∑
j=2

5∑
ℓ=1

β jℓ,pylog(P̃ j,it)log(Yℓ,it) +
5∑
ℓ=1

βℓ,ylog(Yℓ,it) (II)

+(1/2)
5∑
ℓ=1

5∑
m=1

βℓm,yylog(Yℓ,it)log(Ym,it) +
5∑
ℓ=1

βℓ,tytlog(Yℓ,it) (III)

+

5∑
ℓ=1

βℓ,ttyt2log(Yℓ,it) +
∑

t

βtdt + ηit, (IV)

where t denotes a time trend, dt a dummy for year t and ηit a mean-zero error term orthogonal

to the covariates. Equation (I) is a long-run cost function because input price changes are

instantaneously and fully incorporated in total costs. The corresponding long-run optimal cost

shares for j = 2, . . . , 4 are

w∗j,it = ∂log(C̃it)/∂log(P̃ j,it) = β j,p +

4∑
k=2

β jk,pplog(P̃k,it) +
5∑
ℓ=1

β jℓ,pylog(Yℓ,it); (V)

w∗1,it = 1 − w∗2,it − w∗3,it − w∗4,it.

The equality between the cost shares and the cost elasticities with respect to input prices follows

from Shephard’s lemma. To capture the dynamics between long-run optimal cost shares (w∗j,it)

and short-run actual shares (w j,it), Urga and Walters (2003) assume the following short-run cost

function:

log(Cit) = m log(C∗it) + (1 − m) log(C∗it−1) + (1 − m)
4∑

j=2

(
w j,it−1log(P j,it) − w∗j,it−1log(P j,it−1)

)
+

4∑
j=1

4∑
k=2

b jk
(
w∗k,it−1 − wk,it−1

)
log(P j,it), (VI)

where log(C∗it) denotes the linear predictor of log(Cit) based on the model of Equation (I). As

explained by Urga and Walters (2003), the short-run cost function admits the interpretation of a

partially generalized error-correction mechanism of Anderson and Blundell (1982, 1983, 1984).

The parameter m > 0 controls the dynamics and is referred to as the control or adjustment
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parameter. The short-run cost function of Equation (VI) implies the following short-run cost

shares for j = 2, . . . , 4:

w j,it = mw∗j,it + (1 − m)w j,it−1 +

4∑
k=2

b jk
(
w∗k,it−1 − wk,it−1

)
. (VII)

To ensure identification of the short-run cost function, one cost-share equation is left out in

Equation (VI). Moreover, identification also requires joint estimation of the short-run cost

function and three out of four short-run factor share equations, using ML or the equivalent Zell-

ner iterated SUR estimator (Urga and Walters, 2003). Moreover, we impose the normalization∑4
k=1 b jk = 0. To estimate the short-run cost function, long-run costs and cost shares are replaced

by their predicted counterparts based on OLS estimation of Equation (I), whereas the short-run

costs and cost shares are replaced by the observed ones. The resulting estimates are invariant to

the omitted cost-share equation.

2.3. Substitution elasticities

The long-run own-price and cross-price elasticities of substitution write as

ELR
j j,it = (γ j j + (w∗j,it)

2 − w∗j,it)/w
∗
j,it, ELR

jk,it = (γ jk + w∗j,itw
∗
k,it)/w

∗
j,it, (VIII)

while short-run own-price and cross-price elasticities involve the control parameter m and equal

ES R
j j,it = mγ j j/w∗j,it + w∗j,it − 1, ES R

jk,it = mγ jk/w∗j,it + w∗k,it. (IX)

2.4. Extensions

It is straightforward to extend the dynamic generalized translog demand system to a more

flexible translog specification, such as the flexible Fourier model. This modification will only

affect the functional form of the underlying long-run cost function, whereas the short-run cost

function and the partially generalized error-correction model for the short-run cost shares will

have the same form as above.

2.5. Estimation results

Table 3 displays the estimation results for the DTD system.

3. Robustness checks

This appendix discusses the outcomes of several robustness checks.
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3.1. Unbalanced samples

Table 2 displays the estimated substitution elasticities based on the two subsamples. We

observe only marginal differences between these estimates and those based on the balanced

samples. From these results it is clear that survivorship bias is not an issue in this research.

3.2. Morishima elasticities

Frondel (2011) refers to the cross-price elasticity as a one-price-one-factor elasticity of sub-

stitution, which provides a measure of absolute substitutability. In contrast to the cross-price

elasticity, the Morishima elasticity is a two-factor-one-price elasticity of substitution and pro-

vides a measure of relative substitutability (Frondel, 2011) . Furthermore, Blackorby and Rus-

sell (1989) show that the Morishima elasticity is directly linked to the change in relative cost

shares in response to a change in input prices:

∂log(w j,it/wk,it)
∂log(Pk,it)

= M jk − 1. (X)

The Morishima elasticity of substitution is an appropriate measure for assessing both quan-

titatively and qualitatively the effects of changes in relative prices on relative factor shares in

the presence of more than two input factors. Our main analysis focuses on the own-price and

cross-price elasticities of substitution instead of the Morishima elasticities though. As shown

by Frondel (2004, 2011), the former elasticities have a more appealing interpretation in terms

of the change in input prices on input demand levels instead of input demand ratios (Frondel,

2004, 2011).

As a robustness check, we have redone the entire analysis using Morishima elasticities,

thereby focusing on relative instead of absolute substitutability of input factors. The Morishima

elasticities also exhibit a significant drop after the onset of the crisis. These results are available

upon request.

3.3. Substitution elasticities that depend on time and bank size

In Section 2 of the main text, we addressed the potential influence of bank size on the sub-

stitutability of banks’ input factors. To investigate the impact of bank size on the change in

elasticities after the onset of the crisis, we have estimated and extended version of the DLD

model that captures both time-varying and bank size-dependent substitution elasticities and ad-

justment coefficients. We use the natural logarithm of total assets (‘log bank size’) as a measure
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of bank size and specify, for bank i in year t:

β∗jk,it = β
0∗
jk + β

c∗
jkcrisis dum + βs∗

jklog bank sizeit + β
sc∗
jk log bank sizeit × crisis dum;(XI)

γ jℓ,it = γ
0
jℓ + γ

c
jℓcrisis dum + γs

jℓlog bank sizeit + γ
sc
jℓlog bank sizeit × crisis dum;(XII)

λit = λ
0 + λccrisis dum + λslog bank sizeit + λ

sclog bank sizeit × crisis dum. (XIII)

We notice that the extended DLD model satisfies symmetry and linear homogeneity. This is

due to the fact that the model coefficients are functions of explanatory variables that depend on

neither i (the input price that changes) nor j (the input factor that responds). Furthermore, the

resulting elasticities satisfy the Le Chatelier principle. We estimate the extended DLD system

in a similar fashion as we estimate the standard DLD system.

To estimate substitution elasticities based on the extended DLD model, we first choose a

fixed bank size and a binary value for the crisis dummy. Subsequently, we calculate the elasticity

parameters according to Equations (XI) and (XIII), and substitute them into Equations (5) and

(6) of the main text. This approach allows us to investigate the impact of bank size on the

elasticity drop after the onset of the crisis. Furthermore, the estimate of λsc can be used to test

whether bank size affected the change in lag time after the onset of the crisis.

Because the coefficients of the interaction variables involving bank size do not turn out sig-

nificant, the role of bank size is only minor. This is confirmed when we calculate the associated

substitution elasticities for banks with total assets equal to the 10% sample quantile (‘small

banks’) and for banks with total assets equal to the 90% sample quantile (‘large banks’).

3.4. Alternative estimator

To account for bank-specific fixed effects, it seems natural to transform each share equation

in Equation (3) of the main text into first differences. Subsequently, we could apply system OLS

or SUR-GLS to the resulting share-equation system (Considine and Mount, 1984; Considine,

1990). However, the resulting estimator will be biased due to dynamic panel effects. The Nick-

ell bias is caused by the term log(Q j,it−1/Q4,it−1) = log(w j,it−1/w4,it−1) − log(P j,it−1/P4,it−1). That

is, each share equation is a dynamic panel model, containing a lagged share ratio. Hence, SUR-

GLS or system OLS applied to the first-differenced DLD system will be biased (e.g., Anderson

and Hsiao, 1981). The same holds for the system transformed by means of the within transfor-

mation and the system including RE instead of FE (Cameron and Trivedi, 2005). Nevertheless,

we could apply system panel IV estimation to the first-differenced share-equation system, with

log(Q j,it−2/Q4,it−2) as an instrument in equation j = 1, 2, 3 (Anderson and Hsiao, 1981). We
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could also explore GMM estimation with instruments of the Arellano-Bond type.

However, we are then left with the issue of invariance of the chosen estimator to the choice

of the numéraire in the logit demand system. Maximum likelihood (ML) estimation is often

associated with invariance because of Barten (1969). He showed that ML estimates of the

parameters in singular n-equation systems with i.i.d. normally distributed errors can be derived

from ML estimation of n − 1 equations and that the resulting ML estimates are invariant to the

omitted equation. The present setting is more complex though. First, it is not straightforward

how to extend the ML approach of Hsiao et al. (2002) for dynamic panel models to the present

framework of systems of dynamic panel equations. Second, even if we were be able to use

this form of ML estimation, it is not clear whether this would result in an invariant estimator.

For example, the structural autoregressive parameters of the model errors in Equation (3) of the

main text would have to satisfy certain restrictions to achieve invariance (Chavas and Segerson,

1986). In sum, it is not clear whether and under what conditions an invariant estimator exists

in the present case. Although IV/GMM estimation is a convenient choice in the presence of

dynamic panel effects, the associated estimators are not invariant with respect to the choice

of numéraire due to the presence of cross-equation restrictions. The same holds for GMM-

extensions such as iterative GMM and CUE (something we have investigated explicitly).

As noted by Berndt and Savin (1975, p. 946), “lack of invariance leaves open the possibility

that the investigator may choose to report only those estimates and test results which most

closely correspond with his personal preferences”. We have therefore assessed the robustness

of the results based on the system panel IV estimator that arbitrarily takes the fourth input as

the numéraire. The choice of the numéraire turns out to matter in a quantitative way, confirming

the point made by (Barten, 1969). These results are available upon request.

The invariance issue is our main motivation for resorting to the invariant SUR-GLS estima-

tor in the main text. The estimation results show that the coefficients of the dummy variable

that indicates whether a bank is part of a bank holding company has little significance across

the three cost-share equations. This finding suggests indeed that there is limited cost-share

heterogeneity across banks. Intuitively, cost shares indeed seem less heterogeneous than cost

levels.

By accounting for cross-equation correlation only, the SUR-GLS estimator is inefficient.

Given our large sample size, this is not a problem. We obtain consistent confidence intervals by

making use of the bootstrap, thus accounting for cross-sectional correlation, heteroskedasticity

and autocorrelation.
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Finally, we notice that the system panel IV and the SUR-GLS estimators quantitatively agree

on our most important results. Both estimators confirm that virtually all substitution elasticity

have dropped after the onset of the crisis but that the substitutability of labor for physical capital

has remained relatively high.
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Table 2: Estimated substitution elasticities based on the DLD system (unbalanced samples)

SHORT-RUN LONG-RUN

2000 – 2008
PF CD LS PC PF CD LS PC

PF -0.3908 0.1530 0.2009 0.0368 -2.0416 0.7995 1.0497 0.1924
L -0.4032 0.1427 0.1932 0.0339 -2.1224 0.7412 1.0048 0.1765
U -0.3772 0.1626 0.2090 0.0397 -1.9621 0.8527 1.0987 0.2091
CD 0.0746 -0.0792 -0.0048 0.0094 0.3897 -0.4136 -0.0252 0.0491
L 0.0696 -0.0844 -0.0076 0.0080 0.3612 -0.4408 -0.0403 0.0420
U 0.0793 -0.0736 -0.0020 0.0108 0.4156 -0.3838 -0.0106 0.0560
LS 0.0881 -0.0043 -0.1159 0.0322 0.4600 -0.0226 -0.6055 0.1681
L 0.0847 -0.0069 -0.1206 0.0306 0.4403 -0.0363 -0.6274 0.1613
U 0.0916 -0.0018 -0.1121 0.0337 0.4815 -0.0096 -0.5854 0.1748
PC 0.0641 0.0336 0.1278 -0.2254 0.3347 0.1754 0.6675 -1.1775
L 0.0589 0.0284 0.1216 -0.2316 0.3070 0.1498 0.6405 -1.2006
U 0.0691 0.0386 0.1337 -0.2189 0.3638 0.1998 0.6940 -1.1575

2009 – 2013
PF CD LS PC PF CD LS PC

PF -0.2131 0.0708 0.1256 0.0167 -1.5531 0.5159 0.9153 0.1219
L -0.2247 0.0640 0.1163 0.0125 -1.6759 0.4630 0.8442 0.0906
U -0.2015 0.0775 0.1352 0.0210 -1.4512 0.5765 0.9990 0.1543
CD 0.0475 -0.0656 0.0053 0.0128 0.3459 -0.4778 0.0387 0.0932
L 0.0429 -0.0705 0.0007 0.0102 0.3105 -0.5210 0.0055 0.0758
U 0.0519 -0.0606 0.0098 0.0155 0.3865 -0.4408 0.0715 0.1117
LS 0.0279 0.0018 -0.0580 0.0283 0.2037 0.0129 -0.4230 0.2064
L 0.0259 0.0002 -0.0612 0.0266 0.1879 0.0018 -0.4447 0.1980
U 0.0301 0.0032 -0.0548 0.0301 0.2223 0.0237 -0.4028 0.2149
PC 0.0159 0.0181 0.1211 -0.1552 0.1160 0.1322 0.8830 -1.1312
L 0.0119 0.0145 0.1136 -0.1634 0.0862 0.1076 0.8470 -1.1620
U 0.0200 0.0220 0.1286 -0.1466 0.1468 0.1586 0.9194 -1.0997

Notes: This table displays point estimates and 95% confidence intervals for the SR and LR own-price and cross-price
elasticities based on the dynamic version of the share equation system. The elasticity’s point estimates are given in bold
face. The lower (‘L’) and upper (‘U’) bounds of the associated 95% confidence intervals are given in normal font. The
confidence intervals are based on the PPW bootstrap with B = 1, 000 bootstrap runs and robust for heteroskedasticity,
autocorrelation and contemporaneous correlation between the error terms of the model equations. The input factors in the
rows of the table refer to the input factor whose demand changes in response to a % change in the price of the input factor
in the columns of the table. For example, the elasticity in the row captioned ‘PF’ and the column captioned ‘CD’ refers to
the % change in purchased funds, in response to a % change in core deposits. Abbreviations: PF = purchased funds; CD =
core deposits; LS = labor services; PC = physical capital. All elasticities have been estimated using unbalanced versions of
the pre-crisis sample (2000 – 2007) and the (post-)crisis sample (2008 – 2013).
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Table 3: Estimation results for the DTD system

2000 – 2008 2009 – 2010

p.e. 2.5% 97.5% p.e. 2.5% 97.5%
m 0.7784 0.7245 0.8032 0.7446 0.6463 0.7736
b11 -1.0328 -1.1002 -0.9239 -1.1566 -1.3373 -0.8611
b12 1.0222 0.9728 1.0846 0.8989 0.7478 1.0122
b13 0.3649 0.2812 0.4014 0.3490 0.2751 0.3733
b14 -0.3544 -0.4023 -0.3158 -0.0912 -0.1875 -0.0247
b21 0.5754 0.5228 0.5988 0.6485 0.5369 0.7046
b22 -0.6725 -0.6982 -0.6229 -0.6275 -0.6674 -0.5355
b23 -0.0076 -0.0162 0.0049 -0.0740 -0.0887 -0.0643
b24 0.1046 0.0959 0.1157 0.0530 0.0267 0.0849
b31 0.0458 -0.0157 0.1128 0.0693 -0.0521 0.2332
b32 -0.0002 -0.0315 0.0365 -0.1053 -0.1976 -0.0470
b34 -0.4202 -0.4511 -0.3976 -0.3714 -0.4248 -0.3293
b33 0.3746 0.3378 0.4059 0.4075 0.3647 0.4546
b41 0.6483 0.5688 0.7071 0.4160 0.2313 0.5056
b42 -0.0110 -0.0347 0.0128 0.1983 0.1396 0.2857
b43 -0.2674 -0.3013 -0.2420 -0.1050 -0.1517 -0.0676
b44 -0.3699 -0.4120 -0.2953 -0.5092 -0.5500 -0.3867
system R2 0.93 0.96

Notes: This table reports point estimates (p.e.) and 95% confidence intervals (2.5%: lower bound of confidence interval;
97.5%: upper bound of confidence interval) of Equation (VI). This equation has been estimated jointly with the cost-share
Equations (V) (where we left out the first cost-share equation), using Zellner’s iterated SUR estimator (which is equivalent to
ML under normality). The coefficients b11, b21, b31 and b41 have been estimated indirectly using the normalization constraint
bk1 = −

∑4
j=2 bk j. The confidence intervals are based on the PPW bootstrap with B = 1, 000 bootstrap runs and robust for

heteroskedasticity, autocorrelation and contemporaneous correlation between the error terms of the model equations. The
DTD system has been estimated using the subsamples 2000 – 2007 and 2008 – 2013. The estimation results for the long-run
cost translog function of Equation (I) are not reported to save space.
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