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Abstract 

 

Understanding the (causal) mechanisms at work is important for formulating evidence-
based policy. But evidence from observational studies is often inconclusive with many 
studies finding conflicting results. In small to moderately sized samples, the outcome of 
Granger causality testing heavily depends on the lag length chosen for the underlying 
vector autoregressive (VAR) model. Using the Akaike Information Criterion, there is a 
tendency to overfit the VAR model and these overfitted models show an increased rate 
of false-positive findings of Granger causality, leaving empirical economists with 
substantial uncertainty about the validity of inferences. We propose a meta-regression 
model that explicitly controls for this overfitting bias and we show by means of 
simulations that, even if the primary literature is dominated by false-positive findings of 
Granger causality, the meta-regression model correctly identifies the absence of genuine 
Granger causality. We apply the suggested model to the large literature that tests for 
Granger causality between energy consumption and economic output. We do not find 
evidence for a genuine relation in the selected sample, although excess significance is 
present. Instead, we find evidence that this excess significance is explained by 
overfitting bias. 
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Abstract  

Understanding the (causal) mechanisms at work is important for formulating evidence-based 

policy. But evidence from observational studies is often inconclusive with many studies 

finding conflicting results. In small to moderately sized samples, the outcome of Granger 

causality testing heavily depends on the lag length chosen for the underlying vector 

autoregressive (VAR) model. Using the Akaike Information Criterion, there is a tendency to 

overfit the VAR model and these overfitted models show an increased rate of false-positive 

findings of Granger causality, leaving empirical economists with substantial uncertainty 

about the validity of inferences. We propose a meta-regression model that explicitly controls 

for this overfitting bias and we show by means of simulations that, even if the primary 

literature is dominated by false-positive findings of Granger causality, the meta-regression 

model correctly identifies the absence of genuine Granger causality. We apply the suggested 

model to the large literature that tests for Granger causality between energy consumption and 

economic output. We do not find evidence for a genuine relation in the selected sample, 

although excess significance is present. Instead, we find evidence that this excess significance 

is explained by overfitting bias. 
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1. Introduction  

The tendency to selectively publish statistically significant or theory-confirming results may 

distort the conclusions drawn from published empirical research (Ioannidis, 2005; Glaeser, 

2006). It is always possible for researchers to select statistically significant results from those 

presented by sampling variability (Rosenthal, 1979). In the case of Granger causality testing, 

spuriously statistically significant results can be generated if the underlying Vector 

Autoregression (VAR) model is overfitted, which is increasingly likely the smaller the 

sample size. Small sample sizes are common in macroeconomic research using annual data. 

This overfitting bias is likely to further increase the number of false-positive results published 

in the literature raising the question whether most findings of Granger causality are false. In 

this paper, we present a meta-analysis approach for synthesizing Granger-causality test 

statistics that deals with both publication selection bias based on selecting significant results 

from sampling variability and the increased false-positive rate generated by overfitted 

models. 

Granger causality is a widely used concept in various fields of economics such as monetary 

policy (Mittnik and Semmler, 2013; Lee and Yang, 2012; Assenmacher-Wesche and Gerlach, 

2008; Aksoy and Piskorski, 2006), finance and economic development (Ang, 2008), and 

energy economics (Ozturk, 2010), and it has also been increasingly applied in other scientific 

disciplines, such as climate change (Stern and Kaufmann, 2014), and neuroscience (Bressler 

and Seth, 2011). However, Granger causality test statistics are very sensitive to the chosen 

lag length for the underlying VAR model (e.g. Zapata and Rambaldi, 1997). Given that the 

true lag length is unknown, uncertainty about which lag length to select leaves researchers 

with substantial uncertainty about the validity of Granger causality tests. Given the 

importance of this step in Granger causality testing, the choice of lag length is usually based 

on objective criteria. Frequently used lag length selection criteria are the Akaike information 

criterion (AIC) (Akaike, 1973) and the Bayesian information criterion (BIC) (Schwartz, 

1978). However, these information criteria have a known tendency to overestimate and 

underestimate, respectively, the true lag length (Ozcicek and McMillin, 2010; Hacker and 

Hatemi-J, 2008; Nickelsburg, 1985; Lütkepohl, 1985). Overfitted and underfitted models also 

tend to lead to overrejection and underrejection of the null hypothesis of Granger non-

causality compared to the rejection rate of a model estimated with the true lag length (Zapata 

and Rambaldi, 1997). Overfitting and underfitting are particularly prevalent in small samples 
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(Gonzalo and Pitarikis, 2002), which are common in macroeconomic research using annual 

data. In comparison to microeconomics, reliable causal inference in macroeconomics is in 

any case hindered by the difficulty of applying experimental and quasi-experimental designs 

in macroeconomics (Stock, 2010) and finding valid instrumental variables is often difficult 

(Bazzi and Clemens, 2013). Hence, addressing the potential biases introduced by lag length 

selection in Granger causality testing is important in strengthening causal interpretations in 

macroeconomics.  

Many approaches have been developed to improve the likelihood of selecting the correct lag 

length. These approaches include corrections to the AIC or BIC in small samples (Hurvich 

and Tsai, 1989). The application of these approaches has, however, been limited and the 

VARs used in Granger causality testing are usually specified using the standard AIC and 

BIC, as is mostly the case in the Granger causality literature on energy consumption and 

economic growth (Bruns et al., 2014). 

Considering the incentive system in academic publishing that rewards statistically significant 

results and compliance with the preconceptions of reviewers (Frey, 2003; Glaeser, 2006; 

Brodeur et al., 2013) means that dealing with overfitting bias is even more important. 

Overfitted VAR models and the corresponding overrejection of the non-causality hypothesis 

can be used to consciously or unconsciously obtain statistically significant Granger causality 

tests even if genuine Granger causality is absent. Overfitting bias is specific to the analysis of 

time series and comes in addition to more general biases such as the selection of statistically 

significant results from sampling variability by estimating the effect of interest, for example, 

for varying countries, time spans or data sources.1  

We address these biases using meta-analysis. Meta-regression models can synthesize the 

Granger causality tests from many primary studies in order to identify the presence or 

absence of genuine Granger causality while controlling for potential biases. Meta-regression 

analysis in economics was originally proposed to explain the variation in empirical findings 

(Stanley and Jarrell, 1989). In this approach, the regression coefficients of primary studies are 

regressed on primary study characteristics, such as the country under investigation or the 

1 Publication bias is often defined as the selection of statistically significant results from sampling variability. 
This definition is based on experimental designs where sampling variability may be the main source of variation 
in results (Rosenthal, 1979). Publication (selection) bias in observational research, however, can exploit more 
sources of variation, such as omitted-variable biases. Therefore, we use publication selection bias more 
generally to define the selection of specific results for publication, e.g. statistically significant or theory-
confirming results, not necessarily based on sampling variability alone. 
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estimation technique employed. Subsequently, meta-regression analysis was further 

developed to identify genuine empirical effects while controlling for publication selection 

bias based on the selection of statistically significant and theory-confirming results from 

sampling variability (Stanley, 2008). These approaches use the concept of statistical power to 

determine if a genuine effect exists across a sample of primary studies. If there is a genuine 

effect, test statistics from the primary studies, such as the t-statistic for a regression 

coefficient, should increase with the degrees of freedom in the underlying primary estimates, 

whereas in the absence of a genuine effect the test statistics should be unrelated to the degrees 

of freedom. Meta-regression models have been primarily developed for the synthesis of 

single regression coefficients, which consist of a point estimate and a standard error. The 

standard approach to test for a genuine effect is to regress the ratio of the estimated 

coefficient and its standard error on a constant, the inverse of the standard error, and control 

variables. But Granger causality tests are usually 𝐹𝐹 or 𝜒𝜒2-distributed test statistics derived 

from restricting multiple coefficients in a model. So both this and the potential overfitting 

bias discussed above need to be taken into account in developing a meta-regression approach 

that is suitable for Granger causality test statistics. 

Our proposed meta-regression model for Granger causality test statistics regresses the probit-

transformed 𝑝𝑝-value of the original test statistics on a constant, the square root of the degrees 

of freedom in the primary regressions, and control variables that include the selected lag 

length from the primary studies. Using Monte Carlo simulations, we show that the overfitting 

bias occurs in many scenarios that are likely to be prevalent in macroeconomics. We also 

simulate empirical literatures that are additionally distorted due to primary authors searching 

for statistically significant and theory-confirming results. We show that the suggested meta-

regression models can identify the presence and absence of genuine Granger causality even if 

genuine Granger causality is absent but the primary literature only includes statistically 

significant Granger causality test statistics due to these biases. The suggested model that 

controls for overfitting bias systematically outperforms a basic model that does not control 

for overfitting bias.  

The development of this meta-regression model is motivated by the large and inconclusive 

literature that tests Granger causality between energy use and economic output. We show that 

the presence of excess significance in this literature can be largely explained by overfitting 

bias rather than the presence of genuine Granger causality. These findings highlight how as a 

result of overfitting bias a literature can appear to provide evidence for Granger causality 

 
 



 
 

5 

when actually Granger causality appears to be absent. Understanding the mechanisms at work 

is important for formulating evidence-based policy and our results show that false-positive 

findings can be easily derived implying misleading policy implications.   

Section 2 of the paper discusses testing for Granger causality, overfitting bias, and the meta-

regression models. Section 3 describes the design of our simulations and Section 4 presents 

the results. Section 5 provides a discussion of the results and Section 6 applies the meta-

regression models to the literature on energy use and economic output. Section 7 concludes. 

2. Meta-Regression Analysis of Granger Causality Tests 

2.1. Testing for Granger Causality 

Granger (1969) introduced a concept of causality that is based on the idea that the future 

cannot cause the past. Assuming stationarity, a variable 𝑋𝑋 is said to Granger-cause a variable 

𝑌𝑌 if past values of 𝑋𝑋 help explain the current value of 𝑌𝑌 given past values of Y and all other 

relevant past information 𝑈𝑈. Let 𝑈𝑈′ be the set of all information up to and including period t-1 

apart from observations on 𝑋𝑋. If 𝐸𝐸(𝑌𝑌|𝑈𝑈) ≠  𝐸𝐸(𝑌𝑌|𝑈𝑈′), then X causes Y (Granger, 1988). In 

applied econometrics the whole universe of information is not available and the functional 

form is usually assumed to be linear. Hence, in practice, Granger causality tests are usually 

based on improved linear prediction within a specific model (Lütkepohl, 2007, 42).  

Testing for Granger causality requires knowledge about the properties of the time series 

under consideration. If the time series are integrated, Wald test statistics for Granger causality 

in a VAR in levels follow non-standard asymptotic distributions and depend on nuisance 

parameters (Sims et al., 1990; Toda and Phillips, 1993). Whether or not time series are 

integrated can be tested using a variety of unit root tests. Yet, all of these tests suffer from 

low power in small samples. If the time series in question are indeed first order integrated 

(I(1)) but not cointegrated, a VAR in first differences provides a valid framework for testing 

Granger causality using Wald tests. Instead, if the time series are I(1) and cointegrated, a 

vector error correction model (VECM) is the appropriate framework for Granger causality 

testing. If the time series are not integrated (I(0)), Granger causality can be directly tested 

using a VAR in levels as the unrestricted model. Hence, there are a variety of models that can 

be applied to test for Granger causality and the validity of each model depends on the 

properties of the specific time series involved. However, pre-testing biases are introduced by 
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testing for the order of integration and cointegration to decide which framework should be 

used for Granger causality testing. 

As a remedy, Toda and Yamamoto (1995) proposed a Granger causality testing procedure 

that avoids any pre-testing. They show that if a VAR in levels is augmented by a number of 

lags equal to the highest degree of integration, a Wald test that does not restrict the 

augmenting lags is asymptotically χ2 distributed irrespective of the order of integration and 

cointegration. Hence, Granger causality can be tested by estimating the following VAR 

(ignoring any deterministic components) and testing restrictions on its coefficients:  

𝑌𝑌𝑡𝑡 = Π1𝑌𝑌𝑡𝑡−1 + ⋯+ Π𝑝𝑝𝑌𝑌𝑡𝑡−𝑝𝑝 + Π𝑝𝑝+1𝑌𝑌𝑡𝑡−𝑝𝑝−1 + ⋯+ Π𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑡𝑡−𝑝𝑝−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑡𝑡   (1) 

where 𝑌𝑌𝑡𝑡 is a 𝑘𝑘 × 1 vector of variables, Π𝑖𝑖 is a 𝑘𝑘 × 𝑘𝑘 matrix of coefficients, 𝜀𝜀𝑡𝑡 is a 𝑘𝑘 × 1 

vector of errors, p denotes the lag length and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the maximal order of integration. We 

can test for Granger causality from 𝑌𝑌(𝑚𝑚) to 𝑌𝑌(𝑏𝑏), where the superscripts denote two individual 

variables in 𝑌𝑌𝑡𝑡, using 𝐻𝐻0: Π1𝑚𝑚𝑏𝑏 = Π2𝑚𝑚𝑏𝑏 … = Π𝑝𝑝𝑚𝑚𝑏𝑏 = 0, where the superscripts denote the 𝑎𝑎th 

column and 𝑏𝑏th row of Π𝑖𝑖. Stacking the coefficient matrices as Π = 𝑣𝑣𝑣𝑣𝑣𝑣[Π1,Π2, … ,Π𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ] 

and letting 𝑅𝑅 be the matrix of restrictions so that 𝑅𝑅Π = 𝑣𝑣𝑣𝑣𝑣𝑣[Π1𝑚𝑚𝑏𝑏 ,Π2𝑚𝑚𝑏𝑏 , … ,Π𝑝𝑝𝑚𝑚𝑏𝑏], then 

𝐻𝐻0: 𝑅𝑅Π = 0 can be tested by a Wald test: 

𝑊𝑊𝑝𝑝 = (𝑅𝑅Π�)′�𝑅𝑅Σ�𝑝𝑝𝑅𝑅′�
−1
𝑅𝑅Π�          (2) 

where 𝑊𝑊 is asymptotically χ𝑝𝑝2  distributed with 𝑝𝑝 degrees of freedom, Σ�𝑝𝑝 is the estimated 

covariance matrix of (1) and Π� is the estimate of Π. 

2.2. Overfitting Bias 

The choice of the lag length in VAR models is mainly an empirical question, as economic 

theory is usually not very specific about the temporal dimension of economic dynamics. 

Although there are various methods for determining the lag length, information criteria are 

most commonly used. Ignoring a constant that reflects the number of deterministic terms, the 

general information criterion for selecting the lag length in VAR models is:  

𝐼𝐼𝐼𝐼(𝑝𝑝) = 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝� + 𝑐𝑐𝑇𝑇
𝑇𝑇

 𝑝𝑝 𝑞𝑞2         (3) 
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where IC(p) is the value of the information criterion for a lag length p, Σ�𝑝𝑝 is the estimated 

covariance matrix of the 𝑉𝑉𝑉𝑉𝑅𝑅(𝑝𝑝) model, 𝑇𝑇 is the number of observations and 𝑞𝑞 is the 

dimension of the VAR. The true lag length 𝑝𝑝∗ is estimated using: 

�̂�𝑝∗ = arg minp 𝐼𝐼𝐼𝐼(𝑝𝑝)           (4) 

with 0 ≤ 𝑝𝑝 ≤ 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. Given that �Σ�𝑝𝑝� will always decrease as a result of adding further lags to 

the model, a penalty term is introduced, which is the second term on the right hand side of 

(3). Hence the IC only recommends adding an additional lag if the decrease in the log 

likelihood exceeds the penalty term applied. The AIC sets the deterministic penalty term 

to 𝑣𝑣𝑇𝑇 = 2, whereas the BIC uses 𝑣𝑣𝑇𝑇 = ln 𝑇𝑇. 

Nielsen (2006) shows that �̂�𝑝∗ is a consistent estimate of the true lag length if the BIC is used, 

whereas the AIC has a positive limiting probability of overfitting. However, these asymptotic 

properties may have little relevance for lag length selection in economic time series. In 

contrast to the high frequency data widespread in finance, macroeconomic time series usually 

consist of a few decades of quarterly or annual data. Hence, there is usually a small to 

moderate number of observations. In addition to this, it is questionable whether very long 

time series can be used in a single econometric model due to potential changes in the 

underlying data generating process (DGP), for example due to changes in economic policy 

(Lucas, 1976).  

Accordingly, it is the performance of IC’s in small and moderate sample sizes that matters in 

applied macro-econometrics. At these sample sizes, the frequency with which the AIC and 

the BIC select the true lag length 𝑝𝑝∗ depends heavily on the specific DGP. For instance, 

Hacker and Hatemi-J (2008) illustrate how the size of the coefficient of the last lag in the 

VAR model influences the ability of the IC to select 𝑝𝑝∗. Furthermore, Nickelsburg (1985) 

shows that the frequency of over- or underfitting also depends on whether the lag coefficients 

decline exponentially, oscillate, sharply increase, or exhibit dampened oscillations. Although, 

the exact frequency distribution may vary with respect to the specific DGP, systematic 

patterns can be identified when IC’s are used. Based on (3), the probability to overfit a 

𝑉𝑉𝑉𝑉𝑅𝑅(𝑝𝑝∗) model by h lags is: 

𝑃𝑃[𝐼𝐼𝐼𝐼(𝑝𝑝∗) > 𝐼𝐼𝐼𝐼(𝑝𝑝∗ + ℎ)] = 𝑃𝑃 �𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗� − 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗+ℎ� > 𝑐𝑐𝑇𝑇 𝑝𝑝∗ 𝑞𝑞2 ℎ
𝑇𝑇

�.    (5) 
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If there are few degrees of freedom (df), the sampling variability of Σ�𝑝𝑝 will be large. As a 

result, the variance of 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗� − 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗+ℎ� can become large while the penalty term is not 

affected by the sampling variability. Accordingly, the probability of overfitting is higher the 

lower the number of degrees of freedom. Moreover, given that the AIC uses 𝑣𝑣𝑇𝑇 = 2 and the 

BIC uses 𝑣𝑣𝑇𝑇 = ln (𝑇𝑇), the penalty term is systematically larger for the BIC than for AIC if T > 

7. Therefore, the probability that the 𝐼𝐼𝐼𝐼 suggests an overfitted VAR is larger for the AIC than 

for the BIC. Analogously, the probability of underfitting a 𝑉𝑉𝑉𝑉𝑅𝑅(𝑝𝑝∗) model by h lags is:  

𝑃𝑃[𝐼𝐼𝐼𝐼(𝑝𝑝∗) > 𝐼𝐼𝐼𝐼(𝑝𝑝∗ − ℎ)] = 𝑃𝑃 �𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗−ℎ� − 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗� < 𝑐𝑐𝑇𝑇 𝑝𝑝∗ 𝑞𝑞2 ℎ
𝑇𝑇

�.    (6) 

The potentially large variance of 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗−ℎ� − 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗� due to sampling variability for low df 

implies that there is also an increased probability of underfitting. As the penalty term is larger 

for the BIC, the probability of underfitting is larger for the BIC than for the AIC.  

Overall, the probability of overfitting and underfitting the VAR model increases with 

decreasing df with overfitting more likely to occur using the AIC and underfitting when using 

the BIC. These patterns have been shown in simulations of a variety of DGPs including stable 

and unstable VARs under situations of homoscedasticity and ARCH (Hacker and Hatemi-J, 

2008), VARs with high lag lengths (Nickelsburg, 1985) and low lag lengths (Lütkepohl 

1985), as well as symmetric and asymmetric lag lengths (Ozcicek and McMillin 2010). 

Overfitted VAR models tend to overreject the null hypotheses of Granger non-causality and, 

analogously, underfitted VAR models tend to underreject the null hypotheses of Granger 

non-causality compared to the rejection rate of a VAR model estimated with the true lag 

length (Zapata and Rambaldi, 1997). As a result, overfitted VAR models lead to an increased 

rate of false-positive findings of Granger causality in the absence of genuine Granger 

causality. We denote this bias in Granger causality testing as overfitting bias. Given the 

pressure to publish statistically significant results, results that are statistically significant due 

to overfitting bias will be more likely to be published than insignificant results and 

researchers may choose the information criterion that generates such seemingly significant 

results. Underfitted VAR models lead to less significant Granger causality tests - we denote 

this bias underfitting bias. Though it will result in type II errors, this is of less importance as 

researchers will be less likely to publish these results.2 Given overfitting and the incentive 

2 Of course, if theory predicts a lack of causality then researchers may be happy to publish these results.  
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system of academic publishing, researchers are left with uncertainty about the reliability of 

inferences obtained by Granger causality tests. 

2.3. Meta-Granger Causality Model 

In the absence of genuine Granger causality, even if the VAR model is estimated with the 

correct lag length, false-positive findings of Granger causality will still appear by chance. If 

authors select for statistically significant results from the results offered by sampling 

variability, the empirical literature will be distorted. Researchers can select results from 

estimates for a variety of countries, different time spans, or data sources. In the worst case, 

the published literature may consist of just the 5% of results where the null hypothesis was 

rejected, whereas the remaining 95% of results remain unpublished (Rosenthal, 1979). The 

following basic meta-regression model for Granger causality test statistics (Bruns et al., 

2014) tests for the presence of genuine Granger causality in the presence of publication 

selection bias based on sampling variability but not on overfitting or underfitting biases: 

 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 =  𝛼𝛼𝐵𝐵

𝑔𝑔𝑐𝑐 +  𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 �𝑑𝑑𝑓𝑓𝑖𝑖 +  𝜀𝜀𝑖𝑖

𝑔𝑔𝑐𝑐         (7) 

where 𝑑𝑑𝑓𝑓𝑖𝑖 is the number of degrees of freedom of a single equation of the VAR used in 

primary study 𝑖𝑖 and 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 = Φ−1�1− 𝜋𝜋𝑖𝑖

𝑔𝑔𝑐𝑐�, where Φ−1 is the inverse cumulative distribution 

function of the standard normal distribution and 𝜋𝜋𝑖𝑖
𝑔𝑔𝑐𝑐 is the 𝑝𝑝-value of study 𝑖𝑖. The direction 

of Granger causality is given by 𝑔𝑔 = 1, … , (1 − 𝑞𝑞) denoting the independent variable in 

equation 𝑣𝑣 = 1, … , 𝑞𝑞 of the VAR so that, for example, 𝑔𝑔 = 1 and 𝑣𝑣 = 2 represents Granger 

causality from the first independent variable to the dependent variable in the second equation 

of the VAR.3 Larger values of 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 indicate smaller 𝑝𝑝-values and, consequently, higher levels 

of statistical significance. If there is no genuine effect the probit transformation of the 𝑝𝑝-

values results in a normal distributed dependent variable with mean zero and hence 𝜀𝜀𝑖𝑖
𝑔𝑔𝑐𝑐 has 

desirable properties for a regression residual. The distribution of 𝑧𝑧𝑔𝑔𝑐𝑐 is more complicated in 

the presence of genuine Granger causality and will be discussed below. In the presence of 

genuine Granger causality, the level of statistical significance should increase as 𝑑𝑑𝑓𝑓𝑖𝑖 

increases (𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 > 0). Conversely, in the absence of genuine Granger causality, 𝑑𝑑𝑓𝑓𝑖𝑖 should be 

3 This basic model may be augmented by other control variables and interactions between the controls and the 
degrees of freedom variable in actual applications – see Section 6 of this article or Bruns et al. (2014) for more 
details. In following we assume for simplicity that each primary study reports Granger causality test statistics 
from a single estimated VAR model. In practice studies often report the results from multiple samples and 
specifications. We take this into account in the empirical example. 
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unrelated to the levels of statistical significance. In the presence of publication selection bias 

based on sampling variability, large estimates of the VAR coefficients are required to achieve 

statistical significance when there are few degrees of freedom, whereas smaller estimates of 

the VAR coefficients are sufficient when there are many degrees of freedom. Hence, the 𝑝𝑝-

values will be unrelated to the degrees of freedom even if the primary literature exclusively 

consists of statistically significant results generated from sampling variability. Simulations 

show that meta-regression models of this type can control for publication selection bias that is 

based on sampling variability (Stanley, 2008; Bruns, 2013) and, thus, 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 tests for 

the presence of genuine Granger causality in the presence of this publication selection bias. 

We refer to this model as the basic meta-regression model for Granger causality tests. 

As discussed in Section 2.2, overfitting bias might be used to consciously or unconsciously 

search for statistically significant Granger causality tests. Meta-regression analysis can help 

to identify the presence of genuine Granger causality in the presence of overfitting bias. 

Overfitting bias leads to large values of 𝑧𝑧𝑔𝑔𝑐𝑐 compared to the values of 𝑧𝑧𝑔𝑔𝑐𝑐 that we can expect 

for the true lag length and these large values of 𝑧𝑧𝑔𝑔𝑐𝑐 are more common for small values of 𝑑𝑑𝑓𝑓. 

Therefore, we can expect that 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 is biased downwards compared to the true relation 

between 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓. This downward bias in 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 reduces the power of the basic meta-

regression model in the presence of overfitting bias. We suggest controlling for the 

underlying lag length of the VAR model in the meta-regression model to account for this 

source of bias: 

𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 =  𝛼𝛼𝐸𝐸

𝑔𝑔𝑐𝑐 + 𝛽𝛽𝐸𝐸
𝑔𝑔𝑐𝑐 �𝑑𝑑𝑓𝑓𝑖𝑖 + 𝛾𝛾𝑔𝑔𝑐𝑐 𝑝𝑝𝑖𝑖 +  𝑣𝑣𝑖𝑖

𝑔𝑔𝑐𝑐 .       (8) 

We refer to this model as the extended meta-regression model for Granger causality tests. In 

the presence of publication selection bias that is based on sampling variability and overfitting 

bias, genuine Granger causality is tested by 𝐻𝐻0:𝛽𝛽𝐸𝐸
𝑔𝑔𝑐𝑐 ≤ 0.  

We illustrate the distribution of 𝑧𝑧𝑔𝑔𝑐𝑐 in the presence and absence of genuine Granger causality 

by using a small Monte Carlo simulation. We utilize the first DGP from Section 3, which will 

be discussed later in more detail. This DGP is a bivariate VAR process with Granger 

causality in one direction only and a lag length of three. In this bivariate VAR, the presence 

of Granger causality is mirrored by 𝑔𝑔𝑣𝑣 = 11 whereas the absence of Granger causality is 

mirrored by 𝑔𝑔𝑣𝑣 = 12. We generate data using this DGP for 11 different primary sample sizes 

(30, 32, 35, 37 … , 55) that are typical in the macroeconomic analysis of annual time series. 
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For each primary sample size 10,000 pairs of time series are generated following the 

procedure outlined in Section 3. We estimate for each of the primary sample sizes 10,000 

VAR models choosing the lag length using the AIC with a maximum lag length of five. We 

use the Toda-Yamamoto procedure to test for Granger causality resulting in 110,000 Granger 

causality tests in each potential direction of causality. Finally, we fit the basic and extended 

meta-regression models to all 110,000 Granger causality tests – one meta-regression for each 

direction of causation. 

Figure 1 shows the residual distributions for both the basic and extended meta-regression 

models grouped by primary sample size. This figure indicates evidence for non-linearity in 

the basic meta-regression model, which is resolved by the use of the extended meta-

regression model. For the extended meta-regression model, the residuals are symmetrically 

distributed around zero both in the absence of and presence of genuine Granger causality. 

Figure 1: Boxplots of Residuals by Primary Sample Size 

 

Notes: The box represents the interquartile range and the whiskers extend to the largest data point within 1.5 

times the interquartile range.  
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The main source of non-linearity in the basic meta-regression model is overfitting bias, which 

generates large values of 𝑧𝑧𝑔𝑔𝑐𝑐 for small values of 𝑑𝑑𝑓𝑓. As a result, the estimate of 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 is biased 

downwards obscuring the true relation between 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓. Figure 2 illustrates how 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 is 

biased downwards due to overfitting bias and how the extended meta-regression model 

corrects for this bias. This small simulation also reveals that the relation between �𝑑𝑑𝑓𝑓 and 

𝑧𝑧𝑔𝑔𝑐𝑐=12, that is the direction where Granger causality is absent, is negative for the true model 

with three lags where we would actually expect 𝐸𝐸[𝑧𝑧12 | 𝑑𝑑𝑓𝑓] = 0. This negative relation 

indicates that the Toda Yamamoto test generates false-positive findings of Granger causality 

if the sample size is small. As a result, we can expect 𝛽𝛽𝐸𝐸
𝑔𝑔𝑐𝑐 < 0 in the absence of genuine 

Granger causality for samples sizes that are typical of the macroeconomic analysis of annual 

time series. 

Given that 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 is biased downwards and genuine Granger causality is characterized by 

𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 > 0, we can expect that overfitting bias means that the basic model has lower power than 

the extended model. In addition, the size of the basic model can be expected to be lower than 

the nominal significance level of 5% and lower than that of the extended model. 

Figure 2: Impact of Overfitting Bias on the Meta-Regression Models 

 

Notes: The average 𝑧𝑧𝑔𝑔𝑐𝑐  values per chosen lag length (𝐸𝐸[𝑧𝑧𝑔𝑔𝑐𝑐|𝑝𝑝] with 𝑝𝑝 = 1,2,3,4,5) are represented as function 

of �𝑑𝑑𝑓𝑓 for three different primary sample sizes: 𝜇𝜇 = 30 (red), 𝜇𝜇 = 40 (green), and 𝜇𝜇 = 55 (blue). The size of 

the symbols mirrors for each of the three primary sample sizes the percentage of the primary studies that choose 

the respective lag length. The relation between 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓 for the true lag length of three (𝑝𝑝 = 3) is 

represented by the dotted line (true power trace). The slope of the Basic Model (𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐) is biased downwards 

compared to the true relation between 𝑧𝑧𝑔𝑔𝑐𝑐  and �𝑑𝑑𝑓𝑓. The extended model is plotted for a lag length of three.  
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3. Simulation Designs 

3.1. No Publication Selection 

In this subsection, we describe a simulation that is intended to show how well the basic and 

extended meta-regression models perform in the presence of overfitting bias in Granger 

Causality testing if the authors of primary studies do not select for specific results. 

For each simulated meta-regression analysis, we generate 𝑖𝑖 = 1, … , 𝑠𝑠 underlying primary 

studies with meta-analysis sample sizes 𝑠𝑠 = 10, 20, 40, 80. The sample size 𝑙𝑙𝑖𝑖 for each 

primary study is selected by first drawing a number from a gamma distribution with scale 

parameter 𝜎𝜎2

(𝜇𝜇−30)
 and shape parameter (𝜇𝜇−30)2

𝜎𝜎2
 to which we then add 30 and round to the next 

integer. This allows us to vary the mean 𝜇𝜇 and the variance 𝜎𝜎2 independently and it ensures 

that 𝑙𝑙𝑖𝑖 = 30 is the smallest primary sample size. We consider 𝜇𝜇 = 35, 40, 50, 60 and 

𝜎𝜎2 = 25, 100, 225 to mirror a wide span of primary sample size distributions ranging from 

rather small primary sample sizes typical for annual data in macroeconomics to larger 

primary sample sizes that are more likely to be present in quarterly data in macroeconomics. 

Annual macroeconomic time series often start in 1970 but may start earlier or later. For 

example, most series in the World Bank Development Indicators start in 1980. If the meta-

analyst considers primary studies using annual data published in the last 15 years the primary 

sample sizes may range between 30 and 55 and some primary studies may use time series for 

specific countries that are substantially longer. Such a distribution is mirrored by 𝜇𝜇 = 40 and 

𝜎𝜎2 = 100 illustrated in Figure 3. The 10% (90%) quantile is 31 (53) and the distribution is 

right skewed and allows for the presence of some large primary sample sizes. A similar but 

more symmetric distribution with less probability mass on larger primary sample sizes is 

given by 𝜇𝜇 = 40 and 𝜎𝜎2 = 25. This distribution is also illustrated in Figure 3 and provides a 

10% (90%) quantile of 34 (47). Quarterly time series provide more observations but are 

usually available for fewer years. Quarterly time series often start around 1990 and if the 

meta-analyst considers again studies of the last 15 years the primary sample sizes range 

between 40 and 80. Figure 3 illustrates how these primary sample sizes are mirrored by 

𝜇𝜇 = 60 and 𝜎𝜎2 = 152 leading to a distribution with a 10% (90%) quantile of 43 (80). 
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Figure 3: Distributions of Primary Sample Sizes 

 

We generate data for the primary studies using four DGPs (Table 1). All four DGPs have a 

true lag length of three (𝑝𝑝 = 3) so that we can illustrate both underfitting and overfitting and 

the roots of the companion matrix of all four DGPs lie on or outside the unit circle so that 

they are all non-stationary. Following Zapata and Rambaldi (1997), all DGPs imply that 𝑋𝑋 

causes 𝑌𝑌 but not vice versa, which allows us to evaluate the size and power of the meta-

regression models using the same DGP.  

DGP1a is a non-cointegrated bivariate VAR process. We set the two coefficients on the 

diagonal of each matrix equal in order to focus on the ability of the meta-regression models to 

detect the causal effect, which is determined by the off-diagonal coefficient. DGP1b has a 

larger casual effect than DGP1a but is otherwise identical. This variation in the value of the 

causal effect allows us to evaluate the performance of meta-regression models for different 

sizes of causal effects and consequent signal to noise ratios. DGP2a is a cointegrated 

bivariate VAR process. DGP2a deviates from DGP1a only in the second coefficient matrix, 

which results in a reduced rank long-run coefficient matrix as is necessary to achieve 

cointegration. DGP2b has a larger causal effect than DGP2a but is otherwise the same. The 

residuals are modeled as 𝜖𝜖𝑡𝑡~𝑁𝑁(0,Ω) where Ω = I or Ω =  � 1 0.5
0.5 1 � so that there are eight 

DGPs in total.  

For each primary study 𝑖𝑖, we draw three starting values for 𝑋𝑋 and 𝑌𝑌 from standard normal 

distributions and generate 𝑙𝑙𝑖𝑖 + 50 observations according to the respective DGP. Afterwards 

we delete the first 50 observations to avoid any dependence on the starting values.  
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Each primary study applies an information criteria (AIC or BIC) to a VAR in levels to 

determine the optimal lag length (𝑝𝑝 =  1, … , 5). Subsequently, the lag length is augmented 

with the maximum order of integration of one leading to a theoretical minimum degrees of 

freedom of 11. Finally, each primary study applies a Wald test to the lags of the independent 

variable ignoring the augmented lag which produces Granger causality tests for 𝑋𝑋 causes 𝑌𝑌 

and 𝑌𝑌 causes 𝑋𝑋 for each DGP.  

We apply the basic and extended meta-regression model to the 𝑠𝑠 primary studies and evaluate 

their size and power in identifying genuine Granger causality. We use 1000 iterations for 

each of the 768 scenarios (#𝑠𝑠 ∗ #𝜇𝜇 ∗ #𝜎𝜎2 ∗ #𝐷𝐷𝐷𝐷𝑃𝑃 ∗ #𝐼𝐼𝐼𝐼 ). 

Table 1: Overview of Data Generating Processes  

Name VAR model 

DGP1a 

 

�𝑌𝑌𝑡𝑡𝑋𝑋𝑡𝑡
� =  �1.5 0.4

0 1.5�  � 𝑌𝑌𝑡𝑡−1𝑋𝑋𝑡𝑡−1 
� + �−0.25 −0.2

0 −0.25�  � 𝑌𝑌𝑡𝑡−2𝑋𝑋𝑡𝑡−2 
� +  �−0.25 −0.2

0 −0.25�  � 𝑌𝑌𝑡𝑡−3𝑋𝑋𝑡𝑡−3 
� +  �

𝜀𝜀1𝑡𝑡
𝜀𝜀2𝑡𝑡� 

DGP1b �𝑌𝑌𝑡𝑡𝑋𝑋𝑡𝑡
� =  �1.5 0.8

0 1.5�  � 𝑌𝑌𝑡𝑡−1𝑋𝑋𝑡𝑡−1 
� + �−0.25 −0.4

0 −0.25�  � 𝑌𝑌𝑡𝑡−2𝑋𝑋𝑡𝑡−2 
� +  �−0.25 −0.4

0 −0.25�  � 𝑌𝑌𝑡𝑡−3𝑋𝑋𝑡𝑡−3 
� +  �

𝜀𝜀1𝑡𝑡
𝜀𝜀2𝑡𝑡� 

 

DGP2a 

 

�𝑌𝑌𝑡𝑡𝑋𝑋𝑡𝑡
� =  �1.5 0.4

0 1.5�  � 𝑌𝑌𝑡𝑡−1𝑋𝑋𝑡𝑡−1 
� + �−0.5 0.2

0 −0.25�  � 𝑌𝑌𝑡𝑡−2𝑋𝑋𝑡𝑡−2 
� +  �−0.25 −0.2

0 −0.25�  � 𝑌𝑌𝑡𝑡−3𝑋𝑋𝑡𝑡−3 
� + �

𝜀𝜀1𝑡𝑡
𝜀𝜀2𝑡𝑡� 

 

DGP2b �𝑌𝑌𝑡𝑡𝑋𝑋𝑡𝑡
� =  �1.5 0.8

0 1.5�  � 𝑌𝑌𝑡𝑡−1𝑋𝑋𝑡𝑡−1 
� + �−0.5 0.4

0 −0.25�  � 𝑌𝑌𝑡𝑡−2𝑋𝑋𝑡𝑡−2 
� +  �−0.25 −0.4

0 −0.25�  � 𝑌𝑌𝑡𝑡−3𝑋𝑋𝑡𝑡−3 
� + �

𝜀𝜀1𝑡𝑡
𝜀𝜀2𝑡𝑡� 

3.2. Theory-Confirmation Bias 

We also examine the case where researchers search for theory-confirming and statistically 

significant results. Suppose theoretical considerations suggest that there is a causal effect 

from 𝑌𝑌 to 𝑋𝑋, when in fact causality is actually absent in this direction, and may or may not be 

present from 𝑋𝑋 to 𝑌𝑌. If these theoretical considerations dominate the empirical literature, 

authors may search for results that confirm these theoretical presumptions.  

 
 



 
 

16 

We generate the primary sample sizes, 𝑙𝑙𝑖𝑖, as described in section 3.1. Each study tests for 

Granger causality from 𝑌𝑌 to 𝑋𝑋 based on a VAR model that is specified using the AIC and a 

VAR model that is specified using the BIC. Each primary study then selects for publication 

the test of Granger causality from 𝑌𝑌 to 𝑋𝑋 that is the more statistically significant. Moreover, 

we consider that researchers conducting ℎ% (where ℎ = 0,25,50,75,100) of the primary 

studies not only select the more statistically significant result for causality from 𝑌𝑌 to 𝑋𝑋 from 

the AIC and BIC specified models, but if they do not find a result that is significant at the 

conventional level of 5% they also search further samples of data (from other countries or 

time periods) until they find Granger causality from 𝑌𝑌 to 𝑋𝑋 that is statistically significant at 

the 5% level. We simulate this by generating further samples from the relevant DGP and 

fitting VAR models to them using the AIC and BIC until the more statistically significant 

Granger causality test from 𝑌𝑌 to 𝑋𝑋 is statistically significant at the 5% level. This gives 

further opportunities to generate apparently significant results due to selection from sampling 

variability and overfitting bias. 

As a result, the primary literature is composed of ℎ% primary studies with statistically 

significant Granger causality tests from 𝑌𝑌 to 𝑋𝑋 due to publication selection bias based on 

sampling variability and overfitting bias. The remaining (1 − ℎ)% primary studies only 

search for the desired result by specifying the lag length of the VAR model using the AIC 

and BIC and selecting the more significant result in the direction of 𝑌𝑌 to 𝑋𝑋. If these (1 − ℎ)% 

primary studies do not obtain a statistically significant and theory-confirming result they 

publish their findings anyway. The outcome is an empirical literature that provides systematic 

support for a false theory that increases with h. We use 1000 iterations for each of the 1920 

scenarios (#𝑠𝑠 ∗ #𝜇𝜇 ∗ #𝜎𝜎2 ∗ #𝐷𝐷𝐷𝐷𝑃𝑃 ∗ #ℎ ). 

4. Results 

4.1. No Publication Selection 

Our results show that overfitting occurs frequently for the AIC whereas the BIC tends to 

underfit the true lag length. Both the AIC and the BIC overfit when the degrees of freedom 

are small and they tend to choose the correct lag length for larger degrees of freedom. In the 

presence of genuine Granger causality (i.e. tests of 𝑋𝑋 causes 𝑌𝑌) the 𝑝𝑝-values of the Granger 

causality tests are largely below the nominal significance level of 5%. In the absence of 

genuine Granger causality (i.e. tests of 𝑌𝑌 causes 𝑋𝑋) the 𝑝𝑝-values of the Granger causality tests 
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tend to become smaller – i.e. more statistically significant - as the lag length increases. 

Overfitted VAR models have 𝑝𝑝-value distributions with a smaller mean than the VAR model 

with the true lag length of three indicating overfitting bias. Underfitted VAR models have 𝑝𝑝-

value distributions with a larger mean compared to the VAR model with the true lag length 

indicating underfitting bias. Figure 4 illustrates these findings for DGP2a with Ω = I  and 

Appendix A1 shows the results for the remaining DGPs. The simulation reveals that 

especially if the AIC is used overfitting bias occurs frequently in a variety of scenarios that 

mirror actual research in empirical macroeconomics. 

Figure 4: Prevalence of Overfitting Bias for DGP2a 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) resulting in 150,000 observations using a primary 

sample size distribution with 𝜇𝜇 = 40, 𝜎𝜎2 = 100, and Ω = I. The second column presents the boxplots of 

degrees of freedom by lag length. The box represents the interquartile range and the whiskers extend to the 

largest data point within 1.5 times the interquartile range. The third column shows the boxplots of p-Values in 

simulated primary studies in the presence of Granger causality, whereas the fourth column presents the boxplots 

of p-Values in the absence of Granger causality. A lag length of one was selected for less than 0.1% of primary 

studies and these findings are not reported. 

Figure 5 shows how the type I errors of both meta-regression models vary with the meta-

analysis sample size for DGP2 (the cointegrated DGP). The type I errors of the basic meta-

regression model are mostly smaller than the size of the extended meta-regression model due 
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to the downward bias of 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐. The type I errors of the extended meta-regression model are 

largely below but close to the nominal significance level of 5%. This shows that 𝛽𝛽𝐸𝐸
𝑔𝑔𝑐𝑐 is still 

biased downwards because the underlying distribution of the Toda-Yamamoto test statistics 

depends on the degrees of freedom as shown in Figure 2. DGP1 shows the same patterns as 

DGP2 (See Appendix A1 for DGP1). 

Figure 5: Type I Errors of Meta-Regression Models for DGP2a and DGP2b 

Notes: Type I errors of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) 

with Ω = I are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes 

distributions in column one and two and a larger primary sample size distribution in column three. 

Figure 6 shows the power of both meta-regression models in identifying genuine Granger 

causality in relation to the meta-analysis sample size for DGP2. For very small meta-analysis 

sample sizes, the basic model can have higher power than the extended model as adding the 

lag length as a control variable reduces the degrees of freedom of the meta-regression model. 

However, as the meta-analysis sample size increases, the power of the extended model 

increases more strongly than the power of the basic model. The difference between the basic 

and extended meta-regression model is especially large for low primary study sample size 
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means, as the probability of overfitting is larger in small samples. The difference between 

these two meta-regression models diminishes as the variance, 𝜎𝜎2, of the primary sample sizes 

or the mean, 𝜇𝜇, become larger. The difference is higher if the actual causal effect is small as 

the downward bias of 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 in the basic model results more easily in acceptance of 𝐻𝐻0:𝛽𝛽𝐵𝐵

𝑔𝑔𝑐𝑐 ≤

0 even though genuine Granger causality is present. Using the BIC results in a larger 

difference between the basic and extended meta-regression models than using the AIC, 

though overfitting bias is actually more prevalent for the AIC. The reason is that the use of 

BIC leads to overfitted VAR models with exceptionally small 𝑑𝑑𝑓𝑓. The difference between the 

two meta-regression models decreases if the VAR errors are correlated. 

Figure 6: Power of Meta-Regression Models for DGP2a and DGP2b 

 

Notes: Power curves of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) 

with Ω = I are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes 

distributions in column one and two and a larger primary sample size distribution in column three. 

Power increases if the primary sample size distribution becomes larger or if the actual causal 

effect is larger, and it decreases if the VAR errors are correlated across equations. DGP1 
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shows the same patterns as DGP2 but with systematically smaller power revealing 

cointegration as an important determinant of power (See Appendix A1 for DGP1). 

4.2. Theory Confirmation Bias 

In the second case, the primary study authors search for statistically significant and theory-

confirming results, that is Granger causality from 𝑌𝑌 to 𝑋𝑋, where genuine Granger causality is 

actually absent. Figure 7 shows that overfitted VAR models are more prevalent in this case, 

indicating that overfitting bias was used in addition to sampling variability to obtain 

statistically significant Granger causality tests for 𝑌𝑌 causes 𝑋𝑋. A large amount of excess 

significance is present for 𝑌𝑌 causes 𝑋𝑋, indicating how distorted an empirical literature could 

become.4 

The type I errors of both meta-regression models are again well below the nominal 

significance level of 5%. Figure 8 shows how they vary with the degree of publication 

selection for DGP2. Even though there is excess significance for 𝑌𝑌 causes 𝑋𝑋, the meta-

regression models do not lead to false-positive findings of genuine Granger causality. 

Compared to the previous case without publication selection, the type I errors of the basic 

model are even smaller indicating the increased presence of overfitting bias that increases the 

downward bias of 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐. But the type I errors of the extended model are increased so that there 

is now a greater difference between the basic and extended models. The type I errors of both 

meta-regression models show little reaction to the degree of publication selection except 

when of h = 100 and even then the errors are smaller not larger. DGP1 shows the same 

patterns as DGP2 but with generally lower power and a smaller difference between the two 

meta-regression models (see Appendix A2). 

Figure 9 shows how the power of both models varies with the degree of publication selection 

for DGP2. Publication selection based on sampling variability and overfitting bias has little 

impact on the power of both meta-regression models. They reliably identify whether 

statistically significant Granger causality tests are based on genuine Granger causality or 

based on publication selection bias. DGP1 shows the same patterns as DGP2 (see Appendix 

A2). 

4 We also analyzed a case in which primary studies select for any statistically significant Granger causality test 
irrespective of the direction of causality. In this case almost no publication selection bias occurs as genuine 
Granger causality is present in all DGPs and this genuine Granger causality usually provides a statistically 
significant Granger causality test that can be selected for publication. 
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Figure 7: Prevalence of Overfitting Bias for DGP2a in the Presence of Theory 

Confirmation Bias (𝒉𝒉 = 𝟕𝟕𝟕𝟕) 

 

Notes: See caption of Figure 4 for further details. 

Figure 8: Type I Errors of Meta-Regression Models for DGP2a and DGP2b in the 

Presence of Theory-Confirmation Bias 

Notes: Type I errors of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) 

with Ω = I are reported as function of publication selection (ℎ = 0, 25, 50, 75, 100) with 𝑠𝑠 = 40 for small 

primary sample sizes distributions in column one and two and a larger primary sample size distribution in 

column three. 

 
 



 
 

22 

Figure 9: Power of Meta-Regression Models for DGP2 in the Presence of Theory-

Confirmation Bias 

 

Notes: Power curves of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) 

with Ω = I are reported as function of publication selection (ℎ = 0, 25, 50, 75, 100) with 𝑠𝑠 = 40 for small 

primary sample sizes distributions in column one and two and a larger primary sample size distribution in 

column three. 

5. Discussion 

We show that overfitting bias occurs in the small and moderate sample sizes that are common 

in macroeconomic research. This overfitting bias can lead to excess significance in an 

empirical literature irrespective of the presence or absence of genuine Granger causality and 

it hampers inference on the presence of genuine Granger causality using meta-regression 

models. We show that the extended meta-regression model can control for this overfitting 

bias and adequately distinguishes between the presence and absence of genuine Granger 

causality, even if all Granger causality tests are statistically significant in the primary 

literature due to biases. 

It is well known that the AIC and the BIC tend to overfit and underfit VAR models in small 

samples (e.g. Gonzalo and Pitarikis, 2002). It has also been shown that overfitted and 

underfitted VAR models tend to overreject and underreject the null hypotheses of Granger 

non-causality (e.g. Zapata and Rambaldi, 1997). We contribute to these separate findings by 

providing simulation results that cover the complete process of Granger causality testing 

including lag length selection by information criteria and publication selection biases. We can 

show that overfitting and underfitting indeed frequently occur in simulated data that mirrors 
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empirical research in macroeconomics and that these misspecifications lead to underrejection 

and overrejection of the null hypotheses of Granger non-causality. If authors search for 

statistically significant Granger causality tests where genuine Granger causality is actually 

absent, overfitting bias can be the main source of false-positive findings. 

We show that overfitting bias can be controlled for if the lag length of the underlying VAR 

model is introduced in the meta-regression model. The simulation results reveal that the basic 

meta-regression model has problems with detecting small genuine causal coefficients as these 

are interpreted as the absence of genuine Granger causality. The extended model provides an 

improvement in power particularly for small genuine effects as it takes the overfitting bias 

into account. Economic effects are often small, highlighting how important the correction for 

overfitting bias is to reliably distinguish the presence and absence of genuine Granger 

causality. We also show that these findings hold for cases where primary authors select for 

statistically significant and theory-confirming Granger causality tests. In this case, false-

positive findings of Granger causality in the primary literature can also be obtained by 

selecting from sampling variability. Meta-regression models have been shown to be robust 

with respect to this bias (Stanley, 2008; Bruns, 2013). Even if all Granger causality tests in an 

empirical literature are statistically significant, though genuine Granger causality is absent, 

both meta-regression models have a type I error rate of less than 5%. 

As a result, meta-regression models can be used to improve the reliability of inferences in 

Granger causality testing. In microeconomics, the use of randomized experiments, 

instrumental variable techniques and other approaches to identifying causal effects has 

improved the quality of causal inference tremendously (Angrist and Pischke, 2010). 

However, in macroeconomics the applicability of experiments is limited (Stock, 2010) and 

finding valid instruments is often hard (Bazzi and Clemens, 2013). Meta-regression models 

allow empirical economists to gain more certainty about Granger causality between two 

variables despite the uncertainty introduced by overfitting bias. 

6. Empirical Application: The Energy-Growth Literature 

6.1. Background and Data 

This paper is motivated by the very large but inconclusive empirical literature that 

investigates the relationship between energy consumption and economic output using 

Granger causality tests (Stern and Enflo, 2013). We develop improved meta-regression 
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models to identify the presence or absence of genuine Granger causality in this literature. Our 

analysis is based on the meta-analysis of Bruns et al. (2014) that provides first insights in the 

potential publication selection biases in this literature. 

We select those studies that use the Toda-Yamamoto procedure to test for Granger causality 

from the data set of Bruns et al. (2014). Appendix A3 provides an overview of these 23 

studies that use the Toda-Yamamoto procedure. As many studies report multiple estimates, 

the data set contains 126 Granger causality statistics in each direction. There are 66 test 

statistics based on a lag length of one, 26 based on a lag length of two, and 34 that use a lag 

length of three for each direction of causality.5 

The average 𝑧𝑧𝑔𝑔𝑐𝑐 value in the sample for energy causes growth is 0.83, which corresponds to 

an average p-value of 0.20 and the average 𝑧𝑧𝑔𝑔𝑐𝑐 value for growth causes energy is 1.03, which 

corresponds to an average p-value of 0.15. Both 𝑝𝑝-values are considerably lower than we 

would expect in the absence of genuine Granger causality (average p-value = 0.5). Can this 

high level of average significance be explained by the presence of genuine Granger causality? 

We group the test statistics into three categories according to the primary VAR specifications 

used (Table 2). We have 66 observations that use a bivariate specification with energy 

consumption and economic output only. For these bivariate specifications 19.70% are 

statistically significant at the 5% level for energy causes growth and 27.27% for growth 

causes energy. The degrees of freedom are reasonably large and the chosen lag length small. 

We have 41 observations that use a primary VAR specification with capital and labor as 

additional control variables. In each direction of causality, almost half of these statistics are 

statistically significant at the 5% level. In addition, compared to the bivariate specification 

the number of degrees of freedom is low and the lag lengths are high. Finally, we have a third 

category that contains all remaining primary VAR specifications with various control 

variables (CO2 emissions, energy prices, labor, capital, and population) but insufficient 

observations to group them into separate categories.  

  

5 We delete two test statistics from Esso (2010) as they are the only tests using a VAR model with a lag length 
of four in our sample.  
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Table 2: Properties of Granger Causality Estimates 

 

6.3. Meta-Regression Models 

Granger causality tests are sensitive to the set of other relevant information taken into account 

(Granger, 1988). If researchers omit relevant variables they may obtain spurious findings of 

causality (Lütkepohl 1982; Stern, 1993). In the presence of these omitted-variable biases in 

the primary literature, meta-regression models will also detect spurious “genuine effects”. By 

controlling for the different VAR specifications used in the primary literature we can discuss 

whether a positive relation between 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓 is due to omitted-variable bias or not.6  

Furthermore, the addition of control variables to the primary VAR specification can deplete 

the degrees of freedom increasing the probability of obtaining statistically significant Granger 

causality tests due to overfitting bias. In general, adding variables to the VAR model 

increases the penalty terms of the information criteria and decreases the probability of 

overfitting. But if the addition of variables is used to deplete the df leading to very low df, the 

increased variance of 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗� − 𝑙𝑙𝑙𝑙�Σ�𝑝𝑝∗+ℎ� may exceed the increase in the penalty term 

implying a higher probability of overfitting (Gonzalo and Pitarakis, 2002). 

We generalize the extended meta-regression model (8) to take the dependence between the 

Granger causality test statistics and the three primary VAR specifications into account, using 

the following regression: 

𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 = 𝛼𝛼1

𝑔𝑔𝑐𝑐 + 𝛽𝛽1
𝑔𝑔𝑐𝑐 �𝑑𝑑𝑓𝑓𝑖𝑖 + 𝐷𝐷𝐾𝐾𝐾𝐾�𝛼𝛼2

𝑔𝑔𝑐𝑐 + 𝛽𝛽2
𝑔𝑔𝑐𝑐 �𝑑𝑑𝑓𝑓𝑖𝑖� 

+ 𝐷𝐷𝑂𝑂𝑡𝑡�𝛼𝛼3
𝑔𝑔𝑐𝑐 + 𝛽𝛽3

𝑔𝑔𝑐𝑐 �𝑑𝑑𝑓𝑓𝑖𝑖�  + 𝛾𝛾𝑔𝑔𝑐𝑐 𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖
𝑔𝑔𝑐𝑐    (9) 

6 If some relevant variables are not included by any primary study, it is impossible to identify a genuine effect 

using meta-regression analysis. Instead, meta-regression analysis may indicate the need for further research. 

Control 
Variables Obs. 

Energy-
Growth (𝒑𝒑-
value < 0.05) 

Growth-
Energy (𝒑𝒑-
value < 0.05) 

Percentiles of 
𝒅𝒅𝒅𝒅 

Percentiles of 
Lag Length 

    25 50 75 25 50 75 
None 66 19.70% 27.27% 28 35 38 1 1 2 
Capital and 
Labor 

41 48.78% 46.34% 12 14 21 2 3 3 

Other 19 10.53% 36.84% 17 21 28.5 1 1 2 
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where 𝐷𝐷𝐾𝐾𝐾𝐾 = 1 if capital and labor are used as control variables in the primary VAR 

specification and is zero otherwise and 𝐷𝐷𝑂𝑂𝑡𝑡 = 1 if control variables other than capital and 

labor are used and is zero otherwise.7 Accordingly, 𝐻𝐻0:𝛽𝛽1
𝑔𝑔𝑐𝑐 ≤ 0 tests for a positive relation 

between 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓𝑖𝑖 if the bivariate VAR specification was used and 𝐻𝐻0:𝛽𝛽1

𝑔𝑔𝑐𝑐 + 𝛽𝛽2
𝑔𝑔𝑐𝑐 ≤ 0 

tests for a positive relation between 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓𝑖𝑖 if capital and labor are used as control 

variables. We use standard errors clustered by publication to account for the dependence 

between the error terms of the multiple Granger causality test observations provided by most 

individual publications. 

6.4. Results and Discussion 

Table 3 presents the results of the meta-regression models for energy causes growth and vice 

versa.8 The first columns present the basic model and the corresponding estimate of 𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 is 

negative indicating the presence of overfitting bias though it is only statistically significant at 

the 10% level for energy causes growth in a two sided test. Of course, this is statistically 

insignificant in a one-sided test that tests for a positive relation between 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓𝑖𝑖. The 

second columns show the extended model. Adding the lag length as a continuous control 

variable leads to an estimate of 𝛽𝛽𝐸𝐸
𝑔𝑔𝑐𝑐 that is close to zero and statistically insignificant. The 

coefficient of the lag length variable is as expected positive and statistically significant. The 

third columns show the generalized extended model (9) that tests for a positive relation 

between 𝑧𝑧𝑖𝑖
𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓𝑖𝑖 for each of the three categories of primary VAR specifications. For 

both energy causes growth and vice versa, we find that we cannot reject the null hypotheses 

𝐻𝐻0:𝛽𝛽1
𝑔𝑔𝑐𝑐 ≤ 0 and 𝐻𝐻0:𝛽𝛽1

𝑔𝑔𝑐𝑐 + 𝛽𝛽2
𝑔𝑔𝑐𝑐 ≤ 0 indicating that the excess significance is caused by the 

presence of biases, particularly overfitting bias, rather than by the presence of genuine 

Granger causality. This is seen when we compare the estimate of the constant in the first and 

second regressions. In the basic model the intercept is large and significant while in the 

extended model it is insignificantly different to zero. The extended model shows that the 

value of the constant is mostly driven by the models with greater lag lengths. On the other 

7 Ideally, we would control for every different combination of primary control variables used in the literature. 
Unfortunately, the number of observations for most of these is very small. For example, only one article in our 
sample of Toda-Yamamoto tests controls for energy prices. Therefore, we have lumped primary studies with 
various control variables together into an other category. 
8 We also conducted the analysis by excluding Vaona (2010) who has the largest values of 𝑑𝑑𝑓𝑓 - 127 and 130, 
which is more than double the next highest value of 49. The results remain qualitatively the same and are 
reported in Appendix A4. They indicate a stronger influence of overfitting bias on the inference of the meta-
regression models as we would expect by dropping observations with large 𝑑𝑑𝑓𝑓. 
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hand, even models with one lag have spuriously high 𝑧𝑧𝑔𝑔𝑐𝑐-values as is shown by the high 

statistical significance of 𝛾𝛾𝑔𝑔𝑐𝑐. These cannot be due to overfitting bias and are presumably due 

to publication selection from sampling variability.  

Figure 10 shows how large lag lengths are especially present for low df and how these tests 

tend to have the largest 𝑧𝑧𝑔𝑔𝑐𝑐-values. Large lag lengths occur almost exclusively for the 

primary VAR specification with capital and labor and the Granger causality tests for this 

combination also have the highest levels of statistical significance, whereas Granger causality 

tests for VARs with capital and labor but smaller lag lengths for this specification tend to be 

insignificant. This indicates that additional control variables might be used to deplete df 

resulting in overfitted VAR models with statistically significant Granger causality tests. 

Given that the probability of overfitting increases with decreasing df, the search for 

statistically significant results may be facilitated by adding control variables to the primary 

VAR specification. 

This empirical application shows that there is no genuine relation between energy use and 

economic output in bivariate VAR specifications or in VAR specifications with capital and 

labor as control variables. However, both of these VAR specifications may suffer from 

omitted-variable biases that obscure a genuine relation. Bruns et al. (2014) find some 

evidence that there appears to be genuine Granger causality from economic output to energy 

use if energy prices are controlled for, which mimics an energy demand function. Further 

research is needed to validate this finding. 

Bruns et al. (2014) included “the degrees of freedom lost in fitting the model” as a control 

variable in their meta-regression model so that the square root of degrees of freedom variable 

only reflects variation in the degrees of freedom due to variation in the sample size. This 

control variable is mainly determined by the chosen lag length and by the number of control 

variables added to the VAR model. It takes into account that statistically significant Granger 

causality tests are often obtained by large lag lengths and many control variables. The 

approach in this paper instead focuses specifically on lag overfitting as overfitting bias can 

occur in bivariate VAR specifications with small sample sizes where the degrees of freedom 

lost in fitting the model may be low. Conversely, it is unlikely that overfitting bias occurs 

even if the degrees of freedom lost in fitting the model are large when the sample size is also 

large. In practice, the approach of Bruns et al. (2014) may or may not correlate with the 

approach used here depending on the sample. For our sample, the correlation coefficient 
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between the number of lags and the degrees of freedom lost in fitting the model is 0.89 but 

the correlation need not be this high, particularly for higher dimensional VAR models.  

Table 3: Results of Meta-Regression Models  

 Energy causes Growth Growth causes Energy 
 (1) (2) (3) (1) (2) (3) 
Constant 2.32** 

(0.86) 
-0.16 
(0.86) 

0.04 
(3.67) 

2.09† 
(1.11) 

-0.55 
(1.09) 

-0.35 
(16.51) 

Df -0.28† 
(0.16) 

-0.05 
(0.12) 

-0.06 
(0.47) 

-0.20 
(0.21) 

0.04 
(0.15) 

0.02 
(1.53) 

Lags  
 

0.73*** 
(0.20) 

0.52 
(0.34) 

 
 

0.77** 
(0.26) 

0.70* 
(0.29) 

KL   0.47 
(4.89) 

  0.44 
(16.79) 

KL*df   0.04 
(0.82) 

  -0.07 
(1.63) 

Other   -1.18 
(4.52) 

  -2.97 
(16.86) 

Other*df   0.22 
(0.70) 

  0.63 
(1.70) 

Obs. 126 126 126 126 126 126 
Adj. 𝑅𝑅2 0.06 0.17 0.18 0.02 0.13 0.12 
Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘†’ 0.1 
Notes: Bootstrapped standard errors in parentheses. We bootstrap primary studies rather than single Granger 

causality tests to account for the dependence of multiple Granger causality tests per primary study. Significance 

codes represent a two-sided 𝑡𝑡-test. One-sided 𝑡𝑡-tests representing the test for a positive relation of 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓 

are discussed in the text. 
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Figure 10: Relation of Lag Length, Degrees of Freedom, and Level of Significance in the 
Empirical Meta Sample 

 
Notes: The 𝑧𝑧𝑔𝑔𝑐𝑐  values are reported as function of �𝑑𝑑𝑓𝑓 for a lag length of one (𝑝𝑝 = 1), two (𝑝𝑝 = 2), and three 

(𝑝𝑝 = 3). The dashed line is at 1.64 separating the graph into statistically significant Granger causality tests 

(above) and statistically insignificant Granger causality tests (below).  

7. Conclusions 

By modeling the complete process of Granger causality testing, we show that overfitted 

models and the corresponding overrejection of Granger causality tests are prevalent in a 

variety of scenarios mirroring research in macroeconomic time series analysis. Overfitting 

bias leaves empirical researchers with uncertainty about the reliability of inferences. 

Particularly, if we consider the search for theory-confirming results, this overfitting bias is a 

source of excess significance even though genuine Granger causality is absent. If primary 

study authors adjust to the incentives of publishing statistically significant and theory-

confirming results, the reliability and validity of published findings is even more uncertain 

and an abundance of statistically significant findings may not necessarily indicate a genuine 

effect.  

We introduce a meta-regression model that controls for overfitting bias to help identify the 

source of statistically significant Granger causality tests that can be either caused by genuine 

Granger causality or biases. The suggested model has higher power than the basic meta-

regression model and both provide adequate type I errors. These results hold for small to 

moderate sample sizes mirroring the analysis of annual time series in macroeconomics. The 

likelihood of overfitting diminishes with the larger primary sample sizes that may occur in 

the analysis of quarterly time series over a long time span. Searching for statistically 

significant results by using sampling variability or by using omitted-variables biases, 
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however, may be present even for larger sample sizes highlighting the need to synthesize the 

evidence of an entire empirical literature by means of meta-regressions to distinguish genuine 

effects from biases. 

We apply the suggested meta-regression models to the large literature that tests for Granger 

causality between energy consumption and economic output. We generalize the meta-

regression models to the synthesis of different multivariate VAR models and find that this 

empirical literature shows no evidence for genuine Granger causality even though excess 

significance is present. Specifically, we find evidence that addition of primary control 

variables to the VAR models depletes degrees of freedom which increases the probability to 

obtain statistically significant results by overfitting bias.  
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Appendix A1 

Figure 4a: Prevalence of Overfitting Bias for DGP1a 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) with 𝜇𝜇 = 40, 𝜎𝜎2 = 100, and Ω = 𝐼𝐼. The second 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 

boxplots of p-Values in simulated primary studies for the presence of Granger causality, whereas the fourth 

column presents the boxplots of p-Values in the absence of Granger causality.  
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Figure 4b: Prevalence of Overfitting Bias for DGP1b 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) with 𝜇𝜇 = 40, 𝜎𝜎2 = 100, and Ω = 𝐼𝐼. The second 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 

boxplots of p-Values in simulated primary studies for the presence of Granger causality, whereas the fourth 

column presents the boxplots of p-Values in the absence of Granger causality.  
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Figure 4c: Prevalence of Overfitting Bias for DGP2b 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) with 𝜇𝜇 = 40, 𝜎𝜎2 = 100, and Ω = 𝐼𝐼. The second 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 

boxplots of p-Values in simulated primary studies for the presence of Granger causality, whereas the fourth 

column presents the boxplots of p-Values in the absence of Granger causality. A lag length of one was selected 

for less than 0.1% of primary studies and these findings are not reported. 
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Figure 5a: Type I Errors of Meta-Regression Models for DGP1a and DGP1b 

 

Notes: Type I errors of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) 

with Ω = I  are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes 

distributions in column one and two and a larger primary sample size distribution in column three. 
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Figure 6a: Power of Meta-Regression Models for DGP1a and DGP1b 

 

Notes: Power curves of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) 

with Ω = I are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes 

distributions in column one and two and a larger primary sample size distribution in column three. 
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Appendix A2 

Figure 7a: Prevalence of Overfitting Bias for DGP1a in the Presence of Theory 

Confirmation Bias (𝒉𝒉 = 𝟕𝟕𝟕𝟕) 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) resulting in 150,000 observations for 𝜇𝜇 = 40, 

𝜎𝜎2 = 100, Ω = I , and ℎ = 75. The second column presents the boxplots of degrees of freedom by lag length. 

The box represents the interquartile range and the whiskers extend to the largest data point within 1.5 times the 

interquartile range. The third column shows the boxplots of p-Values in simulated primary studies for the 

presence of Granger causality, whereas the fourth column presents the boxplots of p-Values in the absence of 

Granger causality.  

Figure 7b: Prevalence of Overfitting Bias for DGP1b in the Presence of Theory 

Confirmation Bias (𝒉𝒉 = 𝟕𝟕𝟕𝟕) 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) resulting in 150,000 observations for 𝜇𝜇 = 40, 

𝜎𝜎2 = 100, Ω = I , and ℎ = 75. The second column presents the boxplots of degrees of freedom by lag length. 

The box represents the interquartile range and the whiskers extend to the largest data point within 1.5 times the 

interquartile range. The third column shows the boxplots of p-Values in simulated primary studies for the 

presence of Granger causality, whereas the fourth column presents the boxplots of p-Values in the absence of 

Granger causality.  
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Figure 7c: Prevalence of Overfitting Bias for DGP2b in the Presence of Theory 

Confirmation Bias (𝒉𝒉 = 𝟕𝟕𝟕𝟕) 

 

Notes: The first column shows the histograms of selected lag lengths in simulated primary studies for DGP2a 

across all meta-analysis sample sizes (𝑠𝑠 = 10, 20, 40, 80) resulting in 150,000 observations for 𝜇𝜇 = 40, 

𝜎𝜎2 = 100, Ω = I , and ℎ = 75. The second column presents the boxplots of degrees of freedom by lag length. 

The box represents the interquartile range and the whiskers extend to the largest data point within 1.5 times the 

interquartile range. The third column shows the boxplots of p-Values in simulated primary studies for the 

presence of Granger causality, whereas the fourth column presents the boxplots of p-Values in the absence of 

Granger causality. A lag length of one was selected for less than 0.01% primary studies and these findings are 

not reported. 

Figure 8a: Type I Errors of Meta-Regression Models for DGP1a and DGP1b in the 

Presence of Theory-Confirmation Bias 

 

Notes: Type I errors of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) 

with Ω = I are reported as function of publication selection (ℎ = 0, 25, 50, 75, 100) with 𝑠𝑠 = 40 for small 

primary sample sizes distributions in column one and two and a larger primary sample size distribution in 

column three. 
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Figure 9a: Power of Meta-Regression Models for DGP1 in the Presence of Theory-

Confirmation Bias 

Notes: Power curves of 𝐻𝐻0:𝛽𝛽𝐵𝐵
𝑔𝑔𝑐𝑐 ≤ 0 (circles) and 𝐻𝐻0:𝛽𝛽𝐸𝐸

𝑔𝑔𝑐𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) 

with Ω = I  are reported as function of publication selection (ℎ = 0, 25, 50, 75, 100) with 𝑠𝑠 = 40 for small 

primary sample sizes distributions in column one and two and a larger primary sample size distribution in 

column three. 
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Appendix A3 

Table 4: Studies Included in the Empirical Application   

Authors and date Countries Control variables 

Adom (2011) GHA - 
Alam et al. (2011) IND Empl., capital, CO2 
Bowden and Payne (2009) USA Empl., capital 
Ciarreta et al. (2009) PRT Energy Pr. 

Esso (2010) CMR; COG; CIV; GHA; 
KEN; ZAF - 

Lee (2006) G-11 countries - 
Lotfalipour et al. (2010) IRN CO2 
Mehrara (2007) IRN, KWT, SAU - 
Menyah and Wolde-Rufael 
(2010a) USA CO2 

Menyah and Wolde-Rufael 
(2010b) ZAF Capital, CO2 

Payne (2009) USA Empl., capital 
Payne (2010) USA Empl., capital 
Sari and Soytas (2009) DZA, IND, NGA, SAU, VEN Empl., CO2 
Soytas et al. (2007) USA Empl., capital, CO2 
Soytas and Sari (2009) TUR Empl., capital, CO2 
Vaona (2012) ITA - 
Wolde-Rufael (2009) 17 African countries Empl.; capital 
Wolde-Rufael (2010a) IND Empl.; capital 

Wolde-Rufael (2010b) CHN; IND; JPN; KOR; ZAF; 
USA Empl.; capital 

Wolde-Rufael and Menyah 
(2010) 9 developed countries Empl.; capital 

Zachariadis (2007) G7 countries - 
Zhang and Cheng (2009) CHN Capital; CO2; popul. 
Ziramba (2009) ZAF Empl. 
      
 

 

 

 

 

 

 

 
 



 
 

45 

Table 5: Results of the Meta-Regression Models without Vaona (2010) 

 Energy causes Growth Growth causes Energy  
 (1) (2) (3) (1) (2) (3) 
Constant 3.20** 

(0.98) 
-0.39 
(1.22) 

0.80 
(3.42) 

3.30** 
(1.11) 

0.08 
(1.64) 

2.42 
(4.95) 

Df -0.46* 
(0.19) 

-0.02 
(0.18) 

-0.18 
(0.63) 

-0.44* 
(0.20) 

-0.05 
(0.24) 

-0.43 
(0.87) 

lags  
 

0.76** 
(0.23) 

0.48 
(0.35) 

 
 

0.68* 
(0.31) 

0.57† 
(0.32) 

KL   -0.11 
(4.06) 

  -1.68 
(5.10) 

KL*df   0.14 
(0.77) 

  0.31 
(0.98) 

Other   -1.84 
(4.51) 

  -5.37 
(5.78) 

Other*df   0.33 
(0.86) 

  1.04 
(1.10) 

Obs. 123 123 123 123 123 123 
Adj. 𝑅𝑅2 0.10 0.17 0.18 0.08 0.13 0.13 
Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘†’ 0.1 
Notes: Bootstrapped standard errors in parentheses. We bootstrap primary studies rather than single Granger 
causality tests to account for the dependence of multiple Granger causality tests per primary study. Significance 
codes represent a two-sided 𝑡𝑡-test. One-sided 𝑡𝑡-tests representing the test for a positive relation of 𝑧𝑧𝑔𝑔𝑐𝑐 and �𝑑𝑑𝑓𝑓 
are discussed in the text. 
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