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Abstract

Seasonality in macroeconomic time series can obscure movements of other compo-
nents in a series that are operationally more important for economic and economet-
ric analyses. Indeed, in practice one often prefers to work with seasonally adjusted
data to assess the current state of the economy and its future course. Recently, two
most widely used seasonal adjustment methods, Census X-12-ARIMA and TRAMO-
SEATS, merged into X-13ARIMA-SEATS to become a new industry standard. In
this paper, we compare and contrast X-13ARIMA-SEATS with a seasonal adjust-
ment program called CAMPLET, an acronym of its tuning parameters. CAMPLET
consists of a simple adaptive procedure which separates the seasonal component and
the non-seasonal component from an observed time series. Once this process has
been carried out there will be no need to revise these components at a later stage
when more observations become available, in contrast with other seasonal adjust-
ment methods. The paper briefly reviews of X-13ARIMA-SEATS and describes
the main features of CAMPLET. We evaluate the outcomes of both methods in a
controlled simulation framework using a variety of processes. Finally, we apply the
X-13ARIMA-SEATS and CAMPLET methods to three time series: U.S. non-farm
payroll employment, operational income of Ahold, and real GDP in the Netherlands.
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Seasonal adjustment is extraordinarily consequential

. . . we should think very carefully about how seasonal adjustment is done.

(Wright 2013, p65)

1 Introduction

Macroeconomic time series are typically seasonally adjusted before being used in eco-

nomic and econometric analyses. Several procedures are in use, varying from the Census

X-11 family (U.S. Census Bureau, Bank of Canada; for a brief overview see Monsell,

2009) to TRAMO/SEATS1 and STAMP (Andrew Harvey and collaborators; http://

stamp-software.com/). Recently, the two most popular methods, Census X-12-ARIMA

and Tramo-Seats, merged into X-13ARIMA-SEATS, to become the industry standard.

This paper compares X-13ARIMA-SEATS to CAMPLET2, a new—but at the same time

old—competitor, especially focusing on changes in seasonal pattern and the feature that

the former method results in revisions when new observations become available while the

latter does not.

Seasonality, which Hylleberg (1986, p. 23) defines as the systematic, although not

necessarily regular or unchanging, intrayear movement that is caused by climatic changes,

timing of religious festivals, business practices, and expectations, is often considered a nui-

sance in economic modeling. Consequently, a whole industry has come into existence that

is devoted to seasonal adjustment. The U.S. Census Bureau Basic Seasonal Adjustment

Glossary describes seasonal adjustment as ‘the estimation of the seasonal component and,

when applicable, also trading day and moving holiday effects, followed by their removal

from the time series. The goal is usually to produce series whose movements are easier to

1Bank of Spain: http://www.bde.es/bde/en/secciones/servicios/Profesionales/Programas_

estadi/Notas_introduct_3638497004e2e21.html
2CAMPLET is an acronym of its tuning parameters, as will become clear in Section 2.



analyze over consecutive time intervals and to compare to the movements of other series

in order to detect co-movements.’

Underlying all seasonal adjustment methods is the decomposition of an observed series

into non-seasonal or seasonally adjusted and seasonal components, after some pretreat-

ment to adjust for outliers and trading-day and holiday effects. The aim is to extract the

unobserved components from the observed series.

The approach adopted in the Census X-11 family is based upon the idea that large

seasonal movements can obscure other movements of importance and that it is easier to

see related movements in different series after seasonal adjustment. Consequently, the

method produces seasonal effects that are relatively stable in terms of annual timing,

within the same month or quarter, direction and magnitude (Monsell 2009). Trend-cycle

and seasonal are extracted using sequential symmetric moving average (MA) filters and

recently ARIMA models, with forecasts and backcasts to deal with the beginning and the

end of the series.

One consequence of using MA filters and ARIMA models is that past values of the

unobserved components change when new observations become available, thus causing

revisions in real-time data. The current practice of changing seasonal factors only once a

year implies the existence of annual revisions in vintages of time series, going back some

three years; see, e.g., Croushore (2011).3 Below we shall see however that these revisions

are small for the series we investigated, U.S. non-farm payroll employment, especially

when the seasonal factors are updated every period and for some observations also for

real GDP in the Netherlands.

Recently, the view that seasonals must be relatively stable was challenged. In the

aftermath of the 2008 recession the question was raised whether seasonal drift occurred,

i.e. whether the 2008 recession had affected seasonals?; see, e.g., Bialik (2012), Kornfeld

(2012), and Nomura (2012). This question has become especially relevant since seasonals

3In this paper we will not deal with the interesting philosophical question whether information that
comes available at some future date can have a bearing on the seasonal pattern of the past—and modeling
consequences. We also abstract from costs involved in revisions due to seasonal adjustment, both for data
producers and users.
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and seasonally adjusted values have been changed after the fact, which has led to diverging

views on the current economic situation based on ‘raw’ and seasonally adjusted data.

Various responses can be observed. Lytras and Bell (2013) of the Census Bureau

propose recession adjustments in the standard methodology using several interventions :

outliers, ramps, different trend estimations. They find that the effects of the preadjust-

ments on the seasonal adjustments are small. Tiller and Evans (2014) conclude that the

standard methodology is reasonably robust to recession effects. Wright (2013) recom-

mends outlier-robust filters to constrain the seasonal factors to vary less over time than

the default filters used by U.S. statistical agencies. Swann (2011) takes the opposite route

by advocating to look for changes in seasonal pattern: in particular to review series for

degree of change, ad hoc approaches to capture seasonal patterns (shorten series; shorter

MAs) or direct estimation of seasonals. As will be shown below, CAMPLET fits in the

latter category, by explicitly allowing for changes in seasonal patterns if outliers persist.

The remainder of this paper is structured as follows. In Section 2, we provide some

background information about the two methods. That is, we describe X-13ARIMA-

SEATS briefly, and CAMPLET in more detail. In Section 3 we evaluate the outcomes

of both methods in a controlled simulation framework using a variety of processes. In

Section 4, we illustrate the differences between the two methods by analysing three time

series: U.S. non-farm employment, operational income of Ahold, an international retailer,

and real GDP in the Netherlands. Section 5 concludes.

2 Some background

To compare the seasonal adjustment methods we adopt the general decomposition of

Ghysels and Osborne (2001, Equation (4.2)). An observed time series yt is decomposed

into a trend-cycle ytc
t , seasonal ys

t, irregular yi
t, augmented by deterministic effects due to

the length of months and the number of trading days ytd
t and holidays yh

t . The additive
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version of the decomposition yields

yt = ytc

t + ys

t + ytd

t + yh

t + yi

t. (1)

Basically, X-13ARIMA-SEATS and CAMPLET differ in their treatment of the determin-

istic effects and in the way the non-seasonals and seasonals are obtained.

X-13ARIMA-SEATS

The X-13ARIMA-SEATS seasonal adjustment consists of two steps. In the pretreatment

or first step, the series is extended backwards and forwards using a regression model

with ARIMA residuals, commonly referred to as a regARIMA model, while at the same

time adjusting for outliers and trading-day and holiday effects. The second step, seasonal

adjustment, consists of a combination of MA filters (the Census X-11 program) or ARIMA

model-based adjustment from SEATS.

A detailed description of the method is beyond the scope of this paper. The Census X-

11 program is described in, for instance, Ghysels and Osborn (2001, Chapter 4), whereas

the appendix of Wright (2013) presents the X-12-ARIMA algorithm. Maravall (2008)

presents the methodology behind the program SEATS (Signal Extraction in ARIMA Time

Series). For further details see the X-13ARIMA-SEATS Seasonal Adjustment Program

homepage at the U.S. Department of Commerce Census Bureau http://www.census.

gov/srd/www/x13as/.4

CAMPLET

The CAMPLET program does not require pretreatment of a time series to adjust for

outliers, trading day and holiday effects. In addition forecasting or backcasting is not nec-

essary either, since the method does neither employ (symmetric) MA filters nor ARIMA

4The program can also be downloaded from this page. The R-package seasonal is an easy-to-use and
(almost) full-featured interface to X-13ARIMA-SEATS. In the simulations below in Section 3 we use
JDemetra+ (Grudkowska, 2015) and the Eviews implementation in the illustrations in Section 4.
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models to do seasonal adjustment; only available information is used. The package includ-

ing documentation and examples can be downloaded from http://www.camplet.net.

Seasonal factors

In contrast with X-13ARIMA-SEATS, the focus is on the seasonal: in each period a full set

of (latent) seasonal factors is assumed to exist, which is updated when a new observation

becomes available. The seasonal factor updating procedure is illustrated in Figures 1(a)

and (b), assuming quarterly data. Each period t has a full set of seasonal factors, which

add up to zero: St,1 + · · ·+St,4 = 0. If the gradient, say gt, of the non-seasonal component

is assumed to be zero and a change (update) of a (say) is required in gt+1 to fit the new

observation, then all seasonal factors change according to their distance from the center:

St+1,1 = St,1 + 1.5a, St+1,2 = St,2 + 0.5a, St+1,3 = St,3 − 0.5a, and St+1,4 = St,4 − 1.5a.

Generalizing for data with periodic frequency p, the updated seasonal factors become

St+1,1+j = St,1+j − [(j + 1)− (p+ 1)/2]× a, j = 0, . . . , p− 1.

Note that S·,1+p ≡ S·,1, S·,2+p ≡ S·,2, . . . , S·,p+p ≡ S·,p.

Figure 1: (a) Seasonal factors (blue) before an adjustment a, and (b) updated seasonal
factors (blue plus green) after an adjustment a is required.

 

1 2 3 4

(a)

 

1 2 3 4

(b)

Key feature

Suppose we have a series of observations on a variable y with frequency p, i.e. p observa-

tions per year. At time t we know: the observed value yt, the seasonally adjusted value

5



ySA
t , the direction ySA

t is going gt, the so-called g-line, the seasonal factors St,1, St,2, . . . , St,p

and the decomposition yt = ySA
t +St, with St = St,i, where i = 1+[t−1] mod p. Given this

setup, Figures 2(a) and (b) illustrate the key feature underlying the CAMPLET method

to obtain the seasonally adjusted value ySA
t+1 using quarterly data assuming gt = 0.

Figure 2: Illustration of the intuition of the CAMPLET method for seasonal adjustment.
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Specifically, the left part of Figures 2(a) shows a hypothetical situation in the previous

time period. If at time t + 1 a new observation yt+1 becomes available, the seasonal

component St,1 is applied to obtain the provisional adjustment and ySA
t is extrapolated

with the g-line gt = 0. The difference between the extrapolation and the provisional

adjustment value is denoted by êt+1. Now in the current period (Figures 2(b)) the direction

of ySA
t changes: gt+1 = gt + êt+1/`, where ` is equal to the Common Adjustment (CA)

length. For quarterly data we set ` = 6; for monthly data ` = 15. Changing the direction

of ySA
t leads to changes of the seasonal pattern, as shown above.

The above approach can be described more formally by the following steps.
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1. Determine the seasonal factor that applies to period t + 1: i = 1 + [(t + 1) − 1]

mod p.

2. Calculate what yt+1 would have been with extrapolated seasonal adjusted value and

unchanged seasonal factor: ŷt+1 = ySA
t + gt + St,i.

3. Take the difference with respect to yt+1: êt+1 = yt+1 − ŷt+1.

4. The difference êt+1 is assumed to lead to a change in gt+1, i.e., gt+1 = gt + êt+1/`.

5. Consequently, all seasonal factors change according to:

St+1,i+j = St,i+j − [(j + 1)− (p+ 1)/2] êt+1/`, for j = 0, . . . , p− 1.5

6. Finally, calculate the seasonally adjusted value ySA
t+1 as ySA

t+1 = yt+1 − St+1 ≡ yt+1 −

St+1,i.

Outliers and change in seasonal pattern

Let ȳt+1 = 1
p

∑p
i=1 |yt+1−i| be the annual average of absolute values of the preceding p

observations. An outlier is defined to occur if 100(êt+1/ȳt+1) > LE, where LE (Limit to

Error) is one of the tuning parameters of CAMPLET. We define that an outlier results

in an increase in `

`new = `+ p

(
100

(
êt+1

ȳt+1

)
− LE

)
×M,

where M is the tuning parameter Multiplier, which takes as default value M = 50 . For

the next observation ` is reset to the Common Adjustment length value.

If the outlier persists, i.e. also occurs one year later, we assume that the seasonal

pattern has changed. Instead of lengthening ` to put an upper limit to the change in

the seasonals as in the outlier case, we now set ` to one year. Hence, the second time

an outlier is detected, the seasonal of this observation becomes larger, while the other

seasonals change correspondingly.

The tuning parameters Times, which denotes the number of times an outlier returns

before a change in seasonal pattern is assumed to have happened, and Pattern, which

5Note that the seasonal factors are updated by a time-dependent parameter rather than by a fixed
parameter, as with, for instance, the additive seasonal Holt-Winters method.

7



controls how fast the seasonal pattern is allowed to change, allow flexibility in dealing

with outliers and changes in seasonal pattern.

Table 1 lists the default settings of CAMPLET.

Table 1: Defaul settings of CAMPLET.

Frequency of series Quarterly Monthly

Common Adjustment (periods) 6 15
Multiplier 50 50
Pattern (periods) 4 12
Limit to Error (%) 6 8
Times 1 1

Automatic parameter adjustment for volatile series

Volatile series contain frequent but unsystematic fluctuations, that are often much larger

than seasonal fluctuations. Such series may occur, for example, in company interim

results such as net profit and earnings per share. Strong and unsystematic fluctuations

are recognized as outliers whose impact on the seasonal pattern and on the gradient of the

g-line is reduced by increasing the Common Adjustment length of the series. If outliers

occur frequently, a simultaneous change in the seasonal pattern or in the overall direction

of the series’ development may not be picked up. This is the more so, because the g-line

is extended to the level of the new observation, seasonally adjusted but including the

aberrant value. From there the g-line is extrapolated. This extrapolation will be way off

if the next observation is in line with the original series’ path but considered an outlier.

One aberrant observation will therefore result in two outliers.

The objective of automatic parameter resetting is to reduce the number of outliers.

To this end parameter Limit to Error (LE), the criterion for a new observation being

aberrant or not, is raised by 5 percentage points whenever during the adjustment run

the number of outliers identified is higher than 50% of the number of observations so far

adjusted. This goes on until LE surpasses a threshold of 30%. For a quarterly series the

default value of LE is 6%, which can be incremented in 5 steps of 5 percentage points
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each to a maximum of 31%. To mitigate the impact of fluctuations that are no longer

regarded as aberrant, the Common Adjustment parameter (CA) is incremented at every

step by p
2
.

If parameter LE has reached its maximum value and outliers continue to occur at a

rate of 50% or more of the number of observations adjusted, parameter Times (T), which

denotes the number of times an outlier returns before a change in seasonal pattern is

assumed to have happened, is increased from 1 to to 2, to ensure that frequent outliers do

not cause too many shifts of the seasonal pattern. At the same time parameter Multiplier

(M), which determines the impact of an increase of the Common Adjustment of the series,

will be reduced from 50 to 25 to enhance the outliers’ impact on the adjustment procedure.

Whenever the proportion of outliers falls below 50% these steps are retraced in inverse

order.

Initialisation

Starting values are required for ySA
0 , g0, and the seasonal factors S0,1, . . . , S0,p. These can

be obtained from as short as one full year of observations—if no outliers are present—for

example as follows:

• ySA
0 = ȳSA = ȳ, assuming the seasonal factors add up to zero over this period;

• assuming that ySA
i does not change during a year, we have g0 = 0, and S0,i =

yi − ySA
0 , i = 1, . . . , p.

If these first period values include an outlier, this aberrant value also figures in the

initial seasonal pattern. To avoid this situation the adjustment procedure is applied for

the first three years of the series, then the resulting g-line is extrapolated to the first

observation of the series and the procedure is repeated for the full series, now with a more

appropriate seasonal pattern.
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3 Simulations

We evaluate both seasonal adjustment methods with controlled simulations using a variety

of Data Generating Processes (DGPs).6 For a general discussion of criteria to judge the

quality of seasonal adjustment procedures see e.g. Bell and Hillmer (1984). Fok, Franses

and Paap (2006) apply a number of diagnostic and specification tests concerning the

presence of seasonal patterns before and after seasonal adjustment, using several DGPs

that are observed in practice. We simulate 24 DGPs based on a stylized representation

of the trend-cycle-seasonal decomposition (1) introduced in Section 2 above and compare

the simulated non-seasonal observations and the seasonal adjusted values using standard

accuracy measures, as described in e.g. Armstrong (1985, pp. 346–356) or Kennedy (2008,

pp. 334–335).

Design

Our starting point is the Basic Structural Model (Harvey, 1990), in state space form

yt =µt + γt +
k∑
i=1

βidit + εt, εt ∼ NID(0, σ2
ε)

µt =µt−1 + ηt, ηt ∼ NID(0, σ2
η)

γt =− γt−1 − γt−2 − γt−3 + ωt, ωt ∼ NID(0, σ2
ω),

where yt is the simulated series, µt the level, γt are seasonal factors, k is the number of

outliers, the size of outlier i is equal to βi, while dit defines when the outlier occurs. For

additive outliers dit equals zero except for the period of the outlier, where dit is equal

to one. For a level shift, the value of dit is zero up to the period of the shift and zero

thereafter.

For each DGP we generate 1000 series for 35 years of quarterly observations. Obser-

vations for the first 10 years are discarded to reduce the impact of starting values. Hence,

our simulated series consist of 100 observations.

6This section draws upon Ouwehand (2015).
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We make the following parameter choices:

• the starting value of the level, µ0, equals zero;

• starting values for the seasonal factors for t = 1, . . . , 3 are drawn from a uniform

distribution U [−20, 20], while γ4 = −γ1 − γ2 − γ3;

• σε gets a low noise of value 3 and a high noise value of 7;

• ση gets a value of 1 and a value of 10 to mimic series with slow and strong develop-

ment in the level of the series, respectively;

• σω gets the value 0 for a constant seasonal pattern and the value of 2 for a varying

seasonal pattern; in addition we simulate seasonal breaks in an arbitrary period

between the 10th and the 90th observation for series with a constant seasonal pattern

by generating a new random seasonal pattern that begins from a period that is drawn

from a uniform distribution between the 10th and the 90th observations.

When adding outliers,

• the series are not simulated again to be able to analyse the pure effect of outliers;

• we simulate one level shift in a random chosen period between the 10th and the 90th

observation, and five single period outliers in random periods between observation

0 and 100;

• the size of the additive outliers is drawn from a uniform distribution ±(2σε, 5σε); a

level shift is treated as an extraordinary event and drawn from ±(4σε, 5σε).

By this we obtain 12 DGPs without outliers and 12 DGPs with outliers. Table 2 summa-

rizes the simulation settings.

Quality measures

Let {yt}, t = 1, . . . , T be a simulated series with non-seasonal component yns
t ≡ yt − ys

t

and ysa
t the seasonal adjusted value. We calculate three quality measures:
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Table 2: Simulation settings.

DGP σε ση σω season break outliers

1 3 1 0 no no
2 7 1 0 no no
3 3 1 2 no no
4 7 1 2 no no
5 3 1 0 yes no
6 7 1 0 yes no
7 3 10 0 no no
8 7 10 0 no no
9 3 10 2 no no

10 7 10 2 no no
11 3 10 0 yes no
12 7 10 0 yes no
13 3 1 0 no yes
14 7 1 0 no yes
15 3 1 2 no yes
16 7 1 2 no yes
17 3 1 0 yes yes
18 7 1 0 yes yes
19 3 10 0 no yes
20 7 10 0 no yes
21 3 10 2 no yes
22 7 10 2 no yes
23 3 10 0 no yes
24 7 10 0 no yes

1. Root Mean Squared Error: RMSE =
√

1
N

∑T
t=1(y

sa
t − yns

t )2;

2. Mean Absolute Percentage Error: MAPE = 1
N

∑T
t=1

∣∣∣ysat −ynst
ynst

∣∣∣× 100%;

3. Mean Error: ME = 1
N

∑T
t=1(y

sa
t − yns

t ).

We calculate the quality measures for three different horizons: (i) all observations: t =

1, . . . , 100;N = 100, (ii) the last four observations: t = 97, . . . , 100;N = 4 and (iii) the

final observation: t = 100 : N = 1. Finally we compute averages and standard deviations

over the 1000 simulated series for each DGP, where the mean errors (ME) of the simulated

series are taken in absolute values.
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Implementation in seasonal adjustment packages

Whereas CAMPLET works automatically and does not require additional parameter set-

tings from the ones listed in Table 1, working with X-13ARIMA-SEATS is more involved.

We use default settings as much as possible in the pretreatment step (type of decompo-

sition; ARIMA model; no working day patterns; determination of outliers) and in the

seasonal adjustment step (length of season and trend-cycle filter).

Results

The simulation outcomes are listed in full detail in the Appendix. Here we summarize

the simulations in Table 3, which shows the fraction of the 1000 series for which the

CAMPLET quality measures are better than the X-13ARIMA-SEATS measures. A first

conclusion is that X-13ARIMA-SEATS generally performs better than CAMPLET in

terms of all quality measures distinguished and all horizons, but that the relative perfor-

mance of CAMPLET improves for shorter horizons. The exception is ME outcomes for

the 100-period horizon. For the 100-period horizon CAMPLET ME outcomes are better

than X-13ARIMA-SEATS ME outcomes in more that 50% of the 1000 simulations if the

DGP has a change in the seasonal pattern or a seasonal break. Both conclusions carry

over to the DGPs with outliers (DGP13–DGP24).

The conclusion that RMSE and MAPE outcomes favor X-13ARIMA-SEATS over

CAMPLET for all horizons is in line with our expectations. These quality measures penal-

ize strong deviations in single periods. By construction X-13ARIMA-SEATS ‘smoothens’

the seasonal pattern over time which also results in smooth adjusted values; CAMPLET

does not share this property. Moreover changes in seasonal patterns and seasonal breaks

cannot occur in the first ten and the last ten observations and thus do not affect the

CAMPLET outcomes for the last four observations and the final observation positively

compared to the X-13ARIMA-SEATS outcomes. Nevertheless CAMPLET quality out-

comes becomes relatively better for the shorter horizons.
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Table 3: Relative quality measures.

100 observations last 4 observations final observation
DGP RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME

1 0.000 0.001 0.371 0.180 0.208 0.112 0.360 0.360 0.360
2 0.003 0.002 0.362 0.186 0.200 0.133 0.352 0.352 0.352
3 0.004 0.004 0.497 0.256 0.268 0.388 0.399 0.399 0.399
4 0.003 0.005 0.453 0.288 0.298 0.327 0.405 0.405 0.405
5 0.001 0.008 0.663 0.324 0.326 0.152 0.435 0.435 0.435
6 0.004 0.005 0.607 0.280 0.299 0.160 0.393 0.393 0.393
7 0.011 0.046 0.254 0.199 0.216 0.067 0.345 0.345 0.345
8 0.011 0.056 0.268 0.215 0.219 0.075 0.348 0.348 0.348
9 0.003 0.031 0.424 0.250 0.279 0.247 0.401 0.401 0.401

10 0.009 0.045 0.363 0.277 0.307 0.255 0.394 0.394 0.394
11 0.002 0.046 0.596 0.268 0.281 0.075 0.402 0.402 0.402
12 0.006 0.057 0.534 0.304 0.309 0.094 0.404 0.404 0.404
13 0.010 0.005 0.386 0.179 0.195 0.108 0.355 0.355 0.355
14 0.013 0.009 0.333 0.207 0.222 0.124 0.363 0.363 0.363
15 0.008 0.009 0.495 0.281 0.286 0.373 0.410 0.410 0.410
16 0.001 0.000 0.412 0.019 0.019 0.519 0.100 0.100 0.100
17 0.004 0.008 0.658 0.323 0.321 0.158 0.424 0.424 0.424
18 0.003 0.010 0.586 0.301 0.300 0.143 0.400 0.400 0.400
19 0.009 0.049 0.243 0.197 0.203 0.055 0.338 0.338 0.338
20 0.017 0.063 0.267 0.231 0.239 0.089 0.393 0.393 0.393
21 0.003 0.031 0.418 0.253 0.277 0.258 0.398 0.398 0.398
22 0.008 0.057 0.385 0.296 0.306 0.258 0.412 0.412 0.412
23 0.001 0.039 0.595 0.308 0.313 0.077 0.404 0.404 0.404
24 0.008 0.053 0.530 0.297 0.290 0.099 0.415 0.415 0.415

Notes. For all 1000 series we determine per series whether CAMPLET produces a smaller value of
the quality measure than X-13ARIMA-SEATS. The numbers in the table indicate the fraction of
the 1000 series for which this the case.
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4 Illustration

U.S. non-farm payroll employment

There are not many series that are available real-time, both in seasonally adjusted and

non-seasonally adjusted form. One of the exceptions is non-farm payroll employment.

Wright (2013) looks at this series too. The source of the series is Bureau of Labor

Statistics / Alfred, Federal Reserve Bank of St. Louis. Seasonally adjusted values are only

available for the 2014M2 vintage, the latest vintage when we downloaded the data, and

cover the 1939M1–2014M1 period. We retrieved raw data, i.e. non-seasonally adjusted

figures, for the vintages from 2008M9 up to and including 2014M2; all vintages start in

1939M1. Our non-farm payroll employment data trapezoid consists of initial revisions

with changes in the most recent observations, annual (seasonal) revisions in February due

to updated seasonal factors and the confrontation of quarterly with annual information

resulting in changes up to three years back, and historical, comprehensive or benchmark

revisions in February 2013 and February 2014, possibly related to changes in e.g. statistical

methodology, which affect the whole vintage. Generally, revisions in the employment series

are small.

Figure 3 shows the 2014M2 vintage of seasonally unadjusted non-farm payroll employ-

ment data from 2000M1 onwards, together with the published seasonally adjusted figures

and the seasonally adjusted values obtained from the Census X-13 routine in EViews7 and

CAMPLET with the default settings of Table 1. The first finding is that the differences

between all seasonal adjusted series are quite small. CAMPLET seasonally adjusted fig-

ures are very close to the official SA figures and the EViews X-13 outcomes. A second

finding is that the seasonally adjusted figures of CAMPLET are slightly lower towards

the end of 2009 than the other two SA series. Apparently, the trough in the raw data

enters into the SA series of CAMPLET instead of in the seasonal.

7In all computations we use the Auto (None / Log) transform, no ARIMA model and default X-13
settings for seasonal adjustment.
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Figure 3: Latest vintage U.S. non-farm payroll employment.

To investigate the impact of new information becoming available, we do a quasi real-

time analysis and compute seasonally adjusted figures with X-13ARIMA-SEATS and

CAMPLET for the latest vintage, starting from the 2000M1-2008M8 sample and adding

one observation at the time. Figure 4 shows the outcomes. CAMPLET outcomes do not

change when new observations become available, in contrast with X-13ARIMA-SEATS

figures. However, the application of the X-13ARIMA-SEATS approach does not yield

large revisions in (quasi-) real-time, if seasonal factors are updated for every observation.

This point has been noted by, e.g., Wallis (1982). Because the quasi real-time outcomes

are so close and revisions due to Census-type of seasonal adjustment cause data revisions

as noted in the Introduction, we have not yet done a real-time analysis using all vintages

of non-farm payroll employment.

Figure 4: Quasi real-time analysis.

16



Ahold

The U.S. non-farm payroll employment series has a fairly constant seasonal pattern with

small seasonals. Our second illustration is operating income of Ahold, an international

retailer based in Zaandam. Figure 5 reveals that this series, with quarterly observa-

tions from 2006Q1 up to and including 2013Q4 is much more volatile, with a stronger

seasonal pattern. Again, CAMPLET seasonally adjusted figures are fairly close to the

X-13ARIMA-SEATS outcomes, but there are striking differences in 2006 through 2008.

Figure 5: Ahold Operating income. Source: Ahold Quarterly Bulletin (various issues).

In the beginning of 2008 Ahold announced a change in accounting policies: “As of

2008, Ahold has applied IFRS 8 “Operating segments”. IFRS 8 introduces new disclosure

requirements with respect to segment information. This adoption of IFRS 8 did not

have an impact on Ahold’s segment structure, consolidated financial results or position;

however, segment results no longer include intercompany royalties.” See Ahold Quarterly

Bulletin Q1 2008. Consequently, operating income decreased from e421 million in 2007Q1

to e336 million in 2008Q1.

Figure 6 shows the seasonal patterns as identified by CAMPLET and X-13ARIMA-

SEATS. Whereas the latter finds a constant seasonal pattern throughout the sample,

CAMPLET picks up a change! Future research in the form of a (quasi-) real time analysis

will reveal how the seasonal pattern of X-13ARIMA-SEATS evolves over time.
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Figure 6: Ahold operating income: Seasonal pattern.

Real GDP in the Netherlands

To investigate whether CAMPLET seasonal adjusted values are similar to first and subse-

quently revised X-13ARIMA-SEATS outcomes, we do a quasi real-time analysis using the

2014Q3 vintage of real GDP in the Netherlands. We calculate seasonal adjusted values of

levels and corresponding growth rates for all observations between 2005Q1 and 2011Q3,

allowing X13-ARIMA-SEATS outcomes to be revised up to three years backwards.8

Figure 7 shows successive seasonal adjusted values of X-13ARIMA-SEATS (abbrevi-

ated as X-13) and CAMPLET both in levels (left axis) and growth rates (right axis) for

three quarters: 2005Q2, 2008Q2 and 2008Q3. The outcomes are representative for the

other quarters as well. Whereas X-13ARIMA-SEATS seasonal adjusted values are sub-

ject to revision when observations are added to the series, CAMPLET outcomes stay the

same.

In some cases the CAMPLET seasonal adjusted value is already close to the final

X-13ARIMA-SEATS outcome (middle panel) of both the level of real GDP in the Nether-

lands and its growth rate; for other quarters the X-13ARIMA-SEATS outcomes deviate

from the CAMPLET ones, like in the top and bottom panel. So, CAMPLET predicts

X-13ARIMA-SEATS outcomes for some observations, but not for all.

8The settings of X13-ARIMA-SEATS are the same as in Section 3, but here we also detect working
day patterns.
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Figure 7: Real GDP in the Netherlands (levels: left axis; growth rates: right axis) .
Seasonal adjusted values for 2005Q3

 

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

146700

146750

146800

146850

146900

146950

147000

147050

147100

147150

147200

147250

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

Camplet - level X-13 - level

Camplet - growth rate X-13 - growth rate

Seasonal adjusted values for 2008Q2

 

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

161600

161800

162000

162200

162400

162600

162800

163000

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

Camplet - level X-13 - level

Camplet - growth rate X-13 - growth rate

Seasonal adjusted values for 2008Q3

 

-0.70%

-0.60%

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

161200

161400

161600

161800

162000

162200

162400

162600

162800

163000

163200

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

Camplet - level X-13 - level

Camplet - growth rate X-13 - growth rate

19



5 Conclusion

Seasonal adjustment can be defined as purging any variation in economic data that is

predictable using the calendar alone. It is an ongoing debate whether seasonals should

be reasonably stable or external shocks can affect the seasonal pattern. And whether

seasonal adjustment should lead to revisions has not been questioned often before either.

This paper compared the seasonal adjustment methods X-13ARIMA-SEATS and

CAMPLET focusing on changes in seasonal pattern and the feature that the former

leads to revisions in seasonally adjusted values after the fact while the latter does not.

The simulations revealed that X-13ARIMA-SEATS generally outperforms CAMPLET ex-

cept for data generating processes with a change in seasonal pattern or a seasonal break.

Our illustrations showed that both methods generally produce similar seasonal adjusted

figures. In addition, X-13ARIMA-SEATS does not produce large revisions in a quasi

real-time analysis in U.S. non-farm payroll employment, but CAMPLET does not show

any revisions at all. CAMPLET non-seasonals fall deeper in 2009 than X-13ARIMA-

SEATS seasonal adjusted figures. Our second illustration involving operating income of

Ahold shows that X-13ARIMA-SEATS does not pick up changes in seasonal patterns, in

contrast to CAMPLET. Our third illustration revealed in a quasi real-time analysis of

real GDP in the Netherlands that CAMPLET predicted X-13ARIMA-SEATS seasonal

adjusted values for some observations, but not for all.

Over the years, seasonal adjustment has become standard in empirical macroeconomic

research and many other fields where periodic time series are being used and analysed.

We wholeheartedly endorse the three changes to the practice of seasonal adjustment that

Wright (2013, p101) proposes: (i) for statistical agencies to always provide unadjusted

data, (ii) for these agencies to publish a full history of revised seasonal factors with every

data release (not just at the time of annual benchmark revisions), and (iii) to make

the seasonal adjustment process entirely replicable by outside researchers. However in

our view this may not be sufficient. We hope that our paper helps in challenging the
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self-evidence of seasonal adjustment leading to revisions when new observations become

available.

References

Armstrong, J. Scott (1985), Long-Range Forecasting: From Crystall Ball to Computer,

2nd edition, John Wiley & Sons, Inc., New York.

Bell, William R. and Steven C. Hillmer (1984), “Issues involved with the seasonal adjust-

ment of economic time series”, Journal of Business & Economic Statistics, 2, 291–320.

Bialik, Carl (2012), “Seasonal drift”, Wall Street Journal Blog October 26 2012 http:

//blogs.wsj.com/numbersguy/seasonal-drift-1180/.

Croushore, Dean (2011), “Frontiers of real-time analysis”, Journal of Economic Literature,

49, 72–100.

Fok, Dennis, Philip Hans Franses, and Richard Paap (2006), “Performance of seasonal

adjustment procedures: Simulation and empirical results”, in Terence C. Mills and

Kerry Patterson, editors, Palgrave Handbook of Econometrics: Volume 1 Econometric

Theory, Palgrave Macmillan, Houndsmills, Basingstoke and New York, chapter 29,

1035–1055.

Ghysels, Eric and Denise R. Osborn (2001), The Econometric Analysis of Seasonal Time

Series, Cambridge University Press, Cambridge.

Grudkowska, Sylwia (2015), “Jdemetra+ user guide”, Department of Statistics, Narodowy

Bank Polski, Warsaw.

Harvey, Andrew C. (1990), The Econometric Analysis of Time Series, MIT Press, Cam-

bridge, MA.

Hylleberg, S. (1986), Seasonality in Regression, Academic Press, New York.

Kennedy, Peter (2008), A Guide to Econometrics, 6th edition, Wiley-Blackwell, Cam-

bridge, MA.

21



Kornfeld, Bob (2012), “Seasonal adjustment and BEA’s estimates of GDP and GDI”,

BEA Advisory Committee Meeting, May 2012.

Lytras, Demetra and William R. Bell (2013), “Modeling recession effects and the conse-

quences on seasonal adjustment”, Proceedings of the Business and Economics Section

of the 2013 Joint Statistical Meetings.

Maravall, Agust́ın (2010), “Notes on programs TRAMO and SEATS, SEATS part”, In-

troductory notes of TRAMO and SEATS, Bank of Spain.

Monsell, Brian C. (2009), “A painless introduction to seasonal adjustment”, Presented at

The 50th Anniversary of Florida State University’s Statistics Department, April 2009.

Nomura (2012), “Echo of financial crisis heard in recent jobless claims drop”, Special Com-

ment, 23 February 2012, http://www.bea.gov/about/pdf/Echo\%20in\%20financial\

%20crisis.pdf.

Ouwehand, Pim (2015), “Vergelijking seizoencorrectiemethoden CAMPLET en X-13ARIMA-

SEATS (comparison seasonal adjustment methods CAMPLET and X-13ARIMA-SEATS)”,

Report, Statistics Netherlands.

Swann, Christopher (2011), “Seasonal adjustment: Concepts, methods, and issues”, Pre-

sented at the NABE Measurement Seminar, Arlington Virginia, July 2011.

Tiller, Richard B. and Thomas Evans (2014), “Seasonal adjustment and the Great Reces-

sion: Implications for statistical agencies”, Proceedings of the Business and Economics

Section of the 2013 Joint Statistical Meetings.

Wallis, Kenneth F. (1982), “Seasonal adjustment and revision of current data: Linear fil-

ters for the X-11 method”, Journal of the Royal Statistical Society. Series A (General),

145, 74–85.

Wright, Jonathan H. (2013), “Unseasonal seasonals (including comments and discus-

sion)”, Brookings Papers on Economic Activity, 2013(Fall), 65–126.

22



A Detailed simulation outcomes

Table A.1: CAMPLET quality measures.

100 observations last 4 observations final observation
DGP RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME

1 1.61 1.30 0.01 1.46 1.27 0.27 1.26 1.28 1.26
2 3.92 3.17 0.04 3.61 3.16 0.63 3.11 3.18 3.11
3 3.13 2.50 0.05∗ 2.91 2.55 0.56 2.66 2.70 2.66
4 5.07 4.13 0.06∗ 4.60 4.06 0.84 3.95 4.07 3.95
5 4.29 2.14 0.10∗ 1.54 1.34 0.29 1.26 1.28 1.26
6 6.07 4.10 0.11∗ 3.86 3.38 0.62 3.27 3.34 3.27
7 4.08 26.51∗ 0.05 3.68 9.87 0.77 3.24 6.58 3.24
8 5.33 25.86 0.06 4.75 9.00 0.84 4.28 9.23 4.28
9 5.26 31.37 0.07 4.87 35.70 1.00 4.17 28.33 4.17

10 6.36 80.42 0.08 5.88 22.67 1.01 5.09 29.87 5.09
11 6.15 61.83 0.11∗ 3.83 65.97 0.84 3.22 9.87 3.22
12 7.19 34.41 0.12∗ 5.01 28.19 0.95 4.30 29.44 4.30
13 1.98 1.56 0.02 1.70 1.50 0.31 1.44 1.47 1.44
14 4.64 3.97 0.04 4.00 4.08 0.65 3.38 3.96 3.38
15 3.44 2.77 0.05∗ 3.17 2.81 0.59 2.85 2.94 2.85
16 18.52 17.28 0.08 20.25 20.73 0.41 21.43 25.04 21.43
17 4.49 2.44 0.10∗ 1.84 1.64 0.35 1.51 1.58 1.51
18 6.77 5.04 0.12∗ 4.45 4.52 0.69 3.75 4.45 3.75
19 4.28 36.72 0.05 3.82 14.42 0.80 3.30 9.97 3.30
20 5.92 23.99 0.07 5.13 22.75 0.88 4.48 25.72 4.48
21 5.45 37.97 0.07 5.01 74.86 0.98 4.29 12.97 4.29
22 6.98 52.25∗ 0.08 6.30 21.60 1.09 5.41 19.83 5.41
23 6.31 31.20 0.11∗ 3.96 11.65 0.85 3.40 12.64 3.40
24 7.76 45.59 0.13∗ 5.56 16.71 0.98 4.68 17.69 4.68

Note: An asterisk denotes that the CAMPLET measure is smaller than the corresponding X-13ARIMA-SEATS measure

of X-13.
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Table A.2: X-13ARIMA-SEATS quality measures.

100 observations last 4 observations final observation
DGP RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME

1 1.05 0.86 0.01 1.07 0.93 0.05 0.98 0.99 0.98
2 2.38 1.96 0.03 2.48 2.19 0.12 2.25 2.31 2.25
3 2.25 1.80 0.05 2.33 2.04 0.40 2.25 2.28 2.25
4 3.33 2.70 0.06 3.69 3.28 0.44 3.25 3.34 3.25
5 1.76 1.20 0.23 1.27 1.11 0.08 1.11 1.13 1.11
6 3.17 2.43 0.21 2.89 2.53 0.15 2.49 2.54 2.49
7 2.39 28.89 0.02 2.47 7.57 0.06 2.34 5.51 2.34
8 3.24 17.19 0.03 3.32 6.98 0.07 3.14 7.18 3.14
9 3.31 21.97 0.06 3.84 20.80 0.40 3.62 21.68 3.62

10 4.04 76.04 0.06 4.69 17.27 0.41 4.18 17.89 4.18
11 3.20 21.77 0.17 2.89 60.34 0.08 2.61 8.53 2.61
12 4.04 22.14 0.15 3.81 20.51 0.09 3.50 22.01 3.50
13 1.19 0.96 0.02 1.16 1.02 0.05 1.04 1.07 1.04
14 2.67 2.34 0.03 2.77 2.82 0.11 2.46 2.95 2.46
15 2.44 1.96 0.06 2.57 2.27 0.41 2.42 2.48 2.42
16 3.69 3.20 0.07 4.09 4.22 0.45 3.51 4.17 3.51
17 2.00 1.37 0.22 1.44 1.29 0.09 1.27 1.31 1.27
18 3.60 2.92 0.20 3.29 3.35 0.14 2.78 3.28 2.78
19 2.52 18.51 0.02 2.59 10.05 0.06 2.42 6.26 2.42
20 3.58 15.21 0.04 3.72 11.01 0.08 3.48 12.62 3.48
21 3.43 30.27 0.06 3.96 36.72 0.40 3.68 11.89 3.68
22 4.40 86.36 0.07 4.96 18.19 0.41 4.41 14.71 4.41
23 3.34 21.10 0.16 3.04 9.14 0.08 2.77 11.37 2.77
24 4.46 32.40 0.16 4.23 14.42 0.10 3.86 17.22 3.86
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Table A.3: Standard deviations of CAMPLET quality measures.

100 observations last 4 observations final observation
DGP RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME

1 0.23∗ 0.22 0.01 0.63 0.61 0.23 0.98 1.03 0.98
2 0.64 0.63 0.03∗ 1.61 1.54 0.62 2.45 2.58 2.45
3 0.35 0.39 0.03∗ 1.28 1.22 0.47 2.15 2.23 2.15
4 0.70 0.70 0.05∗ 1.99 1.92 0.78 3.11 3.35 3.11
5 1.67 0.53 0.08∗ 0.71 0.64 0.29 0.99 1.02 0.99
6 1.83 0.95 0.08∗ 2.22 2.14 0.66 3.13 3.29 3.13
7 0.71 217.96∗ 0.04 1.74 51.56 0.73 2.66 14.21 ∗ 2.66
8 1.01 127.99 0.05 2.27 24.60 0.90 3.36 37.35 3.36
9 0.77 141.06 0.06 2.00 511.66 0.84 3.26 228.96 ∗ 3.26

10 0.99 1000.29∗ 0.06 2.45 127.06 0.97 3.91 444.42 3.91
11 1.65 927.83 0.09∗ 1.94 1367.77 0.83 2.68 40.04 2.68
12 1.81 180.18 0.09∗ 2.50 221.37 1.03 3.50 324.87 3.50
13 0.36 0.33 0.02∗ 0.85 0.86 0.29 1.19 1.27 1.19
14 0.91 1.34 0.04∗ 2.09 2.91 0.69 2.81 3.75 2.81
15 0.43 0.52 0.04∗ 1.43 1.46 0.50 2.32 2.52 2.32
16 6.78 7.91 0.06∗ 8.78 13.41 0.32∗ 16.01 22.37 16.01
17 1.65 0.64 0.08∗ 1.00 0.94 0.36 1.32 1.42 1.32
18 1.92 1.69 0.09∗ 2.56 3.67 0.80 3.53 5.50 3.53
19 0.74 447.85 0.04 1.71 136.84 0.75 2.58 57.66 2.58
20 1.17 88.08 0.05∗ 2.43 303.67 0.95 3.50 482.38 3.50
21 0.81 215.75∗ 0.05 2.09 1866.69 0.87 3.28 52.08 ∗ 3.28
22 1.20 425.23∗ 0.06 2.77 84.02 1.08 4.34 175.05 4.34
23 1.66 270.93 0.09∗ 1.98 46.27 0.82 2.78 82.54 2.78
24 1.90 410.16 0.10∗ 2.91 56.53 ∗ 1.10 4.26 121.86 ∗ 4.26

Note: An asterisk denotes that the standard deviation of CAMPLET is smaller than the corresponding

standard deviation of X-13.
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Table A.4: Standard deviations of X-13ARIMA-SEATS quality measures.

100 observations last 4 observations final observation
DGP RMSE MAPE ME RMSE MAPE ME RMSE MAPE ME

1 0.23 0.21 0.01 0.49 0.45 0.07 0.80 0.84 0.80
2 0.56 0.51 0.04 1.12 1.06 0.18 1.75 1.89 1.75
3 0.24 0.25 0.06 0.95 0.89 0.30 1.69 1.74 1.69
4 0.44 0.44 0.08 1.53 1.48 0.37 2.55 2.72 2.55
5 0.68 0.36 0.31 0.59 0.55 0.11 0.88 0.92 0.88
6 0.67 0.54 0.29 1.31 1.20 0.20 2.06 2.11 2.06
7 0.52 488.56 0.02 1.16 41.90 0.05 1.84 18.65 1.84
8 0.73 93.65 0.03 1.57 20.85 0.08 2.44 34.05 2.44
9 0.45 109.60 0.06 1.59 213.79 0.29 2.74 241.34 2.74

10 0.64 1516.40 0.06 2.04 96.29 0.32 3.25 170.57 3.25
11 0.71 271.78 0.19 1.35 1079.71 0.12 2.10 30.56 2.10
12 0.80 158.46 0.14 1.78 170.78 0.11 2.72 227.09 2.72
13 0.29 0.26 0.02 0.60 0.58 0.08 0.84 0.89 0.84
14 0.68 0.88 0.06 1.43 1.92 0.19 2.16 3.25 2.16
15 0.29 0.32 0.13 1.10 1.09 0.32 1.89 1.97 1.89
16 0.61 0.92 0.15 1.83 2.90 0.37 2.80 4.16 2.80
17 0.72 0.40 0.30 0.76 0.73 0.14 1.04 1.12 1.04
18 0.85 1.03 0.28 1.66 2.47 0.25 2.47 3.60 2.47
19 0.55 150.82 0.02 1.19 67.13 0.05 1.89 22.24 1.89
20 0.84 55.59 0.07 1.92 75.79 0.11 2.84 119.30 2.84
21 0.50 314.38 0.05 1.70 786.48 0.29 2.82 74.19 2.82
22 0.72 1687.96 0.06 2.23 81.62 0.32 3.49 80.62 3.49
23 0.71 261.23 0.17 1.40 31.96 0.12 2.20 76.59 2.20
24 0.88 275.15 0.20 2.13 74.47 0.12 3.30 207.50 3.30
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