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In the past decades financial markets rapidly gained on complexity due to an increased 
demand for risk diversification and hedging. A number of sophisticated instruments was 
developed that capture various aspects of price movements, correlations of assets, 
macro-economic developments, and other changes that might affect the future income 
generated by the considered securities. The pricing of these securities was not 
sufficiently accurate using the traditional asset pricing models. In the search for new 
methods two different approaches appeared. One stream of literature (called the 
reduced-form approach) focused on finding a purely mathematical way of asset pricing, 
without the effort of finding any economical intuition behind the models. In contrast, the 
other group of academics studied the firm and its evolution. These, so-called structural 
models have an intuitive connection to the underlying economics, and therefore they can 
be helpful in understanding the reasons of price movements. This work fits in the 
category of structural approaches. 
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Corporate asset pricing models and debt
contracts

Martin Dózsa and Karel Janda

1 Introduction

In the past decades financial markets rapidly gained on complexity due to an in-
creased demand for risk diversification and hedging. A number of sophisticated
instruments was developed that capture various aspects of price movements, cor-
relations of assets, macro-economical developments, and other changes that might
affect the future income generated by the considered securities. The pricing of these
securities was not sufficiently accurate using the traditional asset pricing models.
In the search for new methods two different approaches appeared. One stream of
literature (called the reduced-form approach) focused on finding a purely mathe-
matical way of asset pricing, without the effort of finding any economical intuition
behind the models. In contrast, the other group of academics studied the firm and its
evolution. These, so-called structural models have an intuitive connection to the un-
derlying economics, and therefore they can be helpful in understanding the reasons
of price movements.

This work fits in the category of structural approaches. First it gives a brief
overview to the development of these models, and proposes their extension to a
stochastic interest rate environment. Second, it uses these models to examine the ef-
fects of parameter settings in debt contracts, and therefore gives a guidance for the
design of an optimal credit contract that maximizes firm value. With the introduction
of a stochastic interest rate environment, it is possible to consider the implications
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of the business cycle period on the optimal debt ratio, and—using stochastic default
barrier—on the bankruptcy decision as well. Game theory is also invoked, therefore
agency costs arising from asymmetric information are predicted and minimized with
the help of safety covenants and properly chosen parameters.

2 Asset Pricing Models

Due to the risk-averse human nature the price of an asset is dependent on its riski-
ness (that is, on the volatility of its future returns): investors price assets below their
expected payoff if they bear some risk. However, the idea of a risk-neutral probabil-
ity measure deals with this issue: it is possible to adjust the probabilities of future
states for risk in a way that assets are priced at their expected values.1 To derive this
risk-neutral probability measure we need the assumption that market prices include
all available information, since known fair prices are needed in order to create a
measure that produces expected values equal to these fair prices. Furthermore this
risk-neutral probability measure is unique if markets are complete.

Models that require the assumption that market prices incorporate all available
information are called market information based models. They can be further di-
vided to structural and reduced-form models.

Models representing the first category are based on the Merton [42] framework
that employs the option pricing theory presented by Black and Scholes [9]. In Mer-
ton’s work a company defaults at the maturity of its debt if the value of its assets
is below the sum of its liabilities. Default prior maturity is not possible. The sub-
sequent models relaxed this assumption as well as others taken by Merton. The
common attribute of these models is that they concentrate on the structural charac-
teristics of a company, including asset volatility and financial leverage.

By contrast, reduced-form (aka hazard rate) models ignore structural character-
istics, and treat bankruptcy as a possible exogenous event that is described as the
first jump time of a point process, without trying to explain the reason of default.
This approach was first proposed by Jarrow and Turnbull [30] and later extended in
several works, for example [29], [37] or [16].

2.1 Merton’s Structural Model

In his pathbreaking paper, Merton [42] paralleled the value of equity in a lever-
aged firm to a European call option on the firm’s assets and used the option pricing
theory developed by Black and Scholes [9] to value it. A corresponding debt is
a zero-coupon bond with finite maturity with a promised terminal payoff B. This
rather simplified description has many unrealistic restrictions, however, because of

1 The probability measure that reflects the true probabilities is called the physical measure.
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its simplicity and new perspective Merton built the basics of the framework used in
structural models.

A large and growing body of literature has relaxed one or more assumptions
posed by Merton. Some of the most important extensions are: more complex capital
structure and safety covenants [8], interest paying debt [20], bankruptcy costs and
tax benefits [34], short and long term debt types [53], or stochastic interest rate
[36, 23, 11, 14].

The original framework’s assumptions, mainly coming from the Black and Sc-
holes [9] option pricing theory are2:

(A.1) There are no transactions costs, taxes, or problems with indivisibilities of assets.
(A.2) There is a sufficient number of investors with comparable wealth levels so that

each investor believes that he can buy and sell as much of an asset as he wants at
the market price.

(A.3) There exists an exchange market for borrowing and lending at the same rate of
interest.

(A.4) Short-sales of all assets, with full use of the proceeds, are allowed.
(A.5) Trading in assets takes place continuously in time.
(A.6) The Modigliani-Miller theorem that the value of the firm is invariant to its capital

structure obtains.
(A.7) The Term-Structure is “flat” and known with certainty. I.e., the price of a riskless

discount bond which promises a payment of one dollar at time τ in the future is
P(τ) = e−rτ where r is the (instantaneous) riskless rate of interest, the same for
all time.

(A.8) The dynamics for the value of the firm, V , through time can be described by a
diffusion-type stochastic process with Stochastic Differential Equation (SDE)3

dV = (µV −C)dt +σV dW (1)

where µ is the instantaneous expected rate of return on the firm per unit time,
C is the total dollar payout by the firm per unit time to either its shareholders
or liability-holders (e.g., dividends or interest payments) if positive, and it is
the net dollars received by the firm from new financing if negative; σ2 is the
instantaneous variance of the return on the firm per unit time; dW is a standard
Gauss-Wiener process.

Suppose a security with market value, Y dependent on the value of a firm. More
specifically, its price can be written as a function of the firm value V , and time t:
Y = F(V, t). The dynamics of this security can be formally written using a SDE as

dY = [µYY −CY ]dt +σYY dWY , (2)

where µY , CY , σy and WY and defined similarly as in (1). Using the stochastic equiv-
alent of chain-rule, the so-called Itō’s Lemma we also have:

2 The assumptions are written exactly in a way as Merton wrote them, except for the symbols used
3 This process is called Geometric Brownian Motion.
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dY = FV dV +
1
2

FVV (dV )2 +Ft

=

[
1
2

σ2V 2FVV +(µV −C)FV +Ft

]
dt +σV FV dW, (3)

where subscripts denote partial derivatives, and the second equation comes
from (1). Comparing terms in (2) and (3) we have

µYY ≡ 1
2

σ2V 2FVV +(µV −C)FV +Ft +CY (4)

σYY ≡ σV (5)
dWY ≡ dW (6)

The last equation indicates that Yt and Vt are perfectly correlated, as they are
driven by the same stochastic parameter. This implies the existence of such linear
combination of these securities that the resulting payoff is non-stochastic. Using
this fact Merton constructed a portfolio of three securities V , Y and riskless debt in
a way that the initial investment was zero4. He showed that any security Y whose
value can be written as a function of the firm value and time has to satisfy the
following equation:

0 =
1
2

σ2V 2FVV +(µV −C)FV − rF +Ft +CY (7)

As we can see, F depends on the value of the firm, time, interest rate, the volatility
of the firm’s value, the payout policy of the firm and the payout policy to the holders
of Y . It does not depend on the expected rate of return neither the risk preference of
the investors. This is the result where the idea of risk-neutral valuation comes from.
Also it should be noted, that the only thing that distinguishes one security from the
other (debt vs. equity) is a pair of boundary conditions.

For pricing a simple corporate bond Merton took four further assumptions:

(A.9) The corporation has two classes of claims, a single homogeneous class of debt
and the residual claim, called equity.

(A.10) The firm commits to pay $B to the bondholders at date T .
(A.11) If the payment is not met at T , the bondholders immediately take over the com-

pany, and so the shareholders receive nothing.
(A.12) The firm cannot issue any new claims that are not junior to the original one nor

can pay dividends or do share repurchase before T .

As it can be seen this set-up ensures no default prior to maturity. Using equa-
tion (7) for the value of the debt, D, setting C =CY = 0 in line with the assumptions
and defining τ = T − t, so thus Dt =−Dτ we can write

4 For the details about the construction of this portfolio, and for the complete derivation of equa-
tion (7) see [42] pp. 451–452.
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0 =
1
2

σ2V 2DVV + rV DV − rD−Dτ (8)

Denoting the value of equity as E and using (1), we have V = D(V,τ)+E(V,τ). As
E and D are non-negative, we know:

D(0,τ) = E(0,τ) = 0

and also D(V,τ)≤V , that is for V > 0 we have the other boundary condition

D(V,τ)/V ≤ 1

As the payment is made exactly when V (T )> B, the initial condition for the debt at
τ = 0 is

D(V,0) = min[V,B]

The function D(V,τ) can be found using (8) and the above boundary conditions
using standard methods as separation of variables. However, as Merton noticed, the
problem can be transformed to another, already solved. For the value of equity holds
E(V,τ) =V −D(V,τ), so the solution for equity is given by (7):

0 =
1
2

σ2V 2EVV + rV EV − rE −Eτ (9)

with a corresponding initial condition

E(V,0) = max[0,V −B]

and the boundary conditions E(0,τ) = 0 and E(V,τ)/V ≤ 1. This is identical to the
equations for an European call option on a non-dividend-paying stock in the Black-
Scholes option pricing model. The firm value corresponds to the stock price, the
equity to the option value and B to the exercise price.

Therefore the equity price is

E(V,τ) =V Φ(d1)−Be−rτ Φ(d2), (10)

where

d1 =
ln(V/B)+

(
r+ 1

2 σ2
)

τ
σ
√

τ
d2 = d1 −σ

√
τ

and Φ(·) is the cumulative standard normal distribution.
As D =V −E, the debt value can be expressed as

D(V,τ) =V Φ(−d1)+Be−rτ Φ(d2) (11)

with the d1 and d2 as in (10).
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2.2 First Passage Time Approach

The original Merton [42] model described in the previous section uses several as-
sumptions that limit its practical implementability. One of the most unrealistic re-
striction is the impossibility of default before maturity. To solve this problem Black
and Cox [8] came with a set-up where default occurs if the firm value touches a
threshold level. This level is called the Default Barrier (DB), and generally can be
constant [34, 36], deterministic [8, 35] or stochastic [11, 14] function of time. Mod-
els with a DB not only explain early default, but are also able to produce a large
variety of Recovery Rates (RRs) and therefore reflect more precisely factors as bond
covenants, bankruptcy costs or taxes.

The name of the First Passage Time (FPT) models corresponds to the method
how the default is described mathematically: since the evolution of the firm value is
represented using a Geometric Brownian Motion (GBM), it is possible to transform
the probability distribution of the default to the FPT of a Wiener process. These
models can be also divided to two groups in dependence on the determination of
the DB: it can be set exogenously [8, 36], or be an endogenous result of an op-
timization process [34, 57]. The notation used throughout the section follows the
one introduced in the description of Merton’s model, unless it is explicitly defined
otherwise.

2.2.1 Black and Cox Model

Black and Cox [8] extended the original Merton [42] framework to include several
features of debt contracts, namely safety covenants, subordinated bonds, and restric-
tion on asset sales. Since this section discusses basic asset pricing methods, only the
introduction of a DB will be described.5

The evolution of the firm value is the same as in the Merton model [42], except
a restriction that the continuous dividend payment received by the stockholders is a
constant fraction of the firm value. Therefore equation (1) takes the form

dV =V (µ − c)dt +σV dW (12)

with a constant c=C/V representing the payout ratio received by the equity holders.
Again, the short-term interest rate is assumed to be constant, and so the interest-rate
risk is disregarded. The original case described in [8] also assumes zero bankruptcy
costs.

A safety covenant, that provides a right for the bondholders to force bankruptcy
if the firm is performing poorly, is introduced. This poor performance is signalled
by the fall of the firm value under a time-dependent default barrier defined as v̄(t) =
Ke−γ(T−t), t ∈ [0,T ) for some constants K > 0 and γ . The creditors take over the firm
as soon as the firm value hits this barrier. Consequently default could be triggered

5 For pricing of more complex capital structures and the issue of contractural design see the original
work of [8].
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in two ways: prior to maturity (by reaching the threshold level) or at maturity, if the
firm value was above the DB but is below the debt principal at T . To simplify the
notation let us set the default barrier as one function:

vt =

{
v̄(t) for t < T ,
B for t = T .

The default time τ is

τ = inf{t ∈ [0,T ] : Vt < vt} .

We also assume the following:
V0 > v̄(0)

Ke−γ(T−t) ≤ Be−r(T−t), ∀t ∈ [0,T ]

i.e. the firm is not in default initially and the default barrier (and hence the payment
to the bondholder) is never higher than the present value of the principal amount.
This holds also for t = T , therefore K ≤ L.

Zero-Coupon Bond In Merton’s model the debt pricing function solved equation
8. The analogous Partial Differential Equation (PDE) for zero-coupon debt value
with default barrier is

0 =
1
2

σ2V 2DVV +(r− c)V DV − rD+Dt (13)

with the boundary condition

D(Ke−γ(T−t), t) = Ke−γ(T−t)

and terminal condition
D(V,T ) = min(V,B).

Equation (13) can be solved using the classical methods used for PDEs or with a
probabilistic approach.6

Note, that similarly as the equity value in [42] corresponds to a call option, it cor-
responds to a down-and-out barrier option here. Using the in-out parity (i.e. the plain
vanilla option price equals to the sum of down-and-out and down-and-in barrier op-
tions price, all having the same strike price, underlining asset, maturity and the last
two having the same barrier as well), the equity has a lower value by the price of
a down-and-in barrier option in the presence of a DB. As there are no bankruptcy
cots, this value is transferred to the bondholder.

Perpetual Coupon Bond A perpetual coupon bond has infinite maturity and con-
tinuous coupon payment at a constant rate cD.7 The net cost of the coupon is fi-

6 The solution of (13) can be found in [8] p. 356
7 Here we use the subscript D in order to distinguish this pay-out from c, which was the payout
ratio to equity holders.
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nanced by issuing additional equity. Its price DcD(t) equals

DcD(t) = lim
T→∞

E
(∫ T

t
cDe−r(s−t)1{s<τ̄}ds

)
+ lim

T→∞
E
(

Keγ(τ̄−T )e−r(τ̄−t)1{t<τ̄<T}

)
under risk-neutral probability measure with 1 used as a symbol for indicator func-

tion. Since the coupon payments are constant it is straightforward to define the de-
fault barrier constant as well, i.e. set γ = 0. With the assumption that dividends paid
to equity holders are zero (that is c = 0) DcD can be written as8

DcD =
cD

r

(
1−

(
v̄
Vt

)α)
+ v̄

(
v̄
Vt

)α
, (14)

with α = 2r/σ2.

2.2.2 Leland’s model

Leland [34] extended the perpetual coupon bond model described above by incorpo-
rating bankruptcy costs and tax benefits. Now V is a variable for the “asset value” of
the firm; the total firm value is V less the expected costs of bankruptcy plus the value
of the tax shield. V follows the same diffusion process as in (12) with no dividend
payments (c = 0):

dV =V µdt +σV dW,

hence V is not affected by the financial structure of the firm, thus the difference
between coupon payments and tax benefits is financed by equity dilution.

When bankruptcy occurs at level Vt = VB a fraction 0 ≤ ω ≤ 1 is lost as costs
due to bankruptcy, and the debt holders receive the remaining (1−ω)VB leaving the
equity holders with nothing. The value of the bond can be written as

DcD(Vt) =
cD

r

(
1−

(
v̄
Vt

)α)
+(1−ω)v̄

(
v̄
Vt

)α
. (15)

Note that with ω = 0 this is identical to (14). If we denote pB = (v̄/Vt)
α (15) be-

comes
DcD(Vt) =

cD

r
(1− pB)+(1−ω)v̄pB.

pB represents the value of a contingent claim that pays $1 when bankruptcy oc-
curs, ω v̄pB is the present value of expected bankruptcy costs, and cD/r (1− pB) is
the present value of expected coupon payments. Consequently the value of the tax
benefits is equal to:

T S = Tc
cD

r
(1− pB) ,

where Tc is the corporate tax rate.

8 For the mathematical derivation see [7] p. 81 and the preceding calculations.
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The total value of the firm, denoted by G(Vt) is therefore equal to

G(Vt) =Vt −ω · v̄ · pB +Tc
cD

r
(1− pB) .

Since the total value of the firm is equal to the sum of its equity and debt value, the
shareholders’ claim can be found as

E(Vt) = G(Vt)−DcD(Vt)

E(Vt) = Vt − (1−Tc)
cD

r
(1− pB)− v̄ · pB.

Intuitively the value of equity is equal to the value of firm’s assets less the present
value of expected coupon payments reduced by tax and the contingent claim on v̄.
Note that the value of equity is not dependent on the bankruptcy costs, and so that
is paid in full by the bondholders.

2.3 Models with Stochastic Interest Rates

One of the shortcomings of the Black and Cox [8] model is the assumption of con-
stant and known risk-free interest rate. This restriction is relaxed in models with
stochastic interest rates. Because our work9 assumes stochastic interest rate as well,
we will make a review of the relevant literature at this point.

2.3.1 Longstaff and Schwartz

Longstaff and Schwartz [36] price corporate bonds reflecting both interest rate risk
and credit risk using risk-neutral probability measure for both stochastic processes.
The evolution of the short-term interest rate is inherited from the Vasicek [52]
model:

drt = (a−brt)dt +σrdW̃t ,

and the firm-s value is driven by the

dVt =Vt(rtdt +σV dW ∗
t )

SDE. As we can see the constant drift from the Leland [34] model is replaced by the
stochastically evolving short-term interest. Furthermore, following Longstaff and
Schwartz [36] we have the following properties:

• Brownian motions W̃ and W ∗ are correlated with the instantaneous correlation
ρV,r.

• DB is represented as a constant threshold level v̄.

9 See Sect. 4
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• Recovery Rate (RR) is independent on the default time, proportional to the face
value of the bond and paid out at maturity.

• v̄ ≥ B, hence the debt is repaid in full if default does not occur prior maturity.10

• The firm has one or more debt classes with different recovery rates (1−ωi),
where ωi is the writedown rate for the ith class. The seniority of the claims is
already reflected in the writedown rates, and therefore does not play essential
role.11 It is natural to suppose the following relationship: v̄ = ∑k

i=1(1−ωi)Bi
with Bi (∑k

i=1 Bi = B) representing the total face value of debt from the ith class.

It we define τ , the time of default in the traditional way, that is

τ − inf{t ∈ [0,T ] : Vt < v̄},

then the bond’s payoff at T can be written as

Di(VT ,T ) = B(1−ωi1{τ≤T}).

For finding an analytic solution of the bond value at time t < T with given Vt
there are basically two ways: by solving the fundamental PDE with the correspond-
ing boundary and terminal conditions, or alternatively, by probabilistic approach. A
closed-form solution however has not yet been produced using any of them. For this
reason—even if some quasi-explicit results can be obtained analytically—numerical
computations are required in order to obtain the results of the model. Such compu-
tations were made by the authors as well as others [33, 14]. A shortcoming of this
model is, that it produces credit spreads close to zero for low debt maturities.

2.3.2 Briys and de Varenne

Briys and de Varenne [11] submitted a model that addressed some restrictive fea-
tures and assumptions of the then available literature. For example, the previously
analyzed Longstaff and Schwartz [36] model cannot work with a default barrier that
would be lower than the present value of the debt principal. Their work also assumes
stochastic default barrier, as it is derived from the instantaneous short-term interest.

The short-term rate dynamics follows the so-called generalized Vasicek model,
which is a mean-reverting stochastic function:

drt = a(t)(b(t)− rt)dt +σ(t)dW̃t ,

where a,b,σ : [0,T ] → R are known, deterministic functions. Consequently the
price of a default-free zero-coupon bond, P follows the dynamics

dP(t,T ) = P(t,T )(rtdt +b(t,T )dW̃t)

10 In fact this inequality is not explicitly wrote down by [36], however it is implicitly assumed.
11 Note that this set-up can easily catch Absolute Priority Rule (APR) violations.
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for some deterministic b(·,T ) : [0,T ]→ R. The firm value V is assumed to follow
the process

dVt

Vt
= rtdt +σV (ρdW̃t +

√
1−ρ2dŴt),

with constant σV > 0, and mutually independent Brownian motions W̃ and Ŵ . The
local correlation coefficient between the risk-free rate and firm value is ρ = ρV,r.
If we denote W ∗ = ρdW̃t +

√
1−ρ2dŴt , it is visible that the firm value process is

defined in the same fashion as in [34].
The DB is defined as the price of a default-free bond with the same maturity and

some face value K ∈ (0;B] not greater than the defaultable bond principal:

vt =

{
K ·P(t,T ) f ort < T,
B f ort = T.

The default time is, as usually,

τ = inf{t ∈ [0,T ] : Vt < vt}.

The payoff at default is dependent on τ: for τ < T the bondholders receive a (1−ω2)
part of the remaining assets, whereas for τ = T this payoff ratio may be different,
and is represented as (1−ω1). The remaining ω1 respectively ω1 part is lost as
bankruptcy cost and/or paid out to equity holders (APR). The bond’s final cash flow
at T is therefore

D(Vt ,T ) = (1−ω2)B1{τ<T}+(1−ω1)VT 1{τ=T}+B1{τ>T}

If the bond price volatility function b(t,T ) is known, than the price of a default-
able corporate bond can be derived as a closed-from solution:

D(t,T ) = P(t,T ) · [B−D1 +D2 −ω2R2 −ω1R1] , (16)

where Ft =Vt/P(t,T )

D1 = BΦ(d1)−FtΦ(d2),

D2 = KΦ(d5)− (FtL/K)Φ(d6),

R2 = FtΦ(d4)+KΦ(d3),

R1 = Ft
(
Φ(d2)−Φ(d4)

)
+K

(
Φ(d5)−Φ(d3)

)
,

with

d1 =
ln(B/Ft)+

1
2 σ2(t,T )

σ(t,T )
= d2 +σ(t,T ),

d3 =
ln(K/Ft)+

1
2 σ2(t,T )

σ(t,T )
= d4 +σ(t,T ),
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d5 =
ln(K2/(FtB))+ 1

2 σ2(t,T )
σ(t,T )

= d6 +σ(t,T ),

and

σ2(t,T ) =
∫ T

t

(
(ρσV −b(u,T ))2 +(1−ρ2)σ2

V
)

du.

Let us analyze (16) here: B−D1 corresponds to the Mertonian valuation (i.e.
risk-free bond less put-to-default option), D2 is associated with the value brought to
the debt holders by the possibility of early default triggered by safety covenant. The
last two terms, ω2R2 and ω1R1, are both positive,12 and represent the costs of early
default and default at maturity respectively. It is therefore clear that the bond’s price
is decreasing in ω1 and ω2.

3 Credit Contracts

This section explains the reasons for issuing debt, and gives an insight to the design
of credit contracts that aims for the maximization of firm value and the prevention of
unexpected losses in the contracting parties’ claims. The answer to this problem is
given using the tools described in the previous section, where we briefly introduced
theoretical works that help us in pricing the two basic types of claims on the firm’s
assets: debt and equity.

3.1 Capital Structure

The capital structure of a firm refers to the proportion of securities that ensure the
needed funds for financing the firm’s projects. These securities have two basic types:
a riskier asset called equity and a relatively safe one, the debt. Equity has two further
sub-groups (preferred and common), debt has many flavours, and furthermore there
exists a group called “hybrid securities” including, for example convertible bonds.
In this work we will concentrate on the two basic types only, however the model
presented in Sect. 4 can be easily extended to more complex capital structures as
well.

The value of the firm is therefore the sum of the market value of its debts and
its equity: V = D+E. Proposition I of the Modigliani-Miller (M-M) theorem [44]
says that the market value of the firm is not dependent on its capital structure, if the
following assumptions hold:

• There are no taxes
• The market is efficient (and consequently the bankruptcy costs are zero)
• Absence of asymmetric information

12 See [7] pp. 105–106
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Therefore under these assumptions capital structure does not matter. On the con-
trary, when capital structure matters, at least one of the M-M assumptions is vio-
lated. Consequently the M-M assumptions can guide us in finding the determinants
of an optimal capital structure.

The M-M theorem can be extended to an environment with taxes, where interest
payments are a tax deductible item. The amount saved on taxes due to leverage is
called the Tax Shield (TS) and can be expressed as T S = TC ·D, where TC is the
corporate tax rate and D is the value of a perpetual debt. The tax shield is therefore
increasing in the debt/equity ratio.

It was showed13 that the second assumption is violated as well: financial distress
and bankruptcy have direct and indirect costs, such as loss of costumers, suppliers,
and employees due to uncertain future, need of immediate sale of assets at lower
prices, expenses on experts, and so on. As higher leverage means higher interest
payments and thus higher probability of not meeting them and falling into financial
distress, the expected distress costs are increasing with higher leverage. The effect
on the overall firm value is therefore the opposite as for the tax shield.

Asymmetric information—i.e. the violation of the third assumption—implies
agency costs, when the conflict of interest between different groups of stakehold-
ers causes suboptimal investment decisions.14 The typical examples of agency costs
are over-investment, under-investment, and cashing-out problem, all of them gain-
ing in significance in states of (or close to) financial distress. The negative effects of
agency costs are increasing in leverage, and therefore shifting the optimal indebted-
ness to lower values.

3.2 Absolute Priority Rule

Absolute Priority Rule (APR) is a concept that describes how the assets should be
divided among stakeholders after the event of bankruptcy. The basic order of the
APR is, that a junior creditor receives some fraction of the remaining assets only
in the case when senior creditors are paid in full. Similarly, equity holders receive
nothing, unless all the creditors (both secured and unsecured) get the whole amount
of their claim. Furthermore, when a class of stakeholders have the same seniority,
they all receive the same ratio of their principal.

A considerable amount of literature15 has been published on the violations of the
APR: while under Chapter 7 liquidation absolute priority is generally enforced, in
the case of Chapter 11 reorganizations16 violation of APR is rather a rule than an
exception. The reason is, that equity holders have the power to enforce APR de-
viation during workout negotiations due to the structure of Chapter 11 rules. The

13 See [47], or [10]
14 More on this see, for example [2]
15 See, for example, [39], [43], [54], [25], and [26]
16 See [18] and [55]
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management can put the firm in Chapter 11 at a moment when it is in the best in-
terest of equity holders. As there is an automatic stay on payouts to claimants under
Chapter 11, a renegotiation could enhance the situation of both equity and debt hold-
ers. In addition, the reorganization plan needs to be accepted by the shareholders as
well, and therefore they can prolong the bargaining process, and therefore increase
the costs of default. This is clearly not in the interest of the senior claimants, and so
they rather distribute some value to equity holders and avoid long negotiations. For
further discussion of optimality of negotiations during bankruptcy procedures see
[27].

A large amount of empirical research have been done in the past two decades
about the consequences of these absolute priority violations, and the result showed
that APR deviations are beneficial ex ante. They decrease the severity of over-
investment in assets requiring managers’ special skills and under-investment in firm-
specific human capital [5], might improve the timing of bankruptcy [48], hold back
excessive risk taking [19] and help to resolve under-investment problem [56]. On the
other hand, negative effects of absolute priority violation arise through the problem
of moral hazard with respect to investment decisions [4].

3.3 Game Theory Analysis of Credit Contracts

As a typical company of our interest has complex capital structure with many parties
of interest, it is reasonable to examine the problem of financing from the perspective
of Game Theory. This section is therefore dedicated to this topic, and is particularly
based on the work of Ziegler [57]. Our paper may be viewed as additonal, comple-
mentary, approach to the game theory analysis of the corporate bankruptcy provided
by [28].

The method combines game theory and option pricing, so the maximized value
of an option (note the parallel of options and credit contracts) can be calculated. The
essence of the method is a three-step procedure:

1. The game between players is defined. The game tree is constructed.
2. The uncertain payoffs are valued using option pricing theory, where the parame-

ters are the player’s possible actions.
3. The game is solved using backward induction or subgame perfection.

The strengths of such a method are: taking into account the time value of money
and the market price of risk, and separating the valuation problem from the analysis
of strategic interaction.

3.3.1 Credit and Collateral

In financial contracting two forms of moral hazard occur: risk-shifting in the situ-
ation of hidden action, and observability problem in the situation of hidden infor-
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mation. In the following text these two basic problems are analyzed, whereas more
complicated issues will be addressed in the upcoming parts of the section.

The Risk-Shifting Problem The origin of the risk-shifting problem is the bor-
rower’s incentive to influence the risk of the project, as he could increase his ex-
pected payoff on the expense of the lender. If he is able to change the risk of the
project without the creditor’s notice, we are talking about hidden action. The lender
usually anticipates such behaviour, and requires higher interest rate that leads to ad-
verse selection [50]. An alternative solution is to closely monitor the activities of
the borrower, however this increases the costs of lending and therefore the interest
rate. The best option would be a contract designed in a way that the borrower has
no incentive for risk-shifting without the need of monitoring.

Ziegler [57] examined the situation when the borrower is able to set the riskiness
of the project after the debt contract have been signed and the final payoff is observ-
able to both parties with no cost. As it turned out, there exists an infinite number
of contracts that preclude risk-shifting, however only contracts with proportional
payout are renegotiation-proof (i.e. a situation, when a renegotiation is desirable
for both the creditor and the debtor cannot occur). Renegotiation usually involves
costs, and therefore both parties will have an incentive to agree on a contract that is
not changed over its whole life. This means, that in the case of hidden action, only
all-equity financing avoids risk-shifting.

The Observability Problem When the terminal value of the investment is not ob-
servable by both parties, a problem arises how the final transfer should be deter-
mined. In fact, it can be expected in many situations, that the borrower will have
more accurate information about the terminal value, and therefore he can report
distorted figures to minimize his payout to the lender.

According to Townsend’s [51] costly state verification model—where the lender
and the borrower agree in advance on situations when the verification should be
taken—the optimal contract has the following properties (pure strategies allowed
only):

• If verification does not take place, the payment to the lender is equal to some
constant amount D.

• Verification should be taken when the terminal value is below some pre-defined
threshold.

This contract is similar to a debt contract with fixed payment D and verification
as a parallel to declaration of bankruptcy. Thus the observability problem can be
addressed with constant promised payment in no-bankruptcy states. As risk-shifting
can be solved only by proportional payment, there is no contract that could avoid
both problems simultaneously.

Collateral is an asset, that can be—according to the credit contract—seized in the
event of default to limit the lender’s losses. A considerable amount of literature has
been published on the role of collateral in providing motivation for the borrower to
avoid default. For instance, in [3], the loan repayment decision is dependent entirely
on the relative values of the collateral and the amount of outstanding debt, default
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occurring if the value of the collateral at maturity is below the amount due. An
inverse relationship between agency costs and the amount of collateral available to
borrowers has been shown by [6].

Chan and Kanatas [13] mentioned two types of collateral: it is an existing asset
(for example the financed project) or it is an additional asset, normally not available
to the lender. Ziegler’s model examines the effects of the latter, and concludes that
risk-shifting problem disappears only when the loan is fully collateralized, result-
ing riskless loan. However, collateral protects the lender in two ways: grants higher
recovery after bankruptcy and reduces the borrowers incentives to risk-shifting be-
haviour.

3.3.2 Endogenous Bankruptcy and Capital Structure

In the previous section the credit was a finite maturity contract with a single pay-
ment to the lender at maturity. Although such approach is good to understand project
financing, it is less useful to model corporate financing. In reality firms keep operat-
ing by issuing new debt to finance their new projects, or to repay the maturing debt
and therefore keep the ongoing projects alive. Bankruptcy happens, when the entity
is unable to meet its contractual payments. In fact equity holders can decide at any
point in time whether they want the firm to make the agreed payments or default and
trigger bankruptcy. Thereby bankruptcy is an endogenous decision made by equity
holders, even if it might be initiated in principle by the creditor.

Ziegler [57] analyses endogenous bankruptcy building on the base of Leland’s
[34] infinite horizon model with the introduction of several modifications. First,
interest on the loan is divided to two distinct types, a continuous effective payment
and an increase in the face value of the loan. This division allows to investigate the
role of these two components in finding market equilibrium. Second, endogenous
bankruptcy is discussed as a principal-agent problem and the agency costs of the
equity holder’s socially suboptimal behaviour are quantified. Third, the effect of
loan covenants and information asymmetry are considered. Fourth, the properties of
optimal capital structure are studied, and finally, an incentive contract is developed
that could influence equity holder’s bankruptcy choice.

The Model A lender and a borrower signs the following contract: at initial time
the lender transfers a loan of F0,17 and in exchange the borrower pays instantaneous
interest of ϕD(t)dt, where D(t) = D0eκt is the face value of the debt at time t and ϕ
is the instantaneous interest rate to be effectively paid on the perpetual debt. Asset
sales are prohibited, therefore net cash outflows on interest payments are financed
by equity dilution. As κ is the rate of increase in the face value of debt (and therefore
the rate of increase in interest payments as well), it is assumed, that κ < r, where r
is the risk-free interest rate.18 Sinking fund corresponds to the setting κ < 0.

17 F0 denotes the fair value of the loan at time 0, as it will be described in more details later.
18 Otherwise the present value of the interest payments would converge to infinity.
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If (and only if) the debtor defaults on his interest payments, the firm is liquidated
with costs proportional to the asset value. The creditor therefore receives (1−ω)SB
in the event of default, where ω is the proportion lost due to liquidation and SB is
asset value at the time of bankruptcy.

The game has the following structure:

1. The amount of debt, D0, and interest rates κ and ϕ are determined, the contract is
signed. In exchange for its promised obligations the firm receives the fair value
of the loan, F0.

2. The firm makes its investment decision with the associated risk, represented
by the volatility rate, σ . In the financing of additional (later) projects under-
investment problem might occur.

3. Equity holders choose their default strategy SB. In the event of bankruptcy ωSB
is lost, (1−ω)SB is received by debt holders, and nothing remains to the equity
holders.

The management is assumed to fully represent the equity holder’s interest, hence
there is no conflict of interest between these two parties. [57] assumes the asset
value, S to follow the usual geometric Brownian motion, and estimates the firm,
equity and debt value using the standard framework based on Merton.

In line with the principle of backward induction, the last stage of the game is
examined at first. In this step the equity holders choose optimal asset level SB for
triggering bankruptcy. This level can be found using first-order condition, and is
equal to

SB =
(1−θ)ϕD(t)
r−κ +σ2/2

,

where θ is the corporate tax rate.
As it can be noted, this optimal level is linear in ϕD(t), and is independent

on current asset value S. Furthermore, higher asset risk (σ ) implies lower optimal
bankruptcy boundary.

The Principal-Agent Problem and Agency Costs The principal-agent problem
stems from the fact that the debtor (agent) adopts a different bankruptcy barrier
than it would be optimal from the creditor’s (principal’s) view.19 The creditor would
choose a default boundary either to zero (to make his claim riskless) or as high as
possible (to receive the firm’s assets when they have a high value). The socially
optimal bankruptcy strategy turns out to be the one with the lowest possible level of
bankruptcy triggering, i.e. SB = 0. This comes from the positive cost of bankruptcy
for any asset value higher than zero.

In order to construct an incentive contract that would lead to socially optimal
bankruptcy the effectively paid interest on debt, ϕ has to be zero, since for any other
value the equity holders would trigger bankruptcy at a positive asset level. However,
setting ϕ = 0 means that the claim is worthless, as no interest is paid out. In other

19 The optimal default levels from the debtor’s and the creditor’s points of view are derived in [57],
pp. 48–49.
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words, because of the borrower’s limited liability, socially optimal default level can
not be reached.

Armed with the above results the agency costs arising from endogenous bankrupt-
cy can be expressed. The agency cost represents the expected deadweigth loss
caused by the expected costs of bankruptcy. Intuitively, these costs are in direct
relationship with the probability of bankruptcy (increasing in SB and ϕD(t)), and
with the proportional loss due to liquidation, ω .

The Investment Decision - Under-investment and Risk-shifting Once we have
investigated the equity holder’s optimal bankruptcy decision SB, we should examine
their investment choices. Two main issues are studied in the following paragraphs:
under-investment and risk-shifting. Myers [45] highlighted that firms may abandon
profitable projects in the existence of debt by refusing recapitalization of the firm.
The reason of doing so is, that although equity holders would bear the full costs of
the project, debt holders also benefit from this investment as the debt becomes less
risky.

Ziegler [57] analyses the under-investment problem with a model that represents
new investment as a scale up of the existing operations by some factor w > 0. The
investment requires therefore additional wS of funding and increases the value of
the firm’s assets to (1+w)S. Since additional (equity funded) investment reduces
expected bankruptcy costs and increases tax shield,20 it always increases the overall
firm value.

The model’s calculated change in the value of the equity shows, that it is always
lower than the costs of the investment, and therefore the overall return to equity
holders is negative. Hence under-investment always arises. This problem can be
addressed by renegotiation of the debt (reduction of D, ϕ , or κ) in order to ensure
positive expected return on investment for the equity holders, or alternatively by
sharing the costs of the new investment.

So far in the model of endogenous bankruptcy constant and known asset risk σ
was considered, however in some cases this assumption might not hold. The ques-
tion is, whether the agent has an incentive to increase the asset risk if the principal
can not observe (and therefore control) his action. To answer this, Ziegler examined
the partial derivative of the equity value with respect to σ2. The result shows, that a
leveraged firm has always incentives to increase asset risk. This has an implication
for the optimal behaviour of the lender: he should focus on monitoring asset risk in-
stead of asset value, as the risk is the relevant variable for the borrowers’ bankruptcy
decision.

Agency costs of risk-shifting can be expressed as a difference between the firm
value at the social optimum less the firm value with the possibility of risk-shifting.
Since firm value decreases with bankruptcy costs, it can be maximized by setting
these costs to zero by approaching σ to zero. Agency cost is therefore equal to

C = lim
σ→0

W (S)− lim
σ→∞

W (S),

20 Note that early bankruptcy means no tax deductibility in the future, and therefore it decreases
the current value of the tax shield.
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where, again firm value is W . As Ziegler [57] showed, the difference in the above
limits is

C =
θϕD(t)
r−κ

,

i.e. to the value of the (safe) tax shields.

Effects of Loan Covenants It was shown in the previous sections, that under cer-
tain conditions, a “plain vanilla” debt contract21 might imply deadweigth loss that
moves the resulting firm value below its socially optimal level. To mitigate these
losses, loan covenants might be introduced. A loan covenant is a condition agreed at
debt issue that has to be fulfilled by the debtor. Covenants can take many forms, reg-
ulating operating activity, asset sale, cash payout and others22. Here, so-called safety
covenants are analyzed which give the bondholder the right to force bankruptcy if
certain conditions are met. More specifically, suppose a covenant that forces the
firm into bankruptcy, if its asset value falls below some specified level SB. Reaching
this level means transfer the ownership of the assets to the lender. As it turned out,
the risk-shifting incentive depends on the level of this barrier: for low levels risk-
shifting incentive is still present, however for higher values the situation changes
and the debtor will have an incentive to decrease the risk of the investment. The
breakpoint is naturally higher than SB, the endogenous bankruptcy barrier set by
the equity holders only.23 Concluding the effects of such loan covenant, we should
remark that they protect the lenders in two ways:

First, they reduce losses of the creditors by setting the default barrier higher, and
Second, they mitigate or even eliminate equity holder’s risk-shifting incentives.

Hence, setting a safety covenant with an agreed level has similar effects as using
collateral.

3.3.3 The Financing Decision

Using the results derived, we can investigate the way a firm should be financed.
We will analyse—under endogenous bankruptcy—the optimal capital structure of
a firm, and the effects of the way how the interest is divided between the interest
effectively paid and growth rate in the face value of debt.

Optimal Capital Structure Assume that the asset risk is known to the lender
and risk-shifting is not possible, or alternatively, it is possible only within certain
bounds. In the latter case the lender would anticipate the borrower’s risk-shifting
behaviour, and therefore he will use the maximal available volatility value in his
loan pricing calculations, σ̄ . We assume that the face value of the loan cannot be

21 Here “plain vanilla” refers to the absence of additional clauses defining loan covenants.
22 A comprehensive analysis of covenants and their effect on debt pricing can be found in the work
of Reisel [49].
23 For the mathematical derivation of this statement see [57], pp. 58–59.
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changed after the initial agreement, and that the borrower takes the offered interest
rates κ and ϕ as given when selecting the initial face value of debt, D0.

The financing decision is made with respect to the equity holders’ effort to maxi-
mize the value of their holdings after the initial investment, I. Ziegler’s calculations
show, that there exists an interior maximum of the net equity value (that is the dif-
ference between the value of equity after the debt is taken and the equity holders’
initial investment) in terms of optimal capital structure. As the rate of effective inter-
est payments, ϕ rises—and consequently so does the cost of the debt service—the
optimal face value of debt decreases. Similarly a higher growth rate in the face value
of debt, κ , means lower optimal face value of debt. It also turns out, that changes in
ϕ are perfectly offset by the endogenously chosen face value of the debt, and so the
continuously paid coupon remains the same. Thus ϕ affects the nominal leverage
(D0/S0), however it does not affect the leverage in market terms (F0/S0).

Interest Payments vs. Increase in the Face Value of Debt A natural question is,
how the debt service should be divided between the interest payments ϕ , and the
growth rate of face value of the debt κ . As the optimal leverage in market terms is
not affected by ϕ , the borrower is indifferent to the interest rate effectively paid. On
contrary, the rate κ does affect the optimal capital structure and the net equity value:
with increasing κ the optimal leverage ratio and the net equity value decreases.
Consequently equity holders prefer to pay higher effective interest instead of higher
growth in the face value of debt.

Expected Life of Companies As the optimal capital structure and the conditions
of the loan are given, it is possible to express the mean time of default. Using the
analysis of Ingersoll [24], we know that the mean time of passing the origin for a
standard geometric Brownian motion dx = µdt+σdWt with initial value x0 is given
by

τ̄ =
x0

µ
With the help of this formula—after some computations—the mean time of de-

fault under endogenous bankruptcy can be revealed24. This value turns out to be
independent on the parameter ϕ , in line with the finding that the borrower offsets
the changes in the effective payout rate by changing the face value of debt. Again,
the important parameter is κ , that influences mean time to bankruptcy.

An Incentive Contract It is worth to consider whether the lender can set the con-
tract parameters ϕ and κ in a way that influences the borrower’s bankruptcy strategy
SB. As it is in the lender’s interest to have a higher default barrier, we will exam-
ine the possibilities of an incentive contract that induces the borrower to declare
bankruptcy at a higher asset value. Early bankruptcy is interesting for the borrower
for several reasons. First, the lender might be himself an agent and so he might
have restrictions on the maximum risk he can take. Second, early liquidation may
increase beliefs about the lender’s solvency and therefore avoid some problems such

24 See [57], pp. 67–68
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as bank runs. Third, it enables the lender to save on monitoring costs as he can use
early information provided by default on interest payments.

Since changes in the effective interest rate are perfectly offset by changes in D0,
ϕ does not affect the borrower’s behavior. On the other hand the rate of growth in the
face value of debt, κ does influence the borrower’s optimal bankruptcy strategy. As
a lower κ means faster debt repayment (through higher face value or equivalently
higher ϕ ), the resulting optimal bankruptcy triggering level is higher.

4 A proposed structural model

Section 3 gave an insight to the design of credit contracts, and showed the usability
of game theory in pricing of corporate assets and predictions of rational actions
taken by the parties concerned. Here, we extend the available literature of asset
pricing models introduced in Sect. 2, and build up a framework with stochastic
interest rate. This framework than serves as a valuation method for a similar game
theory analysis as was introduced in Sect. 3.3. The starting-point of this work is the
Goldstein et al. [21] EBIT-based model, that will be extended by the relaxation of
the constant (or deterministic) interest rate requirement.

4.1 Assumptions

First of all we take the following assumptions:

(i) The management fully represents the equity holders’ interest.
(ii) The APR is never violated.

(iii) Asset sales are prohibited, interest payments are financed by earnings and equity
dilution.

(iv) When the earnings are above the paid interest, the difference is paid out as divi-
dend.

(v) Paid interest is a tax deductible item, however no tax carry-back or carry-forward
exists25.

(vi) There is a sufficiently large number of investors, and only a limited amount of
projects.

Assumptions (iii), (iv), and (v) imply the unimportance of the historical cash flow
in the asset pricing. The current values of the two memoryless processes—the risk-
free interest rate and the EBIT—are the only two stochastic variables that affect the
debt, equity and firm value. Assumption (vi) has the consequence that the provided
loan is always fairly priced, since the financial institutions perfectly compete with

25 As Nejadmalayeri and Singh [46] showed, the US tax code’s loss carry provisions affect the
equity holders’ bankruptcy decision.
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each other. Next to these initial assumptions we will use further suppositions in the
subsequent sections, particularly during the description of the stochastic evolution
of the variables: the risk-free interest follows an Ornstein-Uhlenbeck process, the
Earnings Before Interest and Taxes (EBIT) is supposed to follow a GBM, and so on.

4.2 Risk-free Interest Rate

Most of the models assume constant risk-free interest rate in order to simplify the
calculation. However, in reality this interest rate does change in time, reflecting the
situation of the overall economy. Modelling the interest rate stochastically allows us
to include the possibility of a macro-level change and catch the correlation between
the overall market and the modelled asset. Using this correlation the model could be
extended to a risk averse measure, where higher return is expected just for the market
risk—the one that can not be diversified (in line with modern portfolio theory, see
[38]).

The risk-free interest rate r(t) follows an Ornstein-Uhlenbeck process suggested
by Vasicek [52], and used for example in the Longstaff and Schwartz [36] approach:

dr = α(γ − r)dt +σrdWt (17)

where α > 0 indicates the force pulling the interest rate back to its long-term mean
γ at speed α(γ − r) per unit of time. The stochastic element is a standard Wiener
process Wt times the volatility σr.

The expected value and variance at time s given r(t) are

Et [r(s)] = γ +(r(t)− γ)e−α(s−t), t ≤ s

Vart [r(s)] =
σ2

r

2α
(1− e−2α(s−t)), t ≤ s

respectively. The distribution of r(s) given r(t), t ≤ s can be written as

r(s) = r(t)e−α(s−t)+ γ(1− e−α(s−t))+
σr√
2α

Wt(e2α(s−t)−1)e−α(s−t)

Having the assumption of risk-neutral measure (i.e. the yield to maturity is not
dependent on the maturity date and thus there is no risk premium), the value of $1
received at time s ≥ t has the value of

P(t,s) = Et

[
exp

{
−
∫ s

t
r(τ)dτ

}]
(18)

received at t.
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4.3 Earnings Before Interest and Taxes

Traditional models—building on the basis of Merton’s [42] framework, including
those introduced in Sect. 2—take unlevered equity as primitive variable with log-
normal dynamics. However, for some models it seems to be more straightforward to
use earnings instead of unlevered equity. Mella-Barral and Perraudin [40] consider
a firm that produces output and sells it on the market, where the price of the sold
product follows a geometric Brownian motion. Mello and Parsons [41] use a similar
framework with a mining company and stochastic commodity price movements.
Graham [22] models EBIT flow as a pseudo-random walk with drift, Goldstein et
al. [21] and Broadie et al. [12] use geometric Brownian motion for the evolution of
EBIT.

To see the advantages of such approach, we should review some of the main
shortcomings of the traditional framework. First, unlevered equity ceases to exist
as a traded asset when debt is issued. This problem is one of the motivating factors
behind several subsequent frameworks [31, 32, 17]. Second, they treat tax payments
in a different fashion as they deal with cash flows to debt and equity holders. In fact,
they count tax benefit as capital inflow instead of using it for reduction of outflows.
This implicitly assumes that it is always possible to deduce fully the interest costs
from the tax payments, however, this is not the case when the cost of debt service
is higher than the current EBIT. Another problem with the tax benefit approach is,
that it implies higher firm value through higher tax shield as the tax rate increases.
Third, as Goldstein et al. [21] noted, these models may significantly overestimate
the risk-neutral drift, consequently underestimate the probability of bankruptcy and
so the optimal leverage ratio.

Our model assumes an EBIT process with log-normal dynamics, and therefore
is able to address the mentioned issues. The evolution of the firm’s instantaneous
EBIT, δt is modeled using geometric Brownian motion with risk-neutral measure
Q, similarly as Broadie et al. [12]:

dδt

δt
= µdt +σdXt(Q), (19)

where
Xt = ρWt +

√
(1−ρ2)Zt .

Wt is the same process as in (17), Zt is a standard Wiener process and ρ is the
correlation coefficient between the risk-free interest rate and EBIT.

If the δt is known at t = 0, the differential equation (19) has the solution

δt = δ0 · exp
{(

µ − σ2

2

)
t +σXt

}
(20)

Assuming no taxes and zero leverage, the value of the firm is the sum of dis-
counted earnings. Using the notation V 0

t for unlevered equity value at time t, we
have
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V 0
t =

∫ ∞

t
δt · exp

{(
µ − σ2

2

)
(s− t)+σXs −

∫ s

t
r(τ)dτ

}
ds,

in line with (18).

4.4 Debt

The debt issuance and repayment is similar as in Ziegler’s [57] model with en-
dogenous bankruptcy, although several modifications are implemented. Most im-
portantly, as the risk-free interest rate is considered to be stochastic, the interest
payments are stochastic as well. Second, Ziegler considered a debt service divided
between effective interest payments and growth in Face Value of debt (FV). As he
proved that changes in effective interest rate are compensated by changes in face
value of debt, its scalability will be left out from our model.

The debt is therefore set up it the following way:

1. The rate of growth in face value of debt, κ is chosen
2. The borrower (i.e. the firm) chooses the initial face value of debt, FV0
3. The lender calculates the fair value of this debt, given the face value and κ , and

provides a transfer to the borrower equal to this fair value.

After receiving the funds, the borrower starts to serve the interest payments. The FV
at any point in time is given as:

FVt = FV0 · eκt

The interest is continuously paid out at a rate ct = FVt · r(t) (coupon rate) with
infinite horizon. We assume κ < γ , similarly as Ziegler, otherwise the discounted
FV , and consequently the interest payments would growth to infinity.

The economic intuition behind this model is a floating coupon perpetual bond
issue, where this corporate bond is (usually) sold below par. In order to catch con-
structions as a sinking fund, or alternatively a growth in debt principal, the parameter
κ is introduced as well.

4.5 Default

The event of default corresponds to the situation, when the firm does not meet its
obligation on interest payments. We assume, that creditors take over the firm im-
mediately after its default and suffer the associated losses. Absolute priority rule is
enforced, i.e. after bankruptcy equity holders receive nothing.

As the state variable is the instantaneous EBIT, it is convenient to define the
recovery value as a multiple of the EBIT at the moment of default. Since a firm
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Table 1 Notation
Symbol Explanation Base value

Interest rate
r(t) Risk-free interest rate r(0) = γ
γ Long-term mean of risk-free interest rate 3%
α Speed of expected risk-free interest rate convergence to γ 0.25
σr The volatility of risk-free interest rate 0.5%
P(t,s) The price of a $1 face value riskless zero-coupon bond at time t,

maturing at time s

Firm
δt EBIT δ0 = 100
µ Drift of EBIT under Q 0.01
σ Volatility of EBIT 20%
ρ Correlation coefficient between r(t) and δt 0.2
V 0 Firm value with no leverage and the assumption of zero taxes
TC Corporate tax rate 35%

Debt
FVt Face value of debt
κ Growth rate of the face value of debt FVt 1%
D(δt) Debt value
ct Coupon rate, equals to FVt · r(t)

Default
DBt Default Barrier
τ Time of default
RR Recovery rate defined as a multiple of yearly EBIT 10×

effectively becomes unlevered after bankruptcy (as its debt holders become the new
equity holders), and we calculate the unlevered value during the iterations, this mul-
tiplier can be easily transformed to Loss Given Default (LGD)—a ratio that ex-
presses the asset value lost due to bankruptcy.

4.5.1 Default Barrier

It is sensible to define the Default Barrier (DB) on the state (primitive) variable,
since all the other values can be written as a function of this state variable. As we
have an EBIT based model, DB will be defined on earnings. When the primitive
variable is firm (or unlevered equity) value, DB is usually a function of the face
value of debt. A straightforward modification for our model is to make the DB
linearly dependent on the instantaneous coupon rate, ct (as we show in Sect. 4.9,
this setup proved to be consistent with the overall model).

Such modification would imply a lower barrier in recession (low risk-free rate),
and thus work counter-cyclically. There are several facts that support this design: in
recession the number of bankruptcies increases (see, for example [1]), thus banks
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experience losses in connection with other loans and might prefer immediate pay-
ments instead of triggering bankruptcy that yields uncertain income later. Further-
more as Altman et al. [1] also showed, the recovery rate is significantly lower in
recession. Exactly the opposite holds for economic boom and high interest rates,
therefore higher default barrier is reasonable.

4.5.2 The Bankruptcy Decision

The entity that does the bankruptcy decision is dependent on the transparency of the
firm, on the credit contract, and possibly on other factors. When the state variable
is not publicly observable, the firm’s management is the only one who can trigger
bankruptcy. On the contrary, when the state variable is observable, bankruptcy de-
cision can be declared in the credit contract, and therefore support more favourable
debt financing. This is in fact a safety covenant for the creditors, that ensures them
the right to force bankruptcy if the firm performs poorly (that is crosses the DB).

4.6 Method and Calculations

Due to the high complexity of the model we use Monte Carlo simulations to uncover
the model’s sensitivity on its parameters (see Table 1 for parameter base values). The
calculated results are used as payoff valuation for game trees analyzed in Sect. 4.7.

4.6.1 The Effects of Debt Face Value

The Face Value of debt (FV) is the most basic parameter of a corporate loan: it is the
figure that appears on the firm’s balance sheet and in other reports and statistics. It is
also the exclusive right of the borrower to specify the loan’s FV directly or through
the amount of borrowed funds. The main questions addressed in the following lines
are, whether it pays off to issue debt at all, whether there is a maximal firm value an
if so, what level of FV corresponds to this maximum, and how this optimal value is
dependent on the DB.26

Figure 1 illustrates the dependence of debt, equity and firm values on credit con-
tracts with different face values. As it is visible, when the leverage is low, firm value
can be enhanced if a debt with higher face value is issued due to increasing tax
shield. At a certain point the rising bankruptcy costs exceed further tax savings, in-
dicating an optimal face value of debt that maximizes firm value. With a low DB27

equal to 0.3, for example the firm value can reach 35 times the yearly EBIT if a debt

26 At this point we do not concentrate on the problem how the DB is chosen; that issue will be
covered in Sect. 4.7.
27 Recall that a default barrier of 0.3 means triggering default when the instantaneous earnings are
at 30 percent of the coupon rate.
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is issued with face value between 20 and 30 yearly earnings. This means an opti-
mal debt ratio of circa 60−80%. As the DB rises, this optimal ratio declines due to
higher Probability of Default (PD): with DB = 0.7 the maximal firm value declines
below 3200 (i.e. 32 times the yearly EBIT) with debt ratio of 30% only. The effects
of changes in the DB are described in details in Sect. 4.6.2.
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Fig. 1 Debt, equity and total value with different face values of debt

By observing the debt values it is apparent that at a certain FV the debt value
reaches its maximum: this is the highest possible amount of money that could be
reached with sole debt financing. The plotted equity values are not relevant as the
equity holders are compensated for their decrease in equity value by receiving the
funds obtained from the loan. Therefore the equity holders seek a loan agreement
that ex-post maximizes firm value28.

4.6.2 The Effects of Default Barrier Level

Next, we should explore how the output variables react on different levels of default
barriers. To do so, we have plotted our basic calculation,29 where no extreme values
distort the picture. Figure 2 shows how the level of default barrier affects the equity,
debt and overall firm value.

The overall firm value has the most unequivocal trend: it is declining as the bar-
rier rises: the FV affects only the slope, not the tendency. Intuitively, setting the DB
lower implies drop in the number of bankruptcies, later occurrence of the expected
bankruptcy, and shrink of the LGD in absolute terms. Recall that the expected costs
of bankruptcy equal to the product of these three factors: PD, LGD and the discount.

28 This holds only at the moment when the contract is signed. Later on both the debt and equity
holders profit from an increase in the firm value.
29 That is the one with parameters set to their base levels.
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Fig. 2 Debt, equity and total value dependence on the DB with FV 1000 and 2750

The value of debt is rising with lower DB level. Again, this is intuitive, since
default occurs later, therefore more money flows to creditors through equity dilution.
If we examine the curves of the debt value on Fig. 2, a convergence in this value can
be observed, as the DB rises. Because the initial EBIT is set to 100 and the base
value of the RR multiple is 10, the debt value needs to be 1000 for sufficiently high
DB that triggers default immediately. Consequently this needs to be the level where
debt value converges to.

The third curve—the one that demonstrates the equity value sensitivity on shifts
in the DB—is somewhat different: it has a “quadratic” shape with a maximum
around 0.5. This means that, from the equity holders’ point of view, there exists
an optimal non-zero default decision. This result is highly important for our game
theory analysis in Sect. 4.7, where we examine the rational behaviour of the in-
volved parties. This conclusion, as well as the results related to the firm and debt
values, is in line with Ziegler’s [57] findings derived using closed form calculations
in constant interest rate environment.

4.7 Agency Costs

4.7.1 Observable Actions

With observable actions, the creditor is able to control the parameters that affect the
probability distribution of the EBIT flow, most importantly σ , which is determined
by the riskiness of the firm’s projects. This situation significantly simplifies the ar-
rangement of the credit contract, since the lender does not need to study the set of
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possible actions that might be done by the debtor. In other words, the probability
distribution of the payoffs is given, and therefore risk-shifting is not possible.30

Observable State Variable The simplest situation is, when the firm is completely
transparent, and therefore the creditor can observe the management’s actions and
also the state of the firm. In this case a debt contract can be signed with such
covenants that enforce both an agreed volatility and defines a default barrier at which
bankruptcy will be triggered.

In this case such a combination of debt face value and default barrier will be
chosen that maximizes firm value. This leads to a highly leveraged firm (to maxi-
mize the value of tax shield), and to low default barrier (to minimize the bankruptcy
costs). Note, that it might be not always possible to specify an arbitrarily low DB:
when the EBIT decreases so drastically, that the equity becomes worthless, it is not
possible to finance the interest payments trough equity dilution. In a stock company
the shareholders cannot be forced to transfer additional funds to the distressed firm.
In contrast, when the considered firm is owned by a parent company, the interest
payments can be guaranteed by the mother.

Not Observable State Variable Similarly as in the previous case, actions are ob-
servable, and therefore risk shifting is not possible. However, as the state variable
is not followed by the creditor, a bankruptcy barrier as safety covenant can not be
included in the credit contract, because it would be impossible to enforce it. Conse-
quently the debtor will choose the default barrier in a way that maximizes its equity
holders’ value under the given circumstances. This decision is the bottom level of
the game tree, and therefore it determines the expected payoffs under certain credit
contract parameters. Table 2 shows an equity value matrix for several debt face val-
ues calculated using the base parameter setting.31 As it can seen, the equity holders
will choose to default on interest payments when the EBIT will be between 40 and
50% of the coupon rate (bold values in Table 2).

Table 2 Equity values - Basic parameters

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 3037 3037 3037 3037 3037 3037 3037

500 2618 2623 2623 2619 2614 2604 2593
1000 2233 2246 2246 2234 2213 2187 2151
1500 1881 1904 1903 1881 1848 1792 1727
2000 1558 1595 1595 1562 1504 1404 1281
2500 1264 1319 1316 1257 1162 1037 865
3000 990 1063 1050 971 853 669 477
3500 742 837 813 725 563 354 121
4000 510 623 610 483 304 73 0

Default barrier on the X-axis and debt face value on the Y-axis

30 More about risk shifting in the next section, where—in contrast with the present situation—it is
possible.
31 See Table 1
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As the lender anticipates the borrower’s behaviour in the bankruptcy trigger-
ing decision, he prices the loan according to this action. We have discussed in
Sect. 4.6.1, that the equity holders want to maximize the overall firm value, and
so they will choose FV that implies this highest possible value. Table 3 gives the
valuation of this step in the game: the creditor offers loans priced according to the
equity holders’s default decision, therefore the equity holders’ can choose total firm
value only within the column specified by the planned (by shareholders) respectively
assumed (by bondholders) DB. In this case the optimal face value of debt is 2000
for DB = 0.4 and 1500 for DB = 0.5. The corresponding firm values are 3400 and
3300 respectively.32 The resulting total value, equal to 33–34 yearly EBITs is signif-
icantly higher than the unlevered value with 30 EBITs only. On the other hand, the
maximally possible 3550 is not reached due to agency costs caused by asymmetric
information.

Table 3 Total firm values - Basic parameters

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 3037 3037 3037 3037 3037 3037 3037

500 3234 3222 3207 3191 3175 3156 3137
1000 3375 3336 3292 3240 3186 3133 3072
1500 3471 3393 3306 3211 3118 3010 2897
2000 3525 3404 3270 3122 2966 2778 2582
2500 3543 3375 3173 2952 2714 2463 2179
3000 3531 3306 3029 2725 2406 2057 1731
3500 3499 3203 2839 2454 2049 1632 1203
4000 3429 3045 2613 2123 1650 1147 1000

Default barrier on the X-axis and debt face value on the Y-axis

Paradoxically, the equity holders’ ex post effort to increase the value of their
claim decreases the total firm value (and so their total payoff) ex ante. This problem
can be solved if they manage to ensure the lender, that they will default on their
payments when the EBIT truly crosses the DB. Such contract requires monitoring
with some associated costs, however if these costs are below the agency costs then
monitoring should be introduced.

4.7.2 Hidden Actions

When the management’s actions are not observable, the debtor is able to modify
the parameters driving the EBIT flow, and so to change the expected payoffs of
the involved parties. More specifically, he is able to shift the risk to the creditor,

32 All these values are rounded: as we want to illustrate the decision process, the accurate numbers
are not important. In real the DB is one number (between the mentioned 0.4 and 0.5) not an interval,
and the FV that corresponds to the maximal firm value given this DB is determined unambiguously
as well.
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and consequently to enhance the value of his claim on the creditor’s costs. Such
behaviour is called risk-shifting or, in a wider sense, moral hazard.

To demonstrate this problem, recall section 2.1, where we described how Merton
[42] proved that the value of equity in a leveraged firm can be expressed as Euro-
pean call option, and (using put-call parity) the value of debt is equal to a riskless
bond with appropriate parameters less the value of a European put option. When the
volatility of the asset’s value rises, both options become more valuable, and there-
fore the equity value rises while the debt value declines. This model is valid only
when there is no default prior debt maturity (and other assumptions made by Merton
hold), however it illustrates the principle of risk-shifting.
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Fig. 3 Firm value dependence on σ

To find out whether risk-shifting appears in our model, and if so, what are its con-
sequences, we have run simulations with several different EBIT volatility parame-
ters. For the details of the simulation see [15]. With higher σ values we observed
the following (see Fig. 3):

Equity value was rising, with steeper slopes for lower DB settings. In conse-
quence the equity holders try to increase the EBIT volatility as much as they
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can, however they have a lower incentive to do so when the DB is higher. This
means that if there are some additional costs of higher volatility paid by the eq-
uity holders33, than they will not set the volatility to such high levels as they
would so with lower DB.

Debt value was declining, however this decline was moderate for high DB set-
tings. There are two reasons that support lower losses in debt value: First, and
most importantly, default occurs at higher firm value, and therefore the firm has
higher residual value after the bankruptcy that is transferred to the creditor. Sec-
ond, default occurs earlier, therefore the asset value received has a smaller dis-
count.

Probability of default rose.
Total firm value was decreasing due to increased PD.
Default barrier chosen by the equity holders was decreasing: their option on the

firm’s assets become more valuable with the increased volatility.

All of these observations are in line with the conclusions of Ziegler [57], who
based his analysis on game theory and gave closed-form results for his model with
constant risk-free interest rate. Next we examine how the observability of the instan-
taneous EBIT affects the credit contract’s design and the behaviour of the involved
parties.

Observable State Variable If the state variable is observable, it is feasible to miti-
gate the equity holders’ risk-shifting incentive by setting a sufficiently high DB as a
safety covenant. For a better understanding of the mechanism of this safety covenant
we extend the Mertonian parallel of the equity value and a European call option.
After the introduction of an exogenous default barrier the European call option is
replaced by a down-and-out call barrier option.

Such an option has a similar price as a plain vanilla option if the DB is far below
the spot price, and the volatility is not extremely high. However, as the spot price
approaches the barrier, the option values begin to significantly differ. Fig. 4 shows34

the prices of down-and-out barrier and plain vanilla call options as a function of the
volatility, assuming a strike price 1000, barrier 900, constant risk-free interest 3%
and time to maturity 1 year. As we can see, the equity holders’ incentive to increase
the volatility is mitigated when the firm value approaches the DB.

Our model shows a similar behaviour: when the DB is high (80–90% of the
coupon rate), the equity value is not increasing significantly with higher volatility.
A high DB can be used therefore as a safety covenant in order to avoid risk-shifting.
This implies a loan with low FV (about 5 yearly EBITs in our basic setting; recall
Fig. 1), and consequently results a total firm value of only circa 3150 (31.5 yearly
EBITs). Comparing this number with the theoretical maximum of a fully transparent
firm (3550), the losses caused by risk-shifting are equal to the firm’s four yearly
earnings. Similarly as in the case of not observable state variable, it might pay off
to introduce monitoring on the management’s actions, and therefore to avoid risk-
shifting.

33 This could be lower expected EBIT growth, or some risk of being exposed, for example.
34 Source: author’s calculations using Financial Derivatives Toolbox
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Fig. 4 Barrier option price dependency on volatility, barrier 90% of strike

Not Observable State Variable If the state variable is not observable, equity hold-
ers will increase the EBIT volatility and default on interest payments later. Since
the creditor anticipates such behaviour, he prices the loan with respect to higher ex-
pected volatility. Consequently the resulting firm value (as it is depicted in Fig. 3)
is lower than the value of the unlevered firm. The shareholders’ ex-post behaviour
therefore disables debt financing, and hence making the possible tax benefits un-
available.

4.8 Initial Interest Rate Level

An important advantage of the introduced mean-reverting interest rate environment
is, that it can deal with a risk-free interest rate that is not on its long-term average
(γ). In such case the interest rate is expected to return to γ , however, this takes
some (random) time. In models with constant interest rate it is not possible to cover
this situation. With a stochastic interest rate model though, it is just a question of
different initial value r(0) in the SDE (17). Furthermore, the effects of exogenous
changes in this initial level can be examined. These exogenous changes in the risk-
free interest rate correspond to the decisions of the central bank, and therefore we
are able to predict the effects of the monetary policy on microeconomical level.

To see the effects of changes in the initial interest rate, we have run calculations
with r(0) = 1%, r(0) = 3%, and r(0) = 5%. Figure 5 demonstrates the obtained
results for two different FVs. The tick lines show the total firm value dependence
on the DB for three different initial interest rate levels. The gap between these lines
represent the loss—ceteris paribus—when the interest rate suddenly increases to
the next examined level. This drop in firm value is caused by two factors: higher
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Fig. 5 Firm value dependence on initial interest rate

discount for all future earnings and increased PD due to higher interest payments.35

The mentioned gap is a sum of declines in equity and debt value, and therefore we
can divide this area to distinguish the losses of the two involved parties.

A larger fraction of the firm losses is booked by the equity holders (recall Fig. 5).
Their claim is depreciated by the factors that affect the firm value (i.e. higher dis-
count of future income and increased PD), and also by one additional: higher interest
paid out to debt holders.

We can see that the debt value is insensitive to changes in initial interest rate,
when the probability of early default is close to zero due to low FV and DB. Our
conclusion is, that increased coupon payments perfectly offset higher discount on

35 Higher interest payments imply higher DB in absolute terms. The DB of the x axis on Fig. 5 is
a ratio of the instantaneous interest payments.
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future cash flows.36 Consequently the only factor that decreases the bond’s value is
the increased default probability and its earlier expected occurrence.

Note, that this section explains how the central bank’s interventions work. In
economical downturn the monetary policy can support the companies by targeting a
lower short-term rate. This increases the value of both traded and non-traded assets,
reduces the number of defaults, and supports debt financing through the decrease
of interest paid on the outstanding principal. The latter is favored by two factors:
the risk-free interest is low, and the risk-premium drops due to lower PD. On the
contrary, an overheated can be cooled down with higher risk-free interest.

4.9 Comparison of Stochastic and Deterministic Default Barrier

Stochastic risk-free interest rate and DB are the two features of our model that dis-
tinguish it from other EBIT-based works [21, 12]. The contribution of a stochastic
interest rate is intuitive: a constant or deterministic risk-free rate is hardly accept-
able. Its usefulness was presented also in Sect. 4.8, where our model have easily
dealt with different initial interest rate levels and it was able to predict the impli-
cations of macro-level shocks. The benefits of a stochastic DB were however not
proved. In the description of the DB for our model (see Sect. 4.5.1) we mentioned
why banks might prefer a DB that is dependent on the interest rate. We saw how-
ever, that it is not the bank who sets the default triggering level: it is the debtor or it
is specified in the debt contract, that is designed by both parties.

In order to examine whether it is correct to base our model on stochastic DB
we simulated two firms with identical parameters37 but different DB settings: one
stochastic, driven by the instantaneous risk-free interest rate, and one deterministic
DB, dependent only on FVt .

The default triggering levels were therefore set to FVt · r(t) ·DB in the stochastic
case and to FVt · γ ·DB in the deterministic case, where DB > 0 is the same variable
in both cases. Figure 6 visualizes the comparison of results obtained by stochastic
and deterministic DB setting. For the first sight it is apparent that the total firm value
is higher when the DB is defined as a deterministic function. The reason is that a
deterministic DB in fact softens the default triggering bound, and hence increases
the firm value. The problem is however, that when the primitive variable is not ob-

36 For κ = 0 this is intuitive: the defaultable corporate bond can be represented as a risk-free bond
with the same parameters minus the expected losses caused by default. Since the price of a riskless
bond that pays continuous interest is always equal to its face value, it is not dependent on the
current interest rate.
37 These parameters were the same as in the basic setting, with the exception of lower recovery rate
(5 yearly EBITs), and higher correlation between the EBIT and interest rate processes (ρ = 0.5).
These modifications were made in order to make the results more sensible on the selection of
the DB. Furthermore the number of iterations was doubled to increase the significance of small
deviations between the two settings.
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Fig. 6 Stochastic vs. Deterministic DB

servable38, default is triggered by the equity holders in a way to maximize the value
of their claim. Recall Fig. 6: a stochastic DB bears higher equity value for barrier
ratios below 0.5. Since the equity-maximizing DB is below 0.5 (as we have seen in
Sects. 4.6.2 and 4.7), the equity holders will prefer triggering default according to
a stochastic barrier. In fact this is a logical conclusion: the situation of the overall
economy, as well as the size of the interest payments is taken into account.

5 Conclusion

We first provide a brief overview of the relevant structural models of asset pricing.
This is followed by a discussion of the design of incentive compatible credit con-
tracts in connection with game theory approach to the pricing of corporate assets.
Finally we apply these theoretical approaches to the construction of a new Earning
Before Interest and Taxes (EBIT) based model of asset pricing.

38 As it was discussed in Sect. 4.7, observable primitive variable implies low default triggering
level. Consequently there is insignificant difference in the values produced by the two DB types.



Corporate asset pricing models and debt contracts 37

The proposed structural model extends the available literature of asset pricing by
an EBIT based model with stochastic interest rate. This framework is able to price
equity and debt in a way consistent with the cash flow of the firm, and therefore
to address some defects of the current frameworks. It solves the “delicate” issue of
Leland [34], that the unlevered firm value might not be a traded asset, and deals
with the problem of partial tax deductibility. The stochastic interest rate assumption
contributes the possibility of analysing the effects of changes in the central bank’s
monetary policy, and it is able to answer the question how the macroeconomical sit-
uation affects the optimal capital structure. The default is triggered using a stochastic
default barrier, that is shown to be more accurate then its deterministic equivalent.

A weak point in our design is the assumption that the EBIT process is driven
by a GBM, and therefore it cannot handle negative earnings. It might be argued
that employing arithmetic Brownian motion would be a better choice for this rea-
son, however it should be noted that our model has an infinite time horizon. As the
prices of commodities grow exponentially, it is hard to accept a linear model for the
EBIT evolution. Finding better alternatives for the EBIT process will be the subject
of further research. A promising idea is to model the earnings as a difference of two
correlated GBMs (representing revenues and expenses): it has a clear economic in-
tuition, it is able to produce negative values, has an exponential expected evolution,
and works with observable figures.
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