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Abstract

Shadow Short Rates (SSRs) estimated from shadow /lower-bound term structure
models (SLMs) can be useful for monitoring of the stance of unconventional mon-
etary policy and for quantitative analysis, but only if they are relatively robust. I
show from several perspectives that SSRs from three-factor SLMs, which includes
Wu and Xia (2015) SSRs, are not robust, and how that arises from the inherent
flexibility of three-factor SLMs. Such SSRs should therefore be avoided. However, I
also show that estimated SSRs from two-factor SLMs are relatively robust. Hence,
two-factor SLM SSRs appear to be good candidates for monitoring and quantita-
tive analysis, but ideally with appropriate robustness checks including alternative
monetary policy metrics.
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1 Introduction

In this article, I show that Shadow Short Rates (SSRs) estimated from three-factor
shadow/lower bound term structure models (SLMs) are not robust, explain why they
are so sensitive, and illustrate that those issues may be resolved with two-factor SLMs.

As background, SSRs from SLMs have been proposed as a metric for the routine
monitoring of the stance of unconventional policy and quantitative analysis; see Krippner
(2011-2015) as cited by Bullard (2012, 2013), and Wu and Xia (2015) as cited by Hamilton
(2013), Higgins and Meyer (2013), and Zumbrun (2014)." As those authors detail, SSRs
can freely take on negative values to reflect a near-zero policy rate plus unconventional
policy actions, whereas the policy rate itself would be an uninformative quantity due to
its constraint at near-zero values.

*Reserve Bank of New Zealand and Centre for Applied Macroeconomic Analysis.  Email:
leo.krippner@rbnz.govt.nz. I thank Edda Claus, Iris Claus, Arne Halberstadt, Hibiki Ichiue, and Jing
Cynthia Wu for helpful comments.

!Lombardi and Zhu (2014) creates an alternative indicator for the stance of monetary policy, which
is also named the SSR, but it is derived from central balance sheet data, monetary aggregates, interest
rates, and credit spreads.



However, SSRs will only be useful for monitoring and quantitative analysis if they are
relatively robust, in terms of the profiles and dynamics of SSR point estimates, suitably
narrow confidence intervals, and consistency with monetary policy events. Without that
relative robustness, the policy interpretation of levels and changes in SSRs and the results
of quantitative analysis obtained with them may be tenuous and/or insignificant. In turn,
the robustness of SSRs depends on their sensitivity to all aspects of their estimation,
including the model specification and the data.

As T will show in section 3, SSRs estimated from three-factor SLMs are not robust.
I will illustrate their empirical sensitivity for the United States using the Wu and Xia
(2015, hereafter WX) model, given its prominence from a policy monitoring perspective,?
with respect to the choice of lower bound (LB) parameter and different sample periods
for estimation. The sensitivity of three-factor SSR estimates to the LB parameter has
previously been mentioned and illustrated in Christensen and Rudebusch (2015a),Bauer
and Rudebusch (2015), and Krippner (2015c), while Krippner (2013b) discusses other
perspectives of empirical sensitivities (e.g. to the maturity span of the yield curve data
and to the estimation method). WX acknowledges model-based variation in SSR estimates
but downplays its empirical implications, i.e.:

“We confirm that different model choices do influence the level of the shadow
rate. However, the common dynamics among different shadow rates point to
the same economic conclusion. We also demonstrate that the shadow rate is
a powerful tool to summarize useful information at the ZLB.”

In fact, the two sets of SSR estimates reported in WX and alternatives mentioned
as robustness checks are all obtained from models with relatively high LB parameters,
with respect to the data and closely related SLM estimates; e.g. Kim and Priebsch
(2013), Krippner (2013c), and Priebsch (2013). I show that adding two alternative and
very plausible lower bounds informed by highly relevant market-quoted data obtains SSR
point estimates with distinctly different profiles and dynamics to those reported in WX.
Furthermore, reestimating the benchmark WX model with expanded samples obtains dis-
tinctly different SSR point estimates to those reported in WX and updated monthly by
the authors. Finally, the confidence intervals around the benchmark WX SSR point es-
timates indicate they are insignificantly different from zero even well into the LB period
for the United States. These results suggest that the results of the macroeconomic appli-
cation in WX are quite dependent on the specific modeling choices made by the authors.
In addition, WX SSR series are not well correlated with the evolution of unconventional
monetary policy events, so their applicability to monitoring levels and changes to the
stance of monetary policy is questionable.

Perhaps more important than any specific empirical results are the fundamental rea-
sons why SSR estimates from three-factor SLMs are so sensitive, because the answer
suggests that such SSRs will not in general be not suitable for policy monitoring and
quantitative analysis. Hence, in section 4 I show that the LB parameter relative to the
shorter-maturity data and the inherent flexibility provided by three factors is what leads
to very sensitive and sometimes counterintuitive SSRs.

2For example, the WX SSR series is available from the Federal Reserve Bank of Atlanta (see
“https://www.frbatlanta.org/cqer/research /shadow rate.aspx#tshadow rate.aspx?panel=1"), and from
Haver Analytics.



One ready and straightforward resolution to the issues associated with SSRs from
three-factor SLMs is simply to use two-factor SLMs, which I discuss in section 5. In
particular, I show that SSR estimates obtained with different LB parameters and maturity
spans of yield curve data maintain very similar profiles and dynamics. Of course, using two
factors represents a material constraint relative to three-factor SLMs, and will therefore
fit the yield curve data less closely. However, the robustness improvements over three-
factor SSRs suggest that the trade-off is worthwhile, assuming one seeks SSR estimates
as a straightforward and relatively robust summary monetary policy metric rather than
necessarily a closer fit to the data. Ichiue and Ueno (2013) also suggests using SLMs
with less than three factors to avoid over-fitting and counterintuitive SSR estimates.
In addition, two-factor SSRs closely replicate the information contained in “policy rate
liftoff” metrics for both two- or three-factor SLMs.

Two-factor SSRs therefore appear to be good candidates for routinely monitoring of
the stance of unconventional monetary policy and for quantitative analysis.®> Nevertheless,
the magnitudes of negative SSR point estimates from two-factor SLM remain somewhat
sensitive between different estimations. Therefore, if two-factor SSR estimates are used
as a single monetary policy metric for quantitative analysis over periods spanning non-LB
and LB periods, it will be important to test the robustness of those results with a variety
of alternative two-factor SSR estimates. In addition, one should ideally also test the
robustness with alternative monetary policy metrics, which I mention in the conclusion.

The article follows the order I have already outlined above, with the addition in section
2 of an overview section on SLMs relevant to this article and a discussion of market data
relevant to LB parameters for the United States.

2 Overview of SLMs and the lower bound

In this section I provide an overview of the key elements of SLMs relevant to this article.
Section 2.1 discusses the SLM framework, and section 2.2 discusses the lower bound
parameter and plausible range of values applicable to US yield curve data.

2.1 SLM framework and specification

The concept of SLMs was originally introduced in Black (1995), and is based on the lower
bound mechanism:

r(t) = max|[r(t),r.p] (1)

where r(t) is the SSR that can freely adopt negative values, and r(t) is the lower-bounded
or actual short rate which is constrained to a minimum value of the LB parameter ryg.
Unfortunately, the direct application of the Black (1995) framework with any dynamic
process to represent the SSR is relatively intractable, so examples have generally been
limited to one or two factor models; e.g. Bomfim (2003), Gorovoi and Linetsky (2004),
Ichiue and Ueno (2006), and Kim and Singleton (2012).

Krippner (2011-2015) derives a framework with a Gaussian affine term structure model
(GATSM) process for the SSR that closely approximates the Black (1995) framework
and is much more tractable, for any number of factors. WX derives the discrete-time

3Indeed, Francis, Jackson, and Owyang (2014) has already compared Krippner (2011-2015) two-factor
SSRs with WX three-factor SSRs in a macroeconomic VAR model, and find better results with the former.



equivalent.* The key result in both derivations is the closed-form analytic expression for
lower-bounded forward rates f(z;, 7), i.e.:

f(ay,m) = rop + [f (24, 7) = 1up] - @[z (2, )] + w (7) - 92 (2, 7)] (2)

with:

f(l’t, T) — ILB
R 3
w (1)
where 7 is the time to maturity, and @[] and ¢[-] are respectively the unit normal
cumulative density and density functions. The shadow forward rate function f(x;, 7) and
volatility function w (7) are dependent on the model specification in terms of the state
variables z; and their associated parameters, which I discuss shortly below.

Equation 2 is the basis for the measurement equation when estimating SLMs, because
it provides model results to compare to yield curve data. The data may be forward
rates generated from parametrically fitted yield curve data (such as that available using
the Gurkaynak, Sack, and Wright (2007, hereafter GSW) data set), or f(z;, 7) may be
transformed so that the measurement equation can use interest rates or security prices.’

The state equation is obtained from the vector Ornstein-Uhlenbeck process that the
state variables follow under the physical P measure, i.e.:

2 (x4, 7) =

v=0+kK[0—xi4]+0 (4)

where x; is the N x 1 vector of state variables, with a long-run value of #, a mean-
reversion matrix s, and a volatility matrix 0.9 The linear market price of risk specification
II(t) = v+ Tx; provides the risk-adjusted Q measure process for the state variables, which
is analogous to equation 4 with # = x + T and 0 = &' (kf — ). The state variables
and parameters %, 0, and o define closed-form analytic expressions for f(z;, 7) and w (7)
which, together with the parameter rp, define the closed-form analytic expression f(x;, )
in equation 2.
Once the SLM is estimated, with a suitable non-linear Kalman filter, the SSR point
estimate is:
(1) = ao + by (5)

which is the zero-maturity rate on the estimated shadow forward rate or interest rate
curve. As illustrated later throughout this article, SSRs can freely take on negative
values. A negative SSR can, in principle, be interpreted as a combination of a near-zero
policy rate setting plus unconventional policy actions (e.g. quantitative easing, forward
guidance, etc.) that is more accommodative than a near-zero policy rate setting alone.
Specific examples of the framework outlined above are contained in Krippner (2011-
2015) and Christensen and Rudebusch (2013, 2015a,b), with continuous-time specifica-
tions, and WX with a discrete-time specification. I will outline some further elements of

*Christensen and Rudebusch (2015a), Krippner (2015¢c), and WX show that the approximation is
within a maximum of less than 10 basis points for the 10-year maturity. Priebsch (2013) provides an even
closer approximation with a second-order method, to within around one basis point, but the framework
is more complex and time-consuming to apply.

®The zero-coupon transformations are R(z, 7) = % fOTf(act, u) du and P(x¢, 7) = exp [-R (a4, 7) 7], and
the latter may be used analogously for coupon-paying securities with multiple cashflows; e.g. see Krippner
(2015¢). Generated instantaneous forward rates may be used to estimate continuous-time versions of the
model; there is no need to use generated one-month forward rates as suggested in WX.

6 All parameter vectors and matrices in this article should be taken as being conformable to ;.
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those applications in later sections as they relate to this article, but refer readers to the
individual sources for the full details.

2.2 The lower bound for US yield curve data

Section 2.1 introduces rpp as a parameter to be calibrated or estimated when estimating
SLBs, in addition to the GATSM state variables and parameters for the shadow term
structure. It turns out, as I will detail in sections 3 to 5, that the LB parameter has a
critical influence on the SSR estimates, so I will spend some time discussing it in this
section.

A typical calibration for rpp in the literature is the theoretically motivated value of
zero, because physical currency with an effective nominal interest rate of zero offers a
higher yielding substitute investment than any short-maturity deposit with a negative
interest rate.

However, it is well-acknowledged that non-zero lower bounds may prevail in practice
due to institutional frictions and policy framework choices.” Short-maturity rates and
market expectations of their evolutions may therefore be non-zero, and so the SLM should
try to appropriately account for those non-zero expectations on the yield curve data.

For the United States, the WX benchmark model uses a calibrated value of 25 basis
points (bps = 1/100 percentage points), which is the rate of remuneration on bank reserves
held at the Federal Reserve. WX also estimate a similar value of 19 bps, which is close to
the 23 bp mean of the shortest maturity generated WX forward rate data (the 1-month
rate, three months forward, or 3 x 1-month forward rate) from the onset of the LB period
up to the end of the WX estimation sample in December 2013.8

However, both 25 and 19 bps seem high compared with highly relevant market data
available as at end-2013, which I have also illustrated in figure 1 (along with their sub-
sequent updates). Specifically, the minimum (effective) Federal Funds Rate (FFR) since
the onset of the LB period to end-2013 was 4 bps, with an average of 14 bps. The FFR
is relevant because it is a benchmark rate for the overnight funding of settlement banks,
and hence wholesale financial market rates and rates in the wider economy.

The minimum 3-month Treasury bill (Thill) rate in the LB period to end-2013 was
zero, with an average of 8 bps. The 3-month Thill rate is relevant because it is the
shortest maturity benchmark interest rate for the government-risk yield curve, which is

"For example Jarrow (2013) notes that the inconvenience of holding and transacting in physical cur-
rency allows materially negative short-maturity interest rates. In practice, many European economies
have adopted negative policy rate settings, leading to negative short-maturity interest rates in wholesale
financial markets. Alternatively, the United States, Japan, and the United Kingdom have adopted policy
frameworks that have led to wholesale short-maturity interest rates remaining mostly non-negative. Note
that term interest rates can evolve to negative values due to negative risk premiums (e.g. from safe-
haven/liquidity demand, etc.) so negative yields on such securities, which have been observed in many
markets, does not necessarily indicate a market perception or expectation of a negative lower bound.

81 take 16 December 2008 as the unambiguous start of the LB period, because it is the day that
the Federal Open Market Committee (FOMC) cut the Federal Funds Rate Target to a range of zero
to 25 bps (from the previous level of 1 percent, set on 29 October 2008), and commented that “weak
economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some time.”
Furthermore, the first round of quantitative easing, the so-called QE1, had already been announced on 25
November 2008. Hence, the environment was clearly one of a near-zero policy rate plus both quantitative
easing and forward guidance in effect as additional unconventional monetary policy actions. The 25 bp
interest rate on both required and excess reserves was also introduced on 16 December 2008.



the curve on which the GSW data set and therefore the generated WX forward rate data
are based. In other words, WX use generated forward 1-month government-risk rates,
and the 3-month Tbill rate is a market-observed short-maturity rate that offers guidance
on the market-perceived LB for government-risk forward rates and interest rates.’

Interest rate data
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Figure 1: Daily FFR and 3-month Thill data, and monthly generated WX 3 X 1-month
forward rates. The FFR and 3-month Thill minimums and averages suggest plausible lower

bounds between zero and 14 bps, which are lower than the WX values of 25 and 19 bps.

Hence, even at the time of the original WX analysis to December 2013, it would have
been entirely reasonable to test the robustness of the SSR results to LB parameters of less
than 25 and 19 bps. In section 3, I use calibrated values of zero and 14 bps to capture
the range of minimums and averages mentioned in the previous paragraph, and zero also
happens to align with the theoretically motivated LB parameter calibration. The zero to
14 bp range also includes the LB parameters estimated for three-factor SLMs with US
data in Kim and Priebsch (2013), Krippner (2013c), and Priebsch (2013), which range
from 10 to 14 bps.!’

3 Empirical sensitivity of three-factor SSRs

In this section I empirically demonstrate the sensitivity of three-factor SSRs. I use the
WX model to provide specific examples because the WX SSRs are quite prominent and

9T use the three-month Tbill rate because it is the shortest-maturity Thill rate from the Federal Reserve
Economic Database (FRED) with direct secondary-market quotes. The one-month generated constant
maturity Thill rates from FRED, which have a maturity more relevant to the WX 1-month forward rate
data, obtains very similar results; respectively a minimum and mean of zero and 7 bps over the LB period
to end-2013.

100f course, there are many alternatives to setting or estimating the LB parameter, including an
allowance for time-varying values as in Lemke and Vladu (2015), which may be more realistic as financial
markets adapt to updated policy settings and frameworks. However, time-invariant values are sufficient
to establish the sensitivity of three-factor SSRs for the United States in this article.



the codes on which they are based have recently been made available,!! but I also mention
related results available in the literature.

In section 3.1, I replicate the WX SSR point estimates, and then estimate SSRs from
the WX SLM using the two LB parameters discussed in section 2.2. I also calculate
the confidence intervals associated with all of those WX SSR estimates. I proceed in
section 3.2 to estimate the WX model with data beyond 2013. In section 3.3, I discuss
the correlation of the WX SSR. profiles and changes to the evolution of unconventional
monetary policy events.

Note that my focus in this section and the remainder of the article is on the general
properties of different classes of SSR estimates as a monetary policy metric. Hence, I will
only mention the likely implications of my alternative WX SSR estimates (and later my
two-factor SSR estimates) on the WX factor-augmented vector autoregression (FAVAR)
application.

3.1 Results from WX 2013 data set

In this section I estimate the WX model with WX forward rate data from January 1990
to December 2013, which is the sample used for estimation in WX and the associated
working papers from early 2014. I use four different LB specifications. The first two LB
specifications replicate the results reported in WX, i.e. a calibrated 25 bp LB parameter
for the benchmark model, and an estimated LB parameter of 19 bps for the explicit SSR
robustness check. I also estimate the WX model with a calibrated LB parameter of zero
and 14 bps, based on the discussion in section 2.2.'2 In all cases, I have included the
out-of-sample updates for the SSR estimates beyond December 2013; i.e. I use model
parameters estimated up to December 2013 applied to the WX forward rate data set
extended to September 2015. The results for the 25 bp LB parameter case exactly match
the results reported in the monthly WX updates (to September 2015 at the time of my
analysis).

The results are illustrated in figure 1. I have also included indicator arrows for major
unconventional monetary policy events, which I list and discuss in section 3.3, and an
indicator to mark the end of the WX estimation sample in December 2013.

It is evident that the SSR point estimates from the WX three-factor SLM differ
markedly with only minor changes to the LB parameter. The magnitudes differ by up to
around two percentage points, and the profiles and dynamics are distinctly different up
to mid-2013. In particular, the zero and 14 bp SSR series are flat up to mid-2013, while
the 19 and 25 bp series show a downward trend. The zero and 14 bp LB parameter mod-

The MatLab code associated with WX can be obtained from the website
“http:/ /faculty.chicagobooth.edu/jing.wu/”, along with monthly updates of the SSR series from
the benchmark WX model. The parameter initialization values I have used when estimating the WX
models with a calibrated LB parameter are the parameters from the benchmark WX model. When
estimating the WX model with an estimated LB parameter, the parameter initialization values are
those from the WX model with an estimated LB parameter. I have also tested many of my WX model
estimations with alternative starting values, and have obtained the same results to within numerical
tolerances.

12Gtatistically, the log likelihood ratios relative to the estimated LB parameter case rejects all of the
calibrated LB parameters, but the 14 bp case is most preferred (i.e. least rejected), followed by the 25bp
and zero bp cases. These results continue to apply for all of the updates in section 3.2, except the 14 bp
case is not rejected for the December 2014 update.



els also include materially positive SSR point estimates, which is counterintuitive given
the market-observed data in section 2.2 maintained near-zero values throughout the LB
period.'® T will explain this phenomenon in section 4.

The sensitivities above would have been apparent even at the time of the original
WX analysis if a wider range of lower bounds had been tested and reported. In any
case, the earlier drafts of Christensen and Rudebusch (2015a), Bauer and Rudebusch
(2015), and Krippner (2015c¢) subsequently provided illustrations of the sensitivity of
SSRs estimated from three-factor SLMs, so the point could have been established and
reported in subsequent WX revisions.

SSRs by P using end-2013 parameter estimates
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Figure 2: SSR point estimates from WX model estimated with data to December 2013 and
using different LB parameters. The magnitudes, profiles, and dynamics of the in-sample and
out-of-sample SSRs differ markedly between specifications. The arrows indicate major
unconventional policy events, which are listed and discussed in section 3.3.

In addition to the model uncertainty, SSR point estimates will also be subject to esti-
mation uncertainty. WX does not report confidence intervals for the SSR but, given r(t) =
ag + byx,, they can be readily estimated from the standard error o,y = /04, + by Prbo,
where P is the estimated state variable covariance matrix at time ¢ and by = [1,1,0]" for
the WX model.™

Figure 3 shows that the confidence intervals around the SSR series are relatively wide
compared to the point estimates. Hence, the estimated SSRs are often insignificantly
different from zero, with respect to a 95 percent confidence interval. For example, the
benchmark WX SSR series only became significantly negative around late-2010, which is
approximately two years after the LB period began in the United States. The WX 19 bp

3The WX SSR estimates for the euro area and the United Kingdom also contain periods of SSRs
materially above the relevant policy rate settings and wholesale financial market rates for those economies.

M1 use the Hessian from the WX estimation to calculate o,,, which obtains the conservative values
of 0.34, 0.33, 0.31, and 0.28 percentage points, respectively. The robust standard error reported in WX
for ap (the WX parameter dp in table 1) is 1.0551 percentage points, which would make the confidence
intervals substantially wider.



SSRs only became significantly negative from when the tapering of QE3 was foreshadowed
in mid-2013.

SSRs with rg=25bps SSRs with re™ 19 bps (est.)
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Figure 3: SSR point estimates and confidence intervals (£ one standard deviation and 95
percent interval) from the WX model estimated with data to December 2013 and using
different LB parameters. The confidence intervals indicate that the SSR estimates are often
insignificantly different from zero.

Regarding implications for the WX FAVAR application, the latter results are likely to
be quite specific to the estimation choices made by the authors; in particular not testing
the SLM estimation with smaller LB parameters or accounting for uncertainty in the SSR
estimates. The profile differences of the alternative SSR point estimates are of particular
note, because WX comments that “The comovement rather than the difference in levels
between the shadow rates is what drives the key results.” WX show that the FAVAR
results are not significantly affected by using the SSR point estimates from the WX SLM
with an estimated LB parameter of 19 bps, which has a correlation of 0.93 relative to the
benchmark 25 bp SLM over the LB period to December 2013. However, the correlation
drops to 0.54 and 0.14 respectively for rp = 14 bps and rpg = 0 bps specifications,
so the FAVAR results will be less robust to the alternative SSR series produced with
only a further minor lowering of the LB parameter.'® In addition, by not accounting for
the confidence intervals of the estimated SSRs, the confidence intervals for the impulse
response functions from the WX FAVAR will be understated.

More generally, if WX SSR point estimates were used for routinely monitoring the
level and changes of stance of monetary policy, the interpretations would be very different
between different LB parameter specifications. The statistical insignificance of WX SSR
point estimates well into the LB period for the United States would also be challenging
to interpret.

15WX also notes that the FAVAR application is robust to SSR estimates obtained from alternative yield
curve data and a two-factor specification. The SLMs used to obtain those alternative SSR estimates use
a calibrated LB parameter of 25 bps (confirmed in correspondence with the authors associated with an
earlier draft of the present article). Hence, those alternative FAVAR results are again likely to be quite
specific to the choice of a relatively high LB parameter.

9



3.2 Results from updated WX data sets

To test how the WX SSR estimates change with updated samples, in this section I rees-
timate the 25 bp and estimated LB parameter SLMs from WX using data for three
alternative sample periods. The first update adds just four extra months of data, ending
in April 2014. The second and third alternatives update the sample period to December
2014 and September 2015 respectively.

Figures 4 and 5 illustrate the results, and I have again extended the SSR series associ-
ated with each of the reestimates to September 2015. The confidence intervals are those
associated with the estimates from the full sample of data as at the time of my analysis,
i.e. up to September 2015 (the o,, estimates are 0.64 percentage points for both the 25
bp and estimated LB parameter cases).

SSRs by estimation sample end, with r _ =25 bps
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Figure 4: SSR estimates from WX model with a 25 bp LB parameter and reestimations with
samples to the given months. Small changes to the sample period results in substantial
changes to the later SSR estimates. The arrows indicate major unconventional policy events,
which are listed and discussed in section 3.3.

As illustrated in both figures, simply adding four months of data results in a marked
change to the benchmark WX SSR estimates. I have chosen April 2014 specifically because
it demarks the point at which my month-by-month reestimates of the WX models first
showed a distinct change from the estimates to end-2013. However, subsequent month-
by-month reestimates and the December 2014 and September 2015 results in figures 4
and 5 show that the changes are persistent. At least the results to April 2014, and likely
to December 2014, would have been apparent in WX revisions had the results above been
obtained and reported.

A very important corollary to the discussion above is that the regular monthly updates
provided by WX continue to use the benchmark WX model and parameters estimated with
the sample to December 2013, applied to updated forward rate data. Hence, aside from
showing the sensitivity of WX three-factor results, the alternative results illustrated above
indicate how the benchmark WX SSR estimates would have changed if the authors had

10



occasionally reestimated the model with an updated sample. In particular, the negative
values from mid-2012 would have become much more negative.

Like the WX benchmark model, the WX SLM reestimations with an estimated LB
parameter (and reestimations with 14 and 0 bp LB parameters, not shown here) also show
distinct downside revisions to SSR. estimates from mid-2012. In addition, the December
2014 and September 2015 reestimations give SSR estimates with a counterintuitive period
of positive values from mid-2012 to mid-2013. These are associated with slightly lower
estimates of the LB parameter compared to the December 2013 sample, and I will return
to the latter as a source of sensitivity in section 4. Hence, even if the LB parameter
was estimated, which avoids any need to justify a particular calibrated value and simply
accepts what the yield curve data suggests, the WX SSR estimates would still be sensitive
and occasionally counterintuitive.

SSRs by estimation sample end, with estimated M
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Figure 5: SSR estimates from WX model with an estimated LB parameter and reestimations
with data to the given months. Small changes to the sample period results in substantial
changes to the later SSR estimates. The arrows indicate major unconventional policy events,
which are listed and discussed in section 3.3.

Regarding the WX FAVAR application, if the sample end for the FAVAR remains at
December 2013 then it is unlikely that the reestimations above would materially affect
the reported WX results. That’s because the correlations of the updated series for the
LB period to December 2013 remain high; i.e. above 0.85 and 0.80 respectively for the 25
bp and estimated LB parameter cases.

Regarding policy monitoring, using any of the updated SSRs would indicate that the
stance of policy became even more accommodative from mid-2013 than the original WX
SSR point estimates, and that the prevailing stance of monetary policy (as at the time
of my analysis to September 2015) is essentially in line or easier than the stance prior to
mid-2013. These results are counterintuitive for the reasons I will detail in the following
section.
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3.3 Consistency with monetary policy events

Apart from being sensitive, the benchmark WX SSR estimates and the alternatives are
also often counterintuitive relative to the evolution of major unconventional policy events.
In this section I will focus on the profile and changes to WX SSR estimates; I will discuss
the counterintuitive positive SSR estimates separately in the context of section 4.

The major unconventional policy easing events, which are marked with down arrows
where included in figures, are as follows: (1)16 December 2008, FFR target set to a
range of zero to 25 bps; (2) 27 August 2010, QE2 foreshadowed;(3) 9 August 2011, cal-
endar forward guidance announced; (4) 21 September 2011, “Operation Twist”; (5) 25
January 2012, calendar forward guidance extended; (6) 13 September 2012, QE3 an-
nounced and calendar forward guidance extended; (7) 12 December 2012, QE3 extended
and unemployment-based forward guidance announced. The major unconventional pol-
icy tightening events, which are marked with up arrows where included in figures, are:
(1) 22 May 2013, QE3 tapering foreshadowed; and (2) 18 December 2013, QE3 tapering
commenced (the shaded/spanned regions in the figures represents the progressive imple-
mentation of tapering until the announced termination of the program on 29 October
2014). Note that the easing event of “Operation Twist” is not shown in the figures, for
clarity given its proximity to item 3, but it is included in the correlation analysis below.
See Krippner (2015¢) for more detail on each of the easing and tightening events discussed
in this paragraph.

The first counterintuitive episode for WX SSR point estimates is at the start of the
LB period. That is, all WX SSR point estimates only reached negative values in July
2009 and were above 25 bps until April 2009 (inclusive). These dates are well after 16
December 2008 when the FFR target range of zero to 25 bps was set along with associated
forward guidance, and QE1 had already been announced (see footnote 8). In other words,
a near-zero policy rate plus unconventional monetary policy actions were already in place,
but the still-positive WX SSR estimates do not reflect that degree of accommodation.

The second counterintuitive episode is from early-2012 to mid-2013. The SSR. esti-
mates for many WX models and/or reestimations, particularly those with an estimated
LB parameter, show increasing SSR values which indicates a tightening of unconventional
monetary policy. Other WX models and/or reestimations show flat SSR profiles during
this period. However, the Federal Reserve extended its forward guidance considerably
in January 2012 and introduced a third round of quantitative easing (QE3) plus further
forward guidance in September and December 2012. Hence, decreasing SSR estimates
would be more consistent with the evolution of events.

The third counterintuitive episode is from mid-2013 to mid-2014. All WX SSR es-
timates become negative (significantly) from around 2013, and their decreasing values
indicate an easing of unconventional monetary policy. However, the Federal Reserve be-
gan to remove unconventional monetary policy accommodation during that period, firstly
with Chairman Bernanke foreshadowing the tapering of QE3 (in May 2013) and then
with the implementation of QE3 tapering (in December 2013, with QE3 ending in Octo-
ber 2014). Note that WX interprets the entire QE3 period as an easing in the stance of
policy, and hence consistent with the decline in the benchmark WX SSR. However, the
QE3 tapering period amounted to a signal and then a reduction in money supply growth,
which are both generally acknowledged to represent a tightening in monetary policy.
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Table 1:

Kendall correlations of major unconventional monetary
policy events with WX SSR changes

LB parameter ASSRO ASSR1 ASSR2
rg = 25 bps 0.18 0.09 0.00
p value 0.33 0.44 0.56
rpg = 19 bps (est.) 0.09 0.09 -0.53
p value 0.44 0.44 0.97
r,g = 14 bps 0.09 -0.45 -0.62
p value 0.44 0.94 1.00
g = 0 bps -0.45 -0.45 -0.62
p value 0.94 0.94 1.00

Note: Major unconventional policy events, as noted in section 3.3,
have been assigned values of —1 for easings and +1 for tightenings.
The correlations with WX SSR changes are statistically insignificant.

With such a small number of major unconventional monetary policy events available, it
is not possible with typical statistical tests to thoroughly test the relationship between the
events and SSR movements. However, the Kendall rank correlation coefficient provides
one quantitative indicator.'® I have assigned values of —1 and +1 respectively to the
easing and tightening events listed earlier. Table 1 then provides the Kendall correlations
for those events with changes in estimated SSRs from the month-end prior to the event
to three different month-ends after the event. The first is the month-end immediately
following the event, which I denote ASSR0.!” The others are the subsequent two months,
which I denote ASSR1 and ASSR2. I include these to gauge the persistence of the SSR
movements with respect to the major unconventional monetary policy events.

The results show that all the correlations are insignificant (and, apart from the 25
bp results, many of the correlation point estimates are negative). In other words, easing
(tightening) events are not significantly associated with declines (increases) in the WX
SSR point estimates.'®

4 Reasons for sensitivity of three-factor SSRs

In this section, I discuss the reasons why three-factor SLM SSRs are so sensitive, and
sometimes also counterintuitive. These reasons are most apparent from the perspective

16The Kendall rank correlation coefficient is a non-parametric estimate of the association between
two quantities based on their concordance. The probabilities are calculated using exact permutation
distributions for small samples. See the MatLab function “corr” for further details.

17This monthy change is the minimum possible window with the end-month WX SSR estimates, and is
sufficient for the purposes of this article (including the comparison to two-factor SSR estimates in section
5). Calculating daily SSR estimates around the events would be interesting and more accurate, because
the SSR change would be more clearly identified with the event.

80nce again, I have reported the results using the SSRs obtained from parameter estimates up to
December 2013, so it is apparent that the correlations between the estimated SSR changes and the events
could have been obtained and reported at that time (all of the events are prior to December 2013). Using
reestimated WX SSRs with updated samples obtains very similar results.
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of their cross-sectional properties, i.e. how the estimated three-factor SLMs represent the
yield curve data at each point in time.

Hence, in section 4.1, I first present and discuss the WX shadow and lower-bounded
forward rate curves, and related information, that are the basis for obtaining the WX SLM
model results and SSRs in section 3. I then illustrate and discuss a particular example
of the WX SLM cross-sectional results to explain why the WX forward rate factors in
combination with small LB parameter specification changes can lead to marked changes
in estimated SSRs. In section 4.3, I discuss why the issues with WX SSR estimates will
be present for all three-factor SLMs estimated from three-factor SLMs.

4.1 WX results

The WX SLM shadow forward rate curve f(x;, 7) at any point in time ¢ is:

f(l"taj) =Tt [P?}j + Toy - [p;@}j + X34 ] [Pg}j + VE (]) (6>

where x;,, 24, and x3, are the state variables at time ¢, p? and pg are the two para-
meters that define the risk-adjusted mean-reversion matrix &, j is the time to maturity 7
expressed in months, and VE(j) is a relatively minor and time-invariant term that I will
simply abbreviate as the “volatility effect” (because it allows for the effect that volatility
in the SSR has on expected returns from the shadow yield curve). The SSR estimate is
r; = ag + 1 + Ta, because by = [1,1,0] for the WX model.

WX shadow forward rate factor loadings
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Figure 6: The three WX shadow forward rate factor loadings, which are each associated
respectively with the three WX state variables x1 4, T2, and 3.

The functions [p(lg}j, [pg]j, and j [pg]j are the three factor loadings for the WX SLM
shadow forward rate curve, each associated with their respective state variables. Figure 6
plots those three shadow forward rate factors for the benchmark WX model.'® Note that

19T have scaled the WX Factor 3 by ¢/12 in figure 5, where ¢ = —12log (p?) with py = 0.9502 for the

benchmark WX model. This scaling simply emphasizes the close relationship of the WX factors to the
Level, Slope, and Bow factors discussed in sections 4.2 and 5, and has no implications for the discussion
in this section.
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the value of the shadow forward rate factors at zero time to maturity is by = [1, 1, 0]/, and
also that the shadow forward rate factors for the other three WX models introduced in
section 3 are very similar.

The associated WX lower-bounded forward rate function f(x;, 7) is obtained by sub-
stituting the expression for f(x, j) in equation 6 into equation 2. The result in full is:

f@e,7) = mp- {1 =@} +w () -0z ))] + @[ )] VE()
+res [pF] @1z (b)) 4w [03] @ L2 (1, 5)]
+age g [p5] @[z (L)) (7)

The last two lines of equation 7 are most important in what follows, while the first
line contains all of the other components. In particular, the last two lines contain the
state variables multiplied by their respective lower-bounded forward rate factor loadings,
where the latter are the shadow forward rate factor loadings attenuated by the cumu-
lative normal distribution function ® [z (z,7)].** Note from equation 3 that z (z;,7) =
[f(x¢,7) — ] /w (j), which imparts three effects: (1) equation 7 is a non-linear function
of the state variables (because @ [-] is a non-linear function); (2) the lower-bounded for-
ward rate factor loadings will vary over time as the state variables themselves vary; and
(3) rup relative to f(x;, 7) will influence the lower-bounded forward rate factor loadings.

In practice, the state variables and model parameters are estimated by maximum
likelihood using a suitable non-linear Kalman filter. This process estimates the SLM
parameters (except rpp if it is calibrated) that apply to the entire yield curve sample, while
simultaneously estimating the state variables at each time ¢ that obtain the minimum least
squares residual fit to the yield curve data at time t, i.e.:

£(t,j) = f($t7j)+77t,j (8)

where f(t, j) is the forward rate data, f(x;, j) is the non-linear function of the three state
variables 1+, T2+, an x3,; as given in equation 7, and 7, are the residuals from the
estimation. One key parameter associated with the estimation is o,, which is the standard
error of the residuals, where 7, ; ~N(0,0,). Hence, o, is an indicator of the goodness of
fit of the model to the data, but it also plays another role as discussed further below. The
values of o, are very similar in all the estimated WX SLMs from section 3, ranging from
8.7 to 8.9 bps.

All of the elements mentioned above come together in complex way to produce the
empirical sensitivity demonstrated in section 3. Therefore it is helpful to narrate a detailed
cross-sectional example before making general comments. I choose November 2012 for this
exposition, but similar examples could also be generated at many other points in time.?!

Figure 7 plots the WX data as at November 2012, along with the LB parameters,
estimated LB forward rate functions f(x, 7), and the shadow forward rate functions f(x;, 7)

2Uf(yztt, j) can be converted to an explicit linearized function of 1 4, 2 ¢, an x3 4, which is the basis for the
extended Kalman filter estimation in WX, and analogously the iterated extended Kalman filter estimation
in Krippner (2015c). However, the intermediate expression for f(z;,j) here deliberately maintains the
lower-bounded forward rate factor loadings, which is useful for the exposition in this section (and later
in section 5).

21 From figure 2, November 2012 is when the greatest range exists between the alternative SSR estimates,
which best helps to illustrate the points in this section. However, figure 2 also shows that the wide range
of SSR estimates is persistent before and after November 2012, so any other choice around that month
would produce similar results.
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for the four WX models introduced in section 3. Figure 8 plots the four lower-bounded
forward rate factor loadings associated with those estimated models.

Beginning with the rpg = 25 bps case, note that the 0.25-, 0.5-, and 1-year forward
rate data are below the LB parameter. Hence, the estimated residuals will at least be
equal to the difference between the LB parameter and those data points. More precisely,
the near-zero short-maturity values for the rpp = 25 bps lower-bounded factor loadings
in figure 8 show that, regardless of the estimated values of the state variables, the SLM
cannot improve the short-maturity residuals much beyond the LB parameter/data point
gaps. In essence then, the model ignores such data for that yield curve observation and
focuses on obtaining a closer fit to the remaining data that are above the LB parameter. In
particular, the second state variable adopts a more negative value (than the subsequent
cases below) to fit the general slope evident in the longer-maturity data; in this case
x9y = —1.88%. Given that r, = ag + x1, + xa,, the more negative value of x5, produces
a more negative SSR point estimate, ry = —1.42%.22

With the slightly lower LB parameter of rpg = 19 bps, the 0.25-, 0.5-, and 1-year
forward rate data are now slightly above the LB parameter. The SLM can now better
attempt to fit the shorter-maturity data in addition to the longer-maturity data (i.e.
figure 8 shows that the short-maturity values for the lower-bounded factor loadings are
slightly larger than for the 25 bp LB parameter case). The model therefore adopts a less
negative xo; state variable estimate, xo; = —1.03%, to fit the more moderate slope of the
data across the entire yield curve. The less negative value of x5, in turn produces a less
negative SSR point estimate, r; = —0.59%.

With the LB parameter slightly lower again, i.e. rpg = 14 bps, the 0.25-, 0.5-, and
1-year forward rate data are now above the LB parameter to a material extent relative to
the standard error of the residuals o,,; i.e. 9.4, 5.9, and 5.4 bps respectively with o, = 8.7
bps. Those data points, particularly the 0.25-year forward rate, therefore have relatively
more influence on the SLM estimation than the 25 and 19 bp LB parameter cases. In
particular, the flexibility of the three-factor WX SLM and the attempt to fit those shorter-
maturity data points results in a positive xo; state variable estimate, x5, = 0.08%, and a
positive SSR point estimate, r; = 0.53%. Figure 8 shows that the inverted bow shape in
the lower-bounded forward rate curve arises from the lower-bounded factor loadings 1 and
2, which in turn reflects two effects: (1) the positive values of f(x;, 7) — rpp for near-zero-
maturities allow the lower-bounded factor loadings 1 and 2 to adopt the near-one values
of the respective shadow factor loadings;*® and (2) the negative values of f(z;,7) —rpp
for short- to -mid-maturities still greatly attenuates, via ® [z (¢,7)], the short- to mid-
maturity values of the shadow forward rate loadings 1 and 2, as for the 25 and 19 LB
parameter cases.

The case with the LB parameter at zero extends the rgp = 14 bps result even further.
The 0.25-, 0.5-, and 1-year forward rate data are 23.4, 19.9, and 19.4 bps respectively
with o, = 8.9 bps, so their influence relative to longer-maturity data increases further,
the xo, state variable estimate becomes more positive, xa; = 0.34%, and the SSR point
estimate becomes more positive, r; = 0.70%.

22The contribution of ag + 21, and its changes to the SSR estimates and changes are not very material
relative to the x2; state variable, which is why I focus on the latter. The values of ag + x;; for the four
cases are respectively 0.46%, 0.44%, 0.45%, and 0.36%.

BFor 7 =0, lim, o ® {z (24, 7)} = ®{[r; — rLp] /0} = ® {+oc} = 1 when r; >1 . Hence, the values
of the lower-bound factor loadings at 7 = 0 are [1,1,0] - lim, o ® [ (2, 7)] = [1,1,0]".
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Figure 7: Generated WX forward rate data (FR data), and WX model-estimated lower bound
and shadow forward rate curves (LB FR and Sh. FR) for November 2012. As discussed fully in
the text: (1) the non-linearity and flexibility of the three-factor WX SLM makes SSR
estimates highly sensitive to the proximity of short-maturity data relative to the LB
parameter; and (2) related to the previous point, short-maturity data materially above the LB

can result in counterintuitive positive SSRs in LB periods.
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Figure 8: WX lower-bounded forward rate factor loadings for November 2012.

The general point from the discussion above is that small changes in the LB parameter
relative to the shorter-maturity data can have a large influence on SSR point estimates due
to the non-linearity and flexibility of three-factor SLMs. In essence, shorter-maturity data
more below the LB parameter will result in greater effective downweighting of the influence
of that data relative to longer maturity data, as indicated in the 25 and 19 bp lower-
bounded factor loadings in figure 8. In turn, the model adopts more negative estimates
for the x, state variable to better fit the steeper slope in the longer-maturity data,
which therefore results in more negative SSR point estimates.?* At a point of materiality
dependent on the order of magnitude of the SLM goodness of fit to the data, the gap
of shorter-maturity data above the LB parameter will influence the model to produce
counterintuitive SSR point estimates, i.e. above the LB parameter. This phenomenon
occurs even in the WX model with an estimated LB parameter when that model is
reestimated with data to December 2014 and September 2014 (see figure 5).

4.2 The general sensitivity of SSRs from three-factor SLMs

The results in the previous section are particular to the WX three-factor SLM specifica-
tion, but this section explains that such results hold in general for SSRs obtained from
three-factor SLMs.

Empirically, Bauer and Rudebusch (2015) illustrates the sensitivity of SSRs, with re-
spect to calibrated LB parameters, using a three-factor SLM with an unrestricted discrete-
time three-factor GATSM specification to represent the shadow term structure (initially
within the Black (1995) framework and subsequently within the Priebsch (2013) approx-
imation framework). Progressively altering the LB parameter from zero to 25 bps moves
the SSR estimates through a range of up to around 3.5 percentage points, the zero case
has counterintuitive positive values during the LB period, and the profiles are distinctly
different between the zero and 25 bp cases.

24The wider confidence intervals associated with the higher LB parameters from figure 3, particularly
in the most LB-constrained period, are also consistent with the downweighting reducing the effective
amount of data in the cross-sectional estimation.
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Krippner (2015¢) obtains similar empirical results using the continuous-time three-
factor (Level, Slope, and Bow) arbitrage-free Nelson and Siegel (1987) model (ANSM)
from Krippner (2006) and Christensen, Diebold, and Rudebusch (2011) to represent the
shadow term structure within the Krippner (2011-2015) approximation framework. With
three values of the LB parameter (zero, 25 bps, and an estimated 14 bps) the SSR es-
timates during the LB period vary by up to around 8 percentage points,?> the zero and
14 bp cases have counterintuitive positive values, and all of the profiles are distinctly
different.

The three-factor ANSM has the following functional form:

f(zy,7) = Ly + St - exp (—&57) + By - dTexp (—&57) + VE (1) (9)

where q~5 is the single parameter that defines the risk-adjusted mean-reversion matrix
k. Note that the three-factor ANSM is very similar to the WX shadow term structure
specification in equation 6, except there is a constraint of no mean reversion for Factor 1,
so it becomes a constant of 1.2 Another constraint is ag = 0, so the SSR is 1, = L, + S,
(given by = [1,1,0]'). Similar to the discussion in section 4.1, Krippner (2015¢) provides
a detailed example of how the LB parameter relative to the shorter-maturity data can
greatly influence the estimated Slope state variable S; to produce very sensitive SSR
estimates.?’

The Krippner (2015¢) results based on the three-factor ANSM also establish that
the sensitivity of estimated SSRs will also hold in general for SLMs that use GATSMs
with three (or more) factors. The reason is that a generic GATSM with an arbitrary
N > 3 factors can be closely approximated by an ANSM with three factors. This result
is established theoretically in Krippner (2015b,c), and Krippner (2015b) shows that the
result typically holds empirically when comparing three-factor GATSMs to three-factor
ANSMs.

The empirical examples and discussion up to this point have all used and assumed
three-factor SLMs estimated from only yield curve data and without any constraints. One
potential solution to the sensitive and counterintuitive SSR. estimates would therefore be
to impose some form of constraints to ensure that the flexibility of three-factor SLMs
does not produce “unreasonable” results. For example, related to the previous section,
one could constrain the shorter-maturity data or the way the model treats it during LB
periods, or constrain the state variable estimates directly. However, depending on how

2 The larger range of magnitudes compared to Bauer and Rudebusch (2015) and the results in this
article is due to the use of yield curve data out to 30 years of maturity in Krippner (2015c). The maturity
span of the data is another source of empirical sensitivity, as illustrated in Krippner (2013b) and section
5.3.

J

J -
26That is, {p?} = 1 when p¥ = 1. The other factor loadings relate as follows: [p;@} = exp (—¢T)

and %j {pgr = (}Texp (f;br), with ng: —12log (pg) and T = j/12.

2"The MatLab code associated with the Krippner (2015¢) three-factor SLM can be ob-
tained from the website. “http://www.rbnz.govt.nz/research and publications/research programme/
additional research/matlab code.html”. Christensen and Rudebusch (2015a) also derives the equiv-
alent three-factor SLM, and shows the sensitivity of SSR estimates to using one, two, and three factors,
and mentioned but does not specifically investigate the sensitivity of SSR estimates to the LB parame-
ter. Background material and R code related to Christensen and Rudebusch (2015a) are available at
“http://cepr.org/event,/1854”.
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such constraints are imposed, estimations could become somewhat more challenging and
time-consuming.

But one very straightforward and consistent constraint is simply to freely estimate
a more parsimonious SLM. This is the topic of the following section. Note that one
might argue that setting the LB parameter to a suitably high value so that it appropri-
ately downweights the shorter-maturity data during LB periods is also a straightforward
constraint that obtains reasonable SSR estimates. However, this resolution risks being
inconsistent with highly relevant financial market data (as discussed for the United States
in section 2.2) or the estimated LB parameters (as illustrated in figure 5). In turn, with-
out sound empirical justification, choosing a particular LB parameter to obtain reasonable
SSR estimates would be a somewhat subjective exercise.

5 The case for SSRs from two-factor SLMs

In this section, I make the case for SSRs estimated from two-factor SLMs. Section 5.1
outlines the specific model and data I will use, and in section 5.2 I repeat the applications
from sections 3 and 4 with the two-factor SLM. Section 5.3 provides results with longer-
maturity data, and section 5.4 discusses the use of two-factor SSR estimates for policy
monitoring and quantitative analysis.

5.1 K-ANSM(2) SLM and data for estimation

The model T will use to illustrate the case for SSRs from two-factor SLMs is the K-
ANSM(2).?® The name is the abbreviation for the continuous-time Krippner (2011-2015)
SLM framework of equation 2 using the two-factor (Level and Slope) ANSM to represent
the shadow term structure. The shadow forward rate expression is therefore:

f(zy,7) =L+ S; - exp (—&57’) + VE (1) (10)

and the SSR is 1, = L, + S, (given by = [1,1]). The associated lower-bounded forward
rate function f(z, 7) is:

f(2e,7) = mp-{1- @[ (L0} +w () oz (7)) + @[z (t.7)] VE()
FLe- @[z (1)) + S - exp (~or) @[ (¢, )] (11)

The main reason for using the K-ANSM(2) is because Krippner (2015b,c) show that
the two-factor ANSM provides the most parsimonious approximation to a generic GATSM
with an arbitrary N > 2 factors. The K-ANSM(2) SSR results shown in section 5.2 will
therefore apply generally regardless of the “true” GATSM process for the shadow yield
curve, and they will also be representative of results that could have been obtained by
applying SLMs with alternative two-factor specifications for the shadow yield curve. As

28The model is available on the website “http://www.rbnz.govt.nz/research and publications/
research programme/additional research/matlab code.html”. Monthly  updates of the
SSR from the K-ANSM(2) with an estimated LB parameter are available on the website
“http://www.rbnz.govt.nz/research _and publications/research programme/additional research/
5655249.html”.
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such, it is possible to infer the performance of SSRs estimated from two-factor SLMs in
general.

For estimating the K-ANSM(2) in section 5.2, I use the interest rate data set described
in Krippner (2015¢) but with three changes to align more closely to the WX SLM esti-
mations: (1) the data are the 3- and 6-month secondary market Thill data from FRED,
transformed to a continuously compounding zero-coupon basis, and the continuously com-
pounding GSW zero-coupon interest rates for 1, 2, 3, 5, 7, and 10 years (Krippner (2015b)
uses that data set, but Overnight Indexed Swap (OIS) rates from January 2006); (2) the
10-year rate is the longest maturity (Krippner (2015b) includes 30-year data); and (3)
the measurement equation residuals are specified to be homoskedastic (Krippner (2015b)
allows for heteroskedastic measurement equation residuals).?? In section 5.3, I estimate
the K-ANSM(2) as above, but including the 30-year GSW interest rates.

5.2 K-ANSM(2) results with 10-year data

In this section, I repeat all of the analysis undertaken for the WX three-factor SLM using
the K-ANSM(2).

SSRs by P using end-2013 parameter estimates
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Figure 9: SSRs from K-ANSM(2) estimated with data to December 2013 and using different
LB parameters. The profiles and dynamics of the in-sample and out-of-sample SSRs are all
similar, although the magnitudes have some sensitivity. The arrows indicate major
unconventional policy events, which are listed and discussed in section 3.3.

Regarding the sensitivity to different LB parameter specifications, figure 9 plots the
in- and out-of-sample SSRs estimated from the K-ANSM(2) using data to end-2013 and
four different LB parameters, i.e. the calibrated values of 25 bps, 14 bps, and zero bps,

29The homoskedastic specification offers improvements to the Krippner (2015c¢) specification from three
perspectives: (1) estimation time is shorter, because only a single measurement error parameter estimate
is required for the data of all maturities, whereas the heteroskedastic specification requires a parameter
for each time to maturity; (2) shorter-maturity and longer-maturity data are fitted more closely; and
(3) related to the previous point, the resulting SSR estimates are less volatile and closer to the shortest-
maturity rate in non-LB periods. Bauer and Rudebusch (2015) also use a homoskedastic specification.
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and an estimated LB parameter of 16 bps.?’ The point estimates for each SSR series

have no counterintuitive non-negative values, and each has similar profiles and dynamics
(the correlations between all series are greater than 0.90). However, the magnitudes still
have some sensitivity to the LB parameter, with differences in the SSR series of up to
around 2.5 percentage points. Bauer and Rudebusch (2015) and Krippner (2015¢) have
also reported the magnitude sensitivity for SSR estimates from two-factor SLMs. T will
discuss it subsequently in the context of figure 12, and sections 5.3 and 5.4 contain related
comments.

Figure 10 shows that all of the estimated SSR series are negative to a statistically
significantly extent throughout the LB period. The 95 percent confidence intervals are
actually very similar to the WX confidence intervals from figure 3 (15 bps wider for the 25
bp case, and then 12, 4, and 16 bps narrower for the remaining respective cases), but the
K-ANSM(2) SSR point estimates are more negative than the WX SSR point estimates.

SSRs with rg=25bps SSRs with re™ 16 bps (est.)

0 0
= /""
g -2f 1 -2
P -4t 1 4
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08 09 10 11 12 13 14 15 08 09 10 11 12 13 14 15
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0 — ‘ 0 — '
52 ™MW | 2 e
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Figure 10: SSR point estimates and confidence intervals (£ one standard deviation and 95
percent interval) from K-ANSM(2) model estimated with data to December 2013 and using

different lower bounds. The confidence intervals indicate that all SSR estimates are
significantly negative.

Regarding the sensitivity to the sample period, figure 11 shows the SSR results from
the K-ANSM(2) estimated with the same sample periods as the WX results in figure 4.
These are the results associated with estimated LB parameters, which is the Krippner
(2015¢) benchmark model, but the results from all of the models with calibrated LB
parameters are similarly stable. The confidence intervals are those associated with the
estimates from the full sample of data as at the time of writing, i.e. up to September
2015. Hence, if one had estimated an SSR series from the K-ANSM(2) in December 2013,
the history and updates of the SSR series would essentially be the same for subsequent
reestimations.

30Gtatistically, the 25 bp and zero bp LB parameters are rejected, but the 14 bp case is not. These
results continue to apply for all of the updates in this section.
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Figure 11: SSRs from K-ANSM(2) with estimated LB parameter and reestimations with data
to the given months. Changes to the sample period leave the SSR estimates essentially
unchanged. The arrows indicate major unconventional policy events, which are listed and
discussed in section 3.3.

Regarding consistency with the evolution of major unconventional monetary events,
the K-ANSM(2) SSR point estimates from all four models are very plausible, generally
decreasing persistently and/or staying low in response to easing events, and increasing
persistently in response to tightening events. In particular, the K-ANSM(2) SSR estimates
move consistently with the three episodes discussed in section 3.3, where the WX SSR
estimates were counterintuitive. First, all of the K-ANSM(2) SSR point estimates (and
95 percent confidence intervals) are negative at the beginning of the LB period.*! Second,
with the exception of the zero bp LB parameter case, all of the K-ANSM(2) SSR estimates
remain low or decrease from January 2012 to April 2013, which is consistent with the
easing events over that period. Third, all of the K-ANSM(2) SSR series increase sharply
on Chairman Bernanke’s May 2013 foreshadowing of QE3 tapering, and increase steadily
as QE3 tapering was progressively implemented from December 2013 to October 2014.

There are two distinct countermovements in the K-ANSM(2) SSR profiles between the
major unconventional monetary policy events, but these are readily explainable from the
perspective of events at the time. The first countermovement is the SSR increase from
late-2010 to early 2011. This increase was associated with a positive run of economic data
and market-perceived effectiveness of QE2. Specifically, FFR futures at the time indicated
a central market expectation that the Federal Reserve could raise the FFR target beyond
25 bps within around six months. The second countermovement is the SSR increase
between late- and end-2013. This decrease occurred in the wake of Chairman Bernanke’s
QE3 tapering comments as FOMC members sought to assure markets that any tapering

31The first instance of negative values for all SSR estimates was in November 2008. That consistently
reflects the low values of the FFR relative to the FFR target of 1 percent at the time (the November
end-month, monthly average, and monthly minimums were respectively 0.53, 0.39, and 0.23 percent),
the QE1 announcement on 25 November 2008, and an expectation of a cut to the FFR target in the
forthcoming 16 December 2008 FOMC meeting.
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would be gradual, and that any subsequent normalization of monetary policy would be
some way off. The start of tapering was also subsequently delayed in the midst of debate
on the US budget that led to a temporary government shutdown.

The Kendall rank correlation coefficient results contained in table 2 quantitatively
confirm, to the extent possible with the limited number of observations, that changes to
K-ANSM(2) estimated SSRs are generally consistent with major unconventional policy
announcements. That is, all of the Kendall correlation estimates are positive, with eight
significant to the 5 percent level of significance, and only two outside the 10 percent level
of significance (i.e. for the ASSR1 and ASSR2 results with rp = 0 bps).

Table 2:
Kendall correlations of major unconventional monetary
policy events with K-ANSM(2) SSR changes

LB parameter ASSRO ASSR1 ASSR2
rg = 25 bps 0.62* 0.62* 0.62**
p value 0.03 0.03 0.03
rp g = 16 bps (est.) 0.62* 0.62* 0.53*
p value 0.03 0.03 0.06
rp = 14 bps 0.62* 0.62* 0.53*
p value 0.03 0.03 0.06
rg = 0 bps 0.62** 0.36 0.45
p value 0.03 0.17 0.11

Note: Major unconventional policy events, as noted in section 3.3,
have been assigned values of —1 for easings and +1 for tightenings.
The correlations with K-ANSM(2) SSR changes are all positive and
most are significant.

Regarding the sensitivity of the K-ANSM(2) SSRs, the cross-sectional results for No-
vember 2012 in figure 12 show that even K-ANSM(2) SSR estimates continue to show
material variation in magnitude with small changes to the LB parameter. The reasons
are closely related to the discussion in section 4. Specifically, when the LB parameter
is more above or less below the shorter-maturity yield curve data, the K-ANSM(2) will
effectively increasingly downweight that data (in the sense described in section 4.2), fit the
longer-maturity data with a more negative Slope state variable estimate S;, and therefore
produce a more negative SSR estimate (given r; = L; + S;).%?

32The standard error of the residuals o, for the four K-ANSM(2) estimates are all very similar at
either 14 or 15 bps, which accords with the two-factor SLM results in Bauer and Rudebusch (2015), and
also shows that the K-ANSM(2) does not fit the yield curve data as closely as three-factor SLMs. Note
also that higher LB parameters again produce wider confidence intervals, as figure 10 shows, because the
downweighting of the shorter-maturity data reduces the effective amount of data in the cross-sectional
estimation.
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Figure 12: Yield curve data (YC data), and K-ANSM(2) estimated lower bound and shadow

forward rate curves (LB YC and Sh. YC) for November 2012. As discussed fully in the text:

(1) there are no instances of counterintuitive positive SSRs; and (2) the estimated SSR
remains somewhat sensitive to the proximity of data relative to the LB parameter.
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Figure 13 illustrates the increasing effective downweighting of the shorter-maturity
data as the LB parameter is raised relative to that data.?® T illustrate another source
of magnitude sensitivity in section 5.3, and discuss its general implications for empirical

applications in section 5.4.
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Figure 13: K-ANSM(2) lower-bounded forward rate factor loadings for November 2012.

Despite their magnitude sensitivity, the K-ANSM(2) results in figure 12 have no coun-
terintuitive positive SSR values, and figures 9 to 11 confirm that no such instances occur.
It is technically possible to generate positive SSRs with the K-ANSM(2) during the LB
period, but only artificially using values of short-maturity data well above the LB pa-
rameter and mid-maturity data. Specifically, as one of a series of robustness checks on
the sensitivity of the K-ANSM(2) SSR estimates for a given LB parameter, I raised the
values of all the shorter-maturity data (i.e. 0.25-, 0.5, and 1-years over the entire sample)
while leaving the longer-maturity data unchanged. Generating counterintuitive positive
SSR values for November 2012 with the zero bp LB specification (the most sensitive K-
ANSM(2), due to the lower effective downweighting as discussed above) required raising
the shorter-maturity data by 50 bps (resulting in level for November 2012 above the 2-
and 5-year data, and similar to the 7-year data). Smaller changes to the shorter-maturity
data (even up to 45 bps) and larger changes to only part of the sample left the magnitudes,
profiles, and dynamics of the SSR results similar to the original estimates. Importantly,
these results indicate that the magnitudes (for a given LB parameter specification), pro-
files, and dynamics of K-ANSM(2) SSR estimates for a given LB parameter will be robust
to alternative sources of interest rate data for the estimation, and even to material errors
in the data.

33T have plotted K-ANSM(2) lower-bounded forward rate factors for comparability with figure 7. Lower-
bounded interest rate factors are actually used in the K-ANSM(2) estimation given that the yield curve
data are interest rates. The forward rate and interest rate factor loadings both contain the same down-
weighting effect, but simply from different perspectives.
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5.3 K-ANSM(2) results with 30-year data

As a further robustness check for two-factor SSR estimates, I have reestimated the K-
ANSM(2) with an estimated LB parameter and an extended maturity span of yield
curve data, i.e. adding 30-year data as used in Krippner (2011-2015).3* This matu-
rity span is also the basis for the SSR estimates from Krippner (2015¢) that are up-
dated monthly and reported on the website “http://www.rbnz.govt.nz/research and
publications/research programme/additional _research/5655249.html” ** so it is worth-
while checking the properties of SSR estimates with an extended maturity span against
those reported in section 5.2.

Two-factor SSRs by maturity span, with estimated Fs
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Figure 14: SSRs from K-ANSM(2) estimated with data to September 2015 and using different
maturity spans. The profiles and dynamics of the SSRs are very similar, but the magnitudes
have some sensitivity. The arrows indicate major unconventional policy events, which are
listed and discussed in section 3.3.

As illustrated in figure 14, the profiles and dynamics of the 30-year K-ANSM(2) SSR
estimates are very similar to the 10-year SSR estimates. Over the LB period, the correla-
tions with the 10-year SSR estimates from the previous section and 30-year SSR estimates
are greater than 0.95, and the results of Kendall correlations between SSR changes and
major monetary policy events are very similar to those reported in table 2. However, the
extended maturity span introduces some further magnitude sensitivity, with the 30-year

341 have also obtained SSR estimates using the calibrated LB parameters in section 5.2, which have
profiles and dynamics very similar to the results presented in figure 14. The magnitude sensitivities
between different LB specifications are also very similar those already documented in section 5.2, i.e. a
range of -6 percent to -4 percent for the minimum SSR estimates obtained with LB parameters of 25 and
zero bps.

35However, Krippner (2015¢) and the website results use OIS data from January 2006, because OIS
relate directly to FFR expectations (given OIS securities are settled on future FFR realizations). Krippner
(2015¢) and the website results also use a heteroskedastic specification for measurement errors, and
footnote 29 explains why it is better to use a homoskedastic specification. That change will be made in
due course. It makes little difference to the profile and magnitudes of the results, and the improvement
is that the SSR estimates become less volatile.
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K-ANSM(2) SSR estimates reaching lows of around -5%, compared to around -3.5% for
the 10-year K-ANSM(2). These results confirm those reported in Krippner (2013b) with
respect to maturity span.

Relating to the subsequent discussion in section 5.4, figure 14 also includes two stan-
dard Taylor rule rates (Taylor 1993, 1999), to provide an order of magnitude comparison
for the SSR estimates. It is not possible to make a formal comparison, because Krippner
(2013c) discusses why negative Taylor rule rates are not in principle directly comparable
to negative SSRs. However, if one had a preferred Taylor rule for policy monitoring and
quantitative analysis in the non-LB period, then the order of magnitude provided by that
Taylor rule in the LB period could be used as a calibration mechanism for selecting a
preferred SSR series. On that basis, for example, if one preferred the Taylor (1999) rule
rate, then the 30-year SSR series in figure 14 would be preferable to the 10-year SSR
series.

Independently from any Taylor rule considerations, the 30-year SSR series presented
in figure 14 above applies the least judgement. In particular, it uses an estimated LB
parameter (which avoids any need to justify a particular calibrated value and simply
accepts what the yield curve data delivers), and it also uses the benchmark maturity
interest rates for the entire span of available yield curve data (which avoids excluding any
data).

5.4 Discussion

The profile and dynamics properties discussed in the previous two sections suggest that
K-ANSM(2) SSR estimates will at least be useful as an ordinal measure of the stance of
monetary policy, and will therefore be applicable for monitoring the stance of monetary
policy. That is, for any K-ANSM(2), decreases in the SSR in response to unconventional
monetary policy events indicate a market perception of more accommodative policy, and
increases indicate a market perception of more restrictive policy. In that capacity, appen-
dix A shows that K-ANSM(2) SSR estimates would play the same role as “policy lift-off”
metrics.

Regarding quantitative analysis, which depends on the cardinal results for K-ANSM(2)
SSRs that are used as data, the implications are more nuanced. On the face of it, the
similar profiles and dynamics of K-ANSM(2) SSR estimates obtained with different LB
parameters and maturity spans suggests that the results of any quantitative analysis may
not be overly sensitive. However, the magnitudes of negative SSRs relative to positive
SSRs (or relative to observed policy/short-maturity rates, given the latter are always
closely replicated by the positive SSR estimates in the non-LB period) will necessarily
change between different K-ANSM(2) applications. This issue may be important depend-
ing on the nature of the quantitative analysis.

Therefore, if a K-ANSM(2) SSR series is used as a single monetary policy metric for
quantitative analysis over periods spanning non-LLB and LB periods, it will be important
to test the robustness of those results with a variety of alternative estimates. This includes
SSRs obtained from SLMs using an appropriate range of LB parameters, with the latter
informed by relevant market data and the monetary policy mechanism for the given
economy, and also yield curve data of different maturity spans. As mentioned in section
5.3, arguably SSR estimates from the K-ANSM(2) with an estimated LB parameter and
using yield curve data out to 30 years is a natural benchmark, because it applies the least
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judgement. The conclusion and the appendix also discuss the importance of robustness
testing with alternative metrics for the stance of monetary policy.

A complement to the robustness testing in the previous paragraph would be to use
information external to the yield curve data to justify a particular K-ANSM(2) SSR
series or to appropriately scale the negative SSRs of a K-ANSM(2) SSR series. For
example, the discussion in section 5.3 on the Taylor (1999) rule suggests it could be used
to justify minimum SSR estimates in the order of -5 percent (or a calibration based on the
integral of the negative Taylor rule rates versus the negative SSR estimates may be more
appropriate). Scaling negative SSRs using non-LB period relationships between financial
market variables (e.g. equity market prices and exchange rates) and policy /short maturity
is another potential means of calibration.

Note that if K-ANSM(2) SSR estimates are used as a single monetary policy metric
over just the LB period, or with an appropriate allowance for a structural break between
non-LB and LB periods, then the similar profiles and dynamics between different SSR es-
timates indicates that the results of any quantitative analysis are likely to be substantially
the same. That is, the magnitudes of the levels and changes of different SSR estimates
will vary over the LB period, but the estimated parameters of the quantitative model for
the LB period will scale accordingly. Again, in that capacity K-ANSM(2) SSR estimates
would play the same role as “policy lift-off” metrics, as discussed in appendix A.

Interestingly, if any of the K-ANSM(2) SSR estimates were used in the WX FAVAR,
they would likely produce a greater effect from unconventional monetary policy than the
WX results. Specifically, the more negative and persistent values of the K-ANSM(2) SSR
estimates suggest that the monetary stimulus from unconventional monetary policy in the
United States was larger than indicated by the WX SSR estimates, and this would likely
have been responsible for a greater reduction in the unemployment rate.

As a final point for this section, two-factor SLMs will obviously fit the yield curve
data less closely than three-factor SLMs, but this seems to be the trade-off required for
obtaining relatively robust SSR estimates from a straightforward application of SLMs to
yield curve data. Indeed, Ichiue and Ueno (2013) also suggests using SLMs with less than
three factors to avoid over-fitting and counterintuitive SSR estimates:

Another reason for focusing on two-factor models is that when interest rates
are stuck at the ZLB and do not move much, a large part of the information
required to identify the factors is missing, and thus the number of factors
may have to be smaller than that when interest rates are far from zero.
Thus, this [Christensen and Rudebusch (2015a)] result suggests that three-
factor [Shadow Rate Models| are likely to over-fit the data and to produce
unrealistic estimates.

The last sentence is in reference to the counterintuitive and materially persistent pos-
itive SSR estimates obtained from the Christensen and Rudebusch (2015a) three-factor
SLM application for Japan after 2008. Conversely, the SSR estimates for the Christensen
and Rudebusch (2015a) one- and two-factor SLMs are broadly consistent with the evolu-
tion of conventional and unconventional monetary policy for Japan over the Christensen
and Rudebusch (2015a) sample period from the mid-1990s, and similar Japanese SSR
results are reported in Kim and Singleton (2012) using a two-factor SLM.

If a closer fit to the data is required for a particular application, then it is perfectly
valid to use a three-factor SLM, but the resulting SSRs are not robust and should not be
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used. As discussed at the end of section 4.2, imposing a suitable set of constraints may
obtain relatively robust SSRs and a close fit to the data if both elements are required.
For example, one very straightforward hybrid model could use the two-factor SLM for an
initial estimation (a constraint to obtain a relatively robust SSR estimate), and then fit a
third factor to the resulting residuals (allowing flexibility to obtain closer fit to the data,
as typically obtained with three-factor models).

6 Conclusion

In this article, I have shown that the dynamics and profiles of SSR estimates from three-
factor SLMs are very sensitive. For example, using slightly different LB parameters and /or
reestimating with updated samples of yield curve data obtains SSR estimates with very
different profiles and dynamics than those presented in WX and updated monthly. Such
results hold in general, and so three-factor SSRs should therefore not be used for mon-
itoring the levels and changes in the stance of unconventional monetary policy, or for
quantitative analysis.

However, I show that SSR estimates from two-factor SLMs are relatively robust, in
dynamics and profile, and correlate well with unconventional monetary policy events.
As such, two-factor SSRs appear to be suitable candidates for policy monitoring and
quantitative analysis but, depending on the application, robustness checks with different
LB specifications and samples appropriate to the given economy of application should be
employed.

The robust checks should ideally also include alternative monetary policy metrics,
because SSRs are unlikely to be a complete summary metric for the stance of monetary
policy.?® Several such alternative metrics can be obtained from SLMs (and also see foot-
note 1 for a non-SLM metric). First are “policy rate lift-off” metrics, which are more
robust to model specification and data than SSRs, although they are only available in
unconventional periods. However, in turns out that the information inherent in lift-off
metrics from two- or three-factor SLMs is already well-replicated by the negative SSRs
obtained from two-factor SLMs. Appendix A contains further discussion related to these
points.

Another SLM metric is the Effective Monetary Stimulus as outlined in Krippner
(2015¢). This metric is more comprehensive in principle than either SSRs or lift-off met-
rics, because it allows for the entire path of expected lower-bounded short rates relative to
an estimated long-horizon natural rate. However, estimating or calibrating a long-horizon
natural rate involves model extensions and additional data, and the results will remain
subject to model and estimation uncertainties that need to be investigated and accounted
for in practice.

Moving beyond univariate summary metrics, one can estimate expected policy and risk
premium components from SLMs. This decomposition provides a very comprehensive
basis for policy monitoring and quantitative analysis, particularly given that expected

36Indeed, the FFR is not necessarily a complete metric in conventional monetary policy periods. The-
oretically, standard monetary theory emphasizes the role of policy expectations for monetary policy
transmission, e.g. see Walsh (2003). Empirically, Giirkaynak, Sack, and Swanson (2005) is one example
establishing that FOMC statements affect financial markets via surprises to both the FFR target and the
expected path of the FFR target (even if no change to the FFR target occurs).
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policy and risk premium components respectively correspond to the channels of policy
rate guidance and portfolio balance that are considered key for unconventional monetary
policy.3” However, obtaining sufficient precision for the decomposition again requires
model extensions and additional data,*® and the comments above on model and estimation
uncertainties again apply.

In summary, the range of potential indicators for the stance of monetary policy when
policy rates are constrained by the lower-bound is still in development, and their empirical
applicability is still being tested. Unless or until a leading candidate is obtained, SSR
estimates obtained from two-factor SLMs, while certainly not perfect in all respects, have
many favorable properties and deserve to retain a place in the suite of unconventional
monetary policy indicators.
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A Liftoff and the information in two factor SSRs

In this appendix, I establish that K-ANSM(2) SSRs provide very similar information to
“policy lift-off” metrics that have been proposed as an alternative summary monetary
policy metric obtainable from SLMs.

WX presents what I will call the Lift-off Horizon, which is the median time to a
threshold of 25 bps from a sample of simulations of the future shadow rate path. Bauer
and Rudebusch (2015) also proposes the same metric. Krippner (2015c) proposes the
Expected Time to Zero (ETZ), which is the horizon at which the expected path of the
SSR intercepts zero (or any other threshold may be used, but I will use zero below). Bauer
and Rudebusch (2015) also proposes the equivalent metric (with a threshold of 25 bps)
in the guise of a modal lift-off horizon, referencing its use in Kim and Singleton (2012),
and shows that the Lift-off Horizon and ETZ metrics are very similar.

All of the authors above show empirically that lift-off metrics are less sensitive than
SSRs to model specification, including whether using two or three factors and/or alter-
native LB parameters. Figures 12 and 13 below also confirm that finding. Hence, lift-off
metrics suggest themselves as a robust monetary policy metric relative to SSRs, although
I will provide one caveat at the end of this section.

However, it turns out that the information contained in lift-off metrics, whether from
two- or three-factor SLMs, can summarized almost equivalently by a series of negative
K-ANSM(2) SSRs. To illustrate this empirically for lift-off metrics from two-factor SLMs,
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figure 12 plots the ETZs obtained from the K-ANSM(2) specifications detailed in section
5.2 along with the SSR for the K-ANSM(2) with an estimated LB parameter (or any
other K-ANSM(2) series could be used, given their similar profiles and dynamics; ). The
profiles and dynamics correspond well, and the correlations between the ETZs and the
SSR are all greater than 0.94.
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Figure 15: ETZs from K-ANSM(2) estimated with data to December 2013 (with a 10-year
maturity span) and using different LB parameters. The magnitudes, profiles, and dynamics of
the ETZs are very similar, and also correlate closely to the K-ANSM(2) SSR series. The arrows

indicate major unconventional policy events, which are listed and discussed in section 3.3.
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Figure 16: Figure 15: ETZs from WX model estimated with data to December 2013 and using
different LB parameters. The magnitudes, profiles, and dynamics of the ETZs are very similar,
and also correlate well with the K-ANSM(2) SSR series. The arrows indicate major
unconventional policy events, which are listed and discussed in section 3.3.

To illustrate the analogous case empirically for three-factor liftoff metrics, figure 13
plots the ETZs I have obtained from the WX model specifications in section 3.1 along
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with the SSR for the K-ANSM(2) with an estimated LB parameter.** The profiles and
dynamics again correspond well. The correlations between the ETZ estimates, excluding
any undefined values, and the representative SSR over the sample period are all greater
than 0.90.

The ETZ results above, like the WX Lift-off Horizon results, are all under the risk-
adjusted Q measure. Krippner (2015a) shows that ETZs under the physical P measure
also have profiles and dynamics that correspond closely and are highly correlated with K-
ANSM(2) SSRs."® The modal lift-off measures reported in Bauer and Rudebusch (2015)
under both the Q and P measures also have similar profiles and dynamics to the K-
ANSM(2) SSR in figures 15 and 16.

It can be shown that the close relationship between two-factor SSRs and two- and
three-factor lift-off horizons illustrated above are general, rather than being empirical
coincidences. Specifically, the expected path of the SSR for the K-ANSM(2) is:

By [r (24t 4+ 7)] = Ly + Sy - exp (—(}7‘) (12)

and setting E, [r (x4, t 4+ 7)] equal to an arbitrary threshold of r* and re-arranging gives
the E'TZ result:

1 Sy
= log | 2 (13)
Given the SSR r; = L; + S;, when r; is negative S; = — |ry| — L;. Substituting the
latter into equation 13 gives:
1 Lt -+ ‘I’t’
==log|——— 14
= 2 log |20 (1)

The Level state variable L; is relatively non-cyclical compared to |r;|. Hence, move-
ments in |r;| when r; is negative will be approximately monotonic with movements in
71, thus explaining the correlation between the two-factor empirical results discussed
above. This result can be seen even more clearly for the case when L; > |r;| > 1r*, hence
L;—r* ~ L, and the first-order Taylor expansion of log [1 + z] ~ = gives:

1 me ] 1|
TL &log {1—# LJ ~ 3L (15)
although higher-order terms become important when L; < |ry].

Regarding three-factor ETZ results versus the two-factor K-ANSM(2), Krippner (2015¢)
has already shown empirically that the ETZ estimates from K-ANSM(2) and K-ANSM(3)
specifications are very close. The following line of reasoning explains the principles behind
those empirical results: (1) the expected path of the SSR B, [r (2, + 7)] for longer hori-
zons T is relatively insensitive to model specifications; (2) the relative insensitivity occurs

39ETZ estimates are sometimes undefined due to the entire expected path of the WX SSR being above
zero. Note also that I follow Krippner (2015¢) in using the largest of the zero intercepts if there are more
than one (which can occur due to the non-monotonicity of shadow yield curve in three-factor SLMs).
This choice obtains the intercept going up through zero, whereas the first intercept would be going down
through zero due to counterintuitive positive SSRs at short horizons.

40Lift-off metrics under the physical P measure are more relevant than Q-measure lift-off metrics because
they relate directly to the “real world” or actual expectations held by market participants, including those
responsible for surveys. Q-measure lift-off metrics relate to the “risk-adjusted world”, and will differ from
P-measure lift-off metrics depending on the risk premium.
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because the estimated SLM results for longer horizons are more beholden to the data;
and (3) the SLM is more beholden to the data because the lower-bound factor loadings
are only partially attenuated with respect to the shadow factor loadings (see figures 6, 8,
and 13). Hence, given that K-ANSM(2) SSRs correlate closely to K-ANSM(2) ETZs, and
the latter relate closely to K-ANSM(3) ETZs, K-ANSM(2) SSRs will therefore correlate
closely to K-ANSM(3) ETZs.

The caveat when using lift-off metrics for quantitative analysis is that they are only
available during unconventional periods. This will not present an issue for policy moni-
toring. However, lift-off metrics will not be usable as standalone series for quantitative
analysis that spans both conventional and unconventional periods. It may be possible to
incorporate lift-off metrics as a type of dummy variable in combination with the FFR, but
the discussion above shows that using the time series of negative SSR estimates would
provide the same inherent information. Alternatively, using the full SSR series with both
negative and positive values avoids any need to somehow combine two distinct monetary
policy metrics within any quantitative analysis, but the robustness checks mentioned in
section 5.3 will be necessary to ensure that the magnitude sensitivity of negative SSR
estimates is not unduly affecting the results of the analysis.
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