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Abstract

This paper studies the joint dynamics of U.S. inflation and the average inflation
predictions of the Survey of Professional Forecasters (SPF) on a sample running from
1968Q4 to 2014Q2. The joint data generating process (DGP) of these data consists of
the unobserved components (UC) model of Stock and Watson (2007, “Why has US
inflation become harder to forecast?,” Journal of Money, Credit and Banking 39(S1), 3—
33) and the sticky information (Sl) forecast updating equation of Mankiw and Reis (2002,
“Sticky information versus sticky prices: A proposal to replace the New Keynesian
Phillips curve,” Quarterly Journal of Economics 117, 1295-1328). We introduce time-
varying inflation gap persistence into the Stock and Watson (SW)-UC model and a time-
varying frequency of forecast updating into the Sl forecast updating equating. These
models combine to produce a nonlinear state space model. This model is estimated
using Bayesian tools grounded in the particle filter, which is an implementation of
sequential Monte Carlo methods. The estimates reveal the data prefer the joint DGP of
time-varying frequency of Sl forecast updating and a SW-UC model with time-varying
persistence. The joint DGP produces estimates that indicate the inflation spike of 1974
was explained most by gap inflation, but trend inflation dominates the inflation peak of
the early 1980s. We also find the stochastic volatility (SV) of trend inflation exhibits
negative co-movement with the time-varying frequency of Sl forecast updating while the
SV and time-varying persistence of gap inflation often show positive co-movement.
Thus, the average SPF respondent is most sensitive to the impact of permanent shocks
on the conditional mean of inflation.

Keywords

Inflation, professional forecasters, sticky information, particle filter, Bayesian estimation,
Markov chain Monte Carlo, stochastic volatility, time-varying persistence.

JEL Classification

E31, C11, C32

Address for correspondence:

(E) cama.admin@anu.edu.au

The Centre for Applied Macroeconomic Analysis in the Crawford School of Public Policy has been
established to build strong links between professional macroeconomists. It provides a forum for quality
macroeconomic research and discussion of policy issues between academia, government and the private
sector.

The Crawford School of Public Policy is the Australian National University’s public policy school,
serving and influencing Australia, Asia and the Pacific through advanced policy research, graduate and
executive education, and policy impact.

THE AUSTRALIAN NATIONAL UNIVERSITY



INFLATION AND PROFESSIONAL FORECAST DYNAMICS:
AN EVALUATION OF STICKINESS, PERSISTENCE, AND VOLATILITY ™

FLMAR MERTENST AND  JAMES M. NASON¥

Current draft: March 9, 2015
First Draft: February 15, 2015

Abstract
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1 Introduction

Central banks pay extraordinary attention to inflation expectations. A good reason for this preoccupa-
tion is that inflation expectations contain information about whether a central bank will be successful
in stabilizing inflation. This information can be difficult for monetary policy makers to obtain because
inflation expectations are not directly observed. Economists have responded by advancing methods
to infer inflation expectations from realized inflation and some combination of financial market data,
statistical and economic models, and inflation survey data.

This paper contributes to the literature studying the joint dynamics of realized inflation and the
inflation predictions of professional forecasters. We tap a quarterly sample of inflation predictions of
the Survey of Professional Forecasters (SPF) to extract the beliefs of its average respondent about the
(in)stability, of the persistence, volatility, and stickiness of inflation. The SPF is an attractive source
of information for studying the joint dynamics of realized and predicted inflation because, as Faust
and Wright (2013) and Ang, Bekaert, and Wei (2007) observe, SPF inflation predictions often dominate
model based out of sample forecasts. This superior forecasting performance suggests the average SPF
participant’s beliefs harbor information useful for assessing the joint data generating process (DGP) of
realized and anticipated inflation.

The joint dynamics of realized inflation and average SPF inflation predictions combine two non-
linear models. These are the Stock and Watson (2007) unobserved components (UC) model of inflation
and a nonlinear version of the Mankiw and Reis (2002) sticky information (SI) model. Mankiw and Reis
(MR) propose a SI model in which price setting firms face incentives to update their information set
infrequently rather than at every date as rational expectations (RE) maintains. A subset of firms are
restricted to ground current decisions on past information because MR assume that at any moment of
time only a time-invariant fraction of firms are granted access to current information.’

Coibion and Gorodnichenko (2012a) adapt the MR-SI model to produce the h-step ahead inflation
prediction of a SI forecaster, F;1;,5. This prediction is generated by Coibion and Gorodnichenko (CG)
as a weighted average of the previous period’s SI forecast, F;_ 1.5, and a RE inflation forecast, E; 111,
Fi1teon = AFe 110 + (1 — A)E¢11605, Where A is the constant SI parameter, A € (0, 1). This scheme,
which updates from F;_1 7145 to Fi 114, is a fixed coefficient-linear SI forecasting law of motion.

We innovate on the CG fixed coefficient-linear SIlaw of motion by investing the frequency at which

In contrast, Sims (2003) constructs a dynamic optimizing model built on a primitive form of information pro-
cessing in which agents react to shifts in the true DGP of the economy by smoothing their forecasts.



F;mt45 is updated with a time-varying parameter (TVP), A;. The result is the nonlinear law of motion
Fimtepn = Ac1Feaeen + (1 — A1) ETTesn, (1)

where the SI-TVP frequency of updating is an exogenous random walk, A; = A;_1 + Ok, k¢ ~ N(O, 1),
and A; € (0, 1) for all dates t. The SI forecaster’s information set includes A;_; when F;_7t:,) is
updated to F; ., while k; is realized only during date ¢.

A motivation for including A;_; in the SI law of motion (1) is to uncover the changing beliefs the
average SPF participant holds about the dynamics of realized inflation, ;. Changes in these beliefs

are embedded in movements of the average SPF participant’s h-step ahead inflation prediction, TTgf f -

We connect the observed Trf:ffh to the latent SI forecast F;11;,; by assuming Trfffh = Fieon + Crivn,
where the measurement error C;¢+n ~ N(0, 0 ,). This 117 {{}, -measurement error equation and the SI
law of motion (1) form the mechanism by which shocks to the DGP of 11; are transmitted to Trff f - This
DGP produces E; ;. ), which the SI law of motion (1) needs to update F;1t¢p.

The true DGP of 11; is approximated with the Stock and Watson (2007) UC model. The Stock and
Watson (SW-)UC model decomposes 1r; into trend, T¢, and gap, &, inflation, which sets 1; = T + &.
Nonlinearities often appear in the SW-UC model as stochastic volatility (SV) in the innovation, n;, to the
random walk of T, and in &;. SV is induced by letting the variances of n; and ¢; follow independent log
random walks; see Stock and Watson (2010), Creal (2012), Mertens (2012), and Shephard (2013) among
others. An implication is &; lacks own persistence. We extend the SW-UC model by endowing &; with
a k-th order autoregresssion, AR(k) while maintaining its innovation, vy, is afflicted with SV. We report
estimates when the AR parameters of &; are fixed or evolve as random walks.2

We estimate the joint DGP of the extended SW-UC model, the SI law of motion (1), and the SPF
measurement error equation. Under this joint DGP, persistence in & produces a term structure in ntsf rf ,
h =1, ..., %, in which changes in A;_; create nonlinear state dynamics and volatility.? Estimates of
this DGP shed light on whether movements in A;_; lead, lag, or are coincident to changes in the SV of
T¢, the SV of &, or time-varying persistence in &. If A;_; exhibits meaningful statistical and economic

variation and this time variation moves with the state dynamics of the SW-UC model, we have evidence

shifts in average SPF inflation predictions are attuned to the underlying factors driving inflation.

2Cogley, Primiceri, and Sargent (2010) reports estimates of time-varying inflation persistence using a TVP-VAR

with SV that contains the U.S. unemployment rate, a short term nominal interest rate, and inflation.

3This approach to studying the joint dynamics of 1, and rt;}/, builds on Nason and Smith (2014). They estimate

the joint dynamics of 1; and m{l}, by integrating the SI-SPF regressions of Coibion and Gorodnichenko (2012a)

with the inflation survey term structure models of Kozicki and Tinsley (2012) and Mertens (2012).



Obtaining this evidence rests on separating the impact of changes in A;_; from the SVs of T; and
&, and time-varying persistence in & on the joint dynamics of m; and m;’{l,. We locate information
identifying these TVPs in the approximate exponentially weighted moving average (EWMA) recursions
implied by the SW-UC model and the SIlaw of motion (1). The SW-UC model generates an approximation
to a fixed coefficient EWMA recursion for E; 11,1 because the discount on the history of 7t; is a function
of the SVs of 1; and &;. Similarly, the SI law of motion (1) yields an approximate EWMA recursion
for Fymre,p, in which the discount rate on the history of E; 7+, depends on the history of A;_;. Since
shocks to these discount rates differ, fluctuations in E; ;. and F; 71, have disparate sources. We
rely on these differences to identify the mechanisms that transmit shocks to stickiness, volatility, and
persistence into 11y and F; 1y, p by the joint DGP of the SW-UC model and the SI law of motion (1).

Another contribution of this paper is its estimator of the joint DGP of the SW-UC model, SI law of
motion (1), the random walk of A;, and the SPF measurement error equation. Rao-Blackwellizing this
nonlinear joint DGP creates a linear state space system on which the Kalman filter is used to generate the
latent states T; and &; conditional on realizations A, the SVs of T; and &, and time-varying persistence
of &. We generate and evaluate the role of these realizations in this Kalman filter using sequential
Monte Carlo (SMC) simulation methods (i.e., the particle filter) that are reviewed by Creal (2012).

The conditionally linear likelihood of the SW-UC model, the SI law of motion (1), and the SPF
measurement error equation are estimated on a sample that runs from 1968Q4 to 2014Q2. The sample
equates 71 and Trf:f F, with GNP or GDP deflator inflation and the average SPF predictions of this growth
rate from h = 1- to 5-step ahead horizons, respectively.* The estimates show (i) the data prefer a joint
DGP in which &; is driven by a TVP-AR(1), (ii) & explains two-thirds or more of the spike in 1 of
the 1973-1975 recession, but T, dominates the peak in 1; of the early 1980s, and (iii) rrf,ffh is more
sensitive to the impact of permanent shocks to the conditional mean of inflation.

The structure of the paper follows. The next section builds the nonlinear state space system of
the SI law of motion (1) and the SW-UC model with SV and a persistent inflation gap. We also construct
an example in this section of a state space model with a fixed coefficient-AR(k) inflation gap to motivate
estimation of the joint DGP of 11+ and thf F, . Section 3 discusses estimation of the nonlinear state space

system. Results appear in section 4. Section 5 concludes.

4The SPF contains average predictions of GNP or GDP inflation for a nowcast and forecasts up to four quarters
ahead. However, these surveys are collected at the middle of every quarter. Since none of these predictions are
based on full knowledge of current quarter inflation, we treat each survey as being conditioned only on data

available through the end of the previous quarter. This identifies the average SPF nowcast, 1-step, ..., 4-step
predictions with Trf’f f wh=1,2,...,5 whichimplies these forecasts are made at the end of the previous quarter.



2 Statistical and Econometric Models

This section describes the statistical and economic models used to estimate the joint DGP of 1; and
Tt b =1, ..., H. The statistical model is the SW-UC model that has SV in innovations to trend and
gap inflation, 7; and &;, and generates persistence in & with a TVP-AR(k). The economic model is the
nonlinear SI law of motion (1) of F¢11:, ;. When combined, these models form a nonlinear state space
model. We also discuss the joint DGP of 1r; and 71 {{, when persistence in & is a fixed coefficient AR(1).
This example shows A;_; affects the transition dynamics and volatility of the unobserved state driving

myPF, independent of whether persistence in &; is time-varying. In this case, changes in A;_; and the

SV of innovations to T; and &; produce movements in Trff fh. When a TVP-AR(k) generates persistence
in &, it and A;_; interact to create additional movements in the transition dynamics of the state. This

adds shocks to the persistence of & to the list of factors that can induce fluctuations in 1;{1),.

2.1 The SW-UC Model

The true DGP of 71; is approximated with the SW-UC model. Versions of this model are estimated
by Stock and Watson (2010), Grassi and Prioietti (2010), Creal (2012), Mertens (2012), and Shephard
(2013). These authors include nonlinearities in the SW-UC model by embedding SV in the innovations
of T¢, and &;. This paper includes an additional nonlinearity in the SW-UC model, which is time-varying
persistence in the & created by a TVP-AR(k).

These features of our specification of the SW-UC model are collected into its state space system

T = Tt + &, (2.1)

Tte1 = Tt + Gn,tNe+1, Ne+1 ~ N(0, 1), (2.2)

&yl = kil 0jt&—j + GutUt+1, Uer1 ~ N (0, 1), (2.3)
=0

Ingj,,, = Ingj, + 0081 i1 ~ N0, 1), £ =n,v, (2.4)

Ojti1 = O + 0¢,jbjte1, P ~ N, 1), j=1,...,k, (2.5)

where the innovations to T; and &, n; and v, are afflicted by SV in the form of independent log random
walks ¢, and ¢, the TVP-AR(k) is also generated by the independent random walks 01, ..., Ok,
and the eigenvalues of the lag polynomial of these TVPs are outside the unit circle at every date t. The
state space system of our modified SW-UC model consists of (2.1), which is the observation equation

that decomposes 11 into T; and &; and the system of state equations, (2.2)-(2.5).



A special case of our SW-UC model gives a result traced to Muth (1960). Let 01+ = ... = Okt = O,
On = Gnt, and 0y = Gy, for all £. The result is a fixed coefficient UC model that has an IMA(1,1) reduced
form, (1 — L) = (1 — wL) v, where L is the lag operator and the one-step ahead forecast error is v; =
Nt + & + Tt — Te-1jt-1.°> The IMA(1, 1) implies the RE inflation updating equation, ;7141 = @E¢_1 71 +
(1 —w)1, subsequent to some algebra. Shephard (2013) argues for replacing the fixed MA1 coefficient
in the E; 114, updating equation with the TVP wy, E; ;41 = wE;—111; + (1 — @)1 because of ¢, and

Gu.t-8 Backward iteration of the RE updating equation produces the approximate RE-EWMA recursion

0 J
Eili1 = D Hoitj (n wt—e) M —j, (3)
j=0 0=0

where g = (1 —w;)/w;. Thus, the SW-UC model with SV is consistent with an approximate RE-EEWMA

recursion (3) built from an updating equation that resembles the SI law of motion (1) of F; 7ty p.

2.2 Average SPF, SI, RE Inflation Forecasts and A;

This section begins by reproducing the SPF measurement error equation, the nonlinear SI law of motion

(1), and the random walk law of motion of A;. These elements form the system of equations

it = Fimleen + Crt+hy 4.1)
Fimtion = Aec1FeoaTeen + (1 — Ae1)Ee T, (4.2)
A = Aroq + OkKt, (4.3)

where h = 1, ..., 3, Crren ~ N(O, (réh), A¢ € (0, 1) for all dates t, and x; ~ N(0, 1). The system of
equations (4.1)-(4.3) defines the mechanism through which shocks to A;_; and movements in SI and
RE inflation forecasts generate fluctuations in Trf:f -

In part, this mechanism rests on the SI law of motion (4.2) approximating an EWMA recursion for

F;1ti4p. Subsequent to repeated backward iteration of and substitution into (4.2), the recursion is

00 J
FiTton = 2. Hai-1-j (n /\t1£) Ei T n, (5)

j=0 =0

where pp;-1-j = (1 —/\t,l,j)/At,l,j. The SI-EWMA recursion (5) bounds F; 11, between the RE inflation

> An estimator of w is built using the autocovariance functions (ACFs) of the IMA(1,1) and fixed coefficient SW-UC
model; see Grassi and Proietti (2010) and Shephard (2013). At lags zero and one, the ACFs set (1 + @?) 0 = 05

+ 202 and —wo? = —0?. Substitute for o2 to obtain the quadratic equation w? — @ ((T,? + 203) JoZ +1=0.

Its solution is @ = [1 + 0.50’,‘?/05] — (0/0e) {1 +0.250% /0, given @ € (-1,1) and 0y, 7% > 0.
6 Allowing for the TVP-AR(k) of &, creates higher order serial correlation in the reduced form of the SW-UC model.



forecast, limy, ,—o Fimt+n = EtTe4n, and limy, |1 FtTTn = Z;-Ozl He—1-j (l_[l’;:l ?\t,l,y> E(_jm+n. The
former limit shows SI shutting down, as A; falls to zero because the history of RE inflation forecasts,
Ei_jT¢n, j = 1, is discounted at a greater rate. Thus, the SI inflation forecast is updated to E; 1t +n
period by period. At the other extreme, less weight is placed on E;7r;.; as A;_; rises to one. The
SI forecaster neglects current information and instead engages the history of E¢_jm¢.p, j = 1. Since
F; 171+, summarizes this history, only this information is used by the SI forecaster to set F; Tt 45.”
Between these polar cases, movements in A;_; produce fluctuations in the rate at which the history
of E;mr4p is discounted in the approximate SI-EWMA formula (5). These fluctuations offer identifying
information to study the joint dynamics of 7t and nff fh. The identifying information also relies on
the sources of movements in the discount rate w; of the approximate RE-EWMA (3) grounded in the
SV of the SW-UC model. Since shocks to ¢, and G+ generate movements in the discount rate of the
RE-EWMA (3) and is a potential source of variation in ng ¥, that is independent of shocks to A;_1, there
are several sources of identifying information in the mechanism that transmits shocks into the term
structure of Trff .. The next two sections map the joint DGP of the SW-UC model (2.1)~(2.5) and the

SI prediction mechanism of the average SPF respondent (4.1)-(4.3) into nonlinear state space systems

T
which can be estimated on the sample {m, nfffh}tzl, h=1,..., 3.

2.3 An Example: The SW-UC Model with a Fixed Coefficient AR(1) Inflation Gap

This section presents an example that explains and motivates our approach to evaluating the joint
dynamics of 7 and nf‘f fh. The example turns the TVP-AR(k) of (2.3) into a fixed coefficient AR(1) by
setting k = 1 and 0; = 0;;. Otherwise, the example leaves the rest of the SW-UC model untouched.
Our motivation is to explain the impact of A; on the joint DGP of the SW-UC model (2.1)-(2.5) and
the SI prediction mechanism of the average SPF respondent (4.1)-(4.3) separate from the additional
complication of estimating a SW-UC model that includes a TVP-AR(k) inflation gap.

The state space system of the SW-UC model consists of the observation equation

Tt = OxXt, (6.1)

which is equation (2.1), where 6y = [1 1] and x; = [T; &]’. Since the state vector x; consists of the

random walk (2.2) of trend inflation and the fixed coefficient AR(1) of gap inflation, ;11 = 01& + U¢41,

“Lagging the EWMA smoothing formula (5) by one period gives F; 1T, p = Zj‘;o Hi—2—j (HLO /\t,z,g) Ei1- T n.

Change the indexes to i=j+1 and n=_{+1 to obtain Fr_1Ttr+p = > 10y He—1-i (Hilzl /\t-1-n) Et_iTTin, given Ay_1=1.



the system of conditionally linear state equations evolves according to

Xr1 = O1x + BEgwpy, (6.2)
1 0 Gnt O ,
where @, = , B = ,and W1 = [Ne+1 Ur+1] . The system of state equations
0 91 0 GCu,t

(6.2) is linear conditional on the log random walk process (2.4) that generates g,z,’t and gf,’t. The SV
shocks gﬁ‘t and g7, are the source of nonlinearity in the SW-UC model when persistence in & is tied
to a constant AR1 coefficient, 0,. This nonlinearity creates SV in the transition dynamics of system of

state equations (6.2) because it appears in the covariance matrix of the system of state equations (6.2),

2
E l= ’ 2|l e grl,t 0
12 Wer1 Wee1 S = B¢t =

0 ¢y
Given a constant 6, the law of iterated expectations (LIE) is available to compute h-step ahead

RE inflation forecasts using the state space system (6.1) and (6.2) of the SW-UC model. This state space
system gives the h-step ahead RE inflation forecast E;mt;4) = 6,(@)? xt. Given h = 1, ..., H, these RE
predictions form a term structure of inflation predictions because a AR(1) generates persistence in
&. Next, substitute the RE inflation forecast term structure into the SI approximate EWMA (5) to find
FiTteip = 6,00 P ut,l,j@{ (]‘[ézo At_l_g) X j. We show the infinite sum of the previous expression

equals the SI forecast of x;, which is the SI inflation term structure forecast
Fityon = 6xO1Fixi, h =1,...,%, (7)

which connects the h-step ahead SI inflation forecast to the SI nowcast of x;.

Next, we swap the h-step ahead state vector, X+, for Fimriy), in the SI law of motion, Fixiip
= (1 = Ar—1)EeXe+n + A¢t—1Fr—1Xe+n. The process of backward iteration yields the smoothing formula
FiXeon = OF >0 ut_1_j®{ (HLO At_l_g> X;—j, where Er_jX;p = @liH—th_j. Let h = 0 to obtain F;x; =
2;":0 He-1-j @){ (HLO )\t,l,,g) X¢—j, which links F; ¢, to Fyx;. After pulling x; from the previous infinite

sum, we have Frxy = (1 —Ap_1)x + Z;‘;l ut,l,j(*){ (]‘[LO At,l,g> X;—j, which by a change in index yields

© i+1
Fxp = (1-A1)x + 2101 D pp1-i0} (H /\t—1—€) Xt-1-i
i=0 =1

(I =Ae—1)X + A—1O1 Fro1X—1, (8)
where Fi_1x.1 = Z;ozo I/lt—lfj@{ (HLO At,l,g> X—1-;. The system of equations (8) is a recursion that

7



generates the SI forecast of x;, F;X;, given its own lag and conditions on the law of motion (6.2) of x;,1,
the independent log random walks of ¢, ;41 and Gy,++1, and the random walk of Ay.

We lead the recursion (8) by one period to generate SI forecasts of trend and gap inflation and
substitute for x;+; using the SW-UC model’s state system (6.2). These actions produce the SI system of

state equations

[1

Xt+1 0, 0252 Xt t
= + _ Wiil, (9.1)
Fri1Xe11 (1-2A¢)O1x: A:Oy Fex; (1—A1)E;
which is conditionally linear on the independent bivariate SV log random walk process (16) and the

random walk of A;, which is equation (4.3). Note that ¢, ¢, Gu,t, and A; are known when x; and F;x; are

updated to xt.1 and Fr,1x:11, respectively. The associated system of observation equations is

ur: Ox  O1x4 0
SPF
T 01x4  6x0, Xt Cri1
I = . = o + _ : (9.2)
. . . tht
| Titiae | | O1xa 0O | | Crr+ac |

which draws on the observation equation (6.1) of the SW-UC model, the SPF measurement equation
(4.1), and the system (7) that sets F; 1., equal to a term structure of h-step ahead SI forecasts of x;.8
Thus, the nonlinear state space system (9.1) and (9.2) eliminates F; 11, from the joint dynamics of ¢
and ), h=1,..., 30
The time-varying frequency of updates to the SI inflation forecast alters the path of F;,1x;4+1 in
two ways. First, shocks to A; shift the transition dynamics of the state equations (9.1). These changes
create permanent movements in the persistence of Fr,1x:y1. The volatility of F;.1x;,1 is also affected
by permanent shocks to A;. Thus, the fixed coefficient AR(1)-SW-UC model united with the nonlinear
SI model (4.1)-(4.3) creates the opportunity for changes in the stickiness of F; Tt ¢+, to interact with
shifts in the volatility of the DGP of 11; to explain fluctuations in the term structure of 1r;7}. The next
section replaces the fixed coefficient inflation gap with the TVP-AR(k) of (2.3). We add this nonlinearity
SPF

to the joint DGP of the SW-UC model and SI law of motion to ask whether the term structure of ;"7

responds to time-varying persistence in the inflation gap at any time during the last 45 years.

8Since C;r.n is an additive measurement error, it only effects the observation equations and not state dynamics.

9The state space model (9.1) and (9.2) is identified by separating time variation in E; 11, using ¢, and ¢, ; while
A¢ is responsible for these movements in F; 7t +n. Alternatives to our identification are developed by Krane
(2011) and Jain (2013). Forecast revisions are central to their identification of the responses of professional
forecasters to persistent shocks.



2.4 The State Space System with a TVP-AR(k) Inflation Gap

An inflation gap driven by the TVP-AR(k) of (2.3) complicates construction of the state space of the
joint dynamics of 7r; and 1 FF. In this case, the LIE cannot be engaged to calculate h-step RE inflation
forecasts using the SW-UC model (2.1)-(2.5). We develop this idea starting with the observation equation

of the state space system of the SW-UC model

M = OxXt, (10.1)
which is equation (2.1), where the 3+2k row vector 6x = [1 1 0 ... 0] is conformable with the state
vector X; = [Ty & &1 ... &_k+1], which contains trend inflation, gap inflation, and its lags. The

associated conditionally linear system of state equations

Xir1 = O X + Y Wi, (10.2)
1 0 0 ... 0 0
is the rest of the SW-UC state space, where ©; = | 0 01 602 ... Ok-1r Ok , the
Ok-1x1 Ik-1 Ok-1x1
vector Dg = [Gnt Gor O ... 0] contains the only nonzero elements of the diagonal matrix Y; and
Wiit = [Nes1 Ues1 O ... 0] Thus, Et{YtWHIWQHY;} is a diagonal matrix with its nonzero elements
residing in the vector Dy = [g%’t g%’t 0 ... 0]. The first two elements of Dy represent the SV in

T: and &;. This SV is the source of time-variation in the covariance matrix Y,Y; = Et{YtWt aW; HY;}
and, thus, volatility in X;+;. There are also time-varying dynamics in the transition matrix, @;, of the
state system (10.2). The source of these dynamics is the TVP-AR(k) of &:. Nonetheless, the system of
state equations (10.2) is linear conditional on Gu¢, Gu,r, and 61y, ..., O, which are known at date t.
The state space system (10.1) and (10.2) is a challenge to evaluate. Part of the problem is to com-
pute h-step ahead RE and SI forecasts of 1 and X; when 01, ..., Ok produce time-varying persistence
in &, which drives variation ®;. Since nonlinearities in @; rule out using the LIE to compute E; ¢4 p,
Fy1te4 1, and FrX¢, we appeal to two aspects of the anticipated utility model (AUM) to solve the problem.
The AUM resurrects the LIE by assuming (i) agents are ignorant of the true DGP and (ii) treats the TVPs
of the SW-UC model (2.1)-(2.5) and the SI law of motion (4.2) as fixed (locally) at each date t. Under the

AUM, we hold the current state of these TVPs fixed when generating h-step ahead forecasts.!?

10Cogley and Sbordone (2008) employ these assumptions to study the dynamics of trend and gap inflation within
a TVP-new Keynesian Phillips curve. They note Kreps (1998) argues that agents engaging in these behaviors are
acting rationally when seeing through to the true model is costly. These assumptions also result in decision
making that is often close to Bayesian forecasting, according to Cogley and Sargent (2008).



The AUM assumptions are engaged to evaluate multi-period forecasts of E; 1+ and F;11y.5. The

state space of the SW-UC model (10.1) and (10.2) produces the h-step ahead RE inflation forecast
Eimtyn = 5X®?\txt\t- (11)

The subscripts on @;; and X;|; are held fixed at the date t state of the joint DGP of the SW-UC model
(2.1)-(2.5) to be consistent with the AUM.

The next step is to find a recursion for the SI prediction of X;. This recursion links F;r¢, ) to
the state of the SW-UC models and the SI law of motion by creating a mechanism to update F;X; given
X; and F;—1X;_1. Although the path of the backward-looking SI law of motion of X; is also altered by
changes in A;_1, the example in the previous section shows that shifts in A; are not an impediment in
constructing a map from F;X; to F;m¢;p. The problem is the AUM also tells us to track the history of
0; when constructing the smoothing recursion that describes the path of F;X;.

The map from F;X; to F1t¢4p, is built starting from FrXep = (1 — Ar—1)EeXeon + A1 Fe—1Xtin,
given &; is the TVP-AR(k) of (2.3). Subsequent to iterating backward this SI law of motion, the result
is the approximate EWMA formula F; Xy, = Z;O:o He-1-j (HLO ?\t,l,,g> Ei(—jX¢tn. Since E;_jX;ip =

h+j j h+j .
@t,ﬂt,jxt,ﬂt,j, FiXesn = 2o He-1-j (HLO ?\t,14> @t,j,t,jxt,ﬂt,j. Next, set h = 0 to obtain

o j .
F Xy = Z Me—1—j (n )\t—l—E) @){_J‘\t_jxt—j\t—j- (12)
j=0 =0

Under the hypothesis of the AUM, fastening together the EWMA formula (5) of F; 11,5, the RE inflation

forecast (11), and the smoothing formula (12) of F;X; results in

Ft7Tt+h = 6x®?|tth)Ct, h = 1,...,H. (13)

The term structure (13) joins F; 17 45 to the SI nowcast of X, which connects ﬂgf fh to the SI forecasts

of trend and gap inflation through the SPF measurement error equation (4.1). An implication is shocks
to 01, ..., Ok, generate nonlinear fluctuations in 1}t as well as ;.
We still need a recursion for the SI forecast of X; when the AUM is invoked because of a TVP-AR(k)

in &;. First, pull the first four terms out of the infinite sum of the smoothing formula (12)

FiXe = (1= A1) Xt + (1= A¢—2)Aem1O@¢1jt—1Xe—1j¢-1 + (1 — At73)At—1At72®§,2\t,2xt—2
o i ,

+ (1= Ama) A 1A 2A 3075, 3 Xe 3 + > -1 }_[ Ap—1-¢ @)i,j\t,jxtfj\tfj-

-0

j=4

10



By induction, the sequence of these terms point to the SI law of motion of X
Flp = (1=2A¢1)Xe + Ar1@¢ 1y 1Fr 1 X 1. (14)

as agreeing with the smoothing formula (12). A key feature of the SIlaw of motion (14) of F;X; is that its
updating relies on A;_; interacting with the lagged time-varying persistence in &;, which is summarized
by ©;_1j;—1. The AUM assumption is responsible for this restriction on the SI law of motion (14) of
F;X;. This restriction is consistent with the SI forecaster holding the TVP-AR(k) fixed at date t—1 when
updating from Fy;_1X;_; to FyX;.

The system of state equations of the SW-UC model and the time-varying SI law of motions are
the laws of motion of X¢,; and Fz,1X¢41. Stack the law of motion of X;; on top of the law of motion

Fr11X¢+1, which are equations (10.2) and (14), to create the system of state equations

St1 = A8t + BWyya, (15.1)
, C) 0 Y
where §; = [X; F:X;], At = ‘ e ,m=1+k,and B; = ‘ . The state
(1-A)er Ay (1-2)Y;

equations (15.1) depict A; having an impact on transition dynamics and the volatility of the system
similar to that seen in the state equations (9.1) of the previous section’s example of a fixed coefficient
AR(1) inflation gap. However, a TVP-AR(k) inflation gap introduces an additional nonlinearity into the
transition dynamics of the system of state equations (15.1). The interaction of time-varying persistence
in & and A; is one more margin on which movements in 8; drive fluctuations in nff iy

Time-varying inflation gap persistence also appears in the system of observation equations driven

by 8;. These equations place the observation equation (10.1) of the SW-UC model on top of the SPF

measurement error equations (4.1) combined with the SI nonlinear term structure (13), which is

Ye = €8¢ + DUy, (15.2)
Ox O1xm
Oixm  6xO; , _ .
where @; = ] ) , D = TIgc41, U = [0 Cprse1 --- Crr+ac) , and the diagonal matrix
| O1xm  0xO]" |

Q= E{utu;}.ll In the system of observation equations (15.2), the response of ngfh to movements

"The uncorrelated measurement error could be made at the level of the output price deflator rather than to TTES: PE
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in ® do not violate the AUM assumptions. Furthermore, shocks to ®; produce fluctuations in Y; in two
ways. There is the direct impact these shocks have on TTE,f F, in the observation system (15.2) through
the term structure created by the TVP-AR(k) and the effect these shocks have by altering the transition
dynamics of the system of state equations (15.1). Note, however, the state space system (15.1) and

(15.2) is linear given realizations of Gy ¢, So,t, O1,t) - -5 Ok,t, a0d Ag.

3 Econometric Methods

We estimate the state space system (15.1) and (15.2) using Bayesian SMC methods, which involve a
particle filter algorithm adapted from Creal (2012) and Herbst and Schorfheide (2014). Durbin and
Koopman (2002), and Godsill, and Doucet, and West (2004) provide instructions to run a Monte Carlo
smoothing simulator. These tools are also applicable to a state space system in which persistence in

&t is generated by a fixed coefficient AR(k), as is the state space system (9.1) and (9.2) where k = 1.

3.1 Rao-Blackwellization of a Nonlinear State Space Model

Creal (2012) discusses a particle filter that relies on the Rao-Blackwellization process of Chen and Liu
(2000). In this case, Rao-Blackwellization snaps the state vector of a nonlinear state space model in two.
One vector of state variables are responsible for the nonlinearities in the state space system. Given
a realization of this vector, the remaining state variables are generated by a linear state space model.
Thus, the state space system (15.1) and (15.2) is consistent with applying the Rao-Blackwellization
process to the joint DGP of the SW-UC model (2.1)-(2.5) and the SI prediction mechanism of the average
SPF respondent (4.1)-(4.3), conditional on the latent state variables lngrzm, In gﬁ,t, 01, - Ok, and
A¢. An implication is that, conditional on these state variables, applying the Kalman filter to the state
space system (15.1) and (15.2) analytically produces the distribution of 8;.

Analytic integration of the distribution of 8; endows the particle filter with greater numerical
efficiency. The efficiency gains are obtained by applying the Kalman filter to the state space system

(15.1) and (15.2) to generate §; and not by simulating this state vector. However, the Kalman filter

as in the observation system (15.2). The alternative assumption implies cumulative inflation forecasts possess
uncorrelated measurement errors. Cumulative inflation forecasts have correlated measurement errors when
1T, is endowed with an uncorrelated measurement error. Or results are similar using either measurement
error assumption. We report estimates of the state space model (15.1) and (15.2) because log likelihoods are
greater under the assumption the uncorrelated measurement error, & ;.p, is attached to 'ITES:f fh. However,
estimates based on the alternative measurement error assumption are available on request.
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needs realizations of In g,zl’t, In gf,,t, O1¢, ..., Okt,and A; to accomplish this task. The Rao-Blackwellized
particle filter solves this problem by simulating M realizations or particles of these state variables on
which the Kalman filter is run to create the analytic distribution of 8;.12

The particle filter produces filtered and smoothed estimates of the variables in 8; using the linear
state space system (15.1) and (15.2) conditional on the data Y; and the state variables In g,%‘t, In gg‘t,
01, ..., Ok, and A;. Since these TVPs evolves as a independent random walks, initial conditions and
volatility scale parameters are needed to generate synthetic samples of these random walks. The scale
volatilities are collected in ¥ = [0, 0y 071 ... Ocac Opa --. Okl '3 At the moment, calibration
methods are applied to obtain values for the elements of ¥.14

The calibration of ¥ is summarized in table 1. Table 1 shows the scale of the volatility of inno-
vations to the SVs of trend and gap inflation, o,; and oy, equal 0.2, which matches values used by
Stock and Watson (2007). There is no a prior evidence to calibrate the scale of the volatility of the
innovations to A¢, oz, h =1, ..., 5. We settle on o, = 0.05 to scale the volatility of the innovation,
K¢, to A; subsequent to running simulation experiments on a grid of values for 0. The same process
is used to fix the volatilities of & ;+n, 0¢,n, which yields o¢ , = 1.0 for all h. Table 1 also indicates that
we estimate models with a TVP-AR(1) and a TVP-AR(2) for ;. The scale of the volatilities of innovations
to 01 or 01 and 02 are 0g1 = 0.05 or 0,1 = 0.10 and 0 » = 0.05 using a similar procedure.

We also have to calibrate initial conditions for the random walk processes of V;. The initial condi-
tions of Ing ; and Ingj  are sampled using In¢; 5 ~ N(—[2.5 + 2In2], 10) and In ¢35 ~ N(-2.5, 10).
Since A is restricted to the open interval between zero and one, we assume Ag is drawn from a trun-
cated normal distribution with a mean of 0.5 and standard deviation of one. The initial condition 61
rests on a similar assumption when k = 1 because 01 € (-1, 1). In this case, 6; o ~ truncN(0, 1).

The truncated normal-random walks $;; and A; along with In g,zm and In gg,t are the TVPs that
enter our particle filter algorithm when k = 1. In this case, the state space system (15.1) and (15.2) is

linear conditional on Y; and V; = [In g%‘t In git 91+ A¢]’. We simulate this state vector using

Vier = Vi + Q¥ (16)

where the vector D¢ = [0? 07 0'5) | 02] contains the non-zero elements of the diagonal matrix Q¢,

n

12Chen and Liu (2000) refer to this particle filter algorithm as a mixture of Kalman filters.

BWhen ¢, is a fixed coefficient-AR(k), 01, ..., Ok are added to ¥ and O ..., Ok are deleted.

141n a future draft, we plan to estimate §; and ¥ jointly by embedding a particle filtering inside a Metropolis-
Hastings Markov chain Monte Carlo simulator using methods developed by Andrieu, Doucet, and Holenstein
(2010), Flury and Shephard (2011), Herbst and Schorfheide (2014) and Schorfheide, Song, and Yaron (2014).
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the elements of €41 = [Enr41 Evt41 Prr+1 KHl]' are innovations distributed IID standard normal, and
01,¢+1 and A¢yq are truncated to remain in on the open intervals (-1, 1) and (0, 1), respectively. This
system describes the evolution of V; and shows that given knowledge of it the state space system (15.1)
and (15.2) can be evaluated using standard Kalman filter methods.

Guaranteeing the TVP-AR(2) for ¢, is stationary at every date t presents another estimation prob-
lem. Morley, Nelson, and Zivot (2003) provide an example in which a pair of AR(2) coefficients have
roots outside the unit circle; also see Morley (1999) and Xu (2013). We adapt their approach to restrict

01+ and 02, to guarantee ¢&; is stationary. The first step revises equation (2.5) of the SW-UC model,

which are the random walks of 0, j = 1, ..., k, by imposing the restrictions
0, = 2oLt 17.1)
1+ }91’15‘
02 = <1 - ‘91;‘)92; + ’91,t), (17.2)

where 9, is unrestricted, but 9, € (-1, 1). The “raw” TVP-AR coefficients ¢, ; and 9, evolve as

independent random walks
it = Fje-1 + 0¢iPjt, (17.3)

where j = 1, 2, and ¢ ;; remains a standard normal random variable. The initial conditions for $;; and
9o are 310 ~ N(0, 100) and 9, is sampled from a truncated standard normal distribution because
92+ € (-1, 1). The particle filter algorithm described below draws 91 and %, to initialize the two
random walks of (17.3) and samples from ¢1¢ ~ N(0,1) and ¢ ~ N(0,1) to generate synthetic
samples of &, and 9. These artificial samples are transformed into samples of 6, and 0, using
equations (17.1) and (17.2) to ensure the TVP-AR(2) of &; has roots outside the unit circle.

The “raw” TVP-AR coefficient 3, replaces the TVP-AR1 coefficient 8, in our particle filter al-
gorithm and 9, is added to it when k = 2. Thus, the state space system (15.1) and (15.2) is linear
conditional on Y; and the multivariate random walk (16), where ;; and 9>, which evolve according
to the random walk (17.3), become part of V; = [In gs,t In gg‘t 91+ 920 A]’, and equations (17.1) and
(17.2) produce 01 and 0.

3.2 The Particle and Kalman Filters

The Rao-Blackwellization process yields a state space model (15.1) and (15.2) that is linear in 8; given

a history of Vy.4,i =1, ..., t,t < T. Thus, Kalman filtering techniques are used to generate samples
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of the unobserved states, S;. Nonetheless, we resort to the particle filter to approximate the density
of the latent state V; using a sequential importance sampler with resampling (SISR). A SIS builds the
density of 8;.7 by iterating through the sample from t=1 given initial conditions, to t=2 conditional on
81:1, Y1:1, Vi1, and ¥, and ending at t=T conditional on 8y.7-1, Y1:7-1, Vi:r-1, and ¥. The resampling
step shuffles the M particles of {8(” } using weights that are estimates of a particle’s share of the
state space model’s likelihood, which guarantees no single particle will receive all the probability mass
in constructing the density of {S(ll)T}il as M becomes large. The weights are calculated by running
each particle through the Kalman filter to obtain an estimate of the likelihood.

We adapt algorithm 3 of Creal (2012, section 2.5.7) and an algorithm of Herbst and Schorfheide
(2014, section 7.4.3) to estimate the state space model (15.1) and (15.2) conditional on Y; and the

multivariate random walk (16). This particle filter consists of the following steps.

1. The filter is initialized by drawing M particles V(i) i=1,..., M, from the prior distributions (16),

where conditional on V , 8o has a normal prior 8y ~ N(So‘o, b 0‘0)

(

2. Repeat the following steps for t = 1, ..., T, where each step uses the particles Vt 10 8¢-1)¢-1» and
z iif)mfl, i=1,..., M, which are the outcomes of applying the Kalman filter in the previous step.
(@) Fori=1,2,..., M, draw new particles Vﬁ conditional on Vt 1» given the prior (16).

(b) At date t, engage the Kalman filter to compute
(i) (i) g (1) @\’ @) (@)
o = ANED L (-Atl ) + By (Btl ) ;

afl. - ezl @) + ooy

90 =y - Ay tlt 1
= S [egem v mlaf |+ (37) (al) 0
K = = (e) ()

(1) (l (i) (i)"’(i)

(1) (1) (1) (1) T (i)
tht = Zt\ltfl - t\t 1(61) (‘Qtftfl) elzt\t 1

across the M particles, (i) = 1, 2, ..., M.15
(c) Store the conditional moments Si‘lz and Zi‘t to report estimates of the joint DGP of the

SW-UC model and the SI prediction mechanism of the average SPF respondent.

I5There are a missing observations in the SPF inflation data that the Kalman filter handles using standard methods.
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(i)
A expl
(d) Compute particle weights wil) = M{t}m
> exp{l,}
(e) For t < T, prepare the next iteration by resampling the particles Vii), Sﬁi, and X i‘lg, which

corresponds to drawing from a multinominal distribution for i using the pdf of wﬁi).lﬁ

3. The filtered distribution of V; conditional on Y+ and ¥ is approximated by the discrete dis-

tribution of particles Vﬁi) using the pdf of wii) and the associated filtered distribution of 8; is

approximated by a mixture of normals N (8%, z ﬂ;) with the weights wii). Thus, the filtered

means of §; and V; are approximated by S;; = S, wi”sﬁ; and Vi = SN, wgi)\?;i).

4. Since the M particles have been reweighted at every step, the date t data density is estimated by

calculating the average of Qii) over the M particles
M (1)
P (Ye| ez ¥) = D0 (18)

The data density P (Y; ’911,1; V) is a vehicle for computing the log likelihood of the state space system
(15.1) and (15.2). The density of (18) is summed across thet = 1, ..., T observations to produce

L¥[Yrr) = 2P (Y| Y15 ¥). (19)

T
=1

t
Below we report the log likelihood (19) of versions of the conditionally linear state space system (15.1)
and (15.2) that differ by restrictions on the lag length of the TVP-AR(k) of & and whether the AR

coefficients are fixed or time-varying. Thus, we evaluate competing versions of the state space model

(15.1) and (15.2) using the log likelihood (19) when ¥ is calibrated.!”

3.3 The Mixture Smoother

We compute smoothed draws of V; conditional on the entire sample of observations Y;.r and the

calibrated vector ¥ using the algorithm of Godsill, Doucet, and West (2004). Given a distribution of M

16Creal (2012) advises reweighting the particles \7?), si};, and X ;fz only to prepare the t+1 step of the particle
filter. However, the unweighted particles are retained to report results and to compute smoothed estimates.

17When ¥ is estimated, a result in Andrieu, Doucet, and Holenstein (2010) is relevant. They show the distribution
of a Markov chain Monte Carlo (MCMC) simulator is independent of the error generated by a particle in a SMC
algorithm. An implication is the density (18) provides an unbiased estimate of the likelihood at date t. Thus,
a Metropolis-Hasting MCMC simulator wrapped around a particle filter produces estimates of the elements ¥
across different models that can be evaluated using unbiased estimates of the log likelihood (19).
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particles vi” with weights wii) i=1,..., M, generate J sequences of smoothed draws, denoted V(J )
for j =1, ..., J by iterating the next algorithm. For each j, draw V(J " from the filtered particle draws

V(Ti) weighted by wT , and then iterate backwards from t = T—1 to t = 1 in the following steps

1. Foreachparticlei=1,..., M, calculate @\" = w" f v§ ‘V(” wheref Vﬁ ‘V(” is computed
from the system of transition equations (16).18

2. Draw \N7§j ! from the set of filtered particles Vgi) with weight ’(b’fgi)

3. Approximate the posterior distribution of V; conditional on the entire sample of observations

Y. and the vector of parameters ¥ using the J sequences of \7(] )

4. The smoothed distribution of 8; is calculated given the previous approximation

~

P (51:T‘%1:T; ‘1’> = Jv. P (SI:T‘VI:Tyyl:T; ‘1’) dF (Vi.T) = Z ?(SI:T)\N7<1{%, Y115 ‘1’> (20)

The density P (sl;TWﬁ{}, Y113 ‘I’) is the multivariate normal distribution produced by the Kalman
smoother for the conditionally linear state space (15.1) and (15.2) because the approximation on the
right of (20) conditions on a single trajectory of V;.7. For each sequence of V; generated by the particle
smoother, we generate draws for 8.7 from the Kalman smoother’s distribution using the disturbance

smoothing algorithm of Durbin and Koopman (2002).19

4 The Data and Estimates

Our motivation for opening up the SW-UC model SI law of motion along these dimensions rests on
the existing literature. As surveyed by Creal (2012) and Shephard (2013), there is persuasive evidence
that the SVs of trend inflation and the inflation gap have varied substantially in recent US data; also
see Stock and Watson (2010), Grassi and Proietti (2010) and Mertens (2012). Further, Nason and Smith
(2014) report that in the last 45 years of U.S. data stickiness in SPF inflation predictions, as described
by A, has changed. This section contributes new evidence about the comovement of oe¢t, 0z, and A¢

over the business cycle along with evidence of time variation in inflation gap persistence.

18For A;, 01, (k = 1) and 9, (k = 2), the conditional pdf's are truncated normals.

19An alternative algorithm generating jointly draws T?ij ) and conditional moments Si{} and X (112 7 is sketched by
Prado and West (2010).
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4.1 The Data

Our estimates are conditional on a sample of real time realized inflation, 7t;, and average SPF inflation
prediction, Trf’f .- We obtain this sample from the Real-Time Data Set for Macroeconomists (RTDSM),
which is compiled by the Federal Reserve Bank (FRB) of Philadelphia.? The data consist of observations
from 1968Q4 through 2014Q2 for m; as well as 1L, at horizons h = 1, ..., 5.

Realized inflation is computed from the RTDSM’s quarterly real-time vintages of the GNP and
GDP deflator.?2! These vintages reflect data releases that were publicly available around the middle
of quarter t and most often the publicly available information contains observations through quarter
t—1. Using these vintages of real time realized inflation, we compute the quarterly difference in the log
levels of real time observations on the implicit GNP or GDP deflator. These quarterly price level data
are transformed into inflation measured at an annualized rate using 71 = 400[InP; — In P;_1 |, where
P; denotes the date ¢ level of the GNP or GDP deflator.

The average SPF predictions include a nowcast of the GNP or GDP deflator’s level and forecasts
of these price levels for the next four quarters. These surveys are most often collected at the middle

SPF

of date t (i.e, the quarter), which suggests 11;;,,, is reported without complete knowledge of ;. We

comply with this timing protocol by assuming date t SPF inflation predictions are conditioned on data

available through the end of date t—1. Thus, the average SPF nowcast, 1-step, ..., 4-step predictions,
which are denoted Trf‘f t, Trff [T ﬂgf F_, are made at the end of date t—1. These inflation predictions

are computed as described previously using the annualized log differences between the SPF prediction

of a deflator’s level and the quarterly lagged real time realized price level supplied by the RTDSM.

4.2 The Fit of the Joint DGPs

Table 2 lists log marginal data densities, which are generated using the particle filter algorithm de-
scribed in section 3.2, especially its step 2(b), and equations (19) and (20). The log marginal data
densities are employed to gauge the fit of the competing joint DGPs of the SW-UC model and SI predic-
tion mechanism of the average SPF respondent. The competing DGPs are distinct along two dimensions.
Two DGPs are defined by the lag length of the TVP-AR(k) of &;, which is either k = 1 or k = 2. Setting 0

= 01, 0r 01 = 01, and 0> = 02 creates two more DGPs. The four joint DGPs are labeled in table 2 the

20The data are available at http://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/.

21Before 1992Q1, the SPF and RTDSM measured the U.S. output price level with the implicit GNP deflator. From
1992Q1 to 1996 Q4, the implicit GDP deflator pays this role, but this deflator is replaced by the chain weighted
GDP deflator from 1997Q1 to the end of the sample.
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SI-A; Law of Motion plus SW-UC-SV-AR(1), SW-UC-SV-AR(2), SW-UC-SV-TVP-AR(1), or SW-UC-TVP-AR(2)
model that denote the SI prediction mechanism of the average SPF respondent plus the SW-UC model
with SV and a fixed coefficient AR(1), fixed coefficient AR(2), TVP-AR(1), or TVP-AR(2), respectively.
This gives us four versions of the joint DGP of the SW-UC model and SI prediction mechanism of
the average SPF respondent to estimate. We evaluate the fit of the SI-A;-law-of-motion-SW-UC-SV-AR(1),
-SW-UC-SV-AR(2), -SW-UC-SV-TVP-AR(1), and -SW-UC-TVP-AR(2) models by comparing the associated
log marginal data densities. Table 2 contains these log marginal data densities, which show the models
with TVP-AR inflation gaps dominate models with inflation gap persistence tied to fixed coefficient
ARs. Across the SI-A;-law-of-motion-SW-UC-SV-TVP-AR(1) and SI-A¢-law-of motion-SW-UC-SV-TVP-AR(2)
models, the relevant log marginal data densities indicates the former model dominates the model with
the higher-order TVP-AR(2) driving time-varying persistence in &;. Thus, the data favor the SI-A;-law-
of-motion-SW-UC-SV-TVP-AR(1) model. The rest of the paper focuses almost exclusively on estimates

of the SI-A;-law-of-motion-SW-UC-SV-TVP-AR(1) model.

4.3 Realized Inflation, Trend Inflation, and Gap Inflation

Figures 1 to 5 plot filtered RE trend inflation, T, filtered SI trend inflation F;;T;, the h-step ahead
average SPF inflation prediction, ngf f n» and realized real time inflation, 17; on the 1968Q4 to 2014Q2
sample. The average SPF inflation nowcast, 1-step ahead inflation prediction, 2-step ahead inflation

prediction, 3-step ahead inflation prediction, and 4-step ahead inflation prediction appear in figures 1

to 5, as solid (green) lines with diamonds. However, remember we link 7 ¥F,, wdPF, ... wfPE to the
average SPF inflation nowcast, 1-step ahead inflation prediction, ..., 4-step ahead inflation prediction

to respect the timing of when the SPF is collected by the FRB of Philadelphia. Otherwise, figures 1 to 5
contain the same solid (black) plots of 7, dashed (red) plots F;|; T+, and dotted (blue) plots ;. Also,
the shaded areas in figures 1 to 5 are NBER dated recessions.

Differences across Tt i1y, ..., M; 145 distinguish figures 1 to 5. Figures 1 to 5 agree the inflation
spike that coincides with the first oil price shock is dominated by gap inflation, &;, while trend inflation,
T¢, is responsible for the bulk of the inflation peak of the early 1980s. Under the SI-law-of-motion-SW-
UC-SV-TVP-AR(1) model, an inference is the average SPF respondent began to lean more on the “signal”
of T, and less on the “noise” of & between the first oil price shock and the Volcker disinflation.

As is well known, average SPF inflation predictions become smoother or less volatile moving from

h =1 to h = 5. This information and 7r; is employed by the SI-A; law of motion plus SW-UC-SV-TVP-

19



AR(1) model to generate estimates of T and F; | T¢. The estimated T and F; T are close to identical
for the entire sample period except from late 1968 to early 1970 and from early 1995 to late 1999.
During the latter episode, 7;|; is lower than F;; T; while the opposite is true at the start of the sample
period. Although SI trend inflation disagrees about the level of trend inflation in late 1968, during 1969
the SI forecaster rapidly updates F;;T; toward T;; implying that A; is much smaller than one. This
suggests A; is closer to one from early 1995 to late 1999 because during these years F;; T; is greater
than 7. Thus, the second half of the 1990s shows F;; T; is slow to update to T¢j;.

Figures 1 to 5 also differ by the the distance between 1;(1,, ..., TP t15 and T¢; and FyTy)r from

early 1995 to late 1999. During this period, ﬂgffl is nearer to Tt than to F; 7y, but for ngffs this
ordering is reversed. Across h = 2, 3, and 4, Trfffh moves to F; T+ and away from T;; in the second
half of the 1990s as depicted in figures 2, 3, and 4. Average SPF inflation predictions display symmetric
behavior from 1968Q4 to 1969Q4. In this case, the shift of the late 1960s involves ngf £, moving from
being greater than 1| to less than F; 7;|;. Nonetheless, the duration of the gap between nff T and Fr1y)t
signals the frequency of SI updating is low from early 1995 to late 1999.22 We confirm this observation
below when discussing estimates of A; plotted in figures 10 an 11.

Filtered, &, and smoothed, & r, inflation gaps are plotted in figure 6. These plots reinforce the
view the first oil price shock sustained a rise in gap inflation between 7 to 9% from 1973Q4 to 1974Q4
while T;; and F;;7; are less than 4%. During the inflation spike of the early 1980s, T and F; ;T rise
to nearly 8%, which gives &;|; and &; alesser role. Thus, the SI law of motion plus SW-UC-SV-TVP-AR(1)
model does not ascribe to &; a dominant position in generating fluctuations in r; between 1975 and
1982 as does the TVP-new Keynesian Phillips curve model estimated by Cogley and Sbordone (2008).

Fluctuations in & and &7 display less variation after the double dip recessions of the early
1980s. These measures of gap inflation are less than 3% from 1980Q4 to 1982Q4. During the rest
of the sample, figure 6 shows continued moderation in & and & r because these measures of gap
inflation are often not larger than 2% (in absolute value). This suggests the volatility of &; is subdued

in the latter two-thirds of the sample compared with 7, during the first oil price shock. Another

interesting feature of figure 6 is the plots of &; and &1 are most often negative during the 1990s.

2?During this period, Tyj¢, Fij¢Te, T 411, - - -, and 1} { 15 move in ways consistent with the Fed engaging in a monetary
policy of “opportunistic disinflation” as described by Meyer (1996) and Orphanides and Wilcox (2002). For
example, Orphanides and Wilcox quote Vice Chairman Blinder and President Boehne of the FRB-Philadelphia

as advocating the 1990s Fed wait for a state of the world in which little is lost by lowering Fy; T¢, 07 13, T ¢4,

and 17 t; instead of taking actions to achieve a disinflation that have the potential for greater costs. Although
the SW-UC-SV-TVP-AR(1) model recovers the average SPF respondent’s beliefs about changes in the inflation
regime, this evidence cannot be used to evaluate monetary policy regime shifts. We need information about

monetary policy interventions to conduct this evaluation as studied, for example, by Leeper and Zha (2003).
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4.4 Trend and Gap Inflation Volatilities

Figures 7 and 8 present estimates of filtered and smooth SVs of T, exp{gn’t | .} and exp{gn‘t | -} and &,
exp{gU’ (| .} and exp{gu, (| 1> respectively. The filtered (smoothed) SVs appear in the top (bottom) panel
of figures 7 and 8 as solid blue (red) lines. These panels include the interquantile range confidence (i.e.,
running from the 25th to 75th quantile) bands, which are the thinner lines in these figures.

Several aspects of the filtered and smoothed SVs of 7; and &; stand out in figures 7 and 8. First,
} exhibit multiple peaks. Figure 8 displays the largest spike in

the plots of exp/ } and expic

Snit|t ot|t

exp{g,, | .} at 1974Q4. A smaller peak in exp{g, |} is also observed after the 1973-1975 recession

T
in the bottom panel of figure 8. The largest peak|in exp{gn, (| t} occurs in 1982Q1 as seen in figure
7. This is additional evidence that the first oil price is dominated by shocks to & while just before
the Volcker disinflation the underlying sources of realized inflation were tied to permanent factors
that influence ;. However, the bottom panel of figure 7 indicates that the two-sided estimates of the
SV of T1; roughly plateaus from the start of the 1973-1975 recession to the middle of the 1981-1982
recession. In summary, these estimates of the SV of & and T differ from estimates of the SVs of ¢
and &; reported by Nason (2006), Grassi and Prioietti (2010), Stock and Watson (2010), Creal (2012),
Shephard (2013), and Nason and Smith (2014), but is consistent with estimates reported by Mertens
(2012).23 However, the SV of T; is always less than the SV of & as shown in figures 7 and 8, which is
consistent with the literature stemming from Stock and Watson (2007).

Figures 7 and 8 also depict long run information about the SVs of T; and &;. The information is
the low frequency movements in exp{gn‘ ‘| .} and exp{gn’t | -} that begin in 1982 and continue to the
end of the sample. During this period, exp{gn‘ (| .} and exp{gn’t | 1 exhibit a steady decline. Similar

behavior is displayed by exp{g, , | 1, but the decline starts in 1975. Also, exp{¢, |} rises from 2002

|

to 2008 before falling to 2014Q2. An increase in the SV of & between the recessions of 2001 and

2007-2009 is consistent with results in Creal (2012), Mertens (2012), and Nason and Smith (2014).
Another revealing feature of figures 7 and 8 is the behavior of the SVs of trend and gap inflation

around NBER dated recessions. The filtered SVs, exp/{ } and exp{c , | .}, often rise during or after

Snitlt
a NBER recessions according to figures 7 and 8. These movements are not observed in the two-sided

estimates exp{gn (| -} and exp{g , | 1 of figures 7 and 8.

230f these studies, only Mertens (2012) and Nason and Smith (2014) estimate models conditioned on 7r; and
SPF
T h=1,2,...,5.
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4.5 Time-Varying Inflation Gap Persistence and SI Updating

Estimates of 07 and A; are found in figures 9, 10, 11. Figures 9 and 10 contain filtered, 01 ¢ and A¢¢,
and smoothed 0; ¢t and A; 1 estimates of these TVPs. The filtered estimates appear in the top panel
of figures 9 and 10 as solid (blue) plots surrounded by thinner lines, which are interquantile confidence
bands. The bottom panel of these figures plot 0; ;r and A7 with a solid (red) lines and its confidence
bands with thinner lines. The plots of 61 tt, A¢j, 01,¢7 and A 1 are the posterior means of the particle
draws moving period by period through the 1968Q4 to 2014Q2.

Figure 9 displays variation in 01 and 607 during the 19680Q4-2014Q2 sample. This variation
includes episodes of meaningful statistical and economic persistence in &; similar to reports in Cogley
and Sargent (2005). First, 0; ¢y ranges from 0.25 to 0.8 in the 1970s. Next, inflation gap persistence
drops from about 0.75 in 1980 to nearly 0.25 by 1991 before rising to almost 0.6 just before the 2001
recession. Third, 8, falls from 0.5 to about —0.1 between 2001 and 2009 and remains there for the
rest of the sample. Fourth, the confidence bands of 0, ;; do not contain zero between the 1969-1970
recession and the recent financial crisis, but do since the 2007-2009 recession. The same narrative
holds for 0; 1, except it shows less quarter to quarter variation and a smaller peak in the mid-1990s.

Plots of A1r and A¢ 7 display alow frequency swing from more frequent to less frequent updating
by the average SPF inflation prediction in figure 10. The bottom panel of this figure shows A7 is about
0.3 from the late 1960s to the end of the 1981-1982 recession with confidence bands running from
about 0.15 to around 0.5. From the end of this recession to 1995, A1 rises from close to 0.4 to about
0.7 before beginning to slowly decline to 0.6 by the end of the sample. Although confidence bands
are wider for A;r during the second half of the sample, these never cover zero while ranging from
about 0.4 to more than 0.8 by 2014Q2. The top panel of figure 10 tells a similar story, but in the first
several years of the sample A; ;s is between 0.4 and 0.6 and is more volatile than it is from the early
1970s to the end of the sample. The bottom line is that A; ;; and A7 indicate that the frequency of
SI updating by the average SPF respondent has shifted during the last 55 years, which is in line with
results reported by Coibion and Gorodnichenko (2012a, b), but the underlying reasons differ.

We conclude this section by summarizing many of our key results in figure 11. Figure 11 plots
the same information found in figures 9 and 10. This information is the A rs estimated by the SI law
of motion plus SW-UC-SV-AR(1) and SI law of motion plus SW-UC-SV-TVP-AR(1) models along with the
associated measures of persistence in &;. However, the absolute values of the posterior means of 0;

and 6, ¢t are shown in figure 11, which is different than the plots of figure 9.
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Figure 11 includes evidence that gives two reasons for the data preferring the SI law of motion
plus SW-UC-SV-TVP-AR(1) model over the SI law of motion plus SW-UC-SV-AR(1) model. One reason is
the time variation exhibited by 60 1, which is solid red plot of figure 11. The estimate of |0, | is the
dotted blue line of figure 11, which is small and about 0.1. This fixed coefficient persistence is unable
to generate serial correlation in & to explain F;;,1 diverging from riff from 1995 to 1999.

Instead, the SI law of motion plus SW-UC-SV-AR(1) model attributes this five year gap between
Fy11441 and nfff to less frequent SI updating compared with the A; ;7 produced by the SI-law-of-
motion-SW-UC-SV-TVP-AR(1) model. These estimates of Aj ;7 are, respectively, the dotted black line
the solid red line of figure 11. Figure 11 depicts less frequent updating within the SI-law-of-motion-
SW-UC-SV-AR(1) model compared with the SI-law-of-motion-SW-UC-SV-TVP-AR(1) model because the
dotted black line is always greater than the solid red line. Moreover, these estimates of A display
the largest disagreement at their peaks, which occur in the mid-1990s at the same time 671 peaks

at about 0.45. Thus, time-varying inflation gap persistence mitigates the stickiness the average SPF

respondent needs to produce inflation predictions in the context of the SW-UC model.

5 Conclusions

This paper contributes to the literature that evaluates the dynamics of realized inflation and SPF in-
flation predictions. We combine the Stock and Watson (2007) unobserved-components (SW-UC) model
with the Mankiw and Reis (2002) sticky information (SI) law of motion. This combination is a useful way
to study inflation dynamics. One reason is the joint SW-UC model and SI law of motion yield different
predictions of trend inflation. A source of the different trend inflation predictions is the SW-UC model
and SI law of motion rely on different time-varying rates to discount the histories which generate these
forecasts. We employ this identifying information to estimate the joint dynamics of real time realized
inflation and average SPF inflation predictions using different combinations of the SW-UC model and
SI law of motion. A particle filter algorithm generates estimates of these joint models. Comparing the
estimated likelihoods of these models indicate the data prefer models with time-varying persistence in
gap inflation. This persistence lowers the estimated time-varying stickiness of the average SPF inflation
prediction. Less sticky average SPF inflation predictions are updated more often given new information
about the conditional mean of inflation, which is provided by the SW-UC model. Thus, our estimates
suggest time-variation in this updating occurs more frequently at the same moment in time the average

SPF participant anticipates a permanent or persistent shift in the inflation regime.
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Table 1. Calibration of Exogenous Random Walk Process &;

Y = [(7,7 Oy Ot

¥

O-C,j—( Uqb,l

O'¢,k],

Source

a) Volatility of Innovations
to T¢’s and &’s SVs.

Stock and Watson (2007)

lng,%yt+1 = lng,%,t + o0&t op = 0.20
lngLZJ,t+1 = lngg,t + 0u&urt oy, = 0.20
b) Volatility of Innovation to A, calibrated
TVP of SI Forecast Updating.
At+1 = At + OxKt Ox = 0.05
c) Volatility of Innovations calibrated
to SPF Measurement Errors.
Crt+h ~ N(O, Uz?,h)y or.n = 1.00
h=1,...,H5, H =5
d) Volatility of Innovations to calibrated
TVP-AR(k) slope coefficients
of the inflation gap, &;.
Ojti1 = 0j¢r + 0¢jPjt,
j=1,...,k
k=1 op1 = 0.05
k=2 o4 = 0.10
042 = 0.05

e) Fixed Coefficient AR(k)
of the inflation gap, &;.

MCMC estimates
of the SW-UC Model

k=1 op1 = 0.01
k=2 op1 = —0.16
opo = —0.28

The calibrated parameters listed in panels a)-c) are applied to all the estimated joint DGPs of the SW-UC
model and the SI prediction mechanism of the average SPF respondent. The volatilities of the TVP-AR
slope coefficients of &; listed in panel d) apply to the SW-UC model (2.1)-(2.5). The innovations &,
Eu,t, Kt and ¢ are random variables that are assumed to have standard normal distributions, where

j=1orj=1,2. Panel e) applies only to the SW-UC model that has persistence in &; produced by a
fixed coefficient AR(1) or AR(2).
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Table 2 Marginal Log Likelihoods of Estimated Models

SI-A; Law of Motion plus £(H LT ‘ ‘I’)
SW-UC-SV-AR(1) —-397.01
SW-UC-SV-AR(2) —-406.66

SW-UC-SV-TVP-AR(1) —-378.67
SW-UC-SV-TVP-AR(2) —387.71
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