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1 Introduction

This paper derives a new class of contagion tests for application to financial crises defined

broadly by a significant change in extremal dependence between two markets in a non-crisis

and a crisis period. Financial crisis episodes are characterized by asset returns falling in

value and volatility increasing compared to non-crisis periods. Under the mean-variance

framework, this is consistent with investors realizing a high level of excess returns in a non-

crisis period in exchange for a high level of risk in a crisis period (Sharpe, 1964; Lintner,

1965; Black, 1972). However, it is evident that return distributions are often asymmetric and

fat-tailed suggesting the limitations of the Gaussian distribution for modelling asset returns

(Kraus and Litzenberger, 1976; Friend and Westerfield, 1980; Engle et al., 1990; Harvey and

Siddique, 2000).

In addition to the changeable properties of the distribution of univariate asset returns,

market dependence measured by the co-moments of asset returns is subject to change through

the contagious effects of financial crises. Co-moment changes are already the basis of different

types of tests for contagion including the correlation test of Forbes and Rigobon (2002)

and the co-skewness test of Fry et al. (2010).1 The asymmetries and fat tails of return

distributions mean that linear co-movement may not fully capture market dependence since

small and large returns are equally weighted in its calculation (Embrechts et al., 2003), and

is a complete measure only if investors display mean-variance preferences. The contagion

measures derived in this paper based on extremal dependence changes capture more co-

movement than the linear dependence measures. Extremal dependence is measured by co-

kurtosis (the relationship between the asset return in market i and return skewness in market

j) and co-volatility (the relationship between the return volatility of markets i and j).2 The

extremal dependence measures are similar to the exceedance and co-exceedance tests for

contagion developed in papers such as Favero and Giavazzi (2002), Bae et al. (2003), Pesaran

and Pick (2007), Diebold and Yilmaz (2009) and Gropp et al. (2010). The non-parametric

tests of Rodriguez (2007), Busetti and Harvey (2011) and Garcia and Tsafack (2011) also

illustrate the role of the tail dependence coeffi cient in a range of copula models.

1In the simplest case contagion is defined as a significant increase in correlation (linear dependence)
between two markets during a crisis period compared to a non-crisis period after controlling for market
fundamentals (Forbes and Rigobon, 2002).

2It should be highlighted that like the correlation and co-skewness contagion tests existing in the literature,
the extremal dependence tests are all adjusted for heteroskedasticity by scaling the statistics by a non-linear
function of the percentage change in volatility of the source market returns across the regimes.
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Asymmetry in the returns distribution measured by skewness generated by the risk pref-

erences of investors is subject to change in different regimes, particularly during a crisis

period (Black, 1976; Shleifer and Vishny, 1997; Bekaert and Wu, 2000; Fry et al. 2010;

Conrad et al., 2013). Asset returns can also yield leptokurtic behavior with kurtosis rising

during crisis periods. The relatively lower kurtosis commonly displayed in non-crisis periods

is documented theoretically by Brunnermeier and Pedersen (2008). They find that specula-

tors invest in securities with a positive average return and negative skewness, giving rise to

low values of kurtosis. However, extreme events result in speculators investing in securities

with a negative average return and negative skewness, thus increasing kurtosis risk but pro-

viding a good hedge during the crisis period.3 Brunnermeier and Pedersen (2008) and Fry et

al. (2010) imply different signs of higher order co-moments in the two regimes. It is possible

that either sign could eventuate in a crisis period as investors optimize under incomplete

information (Vaugirard, 2007; Gorton and Metrick, 2012) and liquidity constraints (Allen

and Gale, 2000; Cifuentes et al., 2005), particularly when the source crisis country is also

considered a safe haven country (Vayanos, 2004).

To illustrate the new approach the tests are applied to equity markets and banking sectors

during the global financial crisis of 2008-09. Table 1 illustrates the co-moment statistics of

the equity returns data used in the empirical application for the non-crisis and crisis periods.

Each co-moment captures different features of the joint asset return relationship including:

i) linear dependence; ii) asymmetric dependence; and iii) extremal dependence. The table

shows that in line with the theories touched on earlier, the three types of market dependence

clearly change in terms of magnitudes and quite often signs. These statistics emphasize the

importance of modelling asymmetric and tail risks.

The rest of the paper proceeds as follows. Section 2 summarizes the investors risk return

trade-offs between the expected excess return, and higher order moments and co-moments.

Section 3 describes the properties of a bivariate generalized exponential family of distribu-

tions with asymmetry and leptokurtosis, which provides the framework for developing tests

of co-kurtosis and co-volatility which are at the heart of the tests of contagion based on

changes in extremal dependence presented Section 4. Section 5 analyses the finite sample

properties of the new tests and compares them to the original co-skewness test previously

3Brunnermeier and Pedersen (2008) show that the funding constraint influences not only the price level
but also the skewness of the price distribution. In extreme events the security price is below the market
fundamental price, resulting in negative returns. Holding the security leads to losses as speculators face
funding constraints, inducing negative skewness in the price distribution.
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derived in Fry et al. (2010). It also presents small sample critical value adjustments for

periods when crises durations are short. An illustrative example is presented in Section 6,

with the results showing that the extremal dependence contagion tests capture more market

co-movements than the asymmetric dependence tests during crises. Section 7 concludes.

2 Higher Order Co-moments and Risky Assets

In standard theory of portfolio choice investors achieve optimal asset allocation by maximiz-

ing expected utility subject to the variance of the portfolio in the mean-variance framework

(Sharpe, 1964; Lintner, 1965; Black, 1972). To take asymmetries and tail risks into account,

the traditional CAPM model can be augmented with higher order moments and co-moments

(Fry et al. 2010 and Martellini and Ziemann, 2010). Appendix A.1 contains an expression

for the excess returns over the risk free rate Rf for a risky asset R1 under the scenario of

higher order co-moments with respect to asset R2. The expression is derived from a CAPM

model with correlation, co-skewness, co-kurtosis and co-volatility and is

E(R1)−Rf = θ1E
[
(R1 − µ1)

2]+ θ2E
[
(R2 − µ2)

2]+ θ3E [(R1 − µ1) (R2 − µ2)]

+θ4E
[
(R1 − µ1)

3]+ θ5E
[
(R2 − µ2)

3]+ θ6E
[
(R1 − µ1)

2 (R2 − µ2)
]

+θ7E
[
(R1 − µ1) (R2 − µ2)

2]+ θ8E
[
(R1 − µ1)

4]+ θ9E
[
(R2 − µ2)

4]
+θ10E

[
(R1 − µ1)

3 (R2 − µ2)
]
+ θ11E

[
(R1 − µ1) (R2 − µ2)

3]
+θ12E

[
(R1 − µ1)

2 (R2 − µ2)
2] . (1)

The parameters in (1) are

θ1 = α21

(
∂E[U(W )]

∂σ2p

)
, θ5 = α32

(
∂E[U(W )]

∂s3P

)
, θ9 = α42

(
∂E[U(W )]

∂k4P

)
,

θ2 = α22

(
∂E[U(W )]

∂σ2p

)
, θ6 = 3α

2
1α2

(
∂E[U(W )]

∂s3P

)
, θ10 = 4α

3
1α2

(
∂E[U(W )]

∂k4P

)
,

θ3 = 2α1α2

(
∂E[U(W )]

∂σ2p

)
, θ7 = 3α1α

2
2

(
∂E[U(W )]

∂s3P

)
, θ11 = 4α1α

3
2

(
∂E[U(W )]

∂k4P

)
,

θ4 = α31

(
∂E[U(W )]

∂s3P

)
, θ8 = α41

(
∂E[U(W )]

∂k4P

)
, θ12 = 6α

2
1α

2
2

(
∂E[U(W )]

∂k4P

)
,

(2)

where E [U (W )] is the expected utility of the return on investment, and the variance, skew-
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ness and kurtosis of the end of period returns can be decomposed respectively into

σ2p = E
[(
Rp − µp

)2]
(3)

= E

(N=2∑
i=1

αi (Ri − µi)
)2

= α21E
[
(R1 − µ1)

2]+ α22E
[
(R2 − µ2)

2]+ 2α1α2E [(R1 − µ1) (R2 − µ2)] ,

s3P = E

(N=2∑
i=1

αi (Ri − µi)
)3 (4)

= α31E
[
(R1 − µ1)

3]+ α32E
[
(R2 − µ2)

3]+
3α21α2E

[
(R1 − µ1)

2 (R2 − µ2)
]
+ 3α1α

2
2E
[
(R1 − µ1) (R2 − µ2)

2] ,

k4P = E

(N=2∑
i=1

αi (Ri − µi)
)4 (5)

= α41E
[
(R1 − µ1)

4]+ α42E
[
(R2 − µ2)

4]+ 4α31α2E [(R1 − µ1)3 (R2 − µ2)]
+4α1α

3
2E
[
(R1 − µ1) (R2 − µ2)

3]+ 6α21α22E [(R1 − µ1)2 (R2 − µ2)2] .
Equation (1) decomposes the expected excess return for the risky asset 1 in terms of

risk prices and risk quantities. The risk prices (the θi in (1)) are expressed in terms of the

various risk aversion measures arising from the utility function of the investor (
(
∂E[U(W )]

∂σ2p

)
,(

∂E[U(W )]

∂s3P

)
and

(
∂E[U(W )]

∂k4P

)
) and the shares of the asset in the portfolio (αi). The risk quanti-

ties contain the second moment terms of the variance and covariance, the third moment terms

of skewness (E
[
(R1 − µ1)

3] and E [(R2 − µ2)3]) and co-skewness (E [(R1 − µ1)2 (R2 − µ2)]
andE

[
(R1 − µ1) (R2 − µ2)

2]), as well as the fourth moment terms of kurtosis (E [(R1 − µ1)4]
and E

[
(R2 − µ2)

4]), co-kurtosis (E [(R1 − µ1)3 (R2 − µ2)] and E
[
(R1 − µ1) (R2 − µ2)

3])
and co-volatility (E

[
(R1 − µ1)

2 (R2 − µ2)
2]).

To illustrate the properties of the expected excess return for a risky asset, the risk-return

trade-off surfaces between the expected excess return, variance, skewness and kurtosis, are

presented in Figure 1. The figure is generated by simulating R1 in (1) in terms of second,

4



third and fourth order moments and co-moments. The parameters values of the simulation

are loosely based on the data in Section 6 and are

θ1 = 0.5, θ2 = 0.7, θ3 = 2.0, θ4 = θ5 = θ6 = θ7 = −1.5, (6)

θ8 = θ9 = 4, θ10 = θ11 = θ12 = 1.5,

with the values of co-moments given by

E [(R1 − µ1) (R2 − µ2)] = 0.80, E
[
(R1 − µ1)

2 (R2 − µ2)
]
= 0.00, (7)

E
[
(R1 − µ1) (R2 − µ2)

2] = 0.00, E
[
(R1 − µ1) (R2 − µ2)

3] = 1.47,
E
[
(R1 − µ1)

3 (R2 − µ2)
]
= 1.46, E

[
(R1 − µ1)

2 (R2 − µ2)
2] = 2.20.

The parameters θ4, . . . , θ7 are restricted to have a negative sign due to the assumption

that a risk-averse investor has a utility function with decreasing absolute risk aversion,

while the other parameters θ8, . . . , θ12 are set up to have a positive sign due to the utility

function exhibiting decreasing absolute prudence (Scott and Horvath, 1980). The skewness

and kurtosis value ranges are

E[(R1 − µ1)]3 = E[(R2 − µ2)]3 = [−1, 1] (8)

E[(R1 − µ1)]4 = E[(R2 − µ2)]4 = [4, 9] .

Panel A of Figure 1 presents the mean-skewness-kurtosis surface for a case where there

is no volatility (E
[
(R1 − µ1)

2] = 0 and E [(R2 − µ2)2] = 0) and panel B for a case where
there is volatility (E

[
(R1 − µ1)

2] = 2 and E [(R2 − µ2)2] = 2). Given any level of volatility,
there is a positive relationship between the expected excess return and kurtosis while the

relationship between skewness and kurtosis is negative. Comparing panels A and B, an

investor needs to be compensated for higher risk (volatility) with higher expected excess

returns. Given any level of kurtosis, there is a negative trade-offbetween the expected excess

return and skewness. These findings suggest that an investor requires a higher expected

excess return for taking more volatility and kurtosis risks; whereas, an investor also realizes

a lower expected excess return for the benefit of positive skewness.4

4Fang and Lai (1997) and Hwang and Satchell (1999) show that the expected excess return for the risky
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Figure 1: Mean, volatility, skewness and kurtosis trade-offs. Panel A presents a
mean-skewness-kurtosis surface for the case of no volatility (E

[
(R1 − µ1)

2] = 0 and
E
[
(R2 − µ2)

2] = 0). Panel B shows a mean-skewness-kurtosis surface for the case of volatil-
ity (E

[
(R1 − µ1)

2] = 2 and E
[
(R2 − µ2)

2] = 2). Equations (6) to (8) summarize the
parameters of the moments and co-moments chosen for equation (1) which generates these
surfaces.

3 Co-kurtosis and Co-volatility Statistics

To develop the statistics of higher order co-moments, a non-normal multivariate returns

distribution is specified in order to model the distribution with asymmetry and leptokurtosis.

Building on Cobb et al. (1983), Lye and Martin (1993) and Fry et al. (2010), the bivariate

generalized exponential family of distributions with first to fourth order moments and co-

moments is used for developing the co-moment statistics. Defining r = {r1, r2} as a 2-
dimensional vector of random variables, the distribution is expressed as

f(r) = exp(h− η) (9)

= exp

(
12∑
i=1

θigi(r)− η
)

= exp
(
θ1r

2
1 + θ2r

2
2 + θ3r1r2 + θ4r1r

2
2 + θ5r

2
1r2 + θ6r

2
1r
2
2

+θ7r
1
1r
3
2 + θ8r

3
1r
1
2 + θ9r

3
1 + θ10r

3
2 + θ11r

4
1 + θ12r

4
2 − η

)
,

asset is associated not only with volatility but also with skewness and kurtosis. There is also evidence
that a four-moment CAPM is able to price the cross-moments of returns better than the traditional CAPM
(Dittmar, 2002; Fry-McKibbin et al., 2014).
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where h is a function of parameters θi and gi(r). The choices for gi(r) are polynomials and

cross-products in the elements of r which are assumed to follow an independent bivariate

normal distribution, and η is a normalizing constant denoted as

η = ln

∫ ∫
exp

(
θ1r

2
1 + θ2r

2
2 + θ3r1r2 + θ4r1r

2
2 + θ5r

2
1r2 + θ6r

2
1r
2
2 (10)

+θ7r
1
1r
3
2 + θ8r

3
1r
1
2 + θ9r

3
1 + θ10r

3
2 + θ11r

4
1 + θ12r

4
2

)
dr1dr2.

In terms of equation (9), the parameters θ1 and θ2 control the variances of assets 1 and

2 respectively. The parameter θ3 controls the degree of linear dependence (correlation) in

the relationship between assets 1 and 2 (r1 and r2). The parameters θ4 and θ5 measure

the asymmetry of the probability distribution of the two assets, capturing dependence links

between the first moment of asset 1 (r1) and the second moment of asset 2 (r22) and between

the second moment of asset 1 (r21) and the first moment of asset 2 (r2). These parameters

represent the co-skewness coeffi cients. The coeffi cients of co-volatility and co-kurtosis (the

fourth co-moments) measure the extent to which observations tend to have relatively large

frequencies around the centre and in the tails of the joint distribution. These parameters (θ6,

θ7 and θ8) capture the interaction between the second moment of assets 1 and 2 (r21 and r
2
2),

between the first moment and third moment of assets 1 and 2 (r11 and r
3
2) and between the

third moment and the first moment of assets 1 and 2 (r31 and r
1
2). The parameter θ6 denotes

the co-volatility coeffi cient and the parameters θ7 and θ8 denote the co-kurtosis coeffi cients.

The parameters θ9 and θ10 as well as θ11 and θ12 control the skewness (r31 and r
3
2) and kurtosis

(r41 and r
4
2) for assets 1 and 2 respectively.

The Lagrange multiplier test is adopted to develop the statistics of co-kurtosis and co-

volatility as the bivariate generalized exponential family of the distribution in equation (9)

is nested in the bivariate normal distribution by setting the restrictions θ4 = . . . = θ12 = 0.

Consider a sample of size T from the bivariate generalized exponential family of the

distribution with a finite number K of unknown parameters θ = (θ1, ..., θK)
′ summarizing

the moments of a log likelihood function lnLt(θ) = h−η in equation (9) where h =
K∑
i=1

θigi(r)

and η is the normalizing constant respectively. The hypothesis to be tested is specified as

H0 : θ4 = · · · = θp = 0; p ≤ K. (11)
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Let θ̂ be the maximum likelihood estimator of θ. The Lagrange multiplier test statistic is

LM = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)
, (12)

which is asymptotically distributed as the chi-squared with p degrees of freedom

LM
d−→ χ2p. (13)

Here, q
(
θ̂
)
is the score function evaluated at θ̂ given by

q
(
θ̂
)
=

(
∂ lnL(θ)

∂θ

) ∣∣∣∣θ = θ̂
, (14)

and I
(
θ̂
)
is the asymptotic information matrix evaluated at θ̂, that is

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

] ∣∣∣∣θ = θ̂
− E

[
∂h

∂θ

] ∣∣∣∣θ = θ̂
E

[
∂h

∂θ′

] ∣∣∣∣θ = θ̂

)
. (15)

The proof of the asymptotic information matrix is shown in Appendix A.2.

Consider the restricted model which is the bivariate generalized normal distribution with

co-volatility,

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η
]
, (16)

where

η = ln

∫∫
exp

[(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2]
dr1dr2. (17)
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A test of the restriction for the hypothesis of normality is given by

H0 : θ6 = 0, (18)

which constitutes a test of co-volatility.

If the expression of the fourth order co-moment term, θ6
(
r1,t−µ1
σ1

)2 (
r2,t−µ2
σ2

)2
, in equations

(16) and (17) is replaced with the expression θ7
(
r1,t−µ1
σ1

)1 (
r2,t−µ2
σ2

)3
or θ8

(
r1,t−µ1
σ1

)3 (
r2,t−µ2
σ2

)1
,

these are a test for normality. The hypothesis is set up as

H0 : θp = 0, p = 7, 8,

which constitutes a test of the first form of co-kurtosis (θ7 = 0) and a test of the second

form of co-kurtosis (θ8 = 0) respectively. Under the null hypothesis, the maximum likelihood

estimators of the unknown parameters under the restricted model in equation (16) are

µ̂i =
1

T

T∑
t=1

ri,t; σ̂
2
i =

1

T

T∑
t=1

(ri,t − µ̂i)
2 ; ρ̂ =

1

T

T∑
t=1

(
r1,t − µ̂1
σ̂1

)(
r2,t − µ̂2
σ̂2

)
; i = 1, 2. (19)

The Lagrange multiplier statistics for co-volatility (LM1) and for co-kurtosis (LM2 and LM3)

used to test for extremal dependence are

LM1 =
1

T
(
4ρ̂4 + 16ρ̂2 + 4

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)2(
r2,t − µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

)]2

LM2 =
1

T
(
18ρ̂2 + 6

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)1(
r2,t − µ̂2
σ̂2

)3
− T (3ρ̂)

]2

LM3 =
1

T
(
18ρ̂2 + 6

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)3(
r2,t − µ̂2
σ̂2

)1
− T (3ρ̂)

]2
. (20)

The derivations for the test statistics of co-volatility and co-kurtosis are shown in Appen-

dix A.3. Under the null hypothesis in equation (11), LM1, LM2 and LM3 are distributed

asymptotically as χ21.
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4 Higher Order Co-moment Contagion Tests

The focus of this section is to develop the extremal dependence contagion tests based on

a change in the non-linear dependence between assets. In deriving the contagion tests, the

following notation is used. Let x and y denote the non-crisis and crisis periods, respectively.

Tx and Ty are the sample sizes of the non-crisis and crisis periods respectively. T = Tx + Ty

is the sample size of the full period. Then, the sample correlation coeffi cient during the

non-crisis period (low-volatility) is ρx and during the crisis period (high-volatility) is ρy. Let

i denote the source crisis asset market and j denote the recipient market of contagion. µ̂xi,

µ̂xj, µ̂yi and µ̂yj are the sample means of the asset returns for i and j during the non-crisis

and crisis periods and σ̂xi, σ̂xj, σ̂yi and σ̂yj are the sample standard deviations of the asset

returns for i and j during the non-crisis and crisis periods. Before developing the extremal

dependence contagion tests, the co-skewness contagion test of Fry et al. (2010) which is the

precursor to the extremal dependence contagion test is briefly summarized.

4.1 Asymmetric Dependence Tests

The aim of the asymmetric dependence tests of contagion is to identify whether there is a

statistically significant change in co-skewness between the non-crisis and crisis period. The

first form (CS12) is to test for contagion where the shocks transmit from a change in the

returns of a source market i to the volatility of asset returns of a recipient market j. The

second form (CS21) is to test for contagion where the shocks spread from the volatility of

asset returns of a source market i to the asset returns of a recipient market j. The tests are

CS12(i → j; r1i , r
2
j ) =

 ψ̂y
(
r1i , r

2
j

)
− ψ̂x

(
r1i , r

2
j

)√
4v̂2
y|xi

+2

Ty
+ 4ρ̂2x+2

Tx


2

(21)

CS21(i → j; r2i , r
1
j ) =

 ψ̂y
(
r2i , r

1
j

)
− ψ̂x

(
r2i , r

1
j

)√
4v̂2
y|xi

+2

Ty
+ 4ρ̂2x+2

Tx


2

, (22)
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where

ψ̂y(r
m
i , r

n
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)m(yj,t − µ̂yj
σ̂yj

)n
ψ̂x(r

m
i , r

n
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)m(xj,t − µ̂xj
σ̂xj

)n
,

and

v̂
y|xi
=

ρ̂y√
1 +

(
s2y,i−s2x,i
s2x,i

) (
1− ρ̂2y

) , (23)

represents the adjusted correlation coeffi cient proposed by Forbes and Rigobon (2002).

Forbes and Rigobon (2002) argue that estimation of cross-market correlation coeffi cients

is biased due to heteroscedasticity in market returns. The adjusted correlation coeffi cient is

scaled by a non-linear function of the percentage change in volatility of the source market

returns
((
s2y,i − s2x,i

)
/s2x,i

)
to solve this problem.

To test for a significant change in co-skewness between the non-crisis and crisis period,

the null and alternative hypotheses are

H0 : ψy(r
m
i , r

n
j ) = ψx(r

m
i , r

n
j )

H1 : ψy(r
m
i , r

n
j ) 6= ψx(r

m
i , r

n
j ).

Under the null hypothesis of no contagion, tests of contagion based on changes in co-skewness

are asymptotically distributed as

CS12, CS21(i→ j)
d−→ χ21.

4.2 Extremal Dependence Tests

Three types of extremal dependence tests are specified depending on whether asset returns

in the source market are expressed in terms of simple returns or cubed returns in computing

co-kurtosis, and in terms of return volatility in computing co-volatility. The first type of

statistic CK13 is to detect the shocks emanating from the asset returns of a source market i

to the cubed returns (akin to skewness) of an asset in a recipient market j. The second type

11



of statistic CK31 is to measure the shocks transmitting from the cubed returns of a source

market i to the returns of recipient market j given as

CK13(i → j; r1i , r
3
j ) =

 ξ̂y
(
r1i , r

3
j

)
− ξ̂x

(
r1i , r

3
j

)√
18v̂2

y|xi
+6

Ty
+ 18ρ̂2x+6

Tx


2

(24)

CK31(i → j; r3i , r
1
j ) =

 ξ̂y
(
r3i , r

1
j

)
− ξ̂x

(
r3i , r

1
j

)√
18v̂2

y|xi
+6

Ty
+ 18ρ̂2x+6

Tx


2

, (25)

where

ξ̂y(r
m
i , r

n
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)m(yj,t − µ̂yj
σ̂yj

)n
−
(
3v̂y|xi

)
ξ̂x(r

m
i , r

n
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)m(xj,t − µ̂xj
σ̂xj

)n
− (3ρ̂x) ,

and

v̂
y|xi
=

ρ̂y√
1 +

(
s2y,i−s2x,i
s2x,i

) (
1− ρ̂2y

) .
The third type of statistic CV22 is to detect the shocks transmitting from the volatility of

asset returns in a source market i to the volatility of asset returns in a recipient market j.

The statistic of co-volatility can be represented as

CV22(i→ j; r2i , r
2
j ) =

 ξ̂y
(
r2i , r

2
j

)
− ξ̂x

(
r2i , r

2
j

)√
4v̂4
y|xi

+16v̂2
y|xi

+4

Ty
+ 4ρ̂4x+16ρ̂

2
x+4

Tx


2

, (26)

where

ξ̂y(r
2
i , r

2
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)2(yj,t − µ̂yj
σ̂yj

)2
−
(
1 + 2v̂2y|xi

)
ξ̂x(r

2
i , r

2
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)2(xj,t − µ̂xj
σ̂xj

)2
−
(
1 + 2ρ̂2x

)
.

12



To test that there is a significant change in co-kurtosis or co-volatility between the non-crisis

and crisis period, the null and alternative hypotheses are

H0 : ξy(r
m
i , r

n
j ) = ξx(r

m
i , r

n
j )

H1 : ξy(r
m
i , r

n
j ) 6= ξx(r

m
i , r

n
j ).

Under the null hypothesis of no contagion, tests of contagion based on changes in co-kurtosis

or co-volatility are asymptotically distributed as

CK13, CK31, CV22(i→ j)
d−→ χ21.

5 Sample Properties

This section examines the sample properties in terms of size and power of the new contagion

tests derived in this paper using a range of Monte Carlo experiments. It also presents a

comparison to the original co-skewness contagion test. Specifically, the three tests considered

are i) the CS12 test in (21); ii) the CK13 test in (24); and iii) the CV22 test in (26). The size

and power properties of the tests follow in Sections 5.2 and 5.3, before outlining the critical

values appropriate for short crisis periods in Section 5.4.

5.1 Monte Carlo Design

The data generating process (DGP) follows the bivariate normal distribution with higher

order moments and co-moments used to capture the linkages between asset markets 1 and

2 with linear dependence (θx,3), asymmetric dependence (θx,4 and θx,5) and extremal depen-

dence (θx,6, θx,7 and θx,8) during the non-crisis period (x) and is

f(x1, x2) = exp
(
θx,1x

2
1 + θx,2x

2
2 + θx,3x1x2 + θx,4x1x

2
2 + θx,5x

2
1x2 − θx,6x21x22 (27)

−θx,7x1x32 − θx,8x31x2 + θx,9x
3
1 + θx,10x

3
2 + θx,11x

4
1 + θx,12x

4
2 − ηx

)
,
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with θx,1 = θx,2 = −0.5/ (1− ρ2x) and θx,3 = ρx/ (1− ρ2x). During the crisis period (y)

f(y1, y2) = exp
(
θy,1y

2
1 + θy,2y

2
2 + θy,3y1y2 + θy,4y1y

2
2 + θy,5y

2
1y2 − θy,6y21y22 (28)

−θy,7y1y32 − θy,8y31y2 + θy,9y
3
1 + θy,10y

3
2 + θy,11y

4
1 + θy,12y

4
2 − ηy

)
,

with θy,1 = θy,2 = −0.5/
(
1− ρ2y

)
and θy,3 = ρy/

(
1− ρ2y

)
. ηx and ηy are the normalizing

constants such that
∫ ∫

f(x1, x2)dx1dx2 = 1 and
∫ ∫

f(y1, y2)dy1dy2 = 1. The non-crisis

{x1,t, x2,t} and the crisis data {y1,t, y2,t} for asset markets 1 and 2 are generated from the

bivariate normal distribution with higher order moments and co-moments in (27) and (28)

respectively, given their cumulative distribution functions and using the inverse-transform

method. For the purposes of the Monte Carlo experiments the correlation parameters ρx
and ρy are set equal to zero so that θx,3 = θy,3 = 0 and θx,1 = θx,2 = θy,1 = θy,2 = −0.5.
To evaluate the size properties of the contagion tests, the parameters in the Monte Carlo

experiments conducted under the null hypothesis of no contagion are set to

θx,i = θy,i = 0, ∀i = 4, ..., 12, (29)

in (27) and (28). To allow for varying crisis period sample sizes, five experiments are con-

ducted, with the non-crisis period being set to 500 days (Tx) and the crisis period varying

from 100 to 500 days (Ty = 100, 200, 300, 400, 500).

To investigate the power properties of the contagion tests, three Monte Carlo experiments

are conducted under the alternative hypothesis of contagion

Experiment I : θy,6 > 0,

Experiment II : θy,4 > 0, θy,6 = 0.5,

Experiment III : θy,7 > 0, θy,6 = 0.5,

(30)

in (27) and (28). Each experiment investigates a particular transmission channel of contagion

between asset markets 1 and 2: through the co-volatility channel in experiment I; through

the co-skewness channel in experiment II; and through the co-kurtosis channel in experiment

III. The strength of contagion is controlled by the values of the contagion parameters θy,4,

θy,6 and θy,7. Table 2 summarizes the restrictions on the parameters in (27) and (28) for
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both the size and power tests. Note that experiment II is designed to allow a channel of

contagion through co-skewness; however, to ensure boundedness, the co-volatility parameter

needs to be fixed and is set to θy,6 = 0.5 in experiment II. This setting is also applied to the

design for experiment III.

5.2 Size

Table 3 gives the results of the size experiments for the contagion tests, with attention to

increasing the duration of the crisis period Ty from 100 to 500 days. The duration of the

non-crisis period is set to Tx = 500 days. The number of replications is 500, 000 for all

simulations. To compute the size values for each test statistic, a series of random samples of

non-crisis and crisis data are generated using equations (27) and (28) with the restriction of

no contagion and the assumption of no skewness and kurtosis in either asset market in (29).

The size for each test is based on the 5% asymptotic χ21 distribution critical value.

The results show that given a relatively large crisis sample period, both the asymmetric

dependence tests (CS12) and extremal dependence tests of contagion (CK13 and CV22) ex-

hibit the correct size in most cases, with the simulated size being close to the nominal size

of 5%. However, if the crisis period sample size is on the small side (Ty < 100), the CK13

and CV22 tests are slightly undersized with values of 4.3% and 4.0%, respectively.

5.3 Power

Figure 2 shows the power functions of the four contagion statistics across experiments I to III

with the sample sizes of the non-crisis and crisis period being 500 days (Tx = Ty = 500). The

DGP in each experiment contains a particular transmission channel of contagion through the

co-volatility channel in experiment I, the co-skewness and co-volatility channels in experiment

II, and the co-kurtosis and co-volatility channels in experiment III. The power functions are

determined by increasing the intensity level of contagion. The summary of the experiments

are contained in (30) and in Table 2.

In experiment I shown in Figure 2, the power functions for each test are simulated based

on the alternative hypothesis of contagion through the co-volatility channel for increasing

values of θy,6. Given a contagion strength value of zero, all tests yield a probability of 5%

for finding contagion as the power functions are size adjusted (θx,6 = θy,6 = 0). The CV22

15



Figure 2: Simulated power functions of contagion statistics (CS12, CK13 and CV22) for
various experiments. The sample sizes of non-crisis and crisis periods are set at Tx = Ty =
500. The number of replications is set at 100, 000.

test is the most powerful among the four tests over the range of θy,6, approaching power of

100% as the contagion strength exceeds 0.6. As expected, the CS12 and CK13 tests exhibit

no power in detecting contagion as the DGP in experiment I only contains the transmission

channel of contagion through the co-volatility channel and does not include changes in the

co-skewness or co-kurtosis channels.

In experiment II of Figure 2, the power functions for each test are simulated based on

the alternative hypothesis of contagion through the co-skewness and co-volatility channels

where θy,4 > 0 and θy,6 = 0.5. The co-volatility contagion parameter is kept constant at a

value of θy,6 = 0.5 to ensure boundedness. The CS12 test shows a monotonically increasing

power function over the range of contagion strength controlled by θy,4 from 0 to 0.9. The

CK13 and CV22 tests exhibit constant power for the experiment, with as expected, low power

of 5% for the co-kurtosis change test and a high power of 95% for the co-volatility change

test.

The power functions for each test in experiment III are simulated based on the alternative

hypothesis of contagion through the co-kurtosis and co-volatility channels where θy,7 > 0

and θy,6 = 0.5. The CK13 test has a monotonically increasing power function and its power

quickly approaches 100% as contagion strength θy,7 reaches 0.2. As for the CS12 test, there

is low constant power of 5% for most values of θy,7 as expected, but its power jumps to

15% when θy,7 = 0.2. Similar to experiment II, the CV22 test yields a probability of finding
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Figure 3: Simulated bivariate normal distributions with values of the co-volatility parameter
θ6 ranging from 0.1 to 0.9. The distributions are simulated using (28) and experiment I of
(30) with the parameters summarized in Table 2.

contagion over most of the range of values of θy,7 between 95% to 100%. However, when the

co-kurtosis contagion strength value is θy,7 = 0.2, the power of the CV22 test falls to 45%.

This is the same point at which the power function for the co-skewness test momentarily

jumps.

To investigate the anomaly surrounding the point when θy,7 = 0.2 in Experiment III, the

bivariate normal distribution with a range of parameter values for co-volatility, co-skewness

and co-kurtosis for Experiments I to III is simulated and shown in Figures 3 to 5. Figure

3 reveals that the simulated distributions exhibit higher peaks around the mean, as the co-

volatility parameter increases while Figure 4 shows that the simulated distributions exhibit

longer and fatter tails as the co-skewness parameter increases. Figure 5 shows that the

simulated distribution is symmetric in the case when the co-kurtosis parameter is set to 0.1.

However, as the co-kurtosis parameter increases, the simulated distribution switches from a

unimodal to bimodal distribution, explaining the results illustrated in the power functions

for experiment III.

Overall, the simulation experiments reveal that the extremal dependence tests (CK13

and CV ) are the most powerful, followed by the asymmetric dependence test (CS12). The
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Figure 4: Simulated bivariate normal distributions with values of the co-skewness parameter
θ4 ranging from 0.1 to 0.9. The distributions are simulated using (28) and experiment II of
(30) with the parameters summarized in Table 2.

Figure 5: Simulated bivariate normal distributions with values of the co-kurtosis parameter
θ7 ranging from 0.1 to 0.9. The distributions are simulated using (28) and experiment III of
(30) with the parameters summarized in Table 2.
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speed of approaching 100% power for the CK13 and CV22 tests is faster than that for the

CS12 test.

5.4 Adjustment for Short Duration Crisis Periods

If a crisis period is short, standard χ21 critical values will not suffi ce in testing for contagion

as the test statistic is undersized. The duration of the last four financial crises are long,

ranging from 187 days for the Argentinean crisis to more than 390 days for the US 2008-

2009 financial crisis. However, prior to that most crises were of much shorter duration. For

example, the Russian crisis lasted for 99 days, while the Brazilian crisis was 36 days.5 To

provide guidance to the correct critical values to use for small crisis durations, the Monte

Carlo experiments for the CS12, CK13 and CV22 contagion tests are run for cases where the

crisis sample period is allowed to vary from 15 to 200 days. Table 4 presents the relevant

critical values.

6 Empirical Application

The financial crisis of 2008-09 originated in the US interbank market and spread across the

financial system, exposing vulnerabilities elsewhere in global banking and equity markets.

This section applies the asymmetric and extremal tests of contagion to banking and equity

returns of eight countries from Asia, Europe, Latin America and North America to the crisis

episode to illustrate the workings of the tests.6

The data are composed of daily equity returns in US dollars expressed in percent for each

market i calculated as

Zi,t = 100 (ln(Pi,t)− ln(Pi,t−1)) ,

where Pi,t is the equity index in market i at time t and Zi,t is the percentage return. The

sample period starts on April 1, 2005 and ends on August 31, 2009. The non-crisis period

is defined from April 1, 2005 to February 29, 2008 (Tx = 760 observations), and the crisis

5See Fry-McKibbin, Hsiao and Tang (2013) for a discussion on crisis duration.
6The purpose of the data set is illustrative only and covers Hong Kong, Korea, France, Germany, the

UK, Chile, Mexico and the US. The banking data is daily banking equity price returns.
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period from March 3, 2008 to August 31, 2009 (Ty = 391).7 ,8 The crisis source is assumed to

be the US banking sector. All returns are plotted in Figure 6.9 The figure illustrates that

the volatility of equity returns changes dramatically in equity markets and banking sectors

globally during the financial crisis of 2008-09.

As outlined earlier, Table 1 contains the co-moment statistics of the dataset, while for

completeness, Table 5 also report the moment statistics. Several features characteristic of

crises are highlighted in this table and are compared to a period in which there is no crisis.

Table 5 reports descriptive statistics of the own-moments of the mean, standard deviation,

skewness and kurtosis for each return series in both equity markets and banking sectors for

each period. The first and second moments in the table show that average daily returns of

the equity indices decrease and volatility increases across the board in the crisis period as

expected.10 These statistics are consistent with a risk-averse investor realizing a higher level

of excess returns in the non-crisis period in conjunction with a higher level of risk across the

two regimes (Sharpe, 1964; Lintner, 1965; Black, 1972). Inspection of the third and fourth

moments of the returns shows that it is not only the first and second moments that change.

Non-normality with asymmetry and fat tails is a major characteristic of returns in the equity

7The starting date of the crisis coincides with the Fed rescue of Bear Stearns on March 3, 2008. The end
of the crisis is August 31, 2009 as economic activity in the US improved. This paper does not consider the
period of the European sovereign debt crisis, and jitters in international banking markets such as the issues
with Northern Rock as early as 2007 are acknowledged.

8The data are filtered in the same way as in Forbes and Rigobon (2002). That is, a VAR model is first
specified and estimated to control for market fundamentals (country-specific and cross market relationships
that always exist) and also to handle serial correlation in the data set. The model specification is given by

Zt = φ(L)Zt +Rt (31)

Zt = {xt, yt}′ .

where Zt is a transposed vector of returns across a set of equity markets and banking sectors during the
non-crisis (xt) and crisis (yt) periods; φ(L) is a vector of lags and Rt is a vector of the residual terms.
Two-day rolling average returns are used to deal with time zone issues. L = 5 based on the criteria of the
sequential modified log-likelihood ratio test statistic and the Akaike information Criterion. The residuals
estimated from the VAR (Rt) are used in computing the contagion statistics.

9The equity indices are collected from Datastream. The mneumonics are: Hong Kong - Hang Seng price
index (HNGKNGI); Korea - Korea Se Composite price index (KORCOMP); Chile - General price index
(IGPAGEN); Mexico - Mexico Ipc Bolsa price index (MXIPC35); France - CAC 40 price index (FRCAC40);
Germany - MDAX Frankfurt price index (MDAXIDX); the UK - FTSE100 price index (FTSE100); and
the US - Dow Jones Industrials (DJINDUS). The banking equity indices are collected from Bloomberg.
The mneumonics are: Hong Kong - FTSE China A 600 Banks (XA81); Korea - Korea Banking Index
(KOSPBANK); Chile - MSCI Chile Banks (MXCL0BK); Mexico - MSCI Mexico Banks (MXMX0BK);
Germany - MSCI Germany Banks (MXDE0BK); the UK - FTSE 350 Banking Index (F3BANK); and the
US - PHLX KBW Bank Sector Index (BKX).
10Volatility in the banking sectors display much higher values than that in the equity markets.
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Figure 6: Daily percentage returns of equity markets and equity returns of banking sectors
for eight countries (Hong Kong, Korea, Chile, Mexico, France, Germany, the UK and the
US) during January 1, 2005 to August 31, 2009. The shaded areas refer to the global crisis
starting from March 3, 2008 to August 31, 2009.
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markets and banking sectors. The third moment of skewness is generally negative in the non-

crisis period but switches sign to be positive in the crisis period for most markets. Asset

returns also yield leptokurtic behavior and kurtosis rises during the crisis period, illustrating

that the return distributions are far from normal.

Table 1 reports statistics of the higher order co-moments of the equity and banking

returns with the US banking returns during the non-crisis and crisis periods. Correlation

between the US banking sector and all other returns increase apart from the correlation of

the US banking sector with the US equity market indicating foremost the nature of the crisis

as being one of a banking issue, rather than of the aggregate equity markets in the US.

Turning to the asymmetric dependence statistics, an increase in the magnitude of the

value of co-skewness12 indicates that the market volatilities for the countries in the sample

are more strongly related to the returns in the US banking sector than previously. Negative

co-skewness12 values suggest that an asset invested in the US banking sector should achieve

a relatively higher return when other markets are less volatile. Positive co-skewness12 is

desirable from the point of view of the US investor as higher returns during the volatile

period provide a good hedge. That is, an asset pays higher returns to the US banking sector

as other equity markets become more volatile. The logic is reversed for the co-skewness21

case. The co-skewness12 statistics in the equity markets show a fall in value in most cases,

while for the banking sector all coeffi cients are higher. A similar property is presented in

Table 1 where co-skewness21 rises or moves towards positive values in almost all markets

during the crisis period.

Table 1 presents statistics on the extremal (fourth order) co-moments of the returns for

the two periods. As the table shows, co-kurtosis13 and co-kurtosis31 are positive during both

periods for all countries apart from Hong Kong and Korea where both versions are negative

during the non-crisis period for the banking sector and for Korea for the equity sector. Co-

kurtosis13 ranges from -0.401 (Hong Kong) to 9.386 (US) during the non-crisis period and

from 0.061 (Hong Kong) to 5.563 (US) during the crisis period. Co-kurtosis increases in the

crisis period in most cases, indicating that the joint distribution of returns has a sharper

peak and longer and fatter tails during the crisis period. The higher values of co-kurtosis13

in the crisis period implies returns in the US banking sector are low with a positive skewness

of returns in the other markets, thus increasing contagion risk in the crisis period.

Similarly, co-kurtosis31 is higher in the crisis period, suggesting that the distribution of
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returns in the US banking sector exhibits negative skewness as the returns in the other

markets are low during the crisis period, again increasing risk. The co-volatility22 statistics,

which measures the correlation between volatilities, are all positive in both periods. Interest-

ingly, the co-volatility relationship does not change as systematically as the other statistics.

Sometimes the statistic takes a higher value than in the non-crisis period and other times it

does not. Most interesting is that the co-volatility statistics for the US are lower for both

the equity and banking sectors in the crisis period.

Contagion through Asymmetric Dependence Table 6 presents the empirical results

for the asymmetric dependence tests of contagion from US banks during the crisis of 2008-09.

Inspection of this table reveals that significant evidence of contagion is found within banking

sectors through the co-skewness channel, but less is found between the US banking sector and

the equity markets. Panel A of Table 6 shows no significant cross-border contagious linkages

from the US banking sector to equity market volatility apart from that of Chile through

the first co-skewness channel (CS12), while the equity markets in Hong Kong and Korea

are exposed to contagion from the volatility of the US banking sector through the second

channel (CS21). The majority of the banking sectors, apart from Mexico’s are affected by at

least one of the asymmetric dependence contagion channels during the financial crisis. The

significant contagion effects are from US banking to the volatility of the banking sectors in

Korea, France, Germany, the UK and Chile and also from the volatility of the US banking

sector to the returns of the banking sectors in Hong Kong, Korea and the UK. The US

banking sector is of systemic importance through the asymmetric dependence channel.11

Contagion through Extremal Dependence The results of the extremal dependence

tests presented in Table 7 show significant contagion effects from the US banking sector to

the equity (Panel A) and banking markets (Panel B) in the four regions during the crisis

of 2008-09 through the three extremal dependence measures, indicating again that the US

banking sector is of systemic importance. Among the regions, Europe is most exposed with

all banking and equity sectors experiencing dramatic increases in extremal dependence (i.e.

co-kurtosis and co-volatility). The smallest value of the test statistic for the equity markets

in Europe is 55.82 for the linkages between the volatility of the US banking sector and the

11Gropp and Moerman (2004) define the term “systemic importance”in terms of the banking sector which
tends to have a net contagious influence on other banks.
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volatility of the German equity market (CV22), and is 79.54 in the banking sector for the

links between the US banks and the skewness of the German banking sector (CK13). These

values are much higher than the critical value at the 1% significance level.

The evidence of contagion to Asia and Latin America is strong through the two forms of

the co-kurtosis channels. The channels operating are all cases of the CK13 channel and for

all cases except for the Hong Kong banking sector for the CK31 channel. There is evidence

of the co-volatility CV22 contagion channel in 50% of cases, with no evidence of contagion

to the volatility of the Hong Kong and Chilean markets through this channel. As for North

America, the US equity market is affected by the banking sector to its skewness (CK13) and

to the volatility channel (CV22) .

Comparing Tables 6 and 7, more contagion is detected through extremal dependence than

through asymmetric dependence during the financial crisis of 2008-09. The finding suggests

that in extreme events, the extremal dependence links are more important in capturing

markets linkages than the asymmetric dependence linkages.

7 Conclusions

This paper proposes a class of new tests of financial contagion based on changes in extremal

dependence measured by co-kurtosis and co-volatility during a financial crisis. The extremal

dependence structure is non-linear and is subject to change in different regimes. The changes

can be attributed to the risk return trade-off effect between the expected excess returns

and higher order moments. In deriving the new tests for contagion, a bivariate generalized

exponential distribution is specified to allow for higher order moments and co-moments. The

Lagrange multiplier test is adopted to develop the statistics of co-kurtosis and co-volatility,

which provides the framework for developing the contagion tests.

Monte Carlo simulations show that the statistics for contagion provide a good approxi-

mation of the finite sample distribution. However, where the crisis period is relatively short

the statistics are undersized. Small sample critical values are computed for the tests for use

in this situation. Compared to the most closely related tests in the literature, the power

functions of the new tests are consistently better in that they detect contagion earlier and

more definitively when contagion exists. The Monte Carlo simulations also reveal that in the

case of strong co-kurtosis, the distribution of returns is bimodal. This has some impact on
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the power functions when contagion is low, but does not appear to have adverse implications

when the strength of contagion is high.

The new approach is illustrated with an application to test for financial contagion in

equity markets and banking sectors during the financial crisis of 2008-09. The results of

the tests show significant contagion effects from the US banking sector to global equity

and banking sector markets through extremal dependence. The extremal dependence tests

capture more market co-movements than the asymmetric dependence tests during extreme

events.
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A Appendix: Derivation of the Test Statistics

A.1 Portfolio Choice

This section outlines a model of portfolio choice accounting for higher order moments and
co-moments. Consider the standard utility function of an investor allocating their portfolio
across N risky assets to maximize their end of period wealth W

Max
α0,α1,...,αN

E [U (W )] , (32)

given the budget constraint

α0 +

N∑
i=1

αi = 1.

The fraction of wealth allocated to the risk-free asset is α0, and the fraction of wealth
allocated to the ith risky asset is αi. The end of period wealth is

W = α0 (1 +Rf ) +
N∑
i=1

αi (1 +Ri) , (33)

where Rf and Ri are the rates of return on the risk-free and risky assets respectively.
Assume the distribution of returns of the investor’s portfolio of risky assets to be asym-

metric and fat-tailed. In this case, the investor’s utility function is constructed to include
higher order moments since the quadratic mean and variance do not completely determine
the distribution. Scott and Horvath (1980) show that investor preferences for higher mo-
ments are essential for portfolio selection. The expected utility of the return on investment
W of the investor in this case is given by an infinite-order Taylor series expansion around
expected wealth:

E [U (W )] =
∞∑
q=0

U
(q) (

W
)

q!
E
[(
W −W

)q]
, (34)

where the expected value of the end of period wealth is W = E (W ) and the q-th derivative
of U is U

(q)
.

Equation (34) can be decomposed into the investor’s risk preferences U
(q) (

W
)
and the

q moments of the distribution E
[(
W −W

)q]
. Scott and Horvath (1980) show that under

the assumption of positive marginal utility of wealth, a utility function exhibits decreasing
absolute risk aversion at all wealth levels with strict consistency for moment preferences of
U

(q) (
W
)
> 0 if q is odd and U

(q) (
W
)
< 0 if q is even.

Consider equation (34) for the case of the moments q = 1 to q = 4. The expected utility
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function can be written as

E [U (W )] = U
(
W
)
+ U

′ (
W
)
E
[(
W −W

)]
+
1

2
U

′′ (
W
)
E
[(
W −W

)2]
+

1

3!
U

′′′ (
W
)
E
[(
W −W

)3]
+
1

4!
U

(4) (
W
)
E
[(
W −W

)4]
+

o(W ). (35)

where o(W ) is the Taylor remainder. The expected return, variance, skewness and kurtosis
for the end of period return, Rp, are denoted by

µp = E [Rp] (36)

σ2p = E
[(
Rp − µp

)2]
= E

[(
W −W

)2]
s3p = E

[(
Rp − µp

)3]
= E

[(
W −W

)3]
k4p = E

[(
Rp − µp

)4]
= E

[(
W −W

)4]
,

where µp is the expected return on the portfolio defined as

µp = E [α0Rf ] + E

[
N∑
i=1

αiRi

]
=

N∑
i=0

αiµi, (37)

where αi is the weight of the ith asset in the portfolio with αi ≥ 0 and
N∑
i=0

αi = 1.

The investor’s equilibrium condition is solved by taking the first order conditions of the
Lagrange of the utility function of wealth subject to the budget constraint where

L = E [U (W )] + λ

(
1− α0 +

N∑
i=1

αi

)
. (38)

In solving this problem by taking the two partial derivatives of the Lagrange function, two
pairs of simultaneous linear equations are written as

∂L

∂α0
=
∂U
(
W
)

∂W
Rf − λ = 0, (39)

and

∂L

∂αi
=

∂U
(
W
)

∂W
E (Ri) +

∂(1
2
U

′′ (
W
)
)

∂αi
σ2p (40)

+
∂( 1

3!
U

′′′ (
W
)
)

∂αi
s3p +

∂( 1
4!
U

(4) (
W
)
)

∂αi
k4p − λ = 0.
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The expected excess return on each risky asset over the risk free rate is given by

E(Ri)−Rf =

(
∂E [U (W )]

∂σ2p

)
σ2p +

(
∂E [U (W )]

∂s3p

)
s3P +

(
∂E [U (W )]

∂k4p

)
k4P , (41)

where

(
∂E [U (W )]

∂σ2p

)
= −

∂( 1
2
U
′′
(W))

∂αi

∂U(W)
∂W

(42)

(
∂E [U (W )]

∂s3p

)
= −

∂( 1
3!
U
′′′
(W))

∂αi

∂U(W)
∂W(

∂E [U (W )]

∂k4p

)
= −

∂( 1
4!
U
(4)
(W))

∂αi

∂U(W)
∂W

.

Equation (41) shows that the expected excess return on each risky asset contains two ele-
ments: i) the portfolio risk premium involving higher order moments of volatility (σ2p), skew-
ness (s3p) and kurtosis (k

4
p ); and ii) measures of the investor’s risk preferences for volatility(

∂E[U(W )]
∂σ2p

)
, skewness

(
∂E[U(W )]

∂s3p

)
and kurtosis

(
∂E[U(W )]

∂k4p

)
.

If an investor invests in two risky assets, N = 2, then the variance, skewness and kurtosis
of the end of period returns can be decomposed into

σ2p = E
[(
Rp − µp

)2]
(43)

= E

(N=2∑
i=1

αi (Ri − µi)
)2

= α21E
[
(R1 − µ1)

2]+ α22E
[
(R2 − µ2)

2]+ 2α1α2E [(R1 − µ1) (R2 − µ2)] ,
s3P = E

(N=2∑
i=1

αi (Ri − µi)
)3 (44)

= α31E
[
(R1 − µ1)

3]+ α32E
[
(R2 − µ2)

3]+
3α21α2E

[
(R1 − µ1)

2 (R2 − µ2)
]
+ 3α1α

2
2E
[
(R1 − µ1) (R2 − µ2)

2] ,
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k4P = E

(N=2∑
i=1

αi (Ri − µi)
)4 (45)

= α41E
[
(R1 − µ1)

4]+ α42E
[
(R2 − µ2)

4]+ 4α31α2E [(R1 − µ1)3 (R2 − µ2)]
+4α1α

3
2E
[
(R1 − µ1) (R2 − µ2)

3]+ 6α21α22E [(R1 − µ1)2 (R2 − µ2)2] ,
respectively.
Substituting equations (43) to (45) into equation (41) gives the expected excess return

for asset i in terms of the second, third and fourth order moments and co-moments. The co-
moments include the correlation, co-skewness, co-kurtosis and co-volatility as shown below:

E(Ri)−Rf = θ1E
[
(R1 − µ1)

2]+ θ2E
[
(R2 − µ2)

2]+ θ3E [(R1 − µ1) (R2 − µ2)]
+θ4E

[
(R1 − µ1)

3]+ θ5E
[
(R2 − µ2)

3]+ θ6E
[
(R1 − µ1)

2 (R2 − µ2)
]

+θ7E
[
(R1 − µ1) (R2 − µ2)

2]+ θ8E
[
(R1 − µ1)

4]+ θ9E
[
(R2 − µ2)

4]
+θ10E

[
(R1 − µ1)

3 (R2 − µ2)
]
+ θ11E

[
(R1 − µ1) (R2 − µ2)

3]
+θ12E

[
(R1 − µ1)

2 (R2 − µ2)
2] , (46)

where

θ1 = α21

(
∂E[U(W )]

∂σ2p

)
, θ5 = α32

(
∂E[U(W )]

∂s3P

)
, θ9 = α42

(
∂E[U(W )]

∂k4P

)
,

θ2 = α22

(
∂E[U(W )]

∂σ2p

)
, θ6 = 3α

2
1α2

(
∂E[U(W )]

∂s3P

)
, θ10 = 4α

3
1α2

(
∂E[U(W )]

∂k4P

)
,

θ3 = 2α1α2

(
∂E[U(W )]

∂σ2p

)
, θ7 = 3α1α

2
2

(
∂E[U(W )]

∂s3P

)
, θ11 = 4α1α

3
2

(
∂E[U(W )]

∂k4P

)
,

θ4 = α31

(
∂E[U(W )]

∂s3P

)
, θ8 = α41

(
∂E[U(W )]

∂k4P

)
, θ12 = 6α

2
1α

2
2

(
∂E[U(W )]

∂k4P

)
.

(47)

Equations (46) and (47) are valid for all i.

A.2 Proof of the Asymptotic Information Matrix

The log of the likelihood function at time t in equation (9) is

lnLt(θ) = h− η. (48)

The first and second derivatives are given respectively by

∂ lnLt(θ)

∂θ
=
∂h

∂θ
− ∂η

∂θ
, (49)

and
∂2 lnLt(θ)

∂θ∂θ′
=

∂2h

∂θ∂θ′
− ∂2η

∂θ∂θ′
. (50)
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The information matrix at time t is

It (θ) = −E
[
∂2 lnLt(θ)

∂θ∂θ′

]
(51)

=
∂2η

∂θ∂θ′
− E

[
∂2h

∂θ∂θ′

]
.

Differentiating a first and second time gives

∂η

∂θ
=

∫ (
∂h
∂θ

)
exp (h) dr∫

exp (h) dr
= E

[
∂h

∂θ

]
. (52)

∂2η

∂θ∂θ′
=

(∫ (
∂2h
∂θ∂θ′

)
exp (h) dr +

∫ (
∂h
∂θ

) (
∂h
∂θ′

)
exp (h) dr

) (∫
exp (h) dr

)
(∫
exp (h) dr

)2 (53)

−
(∫ (

∂h
∂θ

)
exp (h) dr

) (∫ (
∂h
∂θ

)
exp (h) dr

)(∫
exp (h) dr

)2
= E

[
∂2h

∂θ∂θ′

]
+ E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
.

Substituting equation (53) into the information matrix at time t in equation (51) yields

It (θ) = E

[
∂2h

∂θ∂θ′

]
+ E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
− E

[
∂2h

∂θ∂θ′

]
(54)

= E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
.

Finally, I
(
θ̂
)
is the asymptotic information matrix evaluated at θ̂, that is

I
(
θ̂
)
=

∑
t

It

(
θ̂
)

(55)

= T

(
E

[
∂h

∂θ

∂h

∂θ′

] ∣∣∣∣θ = θ̂
− E

[
∂h

∂θ

] ∣∣∣∣θ = θ̂
E

[
∂h

∂θ′

] ∣∣∣∣θ = θ̂

)
.
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A.3 Derivation of the Test Statistics

A.3.1 Statistics of Co-volatility

Consider the following bivariate generalized normal distribution with co-volatility

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η
]

(56)

= exp [h− η] ,

where

η = ln

∫∫
exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2]
dr1dr2 (57)

= ln

∫∫
exp [h] dr1dr2,

and

h = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
. (58)

A test of the restriction for normality is

H0 : θ6 = 0. (59)

Under the null hypothesis, the maximum likelihood estimators of the unknown parameters
are

µ̂i =
1

T

T∑
t=1

ri,t; σ̂
2
i =

1

T

T∑
t=1

(ri,t − µ̂i)
2 ; ρ̂ =

1

T

T∑
t=1

(
r1,t − µ̂1
σ̂1

)(
r2,t − µ̂2
σ̂2

)
; i = 1, 2. (60)

Let the parameters of equation (56) be

θ =
{
µ1, µ2, σ

2
1, σ

2
2, ρ, θ6

}
. (61)

33



By taking the log function in equation (56), the log likelihood function at time t is given by

lnLt(θ) = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η (62)

= h− η,

where h and η are given by equations (58) and (57).
Taking the expectations for the first and second derivatives of the log likelihood function

(lnLt(θ)) in equation (58) under the null hypothesis of the bivariate normality (θ6 = 0) is

E

(
∂h

∂µ1

)
= 0

E

(
∂h

∂µ2

)
= 0

E

(
∂h

∂σ21

)
=

1

2

1

σ21

E

(
∂h

∂σ22

)
=

1

2

1

σ22

E

(
∂h

∂ρ

)
=

−ρ
1− ρ2

E

(
∂h

∂θ6

)
= 1 + 2ρ2,

E

[(
∂h

∂µ1

)2]
=

1

1− ρ2
1

σ21

E

[(
∂h

∂µ2

)2]
=

1

1− ρ2
1

σ22

E

[(
∂h

∂σ21

)2]
= −1

4

1

1− ρ2

(
1

σ21

)2 (
2ρ2 − 3

)
E

[(
∂h

∂σ22

)2]
= −1

4

1

1− ρ2

(
1

σ22

)2 (
2ρ2 − 3

)
E

[(
∂h

∂ρ

)2]
=

(
1

1− ρ2

)4 (
2ρ6 − 3ρ4 + 1

)
E

[(
∂h

∂θ6

)2]
= 9 + 72ρ2 + 24ρ4,
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E

[(
∂h

∂µ1

)(
∂h

∂µ2

)]
= − 1

σ1

1

σ2

(
ρ

1− ρ2

)
E

[(
∂h

∂µ1

)(
∂h

∂σ21

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂σ22

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂ρ

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂θ6

)]
= 0,

E

[(
∂h

∂µ2

)(
∂h

∂σ21

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂σ22

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂ρ

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂θ6

)]
= 0,

E

[(
∂h

∂σ21

)(
∂h

∂σ22

)]
= −1

4

1

σ21

1

σ22
(2ρ2 − 1)

(
1

1− ρ2

)
E

[(
∂h

∂σ21

)(
∂h

∂ρ

)]
= −ρ 1

σ21

(
1

1− ρ2

)
E

[(
∂h

∂σ21

)(
∂h

∂θ6

)]
=

3

2

1

σ21

(
2ρ2 + 1

)
,

E

[(
∂h

∂σ22

)(
∂h

∂ρ

)]
= −ρ 1

σ22

(
1

1− ρ2

)
E

[(
∂h

∂σ22

)(
∂h

∂θ6

)]
=

3

2

1

σ22
(2ρ2 + 1)

E

[(
∂h

∂ρ

)(
∂h

∂θ6

)]
= 3(−2ρ3 + ρ)

(
1

1− ρ2

)
,
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where

µi = E [ri,t]

E

[(
ri,t − µi
σi

)2]
= 1

E

[(
ri,t − µi
σi

)(
rj,t − µj
σj

)]
= ρ, i 6= j

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)2]
= 0

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)3]
= 0

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)4]
= 0

E

[(
ri,t − µi
σi

)3(rj,t − µj
σj

)4]
= 0

E

[(
ri,t − µi
σi

)3]
= 0

E

[(
ri,t − µi
σi

)4]
= 3

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)2]
= 1 + 2ρ2

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)3]
= 3ρ

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)4]
= 3 + 12ρ2

E

[(
ri,t − µi
σi

)3(rj,t − µj
σj

)3]
= 9ρ+ 6ρ3

E

[(
ri,t − µi
σi

)4(rj,t − µj
σj

)4]
= 9 + 72ρ2 + 24ρ4.

The elements of the information matrix at time t, evaluated under the null are

I1,1,t = E

[
∂h

∂µ1

∂h

∂µ1

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂µ1

]
=

(
1

1− ρ2

)(
1

σ21

)
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I1,2,t = E

[
∂h

∂µ1

∂h

∂µ2

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂µ2

]
=

(
1

1− ρ2

)(
−ρ
σ1σ2

)

I1,3,t = E

[
∂h

∂µ1

∂h

∂σ21

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂σ21

]
= 0

I1,4,t = E

[
∂h

∂µ1

∂h

∂σ22

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂σ22

]
= 0

I1,5,t = E

[
∂h

∂µ1

∂h

∂ρ

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂ρ

]
= 0

I1,6,t = E

[
∂h

∂µ1

∂h

∂θ6

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂θ6

]
= 0

I2,2,t = E

[
∂h

∂µ2

∂h

∂µ2

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂µ2

]
=

(
1

1− ρ2

)(
1

σ22

)

I2,3,t = E

[
∂h

∂µ2

∂h

∂σ21

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂σ21

]
= 0

I2,4,t = E

[
∂h

∂µ2

∂h

∂σ22

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂σ22

]
= 0

I2,5,t = E

[
∂h

∂µ2

∂h

∂ρ

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂ρ

]
= 0
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I2,6,t = E

[
∂h

∂µ2

∂h

∂θ6

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂θ6

]
= 0

I3,3,t = E

[
∂h

∂σ21

∂h

∂σ21

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂σ21

]
=

(
1

1− ρ2

)(
−ρ2 + 2
4σ41

)

I3,4,t = E

[
∂h

∂σ21

∂h

∂σ22

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂σ22

]
=

(
1

1− ρ2

)(
−ρ2
4σ21σ

2
2

)

I3,5,t = E

[
∂h

∂σ21

∂h

∂ρ

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
−ρ
2σ21

)

I3,6,t = E

[
∂h

∂σ21

∂h

∂θ6

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂θ6

]
=

(2ρ2 + 1)

σ21

I4,4,t = E

[
∂h

∂σ22

∂h

∂σ22

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂σ22

]
=

(
1

1− ρ2

)(
−ρ2 + 2
4σ42

)

I4,5,t = E

[
∂h

∂σ22

∂h

∂ρ

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
−ρ
2σ22

)

I4,6,t = E

[
∂h

∂σ22

∂h

∂θ6

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂θ6

]
=

(2ρ2 + 1)

σ22
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I5,5,t = E

[
∂h

∂ρ

∂h

∂ρ

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
ρ2 + 1

1− ρ2

)

I5,6,t = E

[
∂h

∂ρ

∂h

∂θ6

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂θ6

]
= 4ρ

I6,6,t = E

[
∂h

∂θ6

∂h

∂θ6

]
− E

[
∂h

∂θ6

]
E

[
∂h

∂θ6

]
= (8 + 68ρ2 + 20ρ4).

The information matrix under the null hypothesis of the bivariate normality (θ6 = 0) is

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

] ∣∣∣∣θ6 = 0 − E
[
∂h

∂θ

] ∣∣∣∣θ6 = 0E
[
∂h

∂θ′

] ∣∣∣∣θ6 = 0
)

(63)

=

(
T

1− ρ̂2
)
×

1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

(2ρ̂2+1)(1−ρ̂2)
σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 4ρ̂(1− ρ̂2)
0 0 (2ρ̂2+1)(1−ρ̂2)

σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂22

4ρ̂(1− ρ̂2) (8 + 68ρ̂2 + 20ρ̂4)(1− ρ̂2)


,

so that

I
(
θ̂
)−1

=

(
1− ρ̂2

T

)
× (64)

1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

(2ρ̂2+1)(1−ρ̂2)
σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 4ρ̂(1− ρ̂2)
0 0 (2ρ̂2+1)(1−ρ̂2)

σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂22

4ρ̂(1− ρ̂2) (8 + 68ρ̂2 + 20ρ̂4)(1− ρ̂2)



−1

.
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Evaluating the gradient for θ6 under the null hypothesis gives

∂ lnLt(θ)

∂θ

∣∣∣∣θ6 = 0 =
T∑
t=1

(
∂h

∂θ6

)
− T

(
∂η

∂θ6

)
(65)

=
T∑
t=1

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− T

(
1 + 2ρ2

)
.

By taking the first derivatives of the log likelihood function, the score function under H0 is
given as

q
(
θ̂
)
=

∂ lnLt(θ)

∂θ

∣∣∣∣θ6 = 0 (66)

=

[
0 0 0 0 0

T∑
t=1

(
r1,t−µ̂1
σ̂1

)2 (
r2,t−µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

) ]′
.

Substituting equations (64) and (66) into the Lagrange multiplier statistic in equation (15)
gives

LM1 = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)

(67)

=
1

T
(
4ρ̂4 + 16ρ̂2 + 4

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)2(
r2,t − µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

)]2

=


1
T

T∑
t=1

(
r1,t−µ̂1
σ̂1

)2 (
r2,t−µ̂2
σ̂2

)2
−
(
1 + 2ρ̂2

)
√
(4ρ̂4+16ρ̂2+4)

T


2

.

A.3.2 A Statistic of Co-kurtosis

Consider the following bivariate generalized normal distribution with co-kurtosis given as

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− η
]

(68)

= exp [h− η] ,
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where

η = ln

∫∫
exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3]
dr1dr2 (69)

= ln

∫∫
exp [h] dr1dr2,

and

h = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
. (70)

A test of the restriction for normality is

H0 : θ7 = 0.

Let the parameters of equation (70) be

θ =
{
µ1, µ2, σ

2
1, σ

2
2, ρ, θ7

}
. (71)

By taking the log function of equation (68), the log likelihood function at time t is given
by

lnLt(θ) = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− η (72)

= h− η,

where h and η are given by equations (70) and (69).
Taking the expectations for the first and second derivatives of the log likelihood function
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in equation (72) under the null hypothesis of the bivariate normality (θ7 = 0) is

E

(
∂h

∂θ7

)
= 3ρ

E

[(
∂h

∂θ7

)2]
= 15 + 90ρ2

E

[(
∂h

∂µ1

)(
∂h

∂θ7

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂θ7

)]
= 0

E

[(
∂h

∂σ21

)(
∂h

∂θ7

)]
=

3ρ

σ21

E

[(
∂h

∂σ22

)(
∂h

∂θ7

)]
=

6ρ

σ22

E

[(
∂h

∂ρ

)(
∂h

∂θ7

)]
= 3(1− 2ρ2)

(
1

1− ρ2

)
,

where

E

[(
ri,t − µi
σi

)6]
= 15

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)5]
= 15ρ, i 6= j

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)6]
= 15 + 90ρ2, i 6= j.

The elements of the information matrix at observation t, evaluated under the null are

I1,6,t = E

[
∂h

∂µ1

∂h

∂θ7

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂θ7

]
= 0

I2,6,t = E

[
∂h

∂µ2

∂h

∂θ7

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂θ7

]
= 0

I3,6,t = E

[
∂h

∂σ21

∂h

∂θ7

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂θ7

]
=

(
3ρ

2σ21

)
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I4,6,t = E

[
∂h

∂σ22

∂h

∂θ7

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂θ7

]
=

(
9ρ

2σ22

)

I5,6,t = E

[
∂h

∂ρ

∂h

∂θ7

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂θ7

]
= 3

I6,6,t = E

[
∂h

∂θ7

∂h

∂θ7

]
− E

[
∂h

∂θ7

]
E

[
∂h

∂θ7

]
= (15 + 81ρ2).

The information matrix under the null hypothesis of the bivariate normality (θ7 = 0) is
given as

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

] ∣∣∣∣θ7 = 0 − E
[
∂h

∂θ

] ∣∣∣∣θ7 = 0E
[
∂h

∂θ′

] ∣∣∣∣θ7 = 0
)

(73)

=

(
T

1− ρ̂2
)


1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

3ρ̂(1−ρ̂2)
2σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

9ρ̂(1−ρ̂2)
2σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 3(1− ρ̂2)
0 0 3ρ̂(1−ρ̂2)

2σ̂21

9ρ̂(1−ρ̂2)
2σ̂22

3(1− ρ̂2) (15 + 81ρ̂2)(1− ρ̂2)


,

so that

I
(
θ̂
)−1

=

(
1− ρ̂2

T

)


1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

3ρ̂(1−ρ̂2)
2σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

9ρ̂(1−ρ̂2)
2σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 3(1− ρ̂2)
0 0 3ρ̂(1−ρ̂2)

2σ̂21

9ρ̂(1−ρ̂2)
2σ̂22

3(1− ρ̂2) (15 + 81ρ̂2)(1− ρ̂2)


.

(74)
Evaluating the gradient for θ7 under the null hypothesis gives

∂ lnLt(θ)

∂θ7

∣∣∣∣θ7 = 0 =
T∑
t=1

(
∂h

∂θ7

)
− T

(
∂η

∂θ7

)
(75)

=
T∑
t=1

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− T (3ρ) .
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By taking the first derivatives of the log likelihood function, the score function under H0 is
given as

q
(
θ̂
)
=

∂ lnLt(θ)

∂θ

∣∣∣∣θ7 = 0 (76)

=

[
0 0 0 0 0

T∑
t=1

(
r1,t−µ̂1
σ̂1

)1 (
r2,t−µ̂2
σ̂2

)3
− T (3ρ̂)

]′
.

Substituting equations (74) and (76) into the Lagrange multiplier statistic in equation (15)
gives

LM = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)

(77)

=
1

T
(
18ρ̂2 + 6

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)1(
r2,t − µ̂2
σ̂2

)3
− T (3ρ̂)

]2

=


1
T

T∑
t=1

(
r1,t−µ̂1
σ̂1

)1 (
r2,t−µ̂2
σ̂2

)3
− (3ρ̂)√

(18ρ̂2+6)
T


2

.
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Table 1: Linear, asymmetric and extremal co-moments of returns for eight equity markets
with the US banking sector during the non-crisis (NC) and crisis (C) periods. The non-crisis
period is from April 1, 2005 to February 29, 2008 and the crisis period is from March 3, 2008
to August 31, 2009.

Linear Asymmetric
Correlation Co-skewness12 Co-skewness21

Country NC C NC C NC C
Asia
Hong Kong -0.020 0.166 0.476 0.223 0.345 0.085
Korea -0.082 0.173 0.193 0.228 -0.202 0.031

Europe
France 0.266 0.404 0.155 0.012 -0.495 -0.105
Germany 0.230 0.404 0.058 -0.103 -0.417 -0.177
UK 0.262 0.380 0.214 -0.064 -0.397 -0.191

Latin America
Chile 0.309 0.376 0.045 -0.165 -0.440 -0.066
Mexico 0.492 0.585 -0.023 0.025 -0.158 -0.036

North America
US 0.799 0.772 -0.360 -0.116 -0.291 -0.122

Extremal
Co-kurtosis13 Co-kurtosis31 Co-volatility22

Asia
Hong Kong 1.436 1.392 1.271 1.063 4.853 1.494
Korea -1.728 1.792 -1.186 0.682 2.202 1.344

Europe
France 0.868 2.178 0.296 2.457 2.922 2.307
Germany 1.289 1.967 0.699 2.544 2.398 2.263
UK 0.887 2.144 0.840 2.482 2.651 2.494

Latin America
Chile 2.189 2.467 1.759 2.317 2.966 2.207
Mexico 2.670 3.222 3.677 3.169 2.830 2.818

North America
US 4.491 4.031 6.283 3.967 5.045 3.549

Notes: The statistics are measured in terms of:-
Correlation: returns of market j and returns of US bank.
Co-skewness12: returns of market j and squared returns of US bank.
Co-skewness21: squared returns of market j and returns of US bank.
Co-kurtosis13: returns of market j and cubed returns of US bank.
Co-kurtosis31: cubed returns of market j and returns of US bank.
Co-volatility22: squared returns of market j and squared returns

of US bank.
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Table 2:
Summary of the restrictions on the parameters in equations (27) and (28) for the size and

power tests.
Power

Restrictions Size Experiment I Experiment II Experiment III
Sample size
Tx 500 500 500 500
Ty [100, 500] 500 500 500

Parameters in (27)
ρx 0 0 0 0
θx,i,∀i = 4, ..., 12 0 0 0 0

Parameters in (28)
ρy 0 0 0 0
θy,4 0 0 (0, 0.9] 0
θy,5 0 0 0 0
θy,6 0 (0, 0.9] 0.5 0.5
θy,7 0 0 0 (0, 0.9]
θy,i,∀i = 8, ..., 12 0 0 0 0

Note: f(x1, x2) = exp (θx,1x
2
1+θx,2x

2
2+θx,3x1x2+θx,4x1x

2
2+θx,5x

2
1x2 − θx,6x21x22

−θx,7x1x32 − θx,8x31x2+θx,9x31+θx,10x32+θx,11x41+θx,12x42−ηx) in (27)
and f(y1, y2) = exp (θy,1y

2
1+θy,2y

2
2+θy,3y1y2+θy,4y1y

2
2+θy,5y

2
1y2 − θy,6y21y22

−θy,7y1y32 − θy,8y31y2+θy,9y31+θy,10y32+θy,11y41+θy,12y42−ηy
)
in (28)

Table 3:
Simulated sizes of alternative contagion tests based on the different sizes of the crisis

sample period Ty. The non-crisis sample period is Tx = 500. The size of the CS12, CK13,
and CV22 tests are based on the 5% asymptotic χ21 critical values with one degree of

freedom. The results are based on 500,000 replications.
Sample size of crisis period (Ty)

Tests 500 400 300 200 100
CS12 0.049 0.048 0.048 0.049 0.047
CK13 0.049 0.050 0.048 0.047 0.043
CV22 0.049 0.048 0.047 0.046 0.040
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Table 4:
Simulated critical values of alternative test statistics of contagion for small crisis period
sample sizes Ty. The non-crisis sample period is Tx = 500. The results are based on

500,000 replications.
CS12 test CK13 test CV22 test

Sig. level/ 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%
Ty
15 3.89 2.92 2.04 2.73 1.93 1.30 2.36 1.82 1.35
30 4.51 3.39 2.35 3.99 2.74 1.79 3.52 2.55 1.80
60 4.81 3.64 2.53 4.75 3.31 2.16 4.31 3.13 2.17
90 4.85 3.70 2.59 4.89 3.49 2.32 4.62 3.38 2.32
150 4.91 3.74 2.63 5.01 3.66 2.47 4.89 3.61 2.49
200 4.97 3.79 2.66 5.04 3.71 2.53 4.94 3.70 2.54
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Table 5: Summary moments of equity returns for eight equity markets and banking sectors
during the non-crisis (NC) and crisis (C) periods. The non-crisis period is from April 1, 2005
to February 29, 2008 and the crisis period is from March 3, 2008 to August 31, 2009.

Country Moment
Mean Std.Dev Skewness kurtosis

NC C NC C NC C NC C
(A) Equity markets
Asia
Hong Kong 0.078 -0.053 0.886 1.951 -0.107 0.218 11.446 6.917
Korea 0.084 -0.091 0.929 1.843 -0.676 -0.082 5.672 11.011

Europe
France 0.042 -0.084 0.839 1.872 -0.528 0.251 8.641 7.100
Germany 0.081 -0.092 0.938 2.005 -0.526 0.087 6.584 5.505
UK 0.031 -0.097 0.780 1.819 -0.312 0.079 6.715 7.082

Latin America
Chile 0.078 -0.016 0.713 1.275 -0.470 -0.404 8.319 10.430
Mexico 0.113 -0.063 1.122 1.920 -0.230 0.198 5.453 7.043

North America
US 0.022 -0.065 0.557 1.498 -0.514 0.166 4.937 6.728

(B) Banking sectors
Asia
Hong Kong 0.219 -0.119 1.542 2.206 0.005 -0.008 4.781 4.200
Korea 0.046 0.001 1.289 2.321 0.170 -0.379 4.102 6.522

Europe
France -0.003 -0.050 1.016 2.792 -0.400 0.264 6.838 5.446
Germany 0.024 -0.312 1.173 3.584 -1.389 -1.010 15.664 10.701
UK -0.018 -0.118 0.807 2.651 -0.032 0.051 7.888 6.562

Latin America
Chile 0.050 -0.016 0.974 1.819 -0.181 -0.425 5.368 12.854
Mexico 0.118 -0.051 1.624 2.518 -0.170 0.097 4.716 5.971

North America
US -0.020 -0.141 0.785 3.796 -0.063 0.000 9.386 5.563
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Table 6: Test statistics for contagion based on changes in asymmetric dependence during
the global financial crisis of 2008-09.

(A) Equity markets (B) Banking sectors

Country CS
(a)
12 CS

(b)
21 CS

(a)
12 CS

(b)
21

Asia
Hong Kong 0.03 9.01∗∗ 0.14 8.08∗∗

Korea 0.40 3.17∗ 12.94∗∗ 4.06∗∗

Europe
France 0.18 0.21 7.78∗∗ 0.97
Germany 0.30 0.18 5.68∗∗ 1.33
UK 2.08 1.19 17.63∗∗ 4.13∗∗

Latin America
Chile 14.91∗∗ 1.83 3.42∗ 2.53
Mexico 0.19 0.64 0.13 0.01

North America
US 0.04 0.04 n.a. n.a.

Notes: (a) CS12: Co-skewness contagion test measured in terms of the returns of the US
banking sector and squared returns of market j. (b) CS21: Co-skewness contagion test
measured in terms of the squared returns of the US banking sector and returns of market j.
* denotes significance at the 10% level and ** significance at the 5% level.
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Table 7: Test statistics for contagion based on changes in extremal dependence during the
global financial crisis of 2008-09.

(A) Equity markets (B) Banking sectors

Country CK
(a)
13 CK

(b)
31 CV

(c)
22 CK

(a)
13 CK

(b)
31 CV

(c)
22

Asia
Hong Kong 90.68∗∗ 210.36∗∗ 0.87 1.42 23.73∗∗ 2.42
Korea 137.86∗∗ 170.76∗∗ 14.66∗∗ 11.88∗∗ 107.80∗∗ 9.83∗∗

Europe
France 111.21∗∗ 155.68∗∗ 86.34∗∗ 218.07∗∗ 116.85∗∗ 157.81∗∗

Germany 83.51∗∗ 151.50∗∗ 55.82∗∗ 351.51∗∗ 79.54∗∗ 167.91∗∗

UK 151.14∗∗ 100.17∗∗ 88.87∗∗ 246.91∗∗ 83.32∗∗ 128.01∗∗

Latin America
Chile 25.56∗∗ 7.93∗∗ 2.62 62.29∗∗ 9.71∗∗ 1.31
Mexico 46.40∗∗ 21.23∗∗ 20.45∗∗ 140.49∗∗ 104.35∗∗ 95.01∗∗

North America
US 28.42∗∗ 2.08 5.77∗∗ n.a. n.a. n.a.

Notes: (a) CK13 : Co-kurtosis contagion test measured in terms of the returns of the US
banking sector and cubed returns of market j. (b) CK31 : Co-kurtosis contagion test
measured in terms of the cubed returns of the US banking sector and returns of market j.
(c) CV22 : Co-volatility contagion test measured in terms of the squared returns of the US
banking sector and squared returns of market j. ** denotes the significance of contagion at
the 5% level.
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