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1 Introduction

Recent global financial crises have reminded investors that asset returns are driven by asym-

metric and fat-tailed distributions, suggesting once more (Kraus and Litzenberger, 1976;

Friend and Westerfield, 1980; Engle et al., 1990; Harvey and Siddique, 2000) that the

Gaussian distribution underlying the traditional mean-variance framework is not appropriate

for modelling asset returns. In addition to being concerned with the distribution of asset

returns on a univariate basis, market dependence through the contagious effects of financial

crises is also of great concern to policy makers and financial market participants because of

the global consequences for monetary policy, risk management and asset pricing.

Crisis episodes are characterized by asset returns falling in value and volatility increasing

compared to non-crisis periods. Under the traditional mean-variance framework, these sta-

tistics are consistent with a investors realizing a higher level of excess returns in a non-crisis

period and a higher level of risk in a crisis period (Sharpe, 1964; Lintner, 1965; Black, 1972).

However, it is evident that higher order moments also change. For example, asymmetry in

the returns distribution measured by skewness generated by the preferences of investors are

subject to change in different regimes. This asymmetry can be attributed to two types of

effects. The first effect is the volatility skew and smile. Volatility skew is common in financial

markets where stock returns appear to be negatively correlated with return volatility (Black,

1976; Bekaert and Wu, 2000). The bias phenomenon known as the volatility smile is often

observed in financial markets during a crisis period where the volatility-return co-movement

exhibits an upward relation, resulting in positive skewness in the crisis period (Shleifer and

Vishny, 1997; Conrad et al., 2013). The second effect is the risk return trade-off in a util-

ity maximizing model of portfolio choice between expected excess returns and higher order

moments. Lower asset returns occurring in a financial crisis are realized by a risk-averse

investor in conjunction with positive skewness of returns (Fry et al. 2010).

Asset returns also typically yield leptokurtic behavior and kurtosis rises during crisis pe-

riods. The relatively lower kurtosis commonly displayed in non-crisis periods is documented

theoretically by Brunnermeier and Pedersen (2008). They find that speculators invest in

securities with a positive average return and negative skewness, giving rise to the low value

of kurtosis. However, extreme events result in speculators investing in securities with a neg-

ative average return and negative skewness, thus increasing kurtosis risk but providing a
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good hedge during the crisis period.1

Dependence between markets is measured by the co-moments of asset returns and changes

in these relationships are also often observed in financial data. These co-moment changes

are the basis of different types of tests for contagion including the correlation test of Forbes

and Rigobon (2002) and the coskewness test of Fry et al. (2010) and Fry-McKibbin et al.

(2013). In the simplest case, changes in linear dependence (or correlation), is commonly used

to measure financial contagion where it is expected that correlation between markets should

increase in a crisis period in the presence of contagion.2 However, it is also suggested that

linear co-movement does not fully capture market information since it is measured by the

equal weight of small and large returns (Embrechts et al., 2003). Moreover, correlation is a

linear measure of dependence that can be applied only when investors display mean-variance

preferences, or in other words, when returns follow a normal distribution.

To counter this limitation, the coskewness class of contagion tests was developed to

captures changes in the asymmetry of the joint probability distribution of asset returns

in a crisis period compared to a non-crisis period. Co-skewness measures the relationship

between the volatility in market i and the mean of the asset returns in market j. The shift

from negative co-skewness to positive co-skewness during the financial crisis comes from the

two potential explanations of asymmetry above, applied to a bi-variate setting.

This paper extends current measures for detecting contagion by examining higher order

elements of asset return distributions frequently overlooked despite the inadequacy of the

Gaussian distribution in describing asset returns during crisis episodes. Two new contagion

tests are derived, defined broadly as a significant change in extremal dependence between two

markets in a non-crisis and a crisis period. Extremal dependence is measured by co-kurtosis

(the relationship between the asset return in market i and return skewness in market j) and

co-volatility (the relationship between the return volatility of markets i and j). To illustrate

this new approach, we apply the tests to equity markets and banking sectors during the

global financial crisis of 2008-09.

The extremal dependence measures derived in this paper capture more co-movements

1Brunnermeier and Pedersen (2008) show that the funding constraint influences not only the price level
but also the skewness of the price distribution. In extreme events, the security price is below the market
fundamental price, resulting in negative returns. Holding the security leads to losses as speculators face
funding constraints, inducing negative skewness in the price distribution

2Contagion is often defined as a significant incresase in correlation between two markets during the crisis
period after controlling for market fundamentals (Forbes and Rigobon, 2002).
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than the linear dependence measures in the worst events and is similar to Garcia and Tsafack

(2011) who illustrate that the tail dependence coeffi cient can be treated as the probability

of the worst event occurring in one market given that the worst event occurs in another

market. The theories of Brunnermeier and Pedersen (2008) and Fry et. al (2010) touched

on above imply different signs of higher order moments. It is possible that either sign could

eventuate in a crisis period as investors optimize under incomplete information (Vaugirard,

2007; Gorton and Metrick, 2009) and liquidity constraints (Cifuentes et al., 2005; Allen

and Gale, 2000), particularly when the source crisis country is also considered a safe haven

country as is the case for the US here (Vayanos, 2004). In this paper, contagion is considered

to be a two sided test to allow for the range possibilities as it is not possible to tell a priori

in which direction the signs will change.

The results of the tests show that significant contagion effects are widespread from the US

banking sector to global equity markets and from the US banking sector to global banking

sectors during the crisis period. More evidence of contagion is found through extremal

dependence than through asymmetric dependence, indicating the extremal dependence tests

capture more co-movements during crises than the asymmetric dependence tests in extreme

events. In terms of the size of the tests, the results of simulation experiments show that

the co-volatility change test presents a good approximation of the finite sample distribution

even when comparing a relatively long non-crisis sample period with a relatively short crisis

sample period. The tests for changes in co-kurtosis tend to be biased compared to the

asymmetric distribution hence critical values require adjusting.

The remaining sections of this paper are organized as follows. Section 2 shows the

moment and co-moment of asset returns in equity and banking markets to illustrate the

characteristics actually observed in a non-crisis period compared to a crisis period. Two

series are then selected to illustrate the presence of the volatility skew in a non-crisis period

and the volatility smile in a crisis period in Section 3. It is found that there is evidence of

these types of data in both the asymmetric and extremal dependence relationships. Section

4 presents the traditional CAPM model with the addition of higher order moments and

co-moments in understanding the risk-return trade-off between the expected excess return

and higher order moments and co-moments. Section 5 describes the properties of a bivariate

generalized exponential family of distributions with asymmetry and leptokurtosis, which

provides the framework for developing tests of co-kurtosis and co-volatility and then tests
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of contagion based on changes in extremal dependence in Section 6. These tests are applied

in Section 7 to investigate channels of contagion in equity markets and the banking sector

during the financial crisis of 2008-09. The results show that the extremal dependence tests

capture more market co-movements than the asymmetric dependence tests in extreme events.

Section 8 concludes.

2 Higher Order Co-moments in a Crisis

To place the relevance of the contagion tests and especially the extremal dependence tests in

the context of the observed data, this section examines the descriptive statistics of moments

and co-moments of the data used in the empirical application of Section 7 and also presents

anecdotal evidence on the volatility skew and smile concepts.

The data is composed of the daily banking equity price indices and aggregate equity

indices of eight countries selected from Asia, Europe, Latin America and North America,

expressed in US dollars.3 Daily percentage equity returns of each market i are calculated as

Ri,t = 100 (ln(Pi,t)− ln(Pi,t−1)) ,

where Pi,t is the equity index in market i at time t and Ri,t is the percentage return of the

equity in market i at time t. The sample period starts on April 1, 2005 and ends on August

31, 2009. It is divided into two periods, defined from April 1, 2005 to February 29, 2008 (the

non-crisis period), a total of Tx = 760 observations, and from March 3, 2008 to August 31,

2009 (the crisis period), a total of Ty = 391 observations.4 All returns are plotted in Figure

3The purpose of the data set is illustrative only and covers Hong Kong and Korea, France, Germany and
the UK, Chile and Mexico, and the US. Many other combinations of data could be considered, but to keep
the analysis tractable a small subset of possibilities was chosen.
The equity indices are collected from Datastream. The mneumonics are: Hong Kong - Hang Seng price

index (HNGKNGI); Korea - Korea Se Composite price index (KORCOMP); Chile - General price index
(IGPAGEN); Mexico - Mexico Ipc Bolsa price index (MXIPC35); France - CAC 40 price index (FRCAC40);
Germany - MDAX Frankfurt price index (MDAXIDX); the UK - FTSE100 price index (FTSE100); and
the US - Dow Jones Industrials (DJINDUS). The banking equity indices are collected from Bloomberg.
The mneumonics are: Hong Kong - FTSE China A 600 Banks (XA81); Korea - Korea Banking Index
(KOSPBANK); Chile - MSCI Chile Banks (MXCL0BK); Mexico - MSCI Mexico Banks (MXMX0BK);
Germany - MSCI Germany Banks (MXDE0BK); the UK - FTSE 350 Banking Index (F3BANK); and the
US - PHLX KBW Bank Sector Index (BKX).

4The starting date of the crisis is chosen on March 3, 2008 since one of the major US financial institutions,
Bear Stearns, was rescued by the Fed using emergency funding on that day due to large losses. The end of
August 2009 is generally considered as an ending date of the crisis in financial markets as economic activity in
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Figure 1: Daily percentage returns of equity markets and equity returns of banking sectors
for eight countries (Hong Kong, Korea, Chile, Mexico, France, Germany, the UK and the
US) during January 1, 2005 to August 31, 2009. The shaded areas refer to the global crisis
starting from March 3, 2008 to August 31, 2009.

1. The figure illustrates that the volatility of equity returns changes dramatically in equity

markets and banking sectors globally during the financial crisis of 2008-09.

Tables 1 to 3 report the moment and co-moment statistics of the dataset. Several features

characteristic of crises are highlighted in this table and are compared to a period in which

there is no crisis. Table 1 reports descriptive statistics of the own-moments of the mean,

standard deviation, skewness and kurtosis for each return series in both equity markets and

banking sectors for each period.

The first and second moments in the table show that average daily returns of the equity

the US bounced back (Moore and Palumbo, 2010). This paper does not consider the period of the European
sovereign debt crisis, and we also acknowledge jitters in international banking markets such as the issues
with Northern Rock as early as 2007.
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indices decrease and volatility increases across the board in the crisis period as expected.5

These statistics are consistent with a risk-averse investor realizing a higher level of excess

returns in the non-crisis period in conjunction with a higher level of risk across the two

regimes (Sharpe, 1964; Lintner, 1965; Black, 1972). Inspection of the third and fourth

moments of the returns shows that it is not only the first and second moments that change.

Non-normality with asymmetry and fat tails is a major characteristic of returns in the equity

markets and banking sectors. The third moment of skewness is generally negative in the non-

crisis period but switches sign to be positive in the crisis period for most markets. Asset

returns also yield leptokurtic behavior and kurtosis rises during the crisis period, illustrating

that the return distributions are far from normal.

Tables 2 and 3 reports statistics of the higher order co-moments of the equity and banking

returns with the US banking returns during the non-crisis and crisis periods. Each co-

moment captures different features of the joint asset return relationship including: i) linear

dependence; ii) asymmetric dependence; and iii) extremal dependence. The tables show that

in line with the theories touched on earlier, the three types of market dependence change in

the crisis period.

Correlation between the US banking sector and all other returns increase apart from

the correlation of the US banking sector with the US equity market indicating foremost the

nature of the crisis as being one of a banking issue, rather than of the aggregate equity

markets in the US (Table 2).

Turning to the asymmetric dependence statistics, an increase in the magnitude of the

value of co-skewness12 indicates that the market volatilities for the countries in the sample

are more strongly related to the returns in the US banking sector than previously. Negative

co-skewness12 values suggest that an asset invested in the US banking sector should achieve

a relatively higher return when other markets are less volatile. Positive co-skewness12 is

desirable from the point of view of the US investor as higher returns during the volatile

period provide a good hedge. That is, an asset pays higher returns to the US banking sector

as other equity markets become more volatile. The logic is reversed for the co-skewness21

case. The co-skewness12 statistics in the equity markets show a fall in value in most cases,

while for the banking sector all coeffi cients are higher. A similar property is presented in

Table 2 where co-skewness21 rises or moves towards positive values in almost all markets

5Volatility in the banking sectors display much higher values than that in the equity markets.
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during the crisis period.

Table 3 presents statistics on the extremal (fourth order) co-moments of the returns for

the two periods. As the table shows, co-kurtosis13 and co-kurtosis31 are positive during both

periods for all countries apart from Hong Kong and Korea where both versions are negative

during the non-crisis period for the banking sector and for Korea for the equity sector. Co-

kurtosis13 ranges from -1.728 (Korea) to 9.386 (US) during the non-crisis period and from

0.061 (Hong Kong) to 5.563 (US) during the crisis period. Co-kurtosis increases in the crisis

period in most cases, indicating that the joint distribution of returns has a sharper peak and

longer and fatter tails during the crisis period. The higher values of co-kurtosis13 in the crisis

period implies returns in the US banking sector are low with a positive skewness of returns

in the other markets, thus increasing contagion risk in the crisis period.

Similarly, co-kurtosis31 is higher in the crisis period, suggesting that the distribution of

returns in the US banking sector exhibits negative skewness as the returns in the other

markets are low during the crisis period, again increasing risk. The co-volatility22 statistics,

which measures the correlation between volatilities, are all positive in both periods. Interest-

ingly, the co-volatility relationship does not change as systematically as the other statistics.

Sometimes the statistic takes a higher value than in the non-crisis period and other times it

does not. Most interesting is that the co-volatility statistics for the US are lower for both

the equity and banking sectors in the crisis period.

3 Volatility Skew and Smile

This section provides evidence on the volatility skew and smile effect in higher order co-

moments, while the next section explores the risk-return trade-off effect in a portfolio choice

model accounting for higher order co-moments, motivating the development of the test sta-

tistics for contagion through extremal dependence.

Figure 2 illustrates an example of the volatility skew effect in non-crisis data and the smile

effect evident in crisis data using the example of the Korean and US banking equity data

used in the empirical section. Panels A and C of the figure illustrate co-movements between

the equity returns and return volatility in the Korean and US equity markets. The figures

show that the data exhibits volatility skew, a negative relation (left skew) in the non-crisis

period for both combinations of asymmetry. This result suggests that an asset invested in
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the equity market in the US achieves high returns when the Korean banking sector is less

volatile. However, the crash period can result in speculators investing in securities with

a negative average return during the volatile periods. This phenomenon is highlighted in

Panel D of Figure 2 where the volatility-return co-movements in the crisis period display

an upward relation (right skew), indicating positive co-skewness and increasing risk in the

crisis period. Asset returns in financial markets can hence show a smile when considering

the non-crisis and crisis periods together, as the return volatility plotted against the asset

return turns from downward sloping to upward sloping (Panels C and D).

There is also evidence of the smile effect through the co-kurtosis or co-volatility channel.

There is a negative relationship between asset returns and positive skewness of returns ob-

served in financial markets in the non-crisis periods, leading to low co-kurtosis risk in the

pre-crisis period. As Panels A and C of Figure 3 shows, there is a slight negative correlation

between the asset returns and return skewness in the Korean and the US banking sectors

in the non-crisis period. This result implies a lower co-kurtosis between the two markets

and indicates that an asset that has lower co-kurtosis achieves high returns when another

market returns exhibit negative skewness. The financial shocks lead to speculator losses

(negative returns) as speculators hit funding constraints and remain holding securities with

negative skewness, thus increasing co-kurtosis risk (Brunnermeier et al., 2008). As shown

in Panels B and D of Figure 3, there is a positive correlation between equity returns and

return skewness in the equity markets of Korean and the US banking sector during the crisis

period, indicating the smile effect through co-kurtosis channel that appears in the financial

markets during the crash period.

Similarly, changes in co-movements between return volatilities turning from a negative

relationship to a positive one in the crisis period reflects the smile effect through the co-

volatility channel. Figure 4 shows that co-volatility between the Korean and the US banking

sectors is much higher in the crisis period compared with the non-crisis period.

4 Portfolio Choice

In standard theory of portfolio choice, investors achieve the optimal asset allocation by max-

imizing the expected value of a utility function subject to the variance of the portfolio in the

mean-variance framework (Sharpe, 1964, Lintner, 1965, Black, 1972). The descriptive sta-
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tistics in Tables 1 to 3 emphasize the importance of modelling asymmetric and tail risks. To

take these asymmetries into account, a traditional CAPM model augmented with higher or-

der moments and co-moments is built to illustrate the risk return trade-offbetween expected

excess returns and the higher order terms.

4.1 Higher Order Moments and Portfolio Choice

Consider the standard utility function of an investor allocating their portfolio across N risky

assets to maximize their end of period wealth W

Max
αo,α1,...,αN

E [U (W )] , (1)

given the budget constraint:

α0 +
N∑
i=1

αi = 1.

The fraction of wealth allocated to the risk-free asset is α0, and the fraction of wealth

allocated to the ith risky asset is αi. The end of period wealth is

W = α0 (1 +Rf ) +
N∑
i=1

αi (1 +Ri) , (2)

where Rf and Ri are the rates of return on the risk-free and risky assets respectively.

Assume the distribution of returns of the investor’s portfolio of risky assets to be asym-

metric and fat-tailed. In this case, the investor’s utility function is constructed to include

higher order moments since the quadratic mean and variance do not completely determine

the distribution. Scott and Horvath (1980) show that investor preferences for higher mo-

ments are essential for portfolio selection. The expected utility of the return on investment

W of the investor in this case is given by an infinite-order Taylor series expansion around

expected wealth:

E [U (W )] =

∞∑
q=0

U
(q) (

W
)

q!
E
[(
W −W

)q]
, (3)

where the expected value of the end of period wealth is W = E (W ) and the q-th derivative

of U is U
(q)
.
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Equation (3) can be decomposed into the investor’s risk preferences U
(q) (

W
)
and the

q moments of the distribution E
[(
W −W

)q]
. Scott and Horvath (1980) show that under

the assumption of positive marginal utility of wealth, a utility function exhibits decreasing

absolute risk aversion at all wealth levels with strict consistency for moment preferences of

U
(q) (

W
)
> 0 if q is odd and U

(q) (
W
)
< 0 if q is even.

Consider equation (3) for the case of the moments q = 1 to q = 4. The expected utility

function can be written as

E [U (W )] = U
(
W
)
+ U

′ (
W
)
E
[(
W −W

)]
+
1

2
U

′′ (
W
)
E
[(
W −W

)2]
+

1

3!
U

′′′ (
W
)
E
[(
W −W

)3]
+
1

4!
U

(4) (
W
)
E
[(
W −W

)4]
+

o(W ). (4)

where o(W ) is the Taylor remainder. The expected return, variance, skewness and kurtosis

for the end of period return, Rp, are denoted by

µp = E [Rp] (5)

σ2p = E
[(
Rp − µp

)2]
= E

[(
W −W

)2]
s3p = E

[(
Rp − µp

)3]
= E

[(
W −W

)3]
k4p = E

[(
Rp − µp

)4]
= E

[(
W −W

)4]
,

where µp is the expected return on the portfolio defined as

µp = E [α0Rf ] + E

[
N∑
i=1

αiRi

]
=

N∑
i=0

αiµi, (6)

where αi is the weight of the ith asset in the portfolio with αi ≥ 0 and
N∑
i=0

αi = 1.

The investor’s equilibrium condition is solved by taking the first order conditions of the

Lagrange of the utility function of wealth subject to the budget constraint as shown in

Appendix A.1. The expected excess return on each risky asset over the risk free rate is given

by

E(Ri)−Rf =

(
∂E [U (W )]

∂σ2p

)
σ2p +

(
∂E [U (W )]

∂s3p

)
s3P +

(
∂E [U (W )]

∂k4p

)
k4P , (7)
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where

(
∂E[U(W )]

∂σ2p

)
= −

(
∂( 12U

′′
(W))

∂αi

)
∂U(W)
∂W

,
(
∂E[U(W )]

∂s3p

)
= −

 ∂( 1
3!
U

′′′
(W))

∂αi


∂U(W)
∂W

,
(
∂E[U(W )]

∂k4p

)
= −

(
∂( 1
4!
U
(4)
(W))

∂αi

)
∂U(W)
∂W

.

(8)

Equation (7) shows that the expected excess return on each risky asset contains two elements:

i) the portfolio risk premium involving higher order moments of volatility (σ2p), skewness (s
3
p)

and kurtosis (k4p ); and ii) measures of the investor’s risk preferences for volatility
(
∂E[U(W )]

∂σ2p

)
,

skewness
(
∂E[U(W )]

∂s3p

)
and kurtosis

(
∂E[U(W )]

∂k4p

)
.

4.2 Higher Order Co-moments and Portfolio Choice

If an investor invests in two risky assets, N = 2, then the variance, skewness and kurtosis of

the end of period returns can be decomposed into

σ2p = E
[(
Rp − µp

)2]
(9)

= E

(N=2∑
i=1

αi (Ri − µi)
)2

= α21E
[
(R1 − µ1)

2]+ α22E
[
(R2 − µ2)

2]+ 2α1α2E [(R1 − µ1) (R2 − µ2)] ,

s3P = E

(N=2∑
i=1

αi (Ri − µi)
)3 (10)

= α31E
[
(R1 − µ1)

3]+ α32E
[
(R2 − µ2)

3]+
3α21α2E

[
(R1 − µ1)

2 (R2 − µ2)
]
+ 3α1α

2
2E
[
(R1 − µ1) (R2 − µ2)

2] ,

k4P = E

(N=2∑
i=1

αi (Ri − µi)
)4 (11)

= α41E
[
(R1 − µ1)

4]+ α42E
[
(R2 − µ2)

4]+ 4α31α2E [(R1 − µ1)3 (R2 − µ2)]
+4α1α

3
2E
[
(R1 − µ1) (R2 − µ2)

3]+ 6α21α22E [(R1 − µ1)2 (R2 − µ2)2] ,
14



respectively.

Substituting equations (9) to (11) into equation (7) gives the expected excess return for

asset i in terms of the second, third and fourth order moments and co-moments. The co-

moments include the correlation, co-skewness, co-kurtosis and co-volatility as shown below:

E(Ri)−Rf = θ1E
[
(R1 − µ1)

2]+ θ2E
[
(R2 − µ2)

2]+ θ3E [(R1 − µ1) (R2 − µ2)]

+θ4E
[
(R1 − µ1)

3]+ θ5E
[
(R2 − µ2)

3]+ θ6E
[
(R1 − µ1)

2 (R2 − µ2)
]

+θ7E
[
(R1 − µ1) (R2 − µ2)

2]+ θ8E
[
(R1 − µ1)

4]+ θ9E
[
(R2 − µ2)

4]
+θ10E

[
(R1 − µ1)

3 (R2 − µ2)
]
+ θ11E

[
(R1 − µ1) (R2 − µ2)

3]
+θ12E

[
(R1 − µ1)

2 (R2 − µ2)
2] , (12)

where

θ1 = α21

(
∂E[U(W )]

∂σ2p

)
, θ5 = α32

(
∂E[U(W )]

∂s3P

)
, θ9 = α42

(
∂E[U(W )]

∂k4P

)
,

θ2 = α22

(
∂E[U(W )]

∂σ2p

)
, θ6 = 3α

2
1α2

(
∂E[U(W )]

∂s3P

)
, θ10 = 4α

3
1α2

(
∂E[U(W )]

∂k4P

)
,

θ3 = 2α1α2

(
∂E[U(W )]

∂σ2p

)
, θ7 = 3α1α

2
2

(
∂E[U(W )]

∂s3P

)
, θ11 = 4α1α

3
2

(
∂E[U(W )]

∂k4P

)
,

θ4 = α31

(
∂E[U(W )]

∂s3P

)
, θ8 = α41

(
∂E[U(W )]

∂k4P

)
, θ12 = 6α

2
1α

2
2

(
∂E[U(W )]

∂k4P

)
.

(13)

Equations (12) and (13) are valid for all i.

Rewriting the expression in equation (12) for asset 1 gives:

E(R1)−Rf = θ1E
[
(R1 − µ1)

2]+ θ2E
[
(R2 − µ2)

2]+ θ3E [(R1 − µ1) (R2 − µ2)]

+θ4E
[
(R1 − µ1)

3]+ θ5E
[
(R2 − µ2)

3]+ θ6E
[
(R1 − µ1)

2 (R2 − µ2)
]

+θ7E
[
(R1 − µ1) (R2 − µ2)

2]+ θ8E
[
(R1 − µ1)

4]+ θ9E
[
(R2 − µ2)

4]
+θ10E

[
(R1 − µ1)

3 (R2 − µ2)
]
+ θ11E

[
(R1 − µ1) (R2 − µ2)

3]
+θ12E

[
(R1 − µ1)

2 (R2 − µ2)
2] . (14)

This equation decomposes the expected excess return for the risky asset 1 in terms of

risk prices and risk quantities. The risk prices (the θi in equation (13)) are expressed

in terms of the various risk aversion measures arising from the utility function of the in-

vestor (
(
∂E[U(W )]

∂σ2p

)
,
(
∂E[U(W )]

∂s3P

)
and

(
∂E[U(W )]

∂k4P

)
) and the shares of the asset in the portfolio
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(αi). The risk quantities contain the second moment terms of the variance and covariance,

the third moment terms of skewness (E
[
(R1 − µ1)

3] and E [(R2 − µ2)3]) and co-skewness
(E
[
(R1 − µ1)

2 (R2 − µ2)
]
and E

[
(R1 − µ1) (R2 − µ2)

2]), as well as the fourth moment terms
of kurtosis (E

[
(R1 − µ1)

4] and E [(R2 − µ2)4]), co-kurtosis (E [(R1 − µ1)3 (R2 − µ2)] and
E
[
(R1 − µ1) (R2 − µ2)

3]) and co-volatility (E [(R1 − µ1)2 (R2 − µ2)2]).
4.3 Effects of Higher Order Moments on Risky Assets

To illustrate the properties of the expected excess return for risky asset 1 in equation (14)

under the scenario of higher order co-moments, the risk-return trade-off surfaces between

the expected excess return, the variance, skewness and kurtosis, are presented in Figure 5.

The figure is generated by simulating equation (14) where the parameters governing the

simulation are chosen as

θ1 = 0.5, θ2 = 0.7, θ3 = 2.0, θ4 = θ5 = θ6 = θ7 = −1.5, (15)

θ8 = θ9 = 4, θ10 = θ11 = θ12 = 1.5,

with the values of co-moments given by

E [(R1 − µ1) (R2 − µ2)] = 0.80, E
[
(R1 − µ1)

2 (R2 − µ2)
]
= 0.00,

E
[
(R1 − µ1) (R2 − µ2)

2] = 0.00, E
[
(R1 − µ1) (R2 − µ2)

3] = 1.47,
E
[
(R1 − µ1)

3 (R2 − µ2)
]
= 1.46, E

[
(R1 − µ1)

2 (R2 − µ2)
2] = 2.20.

The parameters θ4, . . . , θ7 are restricted to have a negative sign due to the assumption

that a risk-averse investor has a utility function with decreasing absolute risk aversion, while

the other parameters θ8, . . . , θ12 are set up to have a positive sign due to the utility function

exhibiting decreasing absolute prudence (Scott and Horvath, 1980).

Panel A of Figure 5 presents the mean-skewness-kurtosis surface for a case where there

is no volatility (E
[
(R1 − µ1)

2] = 0 and E [(R2 − µ2)2] = 0) and panel B for a case where
there is volatility (E

[
(R1 − µ1)

2] = 2 and E
[
(R2 − µ2)

2] = 2). Table 4 summarizes the

simulation parameters for the case of no volatility (Panel A of Figure 5) and the case of

volatility (Panel B of Figure 5). These parameters are chosen from the data on which the
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Figure 5: Mean, volatility, skewness and kurtosis trade-offs. Panel A presents a
mean-skewness-kurtosis surface for the case of no volatility (E

[
(R1 − µ1)

2] = 0 and
E
[
(R2 − µ2)

2] = 0). Panel B shows a mean-skewness-kurtosis surface for the case of volatil-
ity (E

[
(R1 − µ1)

2] = 2 and E [(R2 − µ2)2] = 2). Table 4 summarizes the parameters of the
moments and co-moments chosen to equation 14 which generates these surfaces.

empirical results are based in Section 7.

Given any level of volatility in Panels A and B of Figure 5, there is a positive relationship

between the expected excess return and kurtosis while the relationship between skewness

and kurtosis is negative. Comparing panel A with panel B of Figure 5, an investor needs

to be compensated for higher risk (volatility) with higher expected excess returns. Given

any level of kurtosis, there is a negative trade-off between the expected excess return and

skewness. These findings suggest that an investor requires a higher expected excess return for

taking more volatility and kurtosis risks; whereas, an investor also realizes a lower expected

excess return for the benefit of positive skewness. Fang and Lai (1997) and Hwang and

Satchell (1999) also show that expected excess return for the risky asset is associated not

only with volatility but also with skewness and kurtosis. Moreover, evidence supports that

a four-moment CAPM is able to price the cross-moments of returns much better than the

traditional CAPM (Dittmar, 1999).
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5 Fourth Order Co-moments Statistics

The previous sections emphasize the impacts of a financial crisis on the risk-return trade-off

between expected asset returns and higher order moments and co-moments in understanding

the effects of contagion on risk during financial crises. To develop a new approach of testing

for contagion through changes in extremal dependence, test statistics of the fourth order

co-moments are developed in this section using the framework of a non-normal multivariate

returns distribution by setting co-moment restrictions.

5.1 A Bivariate Generalized Exponential Family

To develop the statistics of higher order co-moments, a non-normal multivariate returns

distribution is specified in order to model the distribution with asymmetry and leptokurtosis.

Following the work of Fry et al. (2010), the bivariate generalized exponential family of

the distribution through the first to the fourth order moments and co-moments is used for

developing the statistics of co-moments and it is represented as6

f(r) = exp(h− η) (16)

= exp

(
12∑
i=1

θigi(r)− η
)

= exp
(
θ1r

2
1 + θ2r

2
2 + θ3r1r2 + θ4r1r

2
2 + θ5r

2
1r2 + θ6r

2
1r
2
2

+θ7r
1
1r
3
2 + θ8r

3
1r
1
2 + θ9r

3
1 + θ10r

3
2 + θ11r

4
1 + θ12r

4
2 − η

)
,

where h is a function of parameters θi and gi(r). The choices for gi(r) are polynomials and

cross-products in the elements of r which are assumed to follow an independent bivariate

normal distribution, and η is a normalizing constant denoted as

η = ln

∫ ∫
exp

(
θ1r

2
1 + θ2r

2
2 + θ3r1r2 + θ4r1r

2
2 + θ5r

2
1r2 + θ6r

2
1r
2
2 (17)

+θ7r
1
1r
3
2 + θ8r

3
1r
1
2 + θ9r

3
1 + θ10r

3
2 + θ11r

4
1 + θ12r

4
2

)
dr1dr2.

In terms of equation (16), the parameters θ1 and θ2 control the variances of assets 1 and

6The univariate class of generalized exponential family of distributions is developed by Cobb et al. (1983)
and Lye and Martin (1993).
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2 respectively. The parameter θ3 controls the degree of linear dependence in the relationship

between assets 1 and 2 (r1 and r2), referring to a correlation coeffi cient. The parameters θ4

and θ5 measure the asymmetry of the probability distribution of the two assets, capturing

dependent links between the first moment of asset 1 (r1) and the second moment of asset

2 (r22) and between the second moment of asset 1 (r
2
1) and the first moment of asset 2 (r2).

These parameters represent the co-skewness coeffi cients. The coeffi cients of co-volatility and

co-kurtosis (the fourth co-moments) measure the extent to which observations tend to have

relatively large frequencies around the centre and in the tails of the joint distribution. These

parameters (θ6, θ7 and θ8) capture the interaction between the second moment of two assets

1 and 2 (r21 and r
2
2), between the first moment and third moment of assets 1 and 2 (r

1
1 and

r32) and between the third moment and the first moment of assets 1 and 2 (r
3
1 and r

1
2). The

parameter θ6 denotes the co-volatility coeffi cient and the parameters θ7 and θ8 denote the

co-kurtosis coeffi cients. The parameters θ9 and θ10 as well as θ11 and θ12 control the skewness

(r31 and r
3
2) and kurtosis (r

4
1 and r

4
2) for assets 1 and 2 respectively.

5.2 Co-kurtosis and Co-volatility Test Statistics

In this paper, the Lagrange multiplier test is adopted to develop the statistics of co-kurtosis

and co-volatility as the bivariate generalized exponential family of the distribution in equa-

tion (16) is nested in the bivariate normal distribution by setting the restrictions θ4 = . . . =

θ12 = 0.

Consider a sample of size T from the bivariate generalized exponential family of the

distribution with a finite number K of unknown parameters θ = (θ1, ..., θK)
′ summarizing

the moments of a log likelihood function lnLt(θ) = h−η in equation (16) where h =
K∑
i=1

θigi(r)

and η is the normalizing constant respectively. The hypothesis to be tested is specified as

H0 : θ1 = · · · = θp = 0; p ≤ K. (18)

Let θ̂ be the maximum likelihood estimator of θ. The Lagrange multiplier test statistic is

given by

LM = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)
, (19)
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which is asymptotically distributed as the chi-squared with p degrees of freedom

LM
d−→ χ2p. (20)

Here, q
(
θ̂
)
is the score function evaluated at θ̂ given by

q
(
θ̂
)
=

(
∂ lnLt(θ)

∂θ

)
θ=θ̂

, (21)

and I
(
θ̂
)
is the asymptotic information matrix evaluated at θ̂, that is

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

]
θ=θ̂

− E
[
∂h

∂θ

]
θ=θ̂

E

[
∂h

∂θ′

]
θ=θ̂

)
. (22)

The proof of the asymptotic information matrix is shown in Appendix A.2.

Consider the restricted model, the bivariate generalized normal distribution with co-

volatility, that is

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η
]
, (23)

where

η = ln

∫∫
exp

[(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2]
dr1dr2. (24)

A test of the restriction for the hypothesis of normality is given by

H0 : θ6 = 0, (25)
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which constitutes a test of co-volatility.

If the expression of the fourth order co-moment term, θ6
(
r1,t−µ1
σ1

)2 (
r2,t−µ2
σ2

)2
, in equations

(23) and (24) is replaced with the expression of θ7
(
r1,t−µ1
σ1

)1 (
r2,t−µ2
σ2

)3
or θ8

(
r1,t−µ1
σ1

)3 (
r2,t−µ2
σ2

)1
,

these are for a test of normality. A test of the restriction for the hypothesis of normality is

set up as

H0 : θp = 0, p = 7, 8,

which constitutes a test of the first form of co-kurtosis (θ7 = 0) and a test of the second

form of co-kurtosis (θ8 = 0) respectively. Under the null hypothesis, the maximum likelihood

estimators of the unknown parameters under the restricted model in equation (23) are

µ̂i =
1

T

T∑
t=1

ri,t; σ̂
2
i =

1

T

T∑
t=1

(ri,t − µ̂i)
2 ; ρ̂ =

1

T

T∑
t=1

(
r1,t − µ̂1
σ̂1

)(
r2,t − µ̂2
σ̂2

)
; i = 1, 2. (26)

The Lagrange multiplier statistics for co-volatility (LM1) and for co-kurtosis (LM2 and LM3)

are used to test for extremal dependence and are shown as

LM1 =
1

T
(
4ρ̂4 + 16ρ̂2 + 4

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)2(
r2,t − µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

)]2

LM2 =
1

T
(
18ρ̂2 + 6

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)1(
r2,t − µ̂2
σ̂2

)3
− T (3ρ̂)

]2

LM3 =
1

T
(
18ρ̂2 + 6

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)3(
r2,t − µ̂2
σ̂2

)1
− T (3ρ̂)

]2
. (27)

The derivations for the test statistics of co-volatility and co-kurtosis are shown in Appendix

A.3.

Under the null hypothesis in equation (18), LM1, LM2 and LM3 are distributed asymp-

totically as χ21.

6 Higher Order Co-moment Contagion Tests

In this section, two types of contagion tests are developed based on a change in the non-linear

dependence between two assets, which is motivated by the documentation of asymmetry and
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fat tails in asset markets in earlier studies by Harvey and Siddique (2000) and Dittmar (2002),

and by the more recent findings of the effects of shocks on the behavior of asset returns by

Jondeau and Rockinger (2009). The first is the asymmetric dependence tests developed by

Fry et al. (2010). The second is the extremal dependence tests, which are proposed in

this paper. Extremal dependence captures the dependence between an extreme event in one

market and a similar event in another market and it is used to derive a new test of financial

contagion in this paper.

In deriving the contagion tests, the following notation is used. Let x and y denote the

non-crisis and crisis periods, respectively. Tx and Ty are the sample sizes of the non-crisis

and crisis periods respectively. T = Tx + Ty is the sample size of the full period. Then, the

sample correlation coeffi cient during the non-crisis period (low-volatility) is ρx and during

the crisis period (high-volatility) is ρy. Let i denote the source crisis asset market and j

denote the recipient market of contagion. µ̂xi, µ̂xj, µ̂yi and µ̂yj are the sample means of the

asset returns for markets i and j during the non-crisis and crisis periods and σ̂xi, σ̂xj, σ̂yi

and σ̂yj are the sample standard deviations of the asset returns for markets i and j during

the non-crisis and crisis period, respectively.

6.1 Asymmetric Dependence Tests

The aim of the asymmetric dependence tests of contagion by Fry et al. (2010) is to identify

whether there is a statistically significant change in co-skewness between the non-crisis and

crisis period after controlling for the market fundamentals. There are two forms of this tests,

which depend on whether the source country coincides with asset returns (CS12) or asset

volatility (CS21).

The first type is to test for contagion where the shocks transmit from the returns of a

source market i to the volatility of asset returns of a recipient market j. The second type is

to test for contagion where the shocks spread from the volatility of asset returns of a source
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market i to the asset returns of a recipient market j given as

CS12(i → j; r1i , r
2
j ) =

 ψ̂y
(
r1i , r

2
j

)
− ψ̂x

(
r1i , r

2
j

)√
4v̂2
y|xi

+2

Ty
+ 4ρ̂2x+2

Tx


2

(28)

CS21(i → j; r2i , r
1
j ) =

 ψ̂y
(
r2i , r

1
j

)
− ψ̂x

(
r2i , r

1
j

)√
4v̂2
y|xi

+2

Ty
+ 4ρ̂2x+2

Tx


2

, (29)

where

ψ̂y(r
m
i , r

n
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)m(yj,t − µ̂yj
σ̂yj

)n
ψ̂x(r

m
i , r

n
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)m(xj,t − µ̂xj
σ̂xj

)n
,

and

v̂
y|xi
=

ρ̂y√
1 +

(
s2y,i−s2x,i
s2x,i

) (
1− ρ̂2y

) , (30)

represents the adjusted correlation coeffi cient proposed by Forbes and Rigobon (2002).

Forbes and Rigobon (2002) argue that estimation of cross-market correlation coeffi cients

is biased due to heteroscedasticity in market returns. The adjusted correlation coeffi cient is

scaled by a non-linear function of the percentage change in volatility of the source market

returns
((
s2y,i − s2x,i

)
/s2x,i

)
to solve this problem.

To test that there is a significant change in co-skewness between the non-crisis and crisis

period, the null and alternative hypotheses are

H0 : ψy(r
m
i , r

n
j ) = ψx(r

m
i , r

n
j )

H1 : ψy(r
m
i , r

n
j ) 6= ψx(r

m
i , r

n
j ).

Under the null hypothesis of no contagion, tests of contagion based on changes in co-skewness
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are asymptotically distributed as

CS12, CS21(i→ j)
d−→ χ21.

6.2 Extremal Dependence Tests

Co-kurtosis and co-volatility are utilized here for measuring extremal dependence. The idea

of the extremal dependence tests is to identify whether there is a significant change in co-

kurtosis or co-volatility between a non-crisis and a crisis period.

Three types of extremal dependence tests are specified depending on whether asset returns

in the source market are expressed in terms of returns and cubed returns in computing co-

kurtosis and in terms of return volatility in computing co-volatility. The first type of statistic

CK13 is to detect the shocks emanating from the asset returns of a source market i to the

cubed returns (akin to skewness) of an asset in a recipient market j. The second type of

statistic CK31 is to measure the shocks transmitting from the cubed returns of asset in a

source market i to the returns of asset in a recipient market j given as

CK13(i → j; r1i , r
3
j ) =

 ξ̂y
(
r1i , r

3
j

)
− ξ̂x

(
r1i , r

3
j

)√
18v̂2

y|xi
+6

Ty
+ 18ρ̂2x+6

Tx


2

(31)

CK31(i → j; r3i , r
1
j ) =

 ξ̂y
(
r3i , r

1
j

)
− ξ̂x

(
r3i , r

1
j

)√
18v̂2

y|xi
+6

Ty
+ 18ρ̂2x+6

Tx
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2

, (32)

where

ξ̂y(r
m
i , r

n
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)m(yj,t − µ̂yj
σ̂yj

)n
−
(
3v̂y|xi

)
ξ̂x(r

m
i , r

n
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)m(xj,t − µ̂xj
σ̂xj

)n
− (3ρ̂x) ,
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and

v̂
y|xi
=

ρ̂y√
1 +

(
s2y,i−s2x,i
s2x,i

) (
1− ρ̂2y

) .
The third type of statistic CV22 is to detect the shocks transmitting from the volatility of

asset returns in a source market i to the volatility of asset returns in a recipient market j.

The statistic of co-volatility can be represented as

CV22(i→ j; r2i , r
2
j ) =

 ξ̂y
(
r2i , r

2
j

)
− ξ̂x

(
r2i , r

2
j

)√
4v̂4
y|xi

+16v̂2
y|xi

+4

Ty
+ 4ρ̂4x+16ρ̂

2
x+4

Tx
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2

, (33)

where

ξ̂y(r
2
i , r

2
j ) =

1

Ty

Ty∑
t=1

(
yi,t − µ̂yi
σ̂yi

)2(yj,t − µ̂yj
σ̂yj

)2
−
(
1 + 2v̂2y|xi

)
ξ̂x(r

2
i , r

2
j ) =

1

Tx

Tx∑
t=1

(
xi,t − µ̂xi
σ̂xi

)2(xj,t − µ̂xj
σ̂xj

)2
−
(
1 + 2ρ̂2x

)
.

The co-volatility change test of contagion proposed in this paper is quite similar to the

approach of the volatility spillovers across markets introduced by Diebolz and Yilmaz (2009).

They construct indices of return spillovers between markets, and volatility spillovers between

markets.

To test that there is a significant change in co-kurtosis or co-volatility between the non-

crisis period and the crisis period, the null and alternative hypotheses are

H0 : ξy(r
m
i , r

n
j ) = ξx(r

m
i , r

n
j )

H1 : ξy(r
m
i , r

n
j ) 6= ξx(r

m
i , r

n
j ).

Under the null hypothesis of no contagion, tests of contagion based on changes in co-kurtosis

or co-volatility are asymptotically distributed as

CK13, CK31, CV22(i→ j)
d−→ χ21.
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6.3 Finite Sample Properties

The properties of the contagion test statistics are illustrated in terms of the relatively large

sample period of the non-crisis but the relatively short sample period of the crisis which is a

characteristic of most financial market crises. To investigate this issue, the finite sample dis-

tribution properties of the contagion test statistics under the null hypothesis of no contagion

are conducted through simulation.

To generate the asset returns in the simulation, the parameters are chosen for the follow-

ing non-crisis and crisis variance-covariance matrices of returns in two equity markets i and

j as

Vx =

 0.557 0.143

0.143 2.660

 , Vy =
 29.195 14.350

14.350 16.430

 . (34)

The parameters chosen are based on the data used in the empirical applications shown

in section 7. For the non-crisis period matrix of the returns (Vx), the parameters for the

variance of equity returns in two markets, 0.557 and 2.660, are chosen respectively based on

the sample variances of equity returns in the US banking sector and the average of the seven

selected recipient markets. The parameter for the covariance, 0.143, is set in terms of average

sample covariances of equity returns between the US banking sector and the selected markets

during the non-crisis period. The parameters for the crisis variance-covariance matrix are

specified using the same concept as that used to set up the parameters of the non-crisis

variance-covariance matrix. The variance-covariance matrices of Vx and Vy show that the

increase in volatility of returns over the two periods is 5145% for the source market and

517% for the recipient market, respectively. The correlation coeffi cients during the non-crisis

and crisis periods yield 0.118 (ρx) and 0.655 (ρy). Furthermore, the adjusted correlation

coeffi cient shown in equation (30) is vy|xi = 0.119.

The returns are randomly generated to follow a bivariate normal distribution with zero

mean and variances given by equation (34) in computing the contagion tests. The contagion

statistics of co-skewness (CS12, CS21), co-kurtosis (CK13, CK31) and co-volatility (CV22) are

conducted by Monte Carlo simulation using 10, 000 replications given the sample sizes of the

non-crisis period (Tx = 760) and of the crisis period (Ty = 391). The contagion statistics

of CS12, CS21, CK13, CK31 and CV22 as well as the statistic of the asymptotic distribution

(χ21) for three values of the significance level (α) are presented in Table 5.
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The results show that the statistics for contagion based on changes in co-skewness (CS12

and CS21) and co-volatility (CV22) are good approximations of the finite sample distribution

for the three values of the significance level (α). These statistics, CS12, CS21 and CV22,

tend to follow a chi-square distribution with one degree of freedom (χ21). However, the test

statistics for contagion based on changes in co-kurtosis (CK13 and CK31) tend to be biased

compared with the asymptotic distribution (χ21). The critical values require adjusting as

shown in Table 5 for the latter statistics.7

7 Empirical Application

The financial crisis of 2008-09 originated in the US interbank market following the collapse

of Lehman Brothers and escalated into a global phenomenon. It was triggered by a com-

plex interaction between valuation in the housing market and liquidity problems in the US

banking system. The US banking sector is considered to be a potentially essential channel

for contagion risk due to the high volume of transactions through the different segments of

the financial sector both locally and across countries. In particular, the US banking sector

played a decisive role in the development of the financial crises as financial intermediaries

faced a potential refinancing problem in the maturity mismatch between loans and assets

(Brunnermeier, 2009). Such mismatching resulted in a liquidity shortage for investments

banks, ultimately leading to the failure of Lehman Brothers occurring in mid-September,

2008. Subsequently, the insolvency of the US shadow banks rapidly developed and spread

across the entire financial system, leading to a number of European bank failures and slump-

ing global stock markets.

The tests of contagion developed in Section 6 are applied to identify transmission channels

through changes in asymmetric and extremal dependences during the financial crisis of 2008-

09 for the data set described in Section 2. An extensive set of linkages for financial contagion

in this paper are investigated by testing: i) contagion linkages between banking sectors of

different countries; and ii) contagion linkages between banking sectors and equity markets

within countries.8

7If the non-crisis period and crisis period sample sizes are the same, this bias does not occur in the CK13

and CK31 statistics.
8In computing the statistics of contagion testing, a Vector Autoregressive (VAR) model is first specified

and estimated not only to control for market fundamentals (country-specific and cross market relationships
that always exist) but also to handle with the problems of serial correlation in the data set (Forbes and

27



The first set of linkages is to detect contagion through the transmission of shocks among

banks. Cross-border contagion between banks is studied by Gropp and Moerman (2004) and

Gropp et al. (2010). They use non-parametric tests of banks’changes in distances-to-default

to test for contagion between two banks and measure contagion as the changes in the tail

dependence of joint distribution (equivalent to co-exceedances) during the crisis period. It is

worth emphasizing that tail (extremal) dependence is a key component for risk management

as it is interpreted as the probability of the worst event occurring in one market given that

the worst event occurs in another market (Garcia and Tsafack, 2011). Second, contagion

linkages between the banking sectors and equity markets are presented as the characteristics

of the crisis are disorder in a range of financial markets, not just in the source market.

The next sub-sections present the empirical results of the contagion tests based on

changes in asymmetric dependence (co-skewness) and extremal dependence (co-kurtosis and

co-volatility) during the global financial crisis of 2008-09 using the crisis sourced in the US

banking sector as the source of the crisis. Under the null hypothesis of no contagion, the

critical values for the contagion tests are generated from the simulation study of Section 6.3

and shown in Table 5.

7.1 Contagion Channel through Asymmetric Dependence

Table 6 presents the empirical results for the asymmetric dependence tests of contagion

during the crisis of 2008-09 with the source market specified to be the US banking sector.

Inspection of this table reveals that significant evidence of contagion is found within banking

sectors, but less contagion effects are shown between the US banking sector and the equity

markets through the co-skewness channel. In particular, the majority of the banking sectors,

especially these located in the European region are affected by at least one of the contagion

Rigobon, 2002). The model specification is given by

Zt = φ(L)Zt + ηt (35)

Zt = {xt, yt}′ .

where Zt is a transposed vector of returns across a set of equity markets and banking sectors during the
non-crisis (xt) and crisis (yt) periods; φ(L) is a vector of lags and ηt is a vector of the residual terms.
Instead of using daily returns, two-days rolling average returns (Zt) are utilized to deal with the fact that

equity markets are open in different time zones (Forbes and Rigobon, 2002). Five lags of φ(L) are set in
the VAR based on the criteria of the sequential modified log-likelihood ratio test statistic (LR) and Akaike
information (AI). The residuals estimated from the VAR are used in computing the co-skewness contagion
statistics in (28) and (29), the co-kurtosis contagion statistics in (31) and (32) as well as the co-volatility
contagion statistic in (33).
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channels through asymmetric dependence during the financial crisis. The key channels de-

tected by the asymmetric dependence tests are from the returns in the US banking sector to

the volatility of the banking sectors in Korea, France, Germany, the UK and Chile and also

from the volatility of the US banking sector to the returns of the banking sectors in Hong

Kong, Korea and the UK. This result indicates that the US banking sector is of systemic

importance through the asymmetric dependence channel.9

Panel A of Table 6 shows there are no significant and widespread cross-border contagious

linkages from the US banking sector to equity markets in France, Germany, the UK, Mexico

and the US through the co-skewness channel. This result is in sharp contrast to the result

that the equity markets in Hong Kong, Korea and Chile are exposed to contagion risk from

the US banking sector through the co-skewness channel.

7.2 Contagion Channel through Extremal Dependence

The results of the extremal dependence tests presented in Table 7 show that significant

contagion effects are pervasive from the US banking sector to the selected equity markets

(Panel A) and to the selected banking sectors (Panel B) in four regions including Asia,

Europe, Latin America and North America during the global crisis of 2008-09. Among these

regions, the European region is much exposed to contagion risks from the US banking sector

since both equity markets and banking sectors in the European region have experienced

dramatic increases in extremal dependence (i.e. co-kurtosis and co-volatility) with the US

banking sector in the crisis period compared with the non-crisis period. The smallest value

of the test statistic is 55.82 for the contagion linkages between the US banking sector and

German equity markets and 79.54 for the contagion linkages between the US banking sector

and the German banking sectors through extremal dependence, which is much higher than

the critical value at the 1% significant level. The results are consistent with the fact that

after the end of the crisis as considered in this paper, the European region faced its own

financial crisis so called “European sovereign debt crisis”due to the problem of refinancing

government debt.

Among the four regions, the evidence of contagion through the co-volatility channel is

weak to both Asia and Latin America during the global financial crisis of 2008-09. In

9Gropp and Moerman (2004) define the term “systemic importance”in terms of the banking sector which
tends to have a net contagious influence on other banks.
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particular, there is no evidence of contagion between the US banking sector and equity

markets as well as the banking sectors in Hong Kong and Chile through the co-volatility

channel. However, the evidence of contagion is strong to both the Asian and Latin American

regions through the two forms of the co-kurtosis channels. The key channels operating are

from the returns of the US banking sector to the return skewness of both Asian and Latin

American equity markets, and from the return skewness of the US banking sector to the

equity market returns in both Asian and Latin American except for Hong Kong. As for the

North American region, the US equity market is affected by the global financial crisis of

2008-09 through either one of the co-kurtosis channel or the co-volatility channel.

Comparing Table 6 with Table 7, more contagion channels are found through extremal

dependence than through asymmetric dependence during the financial crisis of 2008-09. In

particular, all four regions of Asia, Europe, Latin America and North America are affected

by the financial shocks originating from the US banking sector through extremal depen-

dence between 2008 and 2009. The finding suggests that in extreme events, the extremal

dependence test are more important in capturing markets linkages than the asymmetric

dependence linkages.

8 Conclusions

This paper proposes a class of new tests of financial contagion based on changes in extremal

dependence (co-kurtosis and co-volatility) during a financial crisis. Extremal dependence is

one of non-linear dependence, enabling the capture of the probability of the worst event in

one market given the worst event that appears in another market. Extremal dependence

structure is subject to change in different regimes and attributed to two types of effects. The

first is the risk return trade-off effect between the expected excess returns and higher order

moments. The higher kurtosis observed in a financial crisis is realized by a risk-averse investor

in conjunction with positive expected excess returns, leading to a sudden decrease in current

asset returns. The risk return trade-off effect is explored based on the traditional CAPM

model with higher order moments and co-moments where the expected excess return on risky

asset is expressed in terms of risk prices and risk quantities. Risk prices are comprised of

risk preferences determined by the marginal utility function and the share of the asset in the

portfolio. Risk quantities are determined by any moment and co-moment preferences, with
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special emphasis on the co-kurtosis and co-volatility for modelling financial contagion.

The second is the smile effect through the co-kurtosis or co-volatility channel, which is

observed in financial markets where the return-skew and the volatility-volatility co-moments

exhibit a negative relation in the non-crisis period but switch to a positive relation in the

crisis period, resulting in higher co-kurtosis and co-volatility risks in the crash period.

In deriving a new test of contagion through the changes in extremal dependence, the

bivariate generalized exponential distribution is specified to allow for higher order moments

and co-moments. The Lagrange multiplier test is adopted to develop the statistics of co-

kurtosis and co-volatility, which gives the framework for developing a new test of contagion

based on changes in extremal dependence.

This new approach is applied to test for financial contagion in equity markets and banking

sectors during the financial crisis of 2008-09. The results of the tests show significant conta-

gion effects are pervasive from the US banking sector to global equity markets and from the

US banking sector to the global banking sector based on changes in extremal dependence.

The extremal dependence tests capture more market co-movements than the asymmetric

dependence tests developed by Fry et al. (2010) in extreme events. Simulation studies show

the statistic for contagion based on changes in co-volatility presents a good approximation

of the finite sample distribution regarding the relatively large sample period of the non-crisis

but the relatively short sample period of the crisis.
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A Appendix - Derivation of Test Statistics

A.1 An Optimum Problem

Consider an investor allocating their portfolio acrossN risky assets to maximize the expected
utility function of end of period wealth

Max
αo,α1,...,αN

E [U (W )] , (36)

where

W = α0 (1 +Rf ) +
N∑
i=1

αi (1 +Ri) ,

subject to the budget constraint

α0 +
N∑
i=1

αi = 1. (37)

To maximize an investor’s portfolio problem described above, a Lagrange function is
written as

L = E [U (W )] + λ

(
1− α0 +

N∑
i=1

αi

)
. (38)

In solving this problem by taking the two partial derivatives of the Lagrange function, two
pairs of simultaneous linear equations are written as

∂L

∂α0
=
∂U
(
W
)

∂W
Rf − λ = 0, (39)

and

∂L

∂αi
=

∂U
(
W
)

∂W
E (Ri) +

∂(1
2
U

′′ (
W
)
)

∂αi
σ2p (40)

+
∂( 1

3!
U

′′′ (
W
)
)

∂αi
s3p +

∂( 1
4!
U

(4) (
W
)
)

∂αi
k4p − λ = 0.

Rearranging equations (39) and (40), the investor’s equilibrium condition is expressed as

E (Ri)−Rf =

(
∂E [U (W )]

∂σ2p

)
σ2p +

(
∂E [U (W )]

∂s3p

)
s3p +

(
∂E [U (W )]

∂k4p

)
k4P , (41)
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where

(
∂E [U (W )]

∂σ2p

)
= −

∂( 1
2
U
′′
(W))

∂αi

∂U(W)
∂W

(42)

(
∂E [U (W )]

∂s3p

)
= −

∂( 1
3!
U
′′′
(W))

∂αi

∂U(W)
∂W(

∂E [U (W )]

∂k4p

)
= −

∂( 1
4!
U
(4)
(W))

∂αi

∂U(W)
∂W

.

A.2 Proof of the Asymptotic Information Matrix

The log of the likelihood function at time t in equation (16) is

lnLt(θ) = h− η. (43)

The first and second derivatives are given respectively by

∂ lnLt(θ)

∂θ
=
∂h

∂θ
− ∂η

∂θ
, (44)

and
∂2 lnLt(θ)

∂θ∂θ′
=

∂2h

∂θ∂θ′
− ∂2η

∂θ∂θ′
. (45)

The information matrix at time t is

It (θ) = −E
[
∂2 lnLt(θ)

∂θ∂θ′

]
(46)

=
∂2η

∂θ∂θ′
− E

[
∂2h

∂θ∂θ′

]
.

Differentiating a first and second time gives

∂η

∂θ
=

∫ (
∂h
∂θ

)
exp (h) dr∫

exp (h) dr
= E

[
∂h

∂θ

]
. (47)
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∂2η

∂θ∂θ′
=

(∫ (
∂2h
∂θ∂θ′

)
exp (h) dr +

∫ (
∂h
∂θ

) (
∂h
∂θ′

)
exp (h) dr

) (∫
exp (h) dr

)
(∫
exp (h) dr

)2 (48)

−
(∫ (

∂h
∂θ

)
exp (h) dr

) (∫ (
∂h
∂θ

)
exp (h) dr

)(∫
exp (h) dr

)2
= E

[
∂2h

∂θ∂θ′

]
+ E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
.

Substituting equation (48) into the information matrix at time t in equation (46) yields

It (θ) = E

[
∂2h

∂θ∂θ′

]
+ E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
− E

[
∂2h

∂θ∂θ′

]
(49)

= E

[
∂h

∂θ

∂h

∂θ′

]
− E

[
∂h

∂θ

]
E

[
∂h

∂θ′

]
.

Finally, I
(
θ̂
)
is the asymptotic information matrix evaluated at θ̂, that is

I
(
θ̂
)
=

∑
t

It

(
θ̂
)

(50)

= T

(
E

[
∂h

∂θ

∂h

∂θ′

]
θ=θ̂

− E
[
∂h

∂θ

]
θ=θ̂

E

[
∂h

∂θ′

]
θ=θ̂

)
.

A.3 Derivation of the Test Statistics

A.3.1 Statistics of Co-volatility

Consider the following bivariate generalized normal distribution with co-volatility

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η
]

(51)

= exp [h− η] ,

where

η = ln

∫∫
exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2]
dr1dr2 (52)

= ln

∫∫
exp [h] dr1dr2,
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and

h = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
. (53)

A test of the restriction for normality is

H0 : θ6 = 0. (54)

Under the null hypothesis, the maximum likelihood estimators of the unknown parameters
are

µ̂i =
1

T

T∑
t=1

ri,t; σ̂
2
i =

1

T

T∑
t=1

(ri,t − µ̂i)
2 ; ρ̂ =

1

T

T∑
t=1

(
r1,t − µ̂1
σ̂1

)(
r2,t − µ̂2
σ̂2

)
; i = 1, 2. (55)

Let the parameters of equation (51) be

θ =
{
µ1, µ2, σ

2
1, σ

2
2, ρ, θ6

}
. (56)

By taking the log function in equation (51), the log likelihood function at time t is given by

lnLt(θ) = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ6

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− η (57)

= h− η,

where h and η are given by equations (53) and (52).
Taking the expectations for the first and second derivatives of the log likelihood function

(lnLt(θ)) in equation (53) under the null hypothesis of the bivariate normality (θ6 = 0) is
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E

(
∂h

∂µ1

)
= 0

E

(
∂h

∂µ2

)
= 0

E

(
∂h

∂σ21

)
=

1

2

1

σ21

E

(
∂h

∂σ22

)
=

1

2

1

σ22

E

(
∂h

∂ρ

)
=

−ρ
1− ρ2

E

(
∂h

∂θ6

)
= 1 + 2ρ2,

E

[(
∂h

∂µ1

)2]
=

1

1− ρ2
1

σ21

E

[(
∂h

∂µ2

)2]
=

1

1− ρ2
1

σ22

E

[(
∂h

∂σ21

)2]
= −1

4

1

1− ρ2

(
1

σ21

)2 (
2ρ2 − 3

)
E

[(
∂h

∂σ22

)2]
= −1

4

1

1− ρ2

(
1

σ22

)2 (
2ρ2 − 3

)
E

[(
∂h

∂ρ

)2]
=

(
1

1− ρ2

)4 (
2ρ6 − 3ρ4 + 1

)
E

[(
∂h

∂θ6

)2]
= 9 + 72ρ2 + 24ρ4,
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E

[(
∂h

∂µ1

)(
∂h

∂µ2

)]
= − 1

σ1

1

σ2

(
ρ

1− ρ2

)
E

[(
∂h

∂µ1

)(
∂h

∂σ21

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂σ22

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂ρ

)]
= 0

E

[(
∂h

∂µ1

)(
∂h

∂θ6

)]
= 0,

E

[(
∂h

∂µ2

)(
∂h

∂σ21

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂σ22

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂ρ

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂θ6

)]
= 0,

E

[(
∂h

∂σ21

)(
∂h

∂σ22

)]
= −1

4

1

σ21

1

σ22
(2ρ2 − 1)

(
1

1− ρ2

)
E

[(
∂h

∂σ21

)(
∂h

∂ρ

)]
= −ρ 1

σ21

(
1

1− ρ2

)
E

[(
∂h

∂σ21

)(
∂h

∂θ6

)]
=

3

2

1

σ21

(
2ρ2 + 1

)
,

E

[(
∂h

∂σ22

)(
∂h

∂ρ

)]
= −ρ 1

σ22

(
1

1− ρ2

)
E

[(
∂h

∂σ22

)(
∂h

∂θ6

)]
=

3

2

1

σ22
(2ρ2 + 1)

E

[(
∂h

∂ρ

)(
∂h

∂θ6

)]
= 3(−2ρ3 + ρ)

(
1

1− ρ2

)
,
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where

µi = E [ri,t]

E

[(
ri,t − µi
σi

)2]
= 1

E

[(
ri,t − µi
σi

)(
rj,t − µj
σj

)]
= ρ, i 6= j

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)2]
= 0

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)3]
= 0

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)4]
= 0

E

[(
ri,t − µi
σi

)3(rj,t − µj
σj

)4]
= 0

E

[(
ri,t − µi
σi

)3]
= 0

E

[(
ri,t − µi
σi

)4]
= 3

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)2]
= 1 + 2ρ2

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)3]
= 3ρ

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)4]
= 3 + 12ρ2

E

[(
ri,t − µi
σi

)3(rj,t − µj
σj

)3]
= 9ρ+ 6ρ3

E

[(
ri,t − µi
σi

)4(rj,t − µj
σj

)4]
= 9 + 72ρ2 + 24ρ4.

The elements of the information matrix at time t, evaluated under the null are

I1,1,t = E

[
∂h

∂µ1

∂h

∂µ1

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂µ1

]
=

(
1

1− ρ2

)(
1

σ21

)
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I1,2,t = E

[
∂h

∂µ1

∂h

∂µ2

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂µ2

]
=

(
1

1− ρ2

)(
−ρ
σ1σ2

)

I1,3,t = E

[
∂h

∂µ1

∂h

∂σ21

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂σ21

]
= 0

I1,4,t = E

[
∂h

∂µ1

∂h

∂σ22

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂σ22

]
= 0

I1,5,t = E

[
∂h

∂µ1

∂h

∂ρ

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂ρ

]
= 0

I1,6,t = E

[
∂h

∂µ1

∂h

∂θ6

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂θ6

]
= 0

I2,2,t = E

[
∂h

∂µ2

∂h

∂µ2

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂µ2

]
=

(
1

1− ρ2

)(
1

σ22

)

I2,3,t = E

[
∂h

∂µ2

∂h

∂σ21

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂σ21

]
= 0

I2,4,t = E

[
∂h

∂µ2

∂h

∂σ22

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂σ22

]
= 0

I2,5,t = E

[
∂h

∂µ2

∂h

∂ρ

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂ρ

]
= 0
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I2,6,t = E

[
∂h

∂µ2

∂h

∂θ6

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂θ6

]
= 0

I3,3,t = E

[
∂h

∂σ21

∂h

∂σ21

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂σ21

]
=

(
1

1− ρ2

)(
−ρ2 + 2
4σ41

)

I3,4,t = E

[
∂h

∂σ21

∂h

∂σ22

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂σ22

]
=

(
1

1− ρ2

)(
−ρ2
4σ21σ

2
2

)

I3,5,t = E

[
∂h

∂σ21

∂h

∂ρ

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
−ρ
2σ21

)

I3,6,t = E

[
∂h

∂σ21

∂h

∂θ6

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂θ6

]
=

(2ρ2 + 1)

σ21

I4,4,t = E

[
∂h

∂σ22

∂h

∂σ22

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂σ22

]
=

(
1

1− ρ2

)(
−ρ2 + 2
4σ42

)

I4,5,t = E

[
∂h

∂σ22

∂h

∂ρ

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
−ρ
2σ22

)

I4,6,t = E

[
∂h

∂σ22

∂h

∂θ6

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂θ6

]
=

(2ρ2 + 1)

σ22
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I5,5,t = E

[
∂h

∂ρ

∂h

∂ρ

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂ρ

]
=

(
1

1− ρ2

)(
ρ2 + 1

1− ρ2

)

I5,6,t = E

[
∂h

∂ρ

∂h

∂θ6

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂θ6

]
= 4ρ

I6,6,t = E

[
∂h

∂θ6

∂h

∂θ6

]
− E

[
∂h

∂θ6

]
E

[
∂h

∂θ6

]
= (8 + 68ρ2 + 20ρ4).

The information matrix under the null hypothesis of the bivariate normality (θ6 = 0) is

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

]
θ6=0

− E
[
∂h

∂θ

]
θ6=0

E

[
∂h

∂θ′

]
θ6=0

)
(58)

=

(
T

1− ρ̂2
)
×

1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

(2ρ̂2+1)(1−ρ̂2)
σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 4ρ̂(1− ρ̂2)
0 0 (2ρ̂2+1)(1−ρ̂2)

σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂22

4ρ̂(1− ρ̂2) (8 + 68ρ̂2 + 20ρ̂4)(1− ρ̂2)


,

so that

I
(
θ̂
)−1

=

(
1− ρ̂2

T

)
× (59)

1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

(2ρ̂2+1)(1−ρ̂2)
σ̂22

0 0 −ρ̂
2σ̂21

−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 4ρ̂(1− ρ̂2)
0 0 (2ρ̂2+1)(1−ρ̂2)

σ̂21

(2ρ̂2+1)(1−ρ̂2)
σ̂22

4ρ̂(1− ρ̂2) (8 + 68ρ̂2 + 20ρ̂4)(1− ρ̂2)



−1

.
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Evaluating the gradient for θ6 under the null hypothesis gives

∂ lnLt(θ)

∂θ
|θ6=0 =

T∑
t=1

(
∂h

∂θ6

)
− T

(
∂η

∂θ6

)
(60)

=
T∑
t=1

(
r1,t − µ1
σ1

)2(
r2,t − µ2
σ2

)2
− T

(
1 + 2ρ2

)
.

By taking the first derivatives of the log likelihood function, the score function under H0 is
given as

q
(
θ̂
)
=

∂ lnLt(θ)

∂θ
|θ6=0 (61)

=

[
0 0 0 0 0

T∑
t=1

(
r1,t−µ̂1
σ̂1

)2 (
r2,t−µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

) ]′
.

Substituting equations (59) and (61) into the Lagrange multiplier statistic in equation (22)
gives

LM1 = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)

(62)

=
1

T
(
4ρ̂4 + 16ρ̂2 + 4

) [ T∑
t=1

(
r1,t − µ̂1
σ̂1

)2(
r2,t − µ̂2
σ̂2

)2
− T

(
1 + 2ρ̂2

)]2

=


1
T

T∑
t=1

(
r1,t−µ̂1
σ̂1

)2 (
r2,t−µ̂2
σ̂2

)2
−
(
1 + 2ρ̂2

)
√
(4ρ̂4+16ρ̂2+4)

T


2

.

A.3.2 A Statistic of Co-kurtosis

Consider the following bivariate generalized normal distribution with co-kurtosis given as

f(r1,t, r2,t) = exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− η
]

(63)

= exp [h− η] ,
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where

η = ln

∫∫
exp

[
−1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3]
dr1dr2 (64)

= ln

∫∫
exp [h] dr1dr2,

and

h = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
. (65)

A test of the restriction for normality is

H0 : θ7 = 0.

Let the parameters of equation (65) be

θ =
{
µ1, µ2, σ

2
1, σ

2
2, ρ, θ7

}
. (66)

By taking the log function of equation (63), the log likelihood function at time t is given
by

lnLt(θ) = −1
2

(
1

1− ρ2

)((
r1,t − µ1
σ1

)2
+

(
r2,t − µ2
σ2

)2
− 2ρ

(
r1,t − µ1
σ1

)(
r2,t − µ2
σ2

))

+θ7

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− η (67)

= h− η,

where h and η are given by equations (65) and (64).
Taking the expectations for the first and second derivatives of the log likelihood function
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in equation (67) under the null hypothesis of the bivariate normality (θ7 = 0) is

E

(
∂h

∂θ7

)
= 3ρ

E

[(
∂h

∂θ7

)2]
= 15 + 90ρ2

E

[(
∂h

∂µ1

)(
∂h

∂θ7

)]
= 0

E

[(
∂h

∂µ2

)(
∂h

∂θ7

)]
= 0

E

[(
∂h

∂σ21

)(
∂h

∂θ7

)]
=

3ρ

σ21

E

[(
∂h

∂σ22

)(
∂h

∂θ7

)]
=

6ρ

σ22

E

[(
∂h

∂ρ

)(
∂h

∂θ7

)]
= 3(1− 2ρ2)

(
1

1− ρ2

)
,

where

E

[(
ri,t − µi
σi

)6]
= 15

E

[(
ri,t − µi
σi

)1(rj,t − µj
σj

)5]
= 15ρ, i 6= j

E

[(
ri,t − µi
σi

)2(rj,t − µj
σj

)6]
= 15 + 90ρ2, i 6= j.

The elements of the information matrix at observation t, evaluated under the null are

I1,6,t = E

[
∂h

∂µ1

∂h

∂θ7

]
− E

[
∂h

∂µ1

]
E

[
∂h

∂θ7

]
= 0

I2,6,t = E

[
∂h

∂µ2

∂h

∂θ7

]
− E

[
∂h

∂µ2

]
E

[
∂h

∂θ7

]
= 0

I3,6,t = E

[
∂h

∂σ21

∂h

∂θ7

]
− E

[
∂h

∂σ21

]
E

[
∂h

∂θ7

]
=

(
3ρ

2σ21

)
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I4,6,t = E

[
∂h

∂σ22

∂h

∂θ7

]
− E

[
∂h

∂σ22

]
E

[
∂h

∂θ7

]
=

(
9ρ

2σ22

)

I5,6,t = E

[
∂h

∂ρ

∂h

∂θ7

]
− E

[
∂h

∂ρ

]
E

[
∂h

∂θ7

]
= 3

I6,6,t = E

[
∂h

∂θ7

∂h

∂θ7

]
− E

[
∂h

∂θ7

]
E

[
∂h

∂θ7

]
= (15 + 81ρ2).

The information matrix under the null hypothesis of the bivariate normality (θ7 = 0) is
given as

I
(
θ̂
)
= T

(
E

[
∂h

∂θ

∂h

∂θ′

]
θ7=0

− E
[
∂h

∂θ

]
θ7=0

E

[
∂h

∂θ′

]
θ7=0

)
(68)

=

(
T

1− ρ̂2
)


1
σ̂21

−ρ̂
σ̂1σ̂2

0 0 0 0
−ρ̂
σ̂1σ̂2

1
σ̂22

0 0 0 0

0 0 −ρ̂2+2
4σ̂41

−ρ̂2
4σ̂21σ̂

2
2

−ρ̂
2σ̂21

3ρ̂(1−ρ̂2)
2σ̂21

0 0 −ρ̂2
4σ̂21σ̂

2
2

−ρ̂2+2
4σ̂42

−ρ̂
2σ̂22

9ρ̂(1−ρ̂2)
2σ̂22

0 0 −ρ̂
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−ρ̂
2σ̂22

ρ̂2+1

1−ρ̂2 3(1− ρ̂2)
0 0 3ρ̂(1−ρ̂2)

2σ̂21
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2σ̂22

3(1− ρ̂2) (15 + 81ρ̂2)(1− ρ̂2)


,

so that

I
(
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)−1

=

(
1− ρ̂2

T
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1
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−ρ̂
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0 0 0 0
−ρ̂
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1
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4σ̂41
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2
2

−ρ̂
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2
2
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4σ̂42

−ρ̂
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2σ̂22

0 0 −ρ̂
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−ρ̂
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(69)
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Evaluating the gradient for θ7 under the null hypothesis gives

∂ lnLt(θ)

∂θ7
|θ7=0 =

T∑
t=1

(
∂h

∂θ7

)
− T

(
∂η

∂θ7

)
(70)

=
T∑
t=1

(
r1,t − µ1
σ1

)1(
r2,t − µ2
σ2

)3
− T (3ρ) .

By taking the first derivatives of the log likelihood function, the score function under H0 is
given as

q
(
θ̂
)
=

∂ lnLt(θ)

∂θ
|θ7=0 (71)

=

[
0 0 0 0 0

T∑
t=1

(
r1,t−µ̂1
σ̂1

)1 (
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σ̂2

)3
− T (3ρ̂)

]′
.

Substituting equations (69) and (71) into the Lagrange multiplier statistic in equation (22)
gives

LM = q
(
θ̂
)′
I
(
θ̂
)−1

q
(
θ̂
)

(72)

=
1

T
(
18ρ̂2 + 6
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]2

=
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1
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)1 (
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σ̂2

)3
− (3ρ̂)√

(18ρ̂2+6)
T
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2

.
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Table 1: Summary moments of equity returns for eight equity markets and banking sectors
during the non-crisis (NC) and crisis (C) periods. The non-crisis period is from April 1, 2005
to February 29, 2008 and the crisis period is from March 3, 2008 to August 31, 2009.

Country Moment
Mean Std.Dev Skewness kurtosis

NC C NC C NC C NC C
(A) Equity markets
Asia
Hong Kong 0.078 -0.053 0.886 1.951 -0.107 0.218 11.446 6.917
Korea 0.084 -0.091 0.929 1.843 -0.676 -0.082 5.672 11.011

Europe
France 0.042 -0.084 0.839 1.872 -0.528 0.251 8.641 7.100
Germany 0.081 -0.092 0.938 2.005 -0.526 0.087 6.584 5.505
UK 0.031 -0.097 0.780 1.819 -0.312 0.079 6.715 7.082

Latin America
Chile 0.078 -0.016 0.713 1.275 -0.470 -0.404 8.319 10.430
Mexico 0.113 -0.063 1.122 1.920 -0.230 0.198 5.453 7.043

North America
US 0.022 -0.065 0.557 1.498 -0.514 0.166 4.937 6.728

(B) Banking sectors
Asia
Hong Kong 0.219 -0.119 1.542 2.206 0.005 -0.008 4.781 4.200
Korea 0.046 0.001 1.289 2.321 0.170 -0.379 4.102 6.522

Europe
France -0.003 -0.050 1.016 2.792 -0.400 0.264 6.838 5.446
Germany 0.024 -0.312 1.173 3.584 -1.389 -1.010 15.664 10.701
UK -0.018 -0.118 0.807 2.651 -0.032 0.051 7.888 6.562

Latin America
Chile 0.050 -0.016 0.974 1.819 -0.181 -0.425 5.368 12.854
Mexico 0.118 -0.051 1.624 2.518 -0.170 0.097 4.716 5.971

North America
US -0.020 -0.141 0.785 3.796 -0.063 0.000 9.386 5.563
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Table 2: Linear and asymmetric co-moments of equity returns for eight equity markets and
banking sectors with the US banking sector during the non-crisis (NC) and crisis (C) periods.
The non-crisis period is from April 1, 2005 to February 29, 2008 and the crisis period is from
March 3, 2008 to August 31, 2009.

Country Linear Asymmetric
Correlation Co-skewness12 Co-skewness21
NC C NC C NC C

(A) Equity markets
Asia
Hong Kong -0.020 0.166 0.476 0.223 0.345 0.085
Korea -0.082 0.173 0.193 0.228 -0.202 0.031

Europe
France 0.266 0.404 0.155 0.012 -0.495 -0.105
Germany 0.230 0.404 0.058 -0.103 -0.417 -0.177
UK 0.262 0.380 0.214 -0.064 -0.397 -0.191

Latin America
Chile 0.309 0.376 0.045 -0.165 -0.440 -0.066
Mexico 0.492 0.585 -0.023 0.025 -0.158 -0.036

North America
US 0.799 0.772 -0.360 -0.116 -0.291 -0.122

(B) Banking sectors
Asia
Hong Kong -0.026 -0.001 0.006 0.023 -0.059 0.123
Korea -0.041 0.129 -0.059 0.214 -0.100 -0.028

Europe
France 0.378 0.452 0.055 0.117 -0.421 -0.095
Germany 0.328 0.402 -0.275 -0.580 -0.509 -0.339
UK 0.384 0.458 0.059 0.095 -0.288 -0.013

Latin America
Chile 0.325 0.382 0.142 0.284 -0.276 -0.005
Mexico 0.290 0.483 -0.109 0.069 -0.223 -0.051

North America
US 1.000 1.000 -0.063 0.000 -0.063 0.000

Notes: The statistics are measured in terms of:-
Correlation: returns of market j and returns of the US bank.
Co-skewness12: returns of market j and squared returns of the US bank.
Co-skewness21: squared returns of market j and returns of the US bank.
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Table 3: Extremal co-moments of equity returns for eight equity markets and banking sectors
during the non-crisis (NC) and crisis (C) periods. The non-crisis period is from April 1, 2005
to February 29, 2008 and the crisis period is from March 3, 2008 to August 31, 2009.

Country Extremal
Co-kurtosis13 Co-kurtosis31 Co-volatility22
NC C NC C NC C

(A) Equity markets
Asia
Hong Kong 1.436 1.392 1.271 1.063 4.853 1.494
Korea -1.728 1.792 -1.186 0.682 2.202 1.344

Europe
France 0.868 2.178 0.296 2.457 2.922 2.307
Germany 1.289 1.967 0.699 2.544 2.398 2.263
UK 0.887 2.144 0.840 2.482 2.651 2.494

Latin America
Chile 2.189 2.467 1.759 2.317 2.966 2.207
Mexico 2.670 3.222 3.677 3.169 2.830 2.818

North America
US 4.491 4.031 6.283 3.967 5.045 3.549

(B) Banking sectors
Asia
Hong Kong -0.401 0.061 -0.426 -0.085 1.788 1.038
Korea -0.200 0.867 -0.604 0.731 0.957 1.479

Europe
France 1.834 2.315 1.584 2.689 2.707 2.668
Germany 4.402 5.334 1.757 3.092 3.476 4.147
UK 2.628 2.518 2.820 2.571 3.042 2.392

Latin America
Chile 1.511 1.295 1.787 2.248 2.181 2.330
Mexico 1.403 2.363 1.638 2.556 1.745 2.249

North America
US 9.386 5.563 9.386 5.563 9.386 5.563

Notes: The statistics are measured in terms of:-
Co-kurtosis13: returns of market j and cubed returns of the US bank.
Co-kurtosis31: cubed returns of market j and returns of the US bank.
Co-volatility22: squared returns of market j and squared returns

of the US bank.
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Table 4: Simulation parameters of the moment and co-moment terms in equation (14). These
parameters produce Figure 5.

No volatility Volatility
Parameters (Fig 2.1 Panel A) (Fig 2.1 Panel B)

θ1 0.50 0.50
θ2 0.70 0.70
θ3 2.00 2.00
θ4 -1.50 -1.50
θ5 -1.50 -1.50
θ6 -1.50 -1.50
θ7 -1.50 -1.50
θ8 4.00 4.00
θ9 4.00 4.00
θ10 1.50 1.50
θ11 1.50 1.50
θ12 1.50 1.50
E[(R1 − µ1)]2 0.00 2.00
E[(R2 − µ2)]2 0.00 2.00
E[(R1 − µ1)(R2 − µ2)] 0.80 0.80
E[(R1 − µ1)]3 [−1, 1] [−1, 1]
E[(R2 − µ2)]3 [−1, 1] [−1, 1]
E[(R1 − µ1)(R2 − µ2)2] 0.00 0.00
E[(R1 − µ1)2(R2 − µ2)] 0.00 0.00
E[(R1 − µ1)]4 [4, 9] [4, 9]

E[(R2 − µ2)]4 [4, 9] [4, 9]

E[(R1 − µ1)(R2 − µ2)3] 1.47 1.47
E[(R1 − µ1)3(R2 − µ2)] 1.46 1.46
E[(R1 − µ1)2(R2 − µ2)2] 2.20 2.20
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Table 5: Critical values for the test statistics of contagion based on changes in asymmetric
dependence (CS12, CS21) and extremal dependence (CK13, CK31 and CV22) and for the Chi-
squared statistic (χ21) with one degree of freedom. The size of the non-crisis period is Tx = 760
and the size of the crisis period is Ty = 391. The number of replications in the Monte Carlo
simulations is 10, 000.

Significance level
Test statistics α = 0.025 α = 0.05 α = 0.1

CS12 5.09 3.94 2.79
CS21 4.98 3.84 2.73
CK13 9.74 7.34 5.15
CK31 9.63 7.37 5.18
CV22 5.13 3.78 2.63
χ21 5.02 3.84 2.71

Table 6: Test statistics for contagion based on changes in asymmetric dependence during
the global financial crisis of 2008-09.

(A) Equity markets (B) Banking sectors

Country CS
(a)
12 CS

(b)
21 CS

(a)
12 CS

(b)
21

Asia
Hong Kong 0.03 9.01∗∗ 0.14 8.08∗∗

Korea 0.40 3.17∗ 12.94∗∗ 4.06∗∗

Europe
France 0.18 0.21 7.78∗∗ 0.97
Germany 0.30 0.18 5.68∗∗ 1.33
UK 2.08 1.19 17.63∗∗ 4.13∗∗

Latin America
Chile 14.91∗∗ 1.83 3.42∗ 2.53
Mexico 0.19 0.64 0.13 0.01

North America
US 0.04 0.04 n.a. n.a.

Notes: (a) CS12: Co-skewness contagion test measured in terms of the returns of the US
banking sector and squared returns of market j. (b) CS21: Co-skewness contagion test
measured in terms of the squared returns of the US banking sector and returns of market j.
The critical values of CS12 and CS21 are presented in Table 5. * denotes significance at the
10% level and ** significance at the 5% level.
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Table 7: Test statistics for contagion based on changes in extremal dependence during the
global financial crisis of 2008-09.

(A) Equity markets (B) Banking sectors

Country CK
(a)
13 CK

(b)
31 CV

(c)
22 CK

(a)
13 CK

(b)
13 CV

(c)
22

Asia
Hong Kong 90.68∗∗ 210.36∗∗ 0.87 1.42 23.73∗∗ 2.42
Korea 137.86∗∗ 170.76∗∗ 14.66∗∗ 11.88∗∗ 107.80∗∗ 9.83∗∗

Europe
France 111.21∗∗ 155.68∗∗ 86.34∗∗ 218.07∗∗ 116.85∗∗ 157.81∗∗

Germany 83.51∗∗ 151.50∗∗ 55.82∗∗ 351.51∗∗ 79.54∗∗ 167.91∗∗

UK 151.14∗∗ 100.17∗∗ 88.87∗∗ 246.91∗∗ 83.32∗∗ 128.01∗∗

Latin America
Chile 25.56∗∗ 7.93∗∗ 2.62 62.29∗∗ 9.71∗∗ 1.31
Mexico 46.40∗∗ 21.23∗∗ 20.45∗∗ 140.49∗∗ 104.35∗∗ 95.01∗∗

North America
US 28.42∗∗ 2.08 5.77∗∗ n.a. n.a. n.a.

Notes: (a) CK13 : Co-kurtosis contagion test measured in terms of the returns of the US
banking sector and cubed returns of market j. (b) CK31 : Co-kurtosis contagion test
measured in terms of the cubed returns of the US banking sector and returns of market j.
(c) CV22 : Co-volatility contagion test measured in terms of the squared returns of the US
banking sector and squared returns of market j. The critical values of CK13, CK31 and
CV22 are presented in Table 5. ** denotes the significance of contagion at the 5% level.
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