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implications for the relative importance of real versus nominal shocks in explain-
ing variations in output. Using US quarterly real GDP, we find that the overall
best model is an unobserved components model with two features: 1) a nonzero
correlation between trend and cycle innovations; 2) a break in output growth in
2007. Under this specification, annualized trend output growth decreases from
about 3.4% to 1.5% after the break. The results also indicate that real shocks are
more important than nominal shocks.

Keywords: Bayesian model comparison, unobserved components, structural break,
business cycle

JEL classification: C11, C52, E32

∗Joshua Chan would like to acknowledge financial support by the Australian Research Council via a
Discovery Early Career Researcher Award (DE150100795).



1 Introduction

The decomposition of output into its trend and cyclical components is an important
theoretical and empirical problem in the study of macroeconomic fluctuations, business
cycles, and monetary and fiscal policy. Important early contributions to the literature
include the Beveridge and Nelson (1981) decomposition using an unrestricted ARIMA
model and the unobserved components models of Harvey (1985), Watson (1986) and
Clark (1987). However, these two widely used trend-cycle decompositions yield markedly
different results. The Beveridge-Nelson decomposition attributes most of the variance
in output to the variation in trend—the cyclical component is small in amplitude and
noisy. In contrast, the cyclical components from the unobserved components models are
typically large, highly persistent and account for most of the variation in output.

These apparently conflicting results are reconciled in an important paper by Morley,
Nelson, and Zivot (2003). They demonstrate that the difference is entirely due to one
restriction imposed in the unobserved components model: the innovations to the trend
and cycle are assumed to be uncorrelated. When this restriction is relaxed, they find that
the two trend-cycle decompositions are identical (see also Morley, 2011). As a result, both
estimation methods imply that real or permanent shocks are important and that cycles
are small and noisy, and bear little resemblance to the business cycle chronology dated
by the National Bureau of Economic Research (NBER). However, Perron and Wada
(2009) argue that these features of the cycles are artifacts that arise from the neglect of
a structural break in output growth. When a break in growth is allowed for, the cycle
estimates are substantially more persistent and accord well with the NBER chronology.
Importantly, their preferred model is one with a deterministic trend, which implies all
the variation in output can be attributed to innovations to the cyclical component—i.e.,
real shocks are unimportant.

This brief overview of the literature underscores the sensitivity of cycle estimates to model
choice, with differences in one or two key parameters giving starkly different trend-cycle
decompositions. Other model specification choices—such as the dating of a break, which
is fixed in 1973Q1 in Perron and Wada (2009)—can also be framed as a model selection
problem. The model that is used has broad implications for the conclusions drawn about
the relative importance of real versus nominal shocks in explaining variations in output.
Hence, it is important to perform a model comparison exercise to select the best model
(or average different model estimates across models), but it is seldom done in practice.

We take up this task and use a Bayesian model comparison framework to assess the
adequacy of a variety of nested and nonnested models for decomposing US quarterly
real GDP. In particular, we compare the unobserved components models of Clark (1987),
Morley et al. (2003) and Perron and Wada (2009), and deterministic trend models (with
or without a break). By treating each fixed break date as a separate model, we are able
to date any change that might have occurred in output growth. A closely related paper is
Morley and Piger (2012), who consider model comparison using information criteria and
model averaging using an asymptotic approximation to the Bayes factors. In contrast, we
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provide exact computations of the Bayes factors for either model comparison or model
averaging. Consequently, there are notable differences between the results of the two
approaches.

In order to compare the various trend-cycle decompositions, we develop new Bayesian
estimation techniques using Markov chain Monte Carlo (MCMC) methods (see, e.g.,
Koop and Korobilis, 2010, for a general introduction of Bayesian methods for empirical
macroeconomics). A key novel feature of our approach is that it builds upon the band and
sparse matrix algorithms developed in Chan and Jeliazkov (2009), McCausland, Miller,
and Pelletier (2011) and Chan (2013), which are shown to be more efficient than the
conventional Kalman filter-based algorithms. In addition, due to the modular nature of
MCMC algorithms, it is relatively straightforward to extend the estimation methods to
regime-switching models or models with non-Gaussian innovations.

Our main results can be summarized as follows. First, allowing for a nonzero correlation
between the permanent and transitory shocks substantially improves model fit. This is
in line with the finding in Morley et al. (2003), who report an estimate of -0.9 for the
correlation parameter. Second, the correlated unobserved components model of Morley
et al. (2003) dominates any deterministic trend models with or without a break in growth.
However, among correlated unobserved components models, a break in growth is likely
to have occurred in 2007. In fact, the overall best model is one with a break in 2007Q1.
Under this specification, annual trend output growth is estimated to have decreased from
about 3.4% to 1.5% after the break. This model also indicates that real shocks are more
important in explaining the variation in output relative to nominal shocks. Our model
comparison results therefore complement Sinclair (2009), which confirms the robustness
of the Morley et al. (2003) results to a bivariate model specification that includes GDP
and unemployment.

The rest of this article is organized as follows. Section 2 first discusses a variety of
trend-cycle decompositions of output that are widely used in the literature. It then
outlines the Bayesian estimation methods used to fit these models. In Section 3 we give
an overview of Bayesian model comparison using the marginal likelihood, as well as an
importance sampling approach to compute this quantity. Then, in Section 4 we compare
the performance of the various models in fitting US real GDP. Trend-cycle decompositions
and other parameter estimates for selected models are also reported. Lastly, Section 5
concludes and briefly discusses some future research directions.

2 Trend-Cycle Decomposition using UC Models

In this section we discuss a variety of trend-cycle decompositions of output based on
unobserved components models and the Bayesian estimation methods used to fit the
models (see, e.g., Koop, Poirier, and Tobias, 2007, for a quick introduction of Bayesian
computations in econometrics).
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The estimation in the literature on trend-cycle decompositions using unobserved compo-
nents models typically uses the maximum likelihood method. However, one issue with
this approach is the so-called “pile-up” problem, whereby the maximum likelihood esti-
mates take values at the boundary of the parameter space. This can occur, for example,
if a variance parameter is estimated to be zero. The “pile-up” problem makes inference
more difficult, as the usual asymptotic properties of the maximum likelihood estimator
no longer hold.

Moreover, trend-cycle decompositions in the literature are typically obtained conditional
on the maximum likelihood estimates. As such, there is no accounting for parameter
uncertainty. However, given that trend-cycle decompositions can be sensitive to the values
of a few key parameters, it is crucial to take parameter uncertainty into account. The
models in Clark (1987) and Morley et al. (2003) highlight the importance of parameter
uncertainty—the models differ in the value of only one parameter, but the trend-cycle
decompositions from the two models are drastically different.

We adopt the Bayesian approach in which inference is based on the joint posterior dis-
tribution of the parameters. Using the posterior mean as the point estimate avoids the
“pile up” problem—as long as a nondogmatic prior is used, by construction the posterior
mean is away from the boundary of the parameter space. In addition, the trend-cycle
decomposition is constructed by averaging the parameter values with respect to the joint
posterior distribution of the parameters—hence, the decomposition does not depend on
a particular set of parameter values. Furthermore, the Bayesian approach facilitates
comparing nonnested models, which is discussed in more detail in Section 3.

2.1 Competing Models

The trend-cycle decomposition of aggregate output is motivated by the idea that it can
be usefully viewed as the sum of two separate components: a nonstationary component
that represents the long-term trend and a transitory deviation from the trend. More
specifically, let yt denote (100 times) the log of real GDP. Then yt can be decomposed as

yt = τt + ct, (1)

where τt is the trend and ct is the stationary, cyclical component. The nonstationary
trend τt is modeled as a random walk with drift, whereas the cyclical component ct is
modeled as a zero mean stationary AR(p) process:

τt = µ1 + τt−1 + uτ
t , (2)

ct = φ1ct−1 + · · ·+ φpct−p + uy
t , (3)

where the initial τ0 is treated as a parameter to be estimated and for simplicity we assume
c1−p = . . . = c0 = 0. Note that the drift µ1 can be interpreted as the growth rate of trend
GDP. Following Morley et al. (2003), we set p = 2 and assume innovations uy

t and uτ
t are
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jointly normal (
uy
t

uτ
t

)
∼ N

(
0,

(
σ2
y ρσyστ

ρσyστ σ2
τ

))
.

We denote the model in (1)–(3) as UCUR. This model allows a nonzero correlation
between the innovations uy

t and uτ
t . Hence, it includes the model of Clark (1987) as a

special case with ρ = 0; this restricted model is denoted as UC0.

Perron and Wada (2009) point out that the trend-cycle decomposition might be sensitive
to how the trend is modeled. In particular, they show that when a break is allowed
for, the estimates of the cyclical component become larger in magnitude and are more
persistent. Hence, we consider specifications with a break in the drift. Specifically,
consider replacing (2) by a more general specification

τt = µ11(t < t0) + µ21(t > t0) + τt−1 + uτ
t , (4)

where 1(A) is the indicator function that takes the value 1 if the condition A is true and 0
otherwise, and t0 is a known break point. In other words, the stochastic trend τt has a
growth rate of µ1 before the break t0 and a growth rate of µ2 after the break. In the
model comparison exercise, we date the break point by comparing models with different
t0. We denote the UCUR model with a break at time t0 as UCUR-t0.

Lastly, we consider a set of models with deterministic trends. This is motivated by the
findings in Perron and Wada (2009), where the preferred model is UC0 with a break point
in 1973Q1. However, the variance of the innovation to the trend, σ2

τ , is estimated to be
zero, which is outside of the parameter space—the variance σ2

τ should be positive. To
circumvent this difficulty, we consider instead the following deterministic trend

τt = µ11(t < t0) + µ21(t > t0) + τt−1. (5)

The cyclical component ct is modeled as in (3), with uy
t ∼ N (0, σ2

y). This model is
denoted as DT-t0. We also consider a version without a break, which is denoted as DT.

2.2 Bayesian Estimation

In this section we outline the Bayesian estimation methods used to fit the UCUR model
given in (1)–(3). More specifically, we develop a Markov sampler to obtain draws from the
posterior distribution under the UCUR model. The other unobserved components models
can be estimated similarly, and we leave the technical details to Appendix A. A key novel
feature of our approach is that it builds upon the band and sparse matrix algorithms
developed in Chan and Jeliazkov (2009) and Chan (2013). It is shown in McCausland
et al. (2011) that this approach is more efficient compared to the conventional Kalman
filter-based algorithms.

We assume proper but relatively noninformative priors for the model parameters φ =
(φ1, φ2)

′, σ2
y , σ

2
τ , ρ, µ1 and τ0. In particular, we consider a uniform prior on (−1, 1) for ρ,
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and identical uniform priors on (0, 3) for σ2
y and σ2

τ . The details of the priors are given
in Appendix A. Since the marginal likelihood can be sensitive to prior specification,
we use exactly the same priors for common parameters across models. For notational
convenience, stack y = (y1, . . . , yT )

′, and similarly define τ , c, uy and uτ . Then, pos-
terior draws can be obtained by sequentially sampling from the following densities: 1.
p(τ |y,φ, σ2

y , σ
2
τ , ρ, µ1, τ0); 2. p(φ |y, τ , σ2

y , σ
2
τ , ρ, µ1, τ0); 3. p(σ2

y |y, τ ,φ, σ
2
τ , ρ, µ1, τ0); 4.

p(σ2
τ |y, τ ,φ, σ

2
y , ρ, µ1, τ0); 5. p(ρ |y, τ ,φ, σ

2
y , σ

2
τ , µ1, τ0); and 6. p(τ0, µ1 |y, τ ,φ, σ

2
y , σ

2
τ , ρ).

Here we discuss how Step 1 can be implemented; the details of other steps are given in
Appendix A.

First we write the system (1)–(3) in the following matrix form:

y = τ + c,

Hφc = uy,

Hτ = α̃+ uτ ,

where α̃ = (µ1 + τ0, µ1, . . . , µ1)
′ and

H =




1 0 0 0 · · · 0
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
...

. . . . . . . . . . . . 0
0 · · · 0 0 −1 1




, Hφ =




1 0 0 0 · · · 0
−φ1 1 0 0 · · · 0
−φ2 −φ1 1 0 · · · 0
0 −φ2 −φ1 1 · · · 0
...

. . . . . . . . . . . . 0
0 · · · 0 −φ2 −φ1 1




.

Note that both H and Hφ are band matrices with only a few nonzero elements arranged
along the main diagonal. Further, since both are square matrices with unit determinant,
they are invertible. Hence, given φ, σ2

y , σ
2
τ , ρ and τ0, we have

(
c

τ

)
∼ N

((
0

α

)
,

(
σ2
y(H

′

φHφ)
−1 ρσyστ (H

′Hφ)
−1

ρσyστ (H
′

φH)−1 σ2
τ (H

′H)−1

))
,

where α = H−1α̃. Using the properties of the Gaussian distributions (see, e.g., Kroese
and Chan, 2014, Chapter 3.6), the marginal distribution of τ (unconditional on c) is

(τ | σ2
τ , µ1, τ0) ∼ N (α, σ2

τ (H
′H)−1),

and the conditional distribution of y given τ and other parameters is given by

(y | τ ,φ, σ2
y , σ

2
τ , ρ, µ1, τ0) ∼ N

(
H−1

φ a+H−1
φ Bτ , (1− ρ2)σ2

y(H
′

φHφ)
−1
)
,

where
a = −

ρσy

στ

Hα, B = Hφ +
ρσy

στ

H.

Therefore, the prior density of τ and the conditional likelihood are given by

p(τ | σ2
τ , µ1, τ0) = (2πσ2

τ )
−

T
2 e

−
1

2σ2
τ
(τ−α)′H′H(τ−α)

(6)

p(y | τ ,φ, σ2
y , σ

2
τ , ρ, µ1, τ0) = (2πσ2

y(1− ρ2))−
T
2 e

−
1

2(1−ρ2)σ2
y
(Hφy−a−Bτ )′(Hφy−a−Bτ )

. (7)
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Then, by standard linear regression results (see, e.g., Kroese and Chan, 2014, pp. 237-
240), we have

(τ |y,φ, σ2
y , σ

2
τ , µ1, ρ, τ0) ∼ N (τ̂ ,K−1

τ ),

where

Kτ =
1

σ2
τ

H′H+
1

(1− ρ2)σ2
y

B′B, τ̂ = K−1
τ

(
1

σ2
τ

H′Hα+
1

(1− ρ2)σ2
y

B′(Hφy − a)

)
.

Since H, Hφ and B are all band matrices, so is the precision matrix Kτ . As such, the
precision sampler of Chan and Jeliazkov (2009) can be used to sample τ efficiently. We
leave the details of Steps 2-6 to Appendix A.

In addition, this approach allows us to derive an analytical expression of the integrated

or observed-data likelihood p(y |φ, σ2
y , σ

2
τ , ρ, µ1, τ0), which is a crucial quantity for model

comparison. We refer the readers to Appendix B for the exact expression and the deriva-
tions. Using this analytical expression, the integrated likelihood can then be evaluated
quickly using band matrix routines, which is more efficient than using the Kalman filter.

3 Model Comparison via the Marginal Likelihood

In this section, we give an overview of Bayesian model comparison using the marginal
likelihood. Then, we outline an importance sampling approach based on the improved
cross-entropy method to compute the marginal likelihood.

Suppose we wish to compare a set of possibly nonnested models {M1, . . . ,MK}. Each
model Mk is formally defined by two components: a likelihood function p(y |θk,Mk) that
depends on the model-specific parameter vector θk and a prior density p(θk |Mk). The
marginal likelihood under model Mk is defined as

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk. (8)

This marginal likelihood can be interpreted as a density forecast of the data under model
Mk evaluated at the actual observed data y. Hence, if the observed data are likely under
the model, the associated marginal likelihood would be “large”. Since the marginal
likelihood is essentially a density forecast evaluation, it has a built-in penalty for model
complexity.

Given two models Mi and Mj, if the marginal likelihood under model Mi is larger than
that under Mj—i.e., the observed data are more likely under model Mi compared to
model Mj—then it is viewed as evidence in favor of model Mi. The weight of evidence
can be gauged by the posterior odds ratio between the two models, which can be written
as follows:

P(Mi |y)

P(Mj |y)
=

P(Mi)

P(Mj)
×

p(y |Mi)

p(y |Mj)
,
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where P(Mi)/P(Mj) is the prior odds ratio and the ratio of the marginal likelihoods
p(y |Mi)/p(y |Mj) is called the Bayes factor in favor of model Mi against Mj. If both
models are equally probable a priori, i.e., the prior odds ratio is one, the posterior odds
ratio between the two models is then equal to the Bayes factor. Then, if, for example,
BFij = 50, it implies model Mi is 50 times more likely than model Mj given the data.
For a more detailed discussion of the Bayes factor, we refer the readers to Koop (2003).
Next, we outline an importance sampling method for calculating the marginal likelihoods
under the various unobserved components models discussed in the previous section.

The computation of the marginal likelihood is in general nontrivial—the integral in (8) is
often high-dimensional and cannot be obtained analytically. Here we adopt an improved
version of the classic cross-entropy method to estimate the marginal likelihood. The clas-
sic cross-entropy method was originally developed for rare-event simulation by Rubinstein
(1997, 1999) using a multi-level procedure to construct the optimal importance sampling
density (see also Rubinstein and Kroese, 2004, for a book-length treatment). Chan and
Kroese (2012) later show that the optimal importance sampling density can be obtained
more accurately in one step using MCMC methods. This new variant is applied in Chan
and Eisenstat (2015) for marginal likelihood estimation, which is outlined as follows.

Suppose we wish to estimate p(y |Mk), the marginal likelihood under model Mk. For
notational convenience we drop the model index Mk, and write the marginal likelihood,
likelihood and prior as p(y), p(y |θ) and p(θ), respectively. The ideal zero-variance
importance sampling density for this estimation problem is the posterior density p(θ |y).
Unfortunately, this density is only known up to a constant and therefore cannot be used
directly in practice. Nevertheless, it provides a good benchmark to obtain a suitable
importance sampling density.

The idea is to locate a density that is “close” to the ideal importance sampling density.
Operationally, we find the density within a convenient family of distributions such that
its Kullback-Leibler divergence—or the cross-entropy distance—to the ideal density is
minimized. Once the optimal density, say, g(·), is obtained, it is used to construct the
importance sampling estimator:

p̂(y) =
1

R

R∑

r=1

p(y |θ(r))p(θ(r))

g(θ(r))
, (9)

where θ(1), . . . ,θ(R) are draws from the importance sampling density g(θ). The main
advantage of this importance sampling approach is that it is easy to implement and the
numerical standard error of the estimator is readily available. We refer the readers to
Chan and Eisenstat (2015) for technical details. For the unobserved components models
discussed in Section 2.1, the likelihood—or more accurately, the integrated likelihood or
observed-data likelihood (the density of the data marginal of the latent states)—can in
principle be evaluated using the Kalman filter. Here we adopt a more efficient approach,
which is substantially faster than the Kalman filter. Specifically, we first derive analyt-
ical expressions for the integrated likelihoods under the various unobserved components
models. These expressions are then evaluated using band and sparse matrix routines.
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The technical details are given in Appendix B.

4 Empirical Results

In this section we compare the performance of the various unobserved components models
discussed in Section 2 in fitting US real GDP. The main goal of this exercise is to establish
the types of model features that are useful in trend-cycle decompositions. For example,
does allowing for correlation between permanent and transitory shocks substantially im-
prove model fit? Or is it more important to allow for a break in GDP growth? If yes,
when is the break date?

We use US quarterly real GDP for our analysis, which is sourced from the Federal Re-
serve Bank of St. Louis economic database. The data are then transformed by taking
the logs and multiplying by 100. We first report the model comparison results in Sec-
tion 4.1. Trend-cycle decompositions and other parameter estimates for selected models
are reported in Section 4.2.

4.1 Model Comparison Results

All the models are estimated using the new sampling approach based on band matrix
routines discussed in Section 2.2 and Appendix A. The marginal likelihoods are computed
using the improved cross-entropy method of Chan and Eisenstat (2015), which is outlined
in Section 3. Each set of results is based on 100000 posterior draws after a burn-in
period of 10000. For computing each marginal likelihood value, we use 50000 importance
sampling draws.

We first address the timing of a break in GDP growth. Motivated by the results in Perron
andWada (2009)—in which the preferred specification is DT-73, i.e., a deterministic trend
model with a break in GDP growth in 1973Q1—we consider two classes of models with
a break, namely, UCUR-t0 and DT-t0. For each class of models, we consider 10 possible
break dates: every first quarter from 1971Q1 to 1975Q1, and from 2005Q1 to 2009Q1.
The latter dates are chosen so that we can determine whether trend GDP growth has
changed following the Global Financial Crisis. We only consider a break in the first
quarter of each year, given that the difference between models with breaks in consecutive
quarters is expected to be small. Hence, it might be more useful to think of the break
occurring in that year than in that particular quarter.

The model comparison results are reported in Table 1. By comparing UCUR-t0 and DT-
t0 for each break date, we conclude that UCUR-t0 uniformly outperforms DT-t0 in fitting
the US data. For example, the Bayes factor in favor of UCUR-07 against DT-07 is about
28—if we assume both models are equally likely a priori, the former becomes 28 times
more likely given the data—indicating strong evidence in favor of UCUR-07.

9



In addition, for both classes of models, a break date in 2007Q1 is most favored by the data
among the 10 possible break dates. This indicates that there seems to be a structural
break in trend GDP growth in the early stages of the Global Financial Crisis.

Table 1: Log marginal likelihoods of the UCUR-t0 and DT-t0 models with various break
dates. Numerical standard errors are in parenthesis.

DT-71 DT-72 DT-73 DT-74 DT-75
-368.96 -368.52 -367.95 -367.50 -368.20
(0.008) (0.010) (0.005) (0.009) (0.019)
DT-05 DT-06 DT-07 DT-08 DT-09
-367.43 -367.55 -367.37 -367.62 -369.86
(0.006) (0.006) (0.007) (0.006) (0.006)

UCUR-71 UCUR-72 UCUR-73 UCUR-74 UCUR-75
-366.25 -366.03 -365.69 -365.39 -365.99
(0.046) (0.077) (0.046) (0.090) (0.049)

UCUR-05 UCUR-06 UCUR-07 UCUR-08 UCUR-09
-364.45 -364.29 -364.04 -364.29 -365.60
(0.045) (0.065) (0.039) (0.036) (0.050)

The above results show that if a break is assumed, the break is most likely to have
occurred in 2007. Next, we address the question of whether a break is indeed needed by
comparing models with and without a break. In addition, by directly comparing UC0
and UCUR, we investigate whether or not allowing for a nonzero correlation between the
permanent and transitory shocks substantially improves model fit. The model comparison
results are reported in Table 2.

Table 2: Log marginal likelihoods of competing models with and without a break. Nu-
merical standard errors are in parenthesis.

DT UC0 UCUR DT-07 UCUR-07
-370.63 -370.54 -365.02 -367.37 -364.04

(0.004) (0.030) (0.026) (0.007) (0.039)

Among the three models without a break, the UCUR model receives the most support
from the data, followed by UC0 and the deterministic trend model DT. For instance,
the Bayes factor in favor of UCUR against UC0 is about 250, indicating overwhelming
support for the former. This is consistent with the findings in Morley et al. (2003)—
the maximum likelihood estimate of the correlation ρ is reported to be about -0.9 with a
relatively small standard error. In contrast, using information criteria to compare models,
Morley and Piger (2012) find mixed results: Akaike information criterion weakly prefers
UCUR but Bayesian information criterion slightly favors UC0.

It is also interesting to note that the best model among UC0, DT and DT-73 is DT-73,
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which is in line with the results in Perron and Wada (2009), who prefer a deterministic
trend model with a break in 1973Q1. However, among all the models we consider, the
overall best model is UCUR-07. For example, compared to DT-73, the Bayes factor in
favor of UCUR-07 is about 50, showing strong support for the latter model. Moreover,
this also indicates that a break in trend GDP growth is likely to have occurred in the
early stages of the Global Financial Crisis.

4.2 Trend-Cycle Estimates and Variance Decomposition

In this section we report the trend and cycle estimates under three models: DT-73,
the deterministic trend model with a break in growth in 1973Q1; UCUR, the correlated
unobserved components model of Morley et al. (2003); and UCUR-07, an extension of
UCUR with a break in growth in 2007Q1.

Figure 1 plots the trend and cycle estimates under DT-73.1 It can be seen in the left panel
that there is a kink in the trend in 1973Q1, reflecting a slower estimated trend growth
rate after the break date. Under this deterministic trend model, all variation in output is
attributed to the cyclical component. Consequently, the cycles are large and persistent.
For example, output started to outpace its trend from the early 1990s, and the cyclical
component reached a peak in the new millennium. Output was substantially above trend
until the Global Financial Crisis—since then it has dropped below trend. Interestingly,
the output gap seems to have widened since 2010, reflecting the slower growth in GDP
compared to the historical trend.
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Figure 1: Estimates of trend (left panel) and cycle (right panel) under DT-73. The shaded
region represents the 10% and 90% quantiles.

We report the trend and cycle estimates of UCUR and UCUR-07 in Figures 2 and 3.

1The trend estimates reported in this section are smoothed values obtained conditional on the whole
sample. More specifically, the point estimates are the posterior means E(τ |y). The cycle estimates are
then given by y − E(τ |y).
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Compared to those of DT-73, the cycle estimates are much smaller in magnitude and
less persistent. This highlights the sensitivity of trend and cycle estimates to model
specification, and hence the importance of model comparison. The cycle estimates also
suggest that output is above trend in the run-up to the Global Financial Crisis, even
though not to the same magnitude as in DT-73.
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Figure 2: Estimates of trend (left panel) and cycle (right panel) under UCUR. The shaded
region represents the 10% and 90% quantiles.
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Figure 3: Estimates of trend (left panel) and cycle (right panel) under UCUR-07. The
shaded region represents the 10% and 90% quantiles.

Not surprisingly, the cycle estimates of UCUR and UCUR-07 are fairly similar. The only
noticeable difference occurs after the Global Financial Crisis: the former model suggests
that output has been at trend since 2009 and remains there, whereas the latter model
indicates that output has been slightly below trend since 2009. Figure 4 plots the trend
estimates of the three models from 2005Q1 to 2014Q4.
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Figure 4: Estimates of trend from 2005Q1 to 2014Q4 under the DT-73 model (left panel),
UCUR model (middle panel) and UCUR-07 model (right panel).

In addition to the different trend-cycle decompositions, these models also differ in their
conclusions regarding the relative importance of permanent and transitory shocks. As
mentioned above, DT-73 has a deterministic trend and therefore all variation of output
is due to the transitory shocks. In contrast, both UCUR and UCUR-07 allow us to
decompose the variance of output into the portions contributed by the permanent and
transitory shocks. Table 3 reports the parameter estimates of the three models.

Table 3: Estimated posterior means under DT-73, UCUR and UCUR-07. Numerical
standard errors are in parenthesis.

DT-73 UCUR UCUR-07
µ1 0.97 0.78 0.84

(0.039) (0.082) (0.077)
µ2 0.70 – 0.37

(0.039) (0.199)
φ1 1.34 0.95 1.10

(0.057) (0.343) (0.361)
φ2 -0.37 -0.36 -0.44

(0.057) (0.184) (0.180)
σ2
y 0.79 1.12 0.90

(0.069) (0.553) (0.486)
σ2
τ – 1.85 1.42

(0.494) (0.593)
ρ – -0.87 -0.76

(0.071) (0.246)
P(σ2

τ > σ2
y |y) – 0.92 0.83

P(µ1 > µ2 |y) 1.00 – 0.98

Under UCUR-07 the estimates of σ2
τ and σ2

y are 1.42 and 0.9 respectively, giving a ratio of
about 1.5. This indicates that permanent shocks are relatively more important compared

13



to transitory shocks, which is in line with the conclusion in Morley et al. (2003). However,
since the variance parameters are not precisely estimated, we need to take account of
parameter uncertainty.

In Figure 5 we plot the posterior densities of the variance ratio σ2
τ/σ

2
y under the two

models.2 Most of the mass for both densities is in regions that are larger than unity. In
fact, the posterior probabilities P(σ2

τ > σ2
y |y) are 0.92 and 0.83 for UCUR and UCUR-

07, respectively. These results show that despite the high parameter uncertainty, both
models conclude that real shocks are relatively much more important in explaining the
variation in output.
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Figure 5: Posterior densities of the variance ratio σ2
τ/σ

2
y under UCUR (left panel) and

UCUR-07 (right panel).

Next, we consider the difference in growth rates for models that allow for a break. Recall
the model comparison results in Section 4.1 that show between the two deterministic
trend models DT-73 and DT, the data favor the former. The parameter estimates of µ1

and µ2 under DT-73 support this conclusion. In particular, the annualized trend growth
rate dropped from 3.88% before 1973 to 2.80% after 1973. The left panel of Figure 6
plots the posterior density of µ1 − µ2, which has virtually no mass below zero.

However, recall also that the overall best model is UCUR-07, which allows for a break in
2007. Under UCUR-07, the annualized trend growth rate more than halves before and
after 2007—dropping from 3.36% to 1.48%. The low estimate of µ2 is partly due to the
influence of the Global Financial Crisis—we only have eight years of data after the break.
Even so, our results support the view that growth has slowed after the financial crisis.

The posterior density of µ1−µ2 in Figure 6 shows that there is more parameter uncertainty
under UCUR-07 compared to DT-73, reflecting the difficulty in estimating the growth of
a stochastic trend as opposed to a deterministic one. Nevertheless, the density has little

2For each model, posterior draws of the ratio σ2

τ
/σ2

y
are first obtained using the MCMC sampler

described in Appendix A. These draws are then used to compute the density using the kernel density
estimator of Botev, Grotowski, and Kroese (2010).
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mass below zero, which is consistent with the model comparison results that show the
data prefer UCUR-07 compared to UCUR without a break.
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Figure 6: Posterior densities of the difference µ1 − µ2 under DT-73 (left panel) and
UCUR-07 (right panel).

For both UCUR and UCUR-07, the estimates of ρ are negative and large in magnitude.
In particular, ρ is estimated to be -0.87 and -0.76 for UCUR and UCUR-07, respectively.
The posterior densities of ρ are plotted in Figure 7. The posterior modes of both densities
are near -0.9, which is in line with the results in Morley et al. (2003). In addition, both
densities have little mass near 0, showing the empirical relevance of allowing for nonzero
correlation between the permanent and transitory shocks.
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Figure 7: Posterior densities of ρ under UCUR (left panel) and UCUR-07 (right panel).

5 Concluding Remarks and Future Research

We have undertaken a formal Bayesian model comparison exercise to assess a number of
models for decomposing US output into its trend and cyclical components. We find that
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it is empirically important to allow for correlation between permanent and transitory
shocks. The correlated unobserved components model dominates any deterministic trend
models with or without a break in growth. The overall best model is the correlated
unobserved components model with a break in 2007. Under this specification, annualized
trend output growth decreases from about 3.4% to 1.5% after the break. This model
also indicates that permanent shocks are relatively more important in explaining the
variation in output compared to transitory shocks. It would be interesting to see if these
conclusions remain true if a broader set of nonlinear and asymmetric models are included,
such as those in Morley and Piger (2008), Sinclair (2010) and Morley and Piger (2012).

Many recent papers, including Stock and Watson (2007), Chan (2013) and Clark and
Doh (2014), have demonstrated the importance of allowing for stochastic volatility in
modeling inflation using unobserved components models. For future research, it would
also be worthwhile to investigate if stochastic volatility is useful for decomposing output.
In particular, the stochastic volatility framework allows us to assess if the contributions
of permanent and transitory shocks have changed over time in explaining the variation
in output.
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Appendix A: Estimation Details

This appendix discusses the priors and provides the estimation details of the unobserved
components models discussed in Section 2.

Estimation of the UCUR Model

For the UCUR model in (1)–(3), the model parameters are φ = (φ1, φ2)
′, σ2

y , σ
2
τ , ρ, µ1 and

τ0. We assume standard independent priors for φ, µ1 and τ0:

φ ∼ N (φ0,Vφ)1(φ ∈ R), µ1 ∼ N (µ0, Vµ), τ0 ∼ N (τ00, Vτ ),

where R is the stationarity region. We assume relatively large prior variances with
Vφ = I2, Vµ = 1 and Vτ = 100. For the prior means, we set φ0 = (1.3,−0.7)′, τ00 = 750
and µ0 = 0.75. In particular, these values imply that the prior mean of the annualized
growth rate is 3% and the AR(2) process of the transitory component has two complex
roots. Next, σ2

y , σ
2
τ and ρ have uniform priors:

σ2
y ∼ U(0, by), σ2

τ ∼ U(0, bτ ), ρ ∼ U(−1, 1),

where we set the upper bounds as by = bτ = 3.

Posterior draws are obtained by sequentially sampling from: 1. p(τ |y,φ, σ2
y , σ

2
τ , ρ, µ1, τ0);

2. p(φ |y, τ , σ2
y , σ

2
τ , ρ, µ1, τ0); 3. p(σ2

y |y, τ ,φ, σ
2
τ , ρ, µ1, τ0); 4. p(σ2

τ |y, τ ,φ, σ
2
y , ρ, µ1, τ0);

5. p(ρ |y, τ ,φ, σ2
y , σ

2
τ , µ1, τ0); and 6. p(τ0, µ1 |y, τ ,φ, σ

2
y , σ

2
τ , ρ). The implementation of

Step 1 is discussed in Section 2.2. Here we provide the details of the other steps.

To sample φ in Step 2, recall that uy and τ are jointly normal:

(
uy

τ

)
∼ N

((
0

α

)
,

(
σ2
yIT ρσyστ (H

′)−1

ρσyστH
−1 σ2

τ (H
′H)−1

))
, (10)

where α = H−1α̃ with α̃ = (µ1 + τ0, µ1, . . . , µ1)
′. Hence, the conditional distribution of

uy given τ and other parameters is

(uy | τ , σ2
y , σ

2
τ , ρ, µ1, τ0) ∼ N

(
ρσy

στ

H(τ −α), (1− ρ2)σ2
yIT

)
.

Next, we write (3) as
c = Xφφ+ uy,

where Xφ is a T×2 matrix consisting of lagged values of ct. Then, by standard regression
results, we have

(φ |y, τ , σ2
y , σ

2
τ , ρ, µ1, τ0) ∼ N (φ̂,K−1

φ )1(φ ∈ R),
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where

Kφ = V−1
φ +

1

(1− ρ2)σ2
y

X′

φXφ,

φ̂ = K−1
φ

(
V−1

φ φ0 +
1

(1− ρ2)σ2
y

X′

φ

(
c−

ρσy

στ

H(τ −α)

))
.

A draw from this truncated normal distribution can be obtained by the acceptance-
rejection method, i.e., keep sampling from N (φ̂,K−1

φ ) until φ ∈ R.

To implement Steps 3 to 5, we first derive the joint density of uy and uτ . To that end,
note that given σ2

y , σ
2
τ and ρ, we can factorize (uy

t , u
τ
t ) as:

uτ
t ∼ N (0, σ2

τ ), (uy
t | u

τ
t ) ∼ N

(
ρσy

στ

uτ
t , (1− ρ2)σ2

y

)
.

Hence, the joint density of uy and uτ is given by

p(uy,uτ | σ2
y , σ

2
τ , ρ) ∝ (σ2

τ )
−

T
2 e

−
1

2σ2
τ

∑T
t=1(u

τ
t )

2

((1− ρ2)σ2
y)

−
T
2 e

−
1

2(1−ρ2)σ2
y

∑T
t=1(u

y
t−

ρσy

στ
uτ
t )

2

,

= ((1− ρ2)σ2
yσ

2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
y

(

k1−
2ρσy
στ

k2+
ρ2σ2

y

σ2
τ

k3

)

, (11)

where k1 =
∑T

t=1(u
y
t )

2, k2 =
∑T

t=1 u
y
tu

τ
t and k3 =

∑T

t=1(u
τ
t )

2. It follows from (11) that

p(σ2
y |y, τ ,φ, σ

2
τ , ρ, µ1, τ0) ∝ p(σ2

y)× (σ2
y)

−
T
2 e

−
1

2(1−ρ2)σ2
y

(

k1−
2ρσy
στ

k2+
ρ2σ2

y

σ2
τ

k3

)

,

where p(σ2
y) is the truncated normal prior specified above. This full conditional density

of σ2
y is not a standard density and we sample from it using a Griddy-Gibbs step. That

is, we evaluate the full conditional density on a fine grid, and obtain a draw from the
density using the inverse-transform method (see, e.g., Kroese, Taimre, and Botev, 2011,
pp. 45–47). Steps 4 and 5 can be similarly implemented by noting that

p(σ2
τ |y, τ ,φ, σ

2
y , ρ, µ1, τ0) ∝ p(σ2

τ )× (σ2
τ )

−
T
2 e

−
1

2σ2
τ
k3−

1

2(1−ρ2)σ2
y

(

k1−
2ρσy
στ

k2+
ρ2σ2

y

σ2
τ

k3

)

p(ρ |y, τ ,φ, σ2
y , σ

2
τ , µ1, τ0) ∝ p(ρ)× (1− ρ2)−

T
2 e

−
1

2(1−ρ2)σ2
y

(

k1−
2ρσy
στ

k2+
ρ2σ2

y

σ2
τ

k3

)

,

where p(σ2
τ ) and p(ρ) are the priors for σ2

τ and ρ respectively.

Lastly, to jointly sample τ0 and µ1, note that we can write α = τ01T + µ1H
−11T = Xδδ,

where 1T is a T × 1 column of ones, Xδ = (1T ,H
−11T ) and δ = (τ0, µ1)

′. It follows from
(10) that the conditional distribution of τ given uy and other parameters is

(τ |uy, σ2
y , σ

2
τ , ρ, µ1, τ0) ∼ N

(
Xδδ +

ρστ

σy

H−1uy, (1− ρ2)σ2
τ (H

′H)−1

)
.

Then, by standard regression results, we have

(τ0, µ1 |y, τ , σ
2
y , σ

2
τ , ρ,φ, τ0) ∼ N (δ̂,K−1

δ ),
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where

Kδ = V−1
δ +

1

(1− ρ2)σ2
τ

X′

δH
′HXδ,

δ̂ = K−1
δ

(
V−1

δ δ0 +
1

(1− ρ2)σ2
τ

X′

δH
′H

(
τ −

ρστ

σy

H−1uy

))
,

where Vδ = diag(Vτ , Vµ) and δ0 = (τ00, µ0)
′.

Estimation of the UCUR-t0 Model

We now consider an extension of the UCUR model that allows for a break in the growth
rate of the trend at time t0. Specifically, we replace (4) with (5), which is reproduced
below:

τt = µ11(t < t0) + µ21(t > t0) + τt−1 + uτ
t ,

where 1(A) is the indicator function that takes the value 1 if the condition A is true and 0
otherwise. Compared to the UCUR model, the only additional parameter is µ2. Its prior
is assumed to be the same as that of µ1, i.e., µ2 ∼ N (µ0, Vµ) with µ0 = 0.75 and Vµ = 1.
For the common parameters, we assume exactly the same priors as in the UCUR model.

Only minor modifications of the sampler for the UCUR model are needed to fit this
extension. For example, if we redefine

α̃ = (µ1 + τ0, µ1, . . . , µ1︸ ︷︷ ︸
t0−1

, µ2, . . . , µ2︸ ︷︷ ︸
T−t0+1

)′

and α = H−1α̃, then Steps 1 and 2 can be implemented exactly as before. Similarly, if
we compute uτ using uτ = Hτ − α̃, then Steps 3–5 remain the same as before. Lastly,
to sample τ0, µ1 and µ2 jointly, write α = τ01T + µ1H

−1d1 + µ2H
−1d2 = Xδδ, where

d1 is a T × 1 vector of dummy variables where the first t0 − 1 elements are 1 and the
rest are 0, and d2 is defined so that d1 + d2 = 1T . Note that Xδ and δ are redefined as
Xδ = (1T ,H

−1d1,H
−1d2) and δ = (τ0, µ1, µ2)

′. Then, the last step is implemented as
before.

Estimation of the DT-t0 Model

For the deterministic trend model with the trend

τt = µ11(t < t0) + µ21(t > t0) + τt−1,

the model parameters are φ, σ2
y , µ1, µ2 and τ0. We adopt the same priors as in the UCUR-

t0 model. Note that we can write this model as

y = Xδδ + c, (12)

c = H−1
φ uy,
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where Xδ = (1T ,H
−1d1,H

−1d2) and δ = (τ0, µ1, µ2)
′.

Posterior draws can be obtained by sequentially sampling from: 1. p(φ |y, σ2
y , µ1, µ2, τ0);

2. p(σ2
y |y,φ, µ1, µ2, τ0); and 3. p(τ0, µ1, µ2 |y,φ, σ

2
y). To implement Step 1, note that

(uy | σ2
y) ∼ N (0, σ2

yIT ). Hence, we have

(φ |y, σ2
y , µ1, µ2, τ0) ∼ N (φ̂,K−1

φ )1(φ ∈ R),

where

Kφ = V−1
φ +

1

σ2
y

X′

φXφ, φ̂ = K−1
φ

(
V−1

φ φ0 +
1

σ2
y

X′

φc

)
.

A draw from this truncated normal distribution can be obtained by using the acceptance-
rejection method.

Next, the full conditional density of σ2
y is given by

p(σ2
y |y,φ, µ1, µ2, τ0) ∝ p(σ2

y)× (σ2
y)

−
T
2 e

−
1

2σ2
y

∑T
t=1(u

y
t )

2

,

where uy can be computed by uy = Hφ(y − Xδδ). As before, a draw of σ2
y can be

obtained using the Griddy-Gibbs step. Lastly, it follows from (12) that

(τ0, µ1, µ2 |y, σ
2
y ,φ) ∼ N (δ̂,K−1

δ ),

where

Kδ = V−1
δ +

1

σ2
y

X′

δH
′

φHφXδ, δ̂ = K−1
δ

(
V−1

δ δ0 +
1

σ2
y

X′

δH
′

φHφy

)
.
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Appendix B: Integrated Likelihood Evaluation

This appendix derives analytical expressions for the integrated likelihoods under the
unobserved components models discussed in Section 2. These integrated likelihoods can
then be evaluated using band matrix routines, which are more efficient than using the
conventional Kalman filter.

The UCUR Model

Recall that the prior density of τ and the conditional likelihood under the UCUR model
are given by

p(τ | σ2
τ , µ1, τ0) = (2πσ2

τ )
−

T
2 e

−
1

2σ2
τ
(τ−α)′H′H(τ−α)

p(y | τ ,φ, σ2
y , σ

2
τ , ρ, µ1, τ0) = (2πσ2

y(1− ρ2))−
T
2 e

−
1

2(1−ρ2)σ2
y
(Hφy−a−Bτ )′(Hφy−a−Bτ )

,

where
a = −

ρσy

στ

Hα, B = Hφ +
ρσy

στ

H.

Let k4 = (2π)−T ((1− ρ2)σ2
yσ

2
τ )

−
T
2 . Then, the integrated likelihood can be derived as

follows:

p(y |φ, σ2
y , σ

2
τ , ρ, µ1, τ0) =

∫
p(y | τ ,φ, σ2

y , σ
2
τ , ρ, µ1, τ0)p(τ | σ2

τ , µ1, τ0)dτ

= k4

∫
e
−

1

2(1−ρ2)σ2
y
(Hφy−a−Bτ )′(Hφy−a−Bτ )

e
−

1

2σ2
τ
(τ−α)′H′H(τ−α)

dτ

= k4

∫
e
−

1
2

(

1

(1−ρ2)σ2
y
((Hφy−a)′(Hφy−a)−2τ ′B′(Hφy−a)+τ ′B′Bτ)+ 1

σ2
τ
(τ ′H′Hτ−2τ ′H′Hα+α′H′Hα)

)

dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
y
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα

) ∫
e−

1
2
(τ ′Kττ−2τ ′dτ )dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
y
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

) ∫
e−

1
2((τ−K

−1
τ dτ )′Kτ (τ−K

−1
τ dτ ))dτ

= k4e
−

1
2

(

1

(1−ρ2)σ2
y
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

)

(2π)
T
2 |Kτ |

−
1
2

= (2π(1− ρ2)σ2
yσ

2
τ )

−
T
2 |Kτ |

−
1
2 e

−
1
2

(

1

(1−ρ2)σ2
y
(Hφy−a)′(Hφy−a)+ 1

σ2
τ
α′H′Hα−d′

τK
−1
τ dτ

)

,

where

Kτ =
1

σ2
τ

H′H+
1

(1− ρ2)σ2
y

B′B, dτ =
1

σ2
τ

H′Hα+
1

(1− ρ2)σ2
y

B′(Hφy − a).

SinceH,Hφ andKτ are band matrices, this integrated likelihood can be evaluated quickly
using the band matrix algorithms discussed Chan and Grant (2014).
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The UCUR-t0 Model

For the extension of the UCUR model that allows for a break in the growth rate of the
trend at time t0, only minor modifications are needed. In particular, if we redefine

α̃ = (µ1 + τ0, µ1, . . . , µ1︸ ︷︷ ︸
t0−1

, µ2, . . . , µ2︸ ︷︷ ︸
T−t0+1

)′

and α = H−1α̃, then the integrated likelihood of this generalization is exactly the same
as that of the UCUR model.

The DT-t0 Model

For the deterministic trend model, recall that from (12) we have

y = Xδδ +H−1
φ uy,

where uy ∼ N (0, σ2
yIT ), Xδ = (1T ,H

−1d1,H
−1d2) and δ = (τ0, µ1, µ2)

′. Hence, the
likelihood is given by

p(y |φ, σ2
y , µ1, µ2, τ0) = (2πσ2

y)
−

T
2 e

−
1

2σ2
y
(y−Xδδ)

′H′

φHφ(y−Xδδ)
.
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