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model comparison criteria, namely, the marginal likelihood and deviance infor-
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1 Introduction

Since the seminal work of Cogley and Sargent (2001, 2005) and Primiceri (2005), the time-
varying parameter vector autoregression (TVP-VAR) with stochastic volatility has be-
come a benchmark for analyzing the evolving inter-relationships between multiple macroe-
conomic variables (e.g., recent papers include Benati, 2008; Koop, Leon-Gonzalez, and
Strachan, 2009; Koop and Korobilis, 2013; Liu and Morley, 2014). In addition, models
with time-varying parameters and stochastic volatility are often found to forecast better
than their constant-coefficient counterparts, as demonstrated in papers such as Clark
(2011), D’Agostino, Gambetti, and Giannone (2013) and Clark and Ravazzolo (2014).

Despite the empirical success of these flexible time-varying models, an emerging litera-
ture has expressed concerns about their potential over-parameterization (see, e.g., Chan,
Koop, Leon-Gonzalez, and Strachan, 2012; Nakajima and West, 2013; Belmonte, Koop,
and Korobilis, 2014). This new development highlights the need for model comparison
techniques. For instance, one might wish to compare a general TVP-VAR with stochastic
volatility to various restricted models to see if all forms of time variation are required.

Model comparison techniques for these TVP-VARs are also needed when one wishes to
test competing hypotheses. For example, there is an ongoing debate about the causes
of the Great Moderation—the widespread, historically unprecedented stability in most
developed economies between early 1980s and mid 2000s. A number of authors, including
Cogley and Sargent (2001) and Boivin and Giannoni (2006), have argued that the mone-
tary policy regime is an important factor in explaining the Great Moderation. Under this
explanation, one would expect that the monetary policy transmission mechanism would
be markedly different during the Great Moderation compared to earlier decades. This in
turn would manifest itself in changes in the reduced-form VAR coefficients.

On the other hand, other researchers such as Sims and Zha (2006) and Benati (2008)
have emphasized that the volatility of exogenous shocks has changed over time, and
this alone may be sufficient to explain the Great Moderation. To assess which of these
two explanations are more empirically relevant, one direct approach is to perform a
model comparison exercise—e.g., comparing a TVP-VAR with constant variance against
a constant coefficients VAR with stochastic volatility—to see which model is more favored
by the data.

Given these considerations, we develop importance sampling methods for computing two
popular Bayesian model comparison criteria, namely, the marginal likelihood and de-
viance information criterion (DIC). The former evaluates how likely it is for the observed
data to have occurred given the model, whereas the latter trades off between model fit and
model complexity. There are earlier attempts to formally compare these TVP-VARs. For
instance, Koop et al. (2009) compute the marginal likelihood using the harmonic mean
of a conditional likelihood—the conditional density of the data given the log-volatilities
but marginal of the time-varying parameters. However, recent work has shown that this
approach can be extremely inaccurate. For example, Chan and Grant (2015) find that the
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marginal likelihood estimates computed using the modified harmonic mean (Gelfand and
Dey, 1994) of the conditional likelihood can have substantial bias and tend to select the
wrong model. Frühwirth-Schnatter and Wagner (2008) conclude the same when Chib’s
method (Chib, 1995) is used. In a related context, Millar (2009) and Chan and Grant
(2014b) provide Monte Carlo evidence that the DIC based on the conditional likelihood
almost always favors the most complex models.

In contrast, our proposed estimators are based on the integrated likelihood—i.e., the
conditional density of the data marginal of all the latent states. As such, the proposed
estimators have good theoretical properties and are substantially more stable in prac-
tice. Specifically, integrated likelihood evaluation is achieved by integrating out the time-
varying parameters analytically, while the log-volatilities are integrated out numerically
via importance sampling. A key novel feature of our approach is that it is based on band
and sparse matrix algorithms instead of the conventional Kalman filter, which markedly
reduces the computational costs. Furthermore, the integrated likelihood estimators can
be used in other settings, such as in developing more efficient MCMC samplers or design-
ing reversible jump MCMC algorithms to explore models of different dimensions.1

We illustrate the proposed methodology by a model comparison exercise using a stan-
dard set of macroeconomic variables for the US and Australia. Specifically, we evalu-
ate the support for various TVP-VARs with or without stochastic volatility, with the
aim of contributing to the “good luck” versus “good policy” debate. The main results
can be summarized as follows. For US data, the model of Primiceri (2005)—with both
time-varying parameters and stochastic volatility—is overwhelmingly favored by the data
compared to a conventional VAR according to both criteria. However, most of the gains
appear to have come from allowing for stochastic volatility rather than time variation
in the VAR coefficients or contemporaneous relationships. In fact, both criteria prefer
a constant coefficients VAR with stochastic volatility against the more general model of
Primiceri (2005).

This suggests that the time variation in the variance of exogenous shocks is empirically
more important than changes in the monetary policy regime, lending support for the good
luck hypothesis of the Great Moderation. These results also provide empirical support
for the modeling approach of Carriero, Clark, and Marcellino (2015), who construct large
constant coefficients VARs with a variety of stochastic volatility specifications. Results for
Australia are similar: the data overwhelmingly favor the model of Primiceri (2005) against
a conventional VAR with homoscedastic innovations. In addition, a constant coefficients
VAR with stochastic volatility receives similar support as the model of Primiceri (2005).

1In addition to the two Bayesian model selection criteria considered in this paper, another possibility is
to construct a reversible jump MCMC algorithm to compute the posterior model probabilities. Primiceri
(2005) uses this strategy to compare various choices of hyperparameter values. Note that in his setting,
the dimensions of all the models considered are the same—the models only differ in their hyperparameters.
For our problem, the dimensions of the models can be very different. As such, to compute the transition
probability, e.g., from a constant coefficients VAR to one with stochastic volatility, one would need to
evaluate the integrated likelihood of the latter model. Hence, our proposed method would also be useful
if such an approach is desired. We leave this possibility to future research.
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The rest of this paper is organized as follows. In Section 2 we introduce the class of TVP-
VARs we wish to compare. We give an overview of the two Bayesian model comparison
criteria—the marginal likelihood and DIC in Section 3. Section 4 discusses the estimation
of the two criteria for the competing models. To that end, we first introduce a fast
routine to evaluate the integrated likelihood, which is followed by a discussion of an
adaptive importance sampling approach known as the improved cross-entropy method
for marginal likelihood computation. Section 5 evaluates the evidence in support of the
TVP-VARs in explaining the US and Australian data. Lastly, Section 6 concludes and
briefly discusses some future research directions.

2 TVP-VARs with Stochastic Volatility

In this section we outline the class of models we wish to compare. We first discuss the
most general model; other models are then specified as restricted versions of this general
model. To that end, let yt be an n × 1 vector of observations. Consider the following
TVP-VAR with stochastic volatility:

B0tyt = µt +B1tyt−1 + · · ·+Bptyt−p + εt, εt ∼ N (0,Σt), (1)

where µt is an n × 1 vector of time-varying intercepts, B1t, . . . ,Bpt are n × n VAR
coefficient matrices, B0t is an n × n lower triangular matrix with ones on the diagonal
and Σt = diag(exp(h1t), . . . , exp(hnt)).

For the purpose of model comparison, we separate the time-varying parameters into
two groups. The first group consists of the kβ × 1 vector of time-varying intercepts
and coefficients associated with the lagged observations: β = vec((µt,B1t, . . .Bpt)

′).
The second group is the kγ × 1 vector of time-varying coefficients that characterize the
contemporaneous relationships among the variables, which we denote as γt— it consists
of the free elements of B0t stacked by rows. Note that kβ = n(np+1) and kγ = n(n−1)/2.
With these two groups of parameters defined, we can rewrite (1) as:

yt = X̃tβt +Wtγt + εt, εt ∼ N (0,Σt),

where X̃t = In⊗ (1,y′
t−1, · · · ,y

′
t−p) and Wt is an n×kγ matrix that contains appropriate

elements of −yt. For example, when n = 3, Wt has the form

Wt =




0 0 0
−y1t 0 0
0 −y1t −y2t


 ,

where yit is the i-th element of yt for i = 1, 2. In the application we will investigate the
empirical relevance of allowing time variation in each group of parameters.

Finally, the above model can be further written as a generic state space model:

yt = Xtθt + εt, εt ∼ N (0,Σt), (2)
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where Xt = (X̃t,Wt) and θt = (β′
t,γ

′
t)

′ is of dimension kθ = kβ+kγ . This representation
is first used in Eisenstat, Chan, and Strachan (2015) to improve the efficiency of the
sampler by drawing βt and γt jointly—instead of the conventional approach in Primiceri
(2005) that samples βt given γt followed by sampling γt given βt. Moreover, it also
allows us to integrate out both βt and γt analytically, which is important for the method
of integrated likelihood evaluation described later.

The time-varying parameters θt and log-volatilities ht = (h1t, . . . , hnt)
′ in turn follow the

following random walk processes:

θt = θt−1 + ηt, ηt ∼ N (0,Σθ), (3)

ht = ht−1 + ζt, ζt ∼ N (0,Σh), (4)

where Σθ = diag(σ2
θ1, . . . , σ

2
θkθ

) and Σh = diag(σ2
h1, . . . , σ

2
hn). We treat the initial condi-

tions θ0 and h0 as parameters to be estimated.

The model (2)–(4) can be fitted using Markov chain Monte Carlo methods. In particular,
it is conventionally estimated using Kalman filter-based algorithms in conjunction with
the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998). In contrast, here we
adopt the precision sampler of Chan and Jeliazkov (2009) that is based on fast band
and sparse matrix routines and is more efficient than Kalman filter-based algorithms.
Estimation details are given in Appendix A.

We denote the general model in (2)–(4) as TVP-SV. To investigate what features are
the most important in explaining the observed data, we consider a variety of restricted
versions of this general model in the model comparison exercise. The competing models
are listed in Table 1. More specifically, to examine the role of time-varying volatility,
we consider a model with only drifting coefficients but no stochastic volatility, as well
as a version that has stochastic volatility but with constant coefficients. The former is
referred to as TVP and the latter as CVAR-SV.

Table 1: List of competing models.

TVP-SV the time-varying parameter VAR with SV in (2)–(4)
TVP same as TVP-SV but without SV
TVP-R1-SV same as TVP-SV but βt is restricted to be time-invariant
TVP-R2-SV same as TVP-SV but γt is restricted to be time-invariant
CVAR-SV the constant coefficients VAR with SV
CVAR the constant coefficients VAR without SV

Next, to investigate the individual contributions of the two groups of time-varying coeffi-
cients, we have two variants of the general model in which either βt or γt is restricted to
be time-invariant—the former is denoted as TVP-R1-SV and the latter as TVP-R2-SV.
Note that TVP-R2-SV is the model proposed in Cogley and Sargent (2005). Lastly, we
also include a VAR with both constant coefficients and variance, which we simply refer
to as CVAR.
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3 Bayesian Model Comparison Criteria

In this section we give an overview of the two Bayesian model comparison criteria—the
marginal likelihood and the deviance information criterion—which we will use to compare
the models outlined in Section 2.

To set the stage, suppose we wish to compare a collection of models {M1, . . . ,MK}, where
each model Mk is formally defined by a likelihood function p(y |ψk,Mk) and a prior on
the model-specific parameter vector ψk denoted by p(ψk |Mk). A natural Bayesian model
comparison criterion is the Bayes factor in favor of Mi against Mj, defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where

p(y |Mk) =

∫
p(y |ψk,Mk)p(ψk |Mk)dψk

is the marginal likelihood under model Mk, k = i, j. The marginal likelihood can be
interpreted as a density forecast from the model evaluated at the observed data y—hence,
if the observed data are likely under the model, the corresponding marginal likelihood
would be “large” and vice versa. Therefore, if BFij is larger than 1, observed data are
more likely under model Mi than model Mj , which is viewed as evidence in favor of Mi.

Furthermore, the Bayes factor is related to the posterior odds ratio between the two
models as follows:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
× BFij,

where P(Mi)/P(Mj) is the prior odds ratio. It follows that if both models are equally
probable a priori, i.e., p(Mi) = p(Mj), the posterior odds ratio between the two models
is then equal to the Bayes factor. In that case, if, for example, BFij = 10, then model Mi

is 10 times more likely than model Mj given the data. For a more detailed discussion of
the Bayes factor and its role in Bayesian model comparison, see Koop (2003) or Kroese
and Chan (2014). From here onwards we suppress the model indicator; for example we
denote the likelihood by p(y |ψ).

The Bayes factor is conceptually simple and has a natural interpretation. However,
one drawback is that it is relatively sensitive to the prior distributions. An alternative
Bayesian model selection criterion that is relatively insensitive to the priors is the deviance
information criterion (DIC) introduced in the seminal paper by Spiegelhalter, Best, Car-
lin, and van der Linde (2002). This criterion can be viewed as a tradeoff between model
fit and model complexity. It is based on the deviance, which is defined as

D(ψ) = −2 log f(y |ψ) + 2 log h(y),

where h(y) is some fully specified standardizing term that is a function of the data alone.
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Model complexity is measured by the effective number of parameters pD of the model,
which is defined to be

pD = D(ψ)−D(ψ̃), (5)

where
D(ψ) = −2Eψ[log f(y |ψ) |y] + 2 log h(y)

is the posterior mean deviance and ψ̃ is an estimate of ψ, which is typically taken as
the posterior mean or mode.2 The difference between the number of parameters (i.e.,
cardinality of ψ) and pD may be viewed as a measure of shrinkage of the posterior
estimates towards the prior means; see Spiegelhalter et al. (2002) for a more detailed
discussion.

Then, the DIC is defined as the sum of the posterior mean deviance, which can be used
as a Bayesian measure of model fit or adequacy, and the effective number of parameters:

DIC = D(ψ) + pD.

For model comparison, the function h(y) is often set to be unity for all models. Given a
set of competing models for the data, the preferred model is the one with the minimum
DIC value.

We note that there are alternative definitions of the DIC depending on different concepts
of the likelihood (Celeux, Forbes, Robert, and Titterington, 2006). In particular, suppose
we augment the model f(y |ψ) with a vector of latent variables z with density f(z |ψ)
such that

f(y |θ) =

∫
f(y |θ, z)f(z |θ)dz =

∫
f(y, z |θ)dz,

where f(y |θ, z) is the conditional likelihood and f(y, z |θ) is the complete-data likelihood.
To avoid ambiguity, we refer to the likelihood f(y |θ) as the observed-data likelihood or
the integrated likelihood.

An alternative DIC can then be defined in terms of the conditional likelihood, which has
been used in numerous applications (e.g., Yu and Meyer, 2006; Abanto-Valle, Bandyopad-
hyay, Lachos, and Enriquez, 2010; Mumtaz and Surico, 2012; Brooks and Prokopczuk,
2013). However, this variant has recently been criticized on both theoretical and prac-
tical grounds. Li, Zeng, and Yu (2012) argue that the conditional DIC should not be
used as a model selection criterion, as the conditional likelihood of the augmented data
is nonregular and hence invalidates the standard asymptotic arguments that are needed
to justify the DIC. On practical grounds, Millar (2009) and Chan and Grant (2014b)
provide Monte Carlo evidence that the conditional DIC almost always favors overfitted
models, whereas the original version based on the integrated likelihood works well.

Relatedly, one could in principle compute the marginal likelihood using the conditional
likelihood instead of the integrated likelihood. For instance, one could estimate the

2Following the recommendation of Spiegelhalter et al. (2002), in the empirical application we use the
posterior means based on parameterizations obeying approximate likelihood normality. In particular, we
take log of all variance parameters so that they take values on the real line.
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marginal likelihood using the modified harmonic mean (Gelfand and Dey, 1994) of the
conditional likelihood. However, Chan and Grant (2015) find that this approach does not
work well in practice, as the resulting estimates have substantial bias and tend to select
the wrong model. Frühwirth-Schnatter and Wagner (2008) reach the same conclusion
when Chib’s method is used in conjunction with the conditional likelihood. Given these
findings, the calculation of both the marginal likelihood and DIC in this paper are based
on the integrated likelihood.

One main difficulty of the proposed approach is that the integrated likelihood for models
with stochastic volatility does not have a closed-form expression. In fact, its evaluation is
nontrivial as it requires integrating out the high-dimensional time-varying coefficients and
log-volatilities. In principle one can use the auxiliary particle filter of Pitt and Shephard
(1999) to evaluate the integrated likelihood for general nonlinear state space models.
In practice, however, the auxiliary particle filter is computationally intensive and it is
infeasible to be employed in our setting as the integrated likelihood needs to be evaluated
tens of thousands of times. To overcome this problem, we develop an efficient importance
sampling estimator for evaluating the integrated likelihood in the next section.

4 Marginal Likelihood and DIC Estimation

In this section we discuss the estimation of the marginal likelihood and DIC for TVP-
VARs. Marginal likelihood estimation has generated a large literature; see, e.g., Friel
and Wyse (2012) and Ardia, Baştürk, Hoogerheide, and van Dijk (2012) for a recent re-
view. There are several papers dealing specifically with marginal likelihood estimation for
Gaussian and non-Gaussian state space models using importance sampling (Frühwirth-
Schnatter, 1995; Chan and Eisenstat, 2015) or auxiliary mixture sampling (Frühwirth-
Schnatter and Wagner, 2008). We build on this line of research by extending the im-
portance sampling methods to the more complex setting of TVP-VARs with stochastic
volatility.

As mentioned in the previous section, the key ingredient in computing both the marginal
likelihood and DIC is a fast routine to evaluate the integrated likelihood—the marginal
density of the data unconditional on the time-varying coefficients and log-volatilities.
In Section 4.1 we first propose an importance sampling algorithm for estimating the
integrated likelihood. We show that one can integrate out the time-varying coefficients
analytically; the log-volatilities can then be integrated out by Monte Carlo. Our approach
extends earlier work on integrated likelihood evaluation for various univariate stochastic
volatility models, including Durbin and Koopman (1997), Koopman and Hol Uspensky
(2002), Frühwirth-Schnatter and Wagner (2008), McCausland (2012), Djegnéné and Mc-
Causland (2014) and Chan and Grant (2014b).

Once we can quickly evaluate the integrated likelihood, the DIC can then be obtained
by simply averaging the integrated likelihood over the posterior draws. For marginal
likelihood computation, we need an extra importance sampling step to integrate out the
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parameters. We adopt an adaptive importance sampling approach known as the improved
cross-entropy method for this purpose, which is discussed in Section 4.2.

4.1 Integrated Likelihood Estimation

An intermediate goal is to develop an importance sampling estimator for the integrated
likelihood:

p(y |Σθ,Σh,θ0,h0) =

∫
p(y |θ,h,Σθ,Σh,θ0,h0)p(θ,h |Σθ,Σh,θ0,h0)d(θ,h)

=

∫
p(y |h,Σθ,Σh,θ0,h0)p(h |Σθ,Σh,θ0,h0)dh, (6)

where y = (y′
1, . . . ,y

′
T )

′, h = (h′
1, . . . ,h

′
T )

′ and θ = (θ′1, . . . ,θ
′
T )

′. The second term
in the integrand in (6) is the prior density of h implied by (4), which is Gaussian (see
Appendix A). The first term is the density of the data marginal of θ, which has an
analytical expression and can be evaluated quickly using band matrix algorithms (see
Appendix B for details).

Since both terms can be evaluated quickly, we can then estimate the integrated likelihood
using importance sampling:

̂p(y |Σθ,Σh,θ0,h0) =
1

R

R∑

r=1

p(y |hr,Σθ,Σh,θ0,h0)p(h
r |Σθ,Σh,θ0,h0)

g(hr;Σθ,Σh,θ0,h0)
, (7)

where h1, . . . ,hR are draws from the importance sampling density g that might depend
on the parameters.

The choice of the importance sampling density g is of vital importance as it determines
the variance of the estimator. In general, we wish to find g so that it well approximates
the integrand in (6). The ideal zero-variance importance sampling density in this case is
the marginal density of h unconditional on θ:

p(h |y,Σθ,Σh,θ0,h0) =
p(h,θ |y,Σθ,Σh,θ0,h0)

p(θ |y,h,Σθ,Σh,θ0,h0)
. (8)

However, this density cannot be used as an importance sampling density because its
normalization constant is unknown. To proceed, we approximate p(h |y,Σθ,Σh,θ0,h0)
using a Gaussian density, which is then used as the importance sampling density. This
Gaussian approximation is obtained in two steps. First, we develop an expectation-
maximization (EM) algorithm (for a textbook treatment see, e.g., Kroese, Taimre, and
Botev, 2011) to locate the mode of p(h |y,Σθ,Σh,θ0,h0). Second, we obtain the Hessian
of this density evaluated at the mode. The mode and negative Hessian are then used,
respectively, as the mean and precision matrix of the Gaussian approximation.
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Now, we describe the EM algorithm in more detail. To implement the E-step, we obtain
the following conditional expectation (see Appendix B for an explicit expression):

Q(h | h̃) = E
θ|h̃ [log p(h,θ |y,Σθ,Σh,θ0,h0)] ,

where the expectation is taken with respect to p(θ |y, h̃,Σθ,Σh,θ0,h0) for an arbitrary

vector h̃. It can be shown that this conditional density is Gaussian:

(θ |y, h̃,Σθ,Σh,θ0,h0) ∼ N (θ̂,K−1
θ ),

where θ̂ = K−1
θ dθ with

Kθ = H′
θS

−1
θ Hθ +X′Σ−1X, dθ = H′

θS
−1
θ Hθαθ +X′Σ−1y. (9)

Note that both the mean vector θ̂ and precision matrix Kθ are functions of h̃—that is,
θ̂ and Kθ are computed using h̃.

In the M-step, we maximize the function Q(h | h̃) with respect to h. This can be done
using the Newton-Raphson method (see, e.g., Kroese et al., 2011). The gradient is given
by

gQ = −H′
h(IT ⊗Σ−1

h )Hh(h−αh)−
1

2

(
1nT − e−h ⊙ ẑ

)
,

and the Hessian is

HQ = −H′
h(IT ⊗Σ−1

h )Hh −
1

2
diag

(
e−h ⊙ ẑ

)
,

where ⊙ denotes the entry-wise product, ẑ = (s21 + ε̂21, . . . , s
2
nT + ε̂2nT )

′, s2i is the i-th

diagonal element of XK−1
θ X′ and ε̂i is the i-th element of y−Xθ̂ with αh = H−1

h α̃h with
α̃h = (h′

0,0, . . . ,0)
′ and

Hh =




In 0 · · · 0

−In In
. . .

...
...

. . . . . .
...

0 · · · −In In


 .

We emphasize that both gQ and HQ can be computed efficiently using sparse and band
matrix algorithms.3 Also note that the Hessian HQ is negative definite for all h. This
guarantees fast convergence of the Newton-Raphson method.

Finally, the EM algorithm can be implemented as follows. We initialize the algorithm
with h = h(0) for some constant vector h(0). At the j-th iteration, we obtain gQ and HQ,
where both θ̂ and Kθ are evaluated using h(j−1). Then, we compute

h(j) = argmax
h

Q(h |h(j−1)),

3In particular, note that we only need the diagonal elements of XK
−1

θ
X

′. Since Kθ is a band matrix,
its Cholesky factor Lθ such that LθL

′

θ
= Kθ can be obtained quickly. Then, U = L

−1

θ
X can be computed

by solving the linear system LθU = X for U. Finally, the diagonal elements of XK
−1

θ
X

′ are the row
sums of squares of U.
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using the Newton-Raphson method. We repeat the E- and M-steps until some con-
vergence criterion is met, e.g., the norm between consecutive h(j) is less than a pre-
determined tolerance value. At the end of the EM algorithm, we obtain the mode of the
marginal density of h in (8), which is denoted by ĥ. We summarize the EM algorithm in
Algorithm 1.

Algorithm 1 EM algorithm to obtain the mode of p(h |y,Σθ,Σh,θ0,h0).

Suppose we have an initial guess h(0) and error tolerance levels ε1 and ε2. The EM
algorithm consists of iterating the following steps for j = 1, 2, . . ..

1. E-Step: Given the current value h(j−1), compute Kθ, dθ and ẑ

2. M-Step: Maximize Q(h |h(j−1)) with respect to h by the Newton-Raphson method.
Set h(0,j−1) = h(j−1) and iterate the following steps for k = 1, 2, . . ..

(a) Compute gQ and HQ using Kθ, dθ and ẑ obtained in the E-step, and set
h = h(k−1,j−1)

(b) Update h(k,j−1) = h(k−1,j−1) −H−1
Q gQ

(c) If, for example, ‖h(k,j−1) − h(k−1,j−1)‖ < ε1, terminate the iteration and set
h(j) = h(k,j−1).

3. Stopping condition: If, for example, ‖h(j) − h(j−1)‖ < ε2, terminate the algorithm.

Next, we describe how one can compute the Hessian of the marginal density of h evaluated
at the mode ĥ. If we take the log of both sides of (8) and then take the expectation with
respect to p(θ |y,h,Σθ,Σh,θ0,h0), we obtain the identity

log p(h |y,Σθ,Σh,θ0,h0) = Q(h |h) +H(h |h), (10)

where H(h |h) = −Eθ|h [log p(θ |y,h,Σθ,Σh,θ0,h0)]. An explicit expression of H(h |h)
is given in Appendix B.

It follows from (10) that the Hessian of the log marginal density of h evaluated at ĥ is

simply the sum of the Hessians of Q and H with h = ĥ. The former comes out as a
by-product of the EM algorithm. As for the latter term, we show in Appendix B that
the Hessian of H(h |h) is given by

HH = −
1

2
Z′ ⊙ (InT − Z),

where Z = diag(e−h)XK−1
θ X′ and Kθ is given in (9).

Finally, the Gaussian approximation is centered around the mode ĥ with precision matrix
Kh = −(HQ +HH), i.e., N (ĥ,K−1

h ). Note that in principle Kh is a full matrix as HH is
full. In practice, however, many elements in HH will be close to zero. In our application,
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we construct a sparse approximation to Kh by replacing all elements below 10−7 with 0.
We find this speeds up computation in the importance sampling step.

Algorithm 2 Integrated likelihood estimation.

Given the parameters Σθ, Σh, θ0 and h0, the integrated likelihood can be estimated by
the following steps.

1. Obtain ĥ and HQ using Algorithm 1.

2. Compute HH using h = ĥ and set Kh = −(HQ +HH).

3. For r = 1, . . . , R, simulate hr ∼ N (ĥ,K−1
h ) using the method in Chan and Jeliazkov

(2009) and compute the average

̂p(y |Σθ,Σh,θ0,h0) =
1

R

R∑

r=1

p(y |hr,Σθ,Σh,θ0,h0)p(h
r |Σθ,Σh,θ0,h0)

g(hr;Σθ,Σh,θ0,h0)
.

4.2 Improved Cross-Entropy Method

In the previous section we discuss an importance sampling approach to evaluate the
integrated likelihood. Here it is used in conjunction with an improved version of the classic
cross-entropy method to estimate the marginal likelihood. More specifically, the cross-
entropy method is originally developed for rare-event simulation by Rubinstein (1997,
1999) using a multi-level procedure to construct the optimal importance sampling density
(see also Rubinstein and Kroese, 2004, for a book-length treatment). Chan and Kroese
(2012) later show that the optimal importance sampling density can be obtained more
accurately in one step using MCMC. This new variant is applied in Chan and Eisenstat
(2015) for marginal likelihood estimation. In what follows, we outline the main ideas.

First, to estimate the marginal likelihood, the ideal zero-variance importance sampling
density is the posterior density p(Σθ,Σh,θ0,h0 |y). Unfortunately, this density is only
known up to a constant and therefore cannot be used directly in practice. Nevertheless,
it provides a good benchmark to obtain a suitable importance sampling density.

The idea now is to locate a density that is “close” to the ideal importance sampling
density. Operationally, we find the density within a convenient family of distributions
such that its Kullback-Leibler divergence—or the cross-entropy distance—to the ideal
density is minimized.4 Once the optimal density is obtained, it is used to construct the

4See also Frühwirth-Schnatter (1995), which constructs a different importance sampling density by
using a mixture of full conditional distributions given the latent states.
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importance sampling estimator:

p̂(y) =
1

R

R∑

r=1

p(y |Σr
θ,Σ

r
h,θ

r
0,h

r
0)p(Σ

r
θ,Σ

r
h,θ

r
0,h

r
0)

g(Σr
θ,Σ

r
h,θ

r
0,h

r
0)

, (11)

where p(y |Σθ,Σh,θ0,h0) is the integrated likelihood that can be estimated using the esti-
mator in (7) and (Σ1

θ,Σ
1
h,θ

1
0,h

1
0), . . . , (Σ

R
θ ,Σ

R
h ,θ

R
0 ,h

R
0 ) are draws from g(Σθ,Σh,θ0,h0).

The main advantage of this importance sampling approach is that it is easy to implement
and the numerical standard error of the estimator is readily available. We refer the
readers to Chan and Eisenstat (2015) for technical details. We summarize the algorithm
in Algorithm 3.

Algorithm 3 Marginal likelihood estimation via the improved cross-entropy method.

The marginal likelihood p(y) can be estimated by the following steps.

1. Obtain the optimal importance sampling density g(Σθ,Σh,θ0,h0) using the im-
proved cross-entropy method described in Chan and Eisenstat (2015).

2. For r = 1, . . . , R, simulate (Σr
θ,Σ

r
h,θ

r
0,h

r
0) ∼ g(Σθ,Σh,θ0,h0) and compute the

average

p̂(y) =
1

R

R∑

r=1

̂p(y |Σr
θ,Σ

r
h,θ

r
0,h

r
0)p(Σ

r
θ,Σ

r
h,θ

r
0,h

r
0)

g(Σr
θ,Σ

r
h,θ

r
0,h

r
0)

,

where the integrated likelihood estimate ̂p(y |Σr
θ,Σ

r
h,θ

r
0,h

r
0) is computed using Al-

gorithm 2.

5 Data and Empirical Results

In this section we compare a number of VARs that involve quarterly data on the GDP
deflator, real GDP, and short-term interest rate for the US and Australia. These three
variables are commonly used in forecasting (e.g., Banbura, Giannone, and Reichlin, 2010;
Koop, 2013) and small DSGE models (e.g., An and Schorfheide, 2007). The data on
real GDP and the GDP deflator are sourced from the Federal Reserve Bank of St. Louis
economic database and the Australian Bureau of Statistics. They are then transformed
to annualized growth rates.

The short-term interest rate is the effective Federal Funds rate for the US and the rate
on 3-month bank accepted bills/negotiable certificates of deposit for Australia. These
series are sourced from the Federal Reserve Bank of St. Louis and the Reserve Bank
of Australia respectively. The sample period covers the quarters 1954Q3 to 2014Q4 for
the US and 1969Q3 to 2014Q4 for Australia. Following Primiceri (2005), we order the
interest rate last and treat it as the monetary policy instrument. The identified monetary
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policy shocks are interpreted as “non-systematic policy actions” that capture both policy
mistakes and interest rate movements that are responses to variables other than inflation
and GDP growth.

For each dataset, we compute the log marginal likelihoods and DICs for the competing
models listed in Table 1. Each log marginal likelihood estimate is based on 10000 evalua-
tions of the integrated likelihood,5 where the importance sampling density is constructed
using 20000 posterior draws after a burn-in period of 5000. Each DIC estimate (and the
corresponding numerical standard error) is computed using 10 parallel chains, each con-
sists of 20000 posterior draws after a burn-in period of 5000. The integrated likelihood is
evaluated every 20-th post burn-in draw—a total of 10000 evaluations. To calculate the
plug-in estimate D(ψ̃) in (5), where ψ̃ is the vector of posterior means, R = 500 draws
are used for the integrated likelihood evaluation.

The model comparison results for US data are reported in Table 2. A few broad con-
clusions can be drawn from this exercise. Firstly, compared to the standard CVAR, the
TVP-SV with both time-varying parameters and stochastic volatility is overwhelmingly
favored by the data—e.g., the Bayes factor in favor of the latter model is 1.5 × 1069.
However, most of the gains in model fit appear to have come from allowing for stochastic
volatility rather than time variation in the VAR coefficients or contemporaneous relation-
ships.

Table 2: Log marginal likelihood and DIC estimates for the competing VARs (numerical
standard errors in parentheses); US data.

TVP-SV TVP TVP-R1-SV TVP-R2-SV CVAR-SV CVAR
log-ML -1178.4 -1300.1 -1170.4 -1175.7 -1171.7 -1337.7

(0.16) (0.34) (0.07) (0.08) (0.04) (0.004)
DIC 2210.3 2398.5 2152.7 2199.0 2147.8 2503.0

(0.51) (1.82) (0.53) (0.40) (0.21) (0.12)
pD 31.8 26.4 31.4 31.4 30.6 26.7

(0.42) (0.13) (0.49) (0.36) (0.15) (0.06)

In fact, the most general TVP-SV is not the best model according to both criteria. For
instance, the Bayes factor in favor of CVAR-SV against TVP-SV is over 800, indicating
overwhelming support for the former model; the difference in DICs is 62.5 in favor of the
former. In contrast to the findings in Koop et al. (2009), our results suggest that when
stochastic volatility is allowed, time variation in the VAR coefficients is unimportant
in explaining the data. This conclusion is in line with Primiceri (2005), who computes
posterior model probabilities of different hyperparameter values. His selected model is the
one that implies the smallest prior variances in the state equation for the time-varying
parameters. Our findings also complement the results in Sims and Zha (2006), who
consider various regime-switching models and find the best model to be the one that

5For each integrated likelihood evaluation in (7), R = 10 draws are used.
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allows time variation in disturbance variances only.

Secondly, the two model comparison criteria mostly agree in the ranking of the models.
The only disagreement is in the top two models—the marginal likelihood slightly prefers
TVP-R1-SV, whereas the DIC favors CVAR-SV at the margin—and the order for the
remaining models is exactly the same for both criteria. Given these results, one may feel
comfortable using CVAR-SV as the default model. This also provides a feasible route
to construct flexible high-dimensional VARs. In particular, one can consider a constant
coefficients VAR with constant impact matrix and shrinkage priors as in Banbura et al.
(2010) and Koop (2013), but extend the diagonal covariance matrix to allow for stochastic
volatility; see Carriero et al. (2015) for such a modeling approach.

Thirdly, when the covariance matrix is restricted to be constant, allowing for time varia-
tion in the parameters improves model fit. This finding supports the conclusion in Cogley
and Sargent (2001), who find substantial time variation in the VAR coefficients in a model
with constant variance. In addition, our finding is also in line with the model comparison
results in Grant (2015) and Chan and Eisenstat (2015), who find that a TVP-VAR with
constant variance compares favorably to a constant coefficients VAR. Finally, Table 2
also reports the effective number of parameters pD for the competing models. According
to this measure, both CVAR and TVP have similar model complexity, whereas TVP-SV
is the most complex model. However, the differences among the models are quite small.
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Figure 1: Estimated standard deviation of the innovation in the inflation equation (left),
GDP growth equation (middle) and interest rate equation (right); US data.

We plot the posterior means of the standard deviations of the innovations for selected
models in Figure 1. The volatilities of the innovations are typically quite high in the
1970s, followed by a marked decline during the Great Moderation, until they increase
again following the aftermath of the Global Financial Crisis. Given these drastic changes
in volatilities, it is no surprise that models that assume homoscedastic innovations can-
not fit the data well. In addition, it is interesting to note that the volatility estimates
are remarkably similar under the three models—although those of the CVAR-SV are
slightly larger in the 1970s. This may reflect that some parameter instability in the VAR
coefficients is treated as an increase in variance under CVAR-SV.
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Figure 2: Impulse responses of inflation (left) and GDP growth (right) to monetary shock
at 2014Q4; US data.

In Figure 2 we plot the impulse responses of inflation and GDP growth to a one percent
monetary shock. For the TVP models, the VAR coefficients used to compute the impulse
responses are fixed at the 2014Q4 estimates. The two TVP models give very similar
impulse response functions, whereas those from the constant coefficients model are quite
different. For example, the impulse response of inflation under the constant coefficients
model is much more persistent than those of the two TVP models, highlighting the
importance of performing model selection or model averaging.

Next, we report the model comparison results for Australian data in Table 3. The con-
clusions are broadly similar to those drawn from US data, but there are a few inter-
esting differences. Specifically, the data again overwhelmingly favor TVP-SV with both
time-varying parameters and stochastic volatility against the standard CVAR according
to both criteria. Further, both criteria indicate that allowing for stochastic volatility
markedly improves model fit.

Table 3: Log marginal likelihood and DIC estimates for the competing VARs (numerical
standard errors in parentheses); Australian data.

TVP-SV TVP TVP-R1-SV TVP-R2-SV CVAR-SV CVAR
log-ML -1226.2 -1341.7 -1232.3 -1224.1 -1228.0 -1359.2

(0.05) (0.19) (0.03) (0.14) (0.01) (0.005)
DIC 2321.8 2525.7 2294.5 2306.0 2276.9 2535.1

(0.43) (0.35) (0.13) (0.31) (0.17) (0.16)
pD 29.1 26.3 29.6 29.2 29.7 26.8

(0.25) (0.16) (0.09) (0.19) (0.07) (0.08)

In contrast to US results, however, here the two criteria disagree in the ranking of the top
four models. The marginal likelihood ranks TVP-R2-SV first followed by TVP-SV and
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CVAR-SV in close second and third. Although the differences in marginal likelihoods are
relatively small—the Bayes factor in favor of the top model against the third is about
50—it appears that allowing for time-varying parameters somewhat improves model fit
even in the presence of stochastic volatility.

The DIC tells a slightly different story. The top three models according to the DIC
are CVAR-SV, TVP-R2-SV and TVP-R1-SV. Here the most parsimonious model does
the best, indicating that time variation in parameters is not needed. This difference in
ranking may reflect a different penalty for model complexity—the DIC seems to penalize
model complexity more heavily than the marginal likelihood. All in all, we conclude that
for Australian data, allowing for stochastic volatility is of first order importance. There
is mixed evidence for time-varying parameters, but both TVP-SV and CVAR-SV have
comparable support.

Finally, according to the effective number of parameters pD, TVP and the constant co-
efficients CVAR are the simplest models, while the other four models with stochastic
volatility have very similar model complexity.

We plot the posterior means of the standard deviations of the innovations for selected
models in Figure 3. Similar to the US results, the volatilities of the innovations are
relatively large in the 1970s, but they gradually decline throughout the 1980s, 1990s and
early 2000s. In contrast to US results, however, the Global Financial Crisis seemingly
only affects the volatility of inflation; its effects on the volatility of GDP and interest rate
are barely noticeable.
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Figure 3: Estimated standard deviation of the innovation in the inflation equation (left),
GDP growth equation (middle) and interest rate equation (right); Australian data.

Next, we report the impulse responses of inflation and GDP growth to a one percent
monetary shock in Figure 4. The impulse response of inflation is qualitatively similar
to that of the US—the two TVP models give similar responses, whereas the response of
inflation under CVAR-SV is more persistent. However, the responses of GDP growth are
quite different among the three models. Interestingly, all three models show an initial
positive GDP growth after a positive monetary shock—in contrast to US results where
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the response of GDP growth is always negative—suggesting Australia faces different types
of monetary shocks. Since the impulse responses are quite different under the models,
this again highlights the importance of model selection and model averaging.
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Figure 4: Impulse responses of inflation (left) and GDP growth (right) to monetary shock
at 2014Q4; Australian data.

6 Concluding Remarks and Future Research

We have developed importance sampling estimators for evaluating the integrated likeli-
hoods of TVP-VARs with stochastic volatility. The proposed methods are then used to
compute the marginal likelihood and DIC in a model comparison exercise. Using US and
Australian data, we find overwhelming support for the model of Primiceri (2005) against
a conventional VAR. Nevertheless, most of the gains appear to have come from allowing
for stochastic volatility rather than time variation in the VAR coefficients or contem-
poraneous relationships. Indeed, according to both the marginal likelihood and DIC, a
constant coefficients VAR with stochastic volatility receives similar support compared to
the more general model of Primiceri (2005).

However, our results do not rule out the possibility that a model in which some of the
VAR coefficients are constant while others are time-varying might perform even better. To
investigate this possibility, one could build upon the proposed methods of integrated like-
lihood evaluation to construct a reversible jump MCMC to explore the vast model space
of hybrid models—e.g., we can have a model in which only one equation has time-varying
coefficients or only the nominal variables have stochastic volatility. This provides an
alternative to the stochastic model specification search approach of Frühwirth-Schnatter
and Wagner (2010), which has been extended to TVP-VARs in Belmonte et al. (2014)
and Eisenstat et al. (2015).

In addition, it would also be interesting to compare large TVP-VARs. Since the number
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of model choices vastly increases in large systems, such a model comparison exercise
would provide useful guidelines for practitioners. In particular, it would be useful to
understand the effects of various shrinkage priors recently proposed in the literature.
One line of investigation would be to compute the effective number of parameters and
DICs for models with these shrinkage priors to see which one receives more support from
the data.

Furthermore, the proposed importance sampling estimators for integrated likelihoods can
be used in other settings, such as in developing more efficient MCMC samplers (e.g., as
an input for particle MCMC methods; see Andrieu, Doucet, and Holenstein 2010) or
designing reversible jump MCMC algorithms to explore models of different dimensions.
We leave these possibilities for future research. Moreover, we have only considered TVP-
VARs with simple stochastic volatility processes. It would be useful to develop similar
importance sampling methods for other richer stochastic volatility models, such as those
in Eisenstat and Strachan (2015).
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Appendix A: Priors and Estimation Details

In this appendix we outline the priors and provide the estimation details for fitting the
model in (2)–(4).

The priors of the initial conditions θ0 and h0 are both Gaussian: θ0 ∼ N (aθ,Vθ) and
h0 ∼ N (ah,Vh). Moreover, the elements of Σθ and Σh are independently distributed as

σ2
θi ∼ IG(νθi, Sθi), σ2

hj ∼ IG(νhj, Shj), i = 1, . . . , kθ, j = 1, . . . , kh.

In particular, we set the hyperparameters to be aθ = 0, Vθ = 10 × Ikθ , ah = 0 and
Vh = 10 × In. For the degree of freedom parameters, they are assumed to be small:
νθi = νhj = 5. The scale parameters are set so that the prior mean of σ2

hj is 0.1
2. In other

words, the difference between consecutive log-volatilities is within 0.2 with probability of
about 0.95. Similarly, the implied prior mean of σ2

θi is 0.01
2 if it is associated with a VAR

coefficient and 0.12 for an intercept.

For notational convenience, let y = (y′
1, . . . ,y

′
T )

′ and θ = (θ′1, . . . ,θ
′
T )

′. Then, poste-
rior draws can be obtained by sequentially sampling from the following full conditional
distributions:

1. p(θ |y,h,Σθ,Σh,θ0,h0);

2. p(h |y,θ,Σθ,Σh,θ0,h0);

3. p(Σθ,Σh |y,θ,h,θ0,h0);

4. p(θ0,h0 |y,θ,h,Σθ,Σh).

To implement Step 1, we first show that the conditional distribution of θ is Gaussian.
To that end, rewrite (2) as a seemingly unrelated regression:

y = Xθ + ε, ε ∼ N (0,Σ), (12)

where ε = (ε′1, . . . , ε
′
T )

′, Σ = diag(Σ1, . . . ,ΣT ) and X = diag(X1, . . . ,XT ). Next, let Hθ

denote the first difference matrix, i.e.,

Hθ =




Ikθ 0 · · · 0

−Ikθ Ikθ
. . .

...
...

. . . . . .
...

0 · · · −Ikθ Ikθ


 .

Then, we can rewrite (3) as

Hθθ = α̃θ + η, η ∼ N (0,Sθ),
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where α̃θ = (θ′0,0, . . . ,0)
′ and Sθ = IT ⊗Σθ. Or equivalently

(θ |Σθ,θ0) ∼ N (αθ, (H
′
θS

−1
θ Hθ)

−1),

where αθ = H−1
θ α̃θ. Using standard linear regression results, one can show that (see,

e.g., Kroese and Chan, 2014, Corollary 8.1):

(θ |y,h,Σθ,Σh,θ0,h0) ∼ N (θ̂,K−1
θ ),

where θ̂ = K−1
θ dθ, and Kθ and dθ are given in (9). Note that the precision matrix Kθ

is a band matrix—i.e., the nonzero elements are all confined within a narrow band along
the main diagonal. As such, the precision sampler of Chan and Jeliazkov (2009) can be

used to sample from N (θ̂,K−1
θ ) efficiently.

To implement Step 2, we can apply the auxiliary mixture sampler of Kim et al. (1998) in
conjunction of the precision sampler to sequentially draw each slice of hi• = (hi1, . . . , hiT )

′,
i = 1, . . . , n. Next, the elements of Σθ and Σh are conditionally independent and follow
inverse-gamma distributions:

(σ2
θi |y,θ,h,θ0,h0) ∼ IG

(
νθi +

T

2
, Sθi +

1

2

T∑

t=1

(θit − θi,t−1)
2

)
, i = 1, . . . , kθ,

(σ2
hj |y,θ,h,θ0,h0) ∼ IG

(
νhj +

T

2
, Shj +

1

2

T∑

t=1

(hjt − hj,t−1)
2

)
, j = 1, . . . , kh.

Lastly, θ0 and h0 are conditionally independent and follow Gaussian distributions:

(θ0 |y,θ,h,Σθ,Σh) ∼ N (θ̂0,K
−1
θ0
), (h0 |y,θ,h,Σθ,Σh) ∼ N (ĥ0,K

−1
h0
),

where Kθ0 = V−1
θ + Σ−1

θ , θ̂0 = K−1
θ0
(V−1

θ aθ + Σ−1
θ θ1), Kh0

= V−1
h + Σ−1

h and ĥ0 =

K−1
h0
(V−1

h ah +Σ−1
h h1).
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Appendix B: Technical Details for Integrated Likeli-

hood Estimation

In this appendix we provide the technical details for estimating the integrated likelihood
outlined in Section 4.1.

We first give an analytical expression of the marginal density p(y |h,Σθ,Σh,θ0,h0) un-
conditional of θ. We have showed in Appendix A that (y |h,θ) ∼ N (Xθ,Σ) and
(θ |Σθ,θ0) ∼ N (αθ, (H

′
θS

−1
θ Hθ)

−1). Then, using a similar derivation as in Chan and
Grant (2014a), one can obtain the log-density as follows:

log p(y |h,Σθ,Σh,θ0,h0) =−
Tn

2
log(2π)−

T

2
log |Σθ| −

1

2
1′
nTh−

1

2
log |Kθ|

−
1

2

(
y′Σ−1y +α′

θH
′
θS

−1
θ Hθαθ − d′

θK
−1
θ dθ

)
,

(13)

where 1nT is a Tn× 1 column of ones, Kθ and dθ are given in (9). Since Kθ, Σ, Hθ and
Sθ are all band matrices, the expression in (13) can be evaluated quickly; see Chan and
Grant (2014a) for computational details.

Then, an explicit expression of Q(h | h̃) is given as follows:

Q(h | h̃) =−
1

2
(h−αh)

′H′
h(IT ⊗Σ−1

h )Hh(h−αh)−
1

2
1′
nTh

−
1

2
tr
(
diag(e−h)E

θ|h̃ [(y −Xθ)(y −Xθ)′]
)
+ c1

=−
1

2
(h−αh)

′H′
h(IT ⊗Σ−1

h )Hh(h−αh)−
1

2
1′
nTh

−
1

2
tr
(
diag(e−h)

(
XK−1

θ X′ + (y −Xθ̂)(y −Xθ̂)′
))

+ c1, (14)

where tr(·) is the trace operator, c1 is a constant not dependent on h,

Hh =




In 0 · · · 0

−In In
. . .

...
...

. . . . . .
...

0 · · · −In In


 .

and αh = H−1
h α̃h with α̃h = (h′

0,0, . . . ,0)
′.

Next, we derive the Hessian of H(h |h). First, H(h |h) has the follow explicit expression:

H(h |h) = −Eθ|h [log p(θ |y,h,Σθ,Σh,θ0,h0)]

=
kT

2
log(2π)−

1

2
log |Kθ|+

1

2
Eθ|h

[
(θ − θ̂)′Kθ(θ − θ̂)

]

= −
1

2
log |X′diag(e−h)X+H′

θS
−1
θ Hθ|+ c2,

22



where c2 is a constant not dependent on h. Note that under p(θ |y,h,Σθ,Σh,θ0,h0), the

quadratic form (θ − θ̂)′Kθ(θ − θ̂) is a chi-squared random variable and its expectation
does not depend on h.

To compute the Hessian of H(h |h), we first introduce some notations. Let xi be a kT ×1
vector that consists of the elements in the i-th row of X. With a slight abuse of notations,
we let hi denote the i-th element of h. Then, it is easy to check that

∂

∂hi

Kθ =
∂

∂hi

X′diag(e−h)X =
∂

∂hi

nT∑

j=1

e−hjxjx
′
j = −e−hixix

′
i.

Next, using standard results of matrix differentiation, we obtain

∂

∂hi

H(h |h) = −
1

2
tr

(
K−1

θ

∂Kθ

∂hi

)
=

1

2
e−hix′

iK
−1
θ xi,

∂2

∂h2
i

H(h |h) = −
1

2

(
e−hix′

iK
−1
θ xi + e−hix′

iK
−1
θ

∂Kθ

∂hi

K−1
θ xi

)

= −
1

2
e−hix′

iK
−1
θ xi(1− e−hix′

iK
−1
θ xi),

∂2

∂hi∂hj

H(h |h) =
1

2
e−(hi+hj)x′

iK
−1
θ xjx

′
jK

−1
θ xi.

In matrix form, the Hessian of H(h |h) is therefore

HH = −
1

2
Z′ ⊙ (InT − Z),

where Z = diag(e−h)XK−1
θ X′.
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B. Djegnéné and W. J. McCausland. The HESSIAN method for models with leverage-like
effects. Journal of Financial Econometrics, 2014. Forthcoming.

J. Durbin and S. J. Koopman. Monte Carlo maximum likelihood estimation for non-
Gaussian state space models. Biometrika, 84:669–684, 1997.

E. Eisenstat and R. W. Strachan. Modelling inflation volatility. Journal of Applied

Econometrics, 2015. Forthcoming.

E. Eisenstat, J. C. C. Chan, and R. W. Strachan. Stochastic model specification search
for time-varying parameter VARs. Econometric Reviews, 2015. Forthcoming.

N. Friel and J. Wyse. Estimating the evidence—a review. Statistica Neerlandica, 66(3):
288–308, 2012.
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