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1 Introduction

The U.S. Environmental Protection Agency’s (EPATshe 2014 proposed Clean Power Rule
requires substantial reductions in carbon dioxidéssions from the power sector by 2030.
What will be the economic costs? Any model-bassdssment of this policy requires
making assumptions about how electricity is and lélproduced in the United States. Such
generation technologies differ across many dimerssimcluding their costs, resource
requirements, emissions, and flexibility. Thedéedences can be important when
considering responses of the overall economy tar@mwental policies. However, many
models used to analyze the impact of various enmental policies are too aggregated to
account for differences in electricity generatientnologies, possibly biasing their results.

This paper clarifies, expands, and illustrates‘tbehnology bundle” approach to
disaggregated modelling of the electricity seato€omputable General Equilibrium (CGE)
models. We also demonstrate how to calibrate itapbparameter values and apply the
method using the GTAP 8 database and model, supplech with data from national and
international agencies. Throughout, we focus arebts of the technology bundle approach
as applied to the electricity sector in CGE modeis:ability to account for important
heterogeneity in power generation technologiesrali@ce on data that is widely available
and utilized.

We begin by reviewing approaches to modelling teetecity sector in CGE models and
then provide a description and outline of the tetbgy bundle approach. Within this
description we explain the structure of the CRESHnstant Ratios of Elasticities of
Substitution, Homothetic) function, which allows fiiffering levels of substitution between
electricity generation technologies (Hanoch, 197ur explanation of the CRESH function
also establishes the link between its parametatyanous econometric estimates of
substitution between fuels and technologies intet#ty generation. There has been little
written about quantifying the degree of substituti@tween the various electricity generating
technologies in CGE models.

Our next step is to describe implementation oftédatinology bundle approach. We show
how the structure of its electricity sector cardismaggregated in various ways using data that
are available from either the U.S. Energy InforimatAdministration (EIA) or the

International Energy Agency (IEA). This structisehen applied to variants of the widely-
used GTAP model (see Hertel, 1997) in combinatigh wther data from the GTAP 8
database (see Narayanan et al., 2011).

Finally, we simulate the proposed U.S. Clear Pdwlan and show how a disaggregated
electricity sector can change results. Our siniatindicate that both the ability to switch
between generation technologies and the manneygoégation in electricity production are
important for quantifying the economic costs of gten.

2 Approachesto Modelling the Electricity Sector

CGE models are a popular tool for analyzing bottrgy and environmental policies. They
are often referred to as “top-down” because ofrthigih levels of aggregation. In particular,
it is standard to represent the production of gnaggbased on a single technology. This

technology allows for imperfect substitution betwéabor, capital, intermediate inputs, and
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natural resources. Such technological generaliproblematic when considering energy
policies, as specific aspects of energy produdtchnologies have important differences.
These differences can have important implicatianghergy prices and economy-wide
output.

Electricity is a notable example because of itsartgnce for the analysis of environmental
policies. There are large differences in termthefcost and emissions profiles of electricity
generation technologies. For example, the levelcoest of electricity (LCOE) for a
conventional coal power plant is much lower thaat tf a comparable solar one (EIA,
2014)! But electricity generated through solar powesrisssions-free. Because of these
differences, there will be variations within thedticity sector in response to environmental
policies such as a carbon tax.

Assuming there is only one technology in electyigitoduction does not account for this
heterogeneity, and can bias the results (see tonpke Sue Wing, 2006 and Fujimori et al.,
2014). Given that the electricity sector accodotover 30% of global greenhouse gas
(GHG) emissions, the inability to support disaggited energy analysis is a short-coming for
standard CGE models and limits their ability toegssthe impacts of different environmental
policies.

There have been several notable attempts to inaigadditional technological detail in the
electricity sector within a CGE framework. Sue /{2006, 2008) proposes a structure and
numerical algorithm to disaggregate electricitydarction into three parts: generation (GEN),
transmission and distribution (TB), and overheaH)@ach of the three activities is
modelled as a production function that combinesiisf primary factors, fuels, and other
intermediate inputs. The GEN activity distinguishesween multiple technologies that are
imperfect substitutes. However, this approach asgmnstant elasticity of substitution (CES)
production function that assumes the degree oftsutisn between any two competing
technologies is the same. This is inconsistertt thié evidence in Dahl and Ko (1998), Ko
and Dahl (2001), and EIA (2012).

Sands (2004), Schumacher and Sands (2006), anddfugt al. (2014) move away from the
production function approach and incorporate d#feéfunctions to determine the share of
electricity production from a particular generattechnology. Such Logit functions are
commonly used in “bottom-up” energy models andvalfor different degrees of substitution
between electricity generation technolodieShe difficulty with using this approach in CGE
models is that Logit functions are difficult toa& to the models’ underlying economic.

The technology bundle approach outlined and expmhngen in this paper was one of the
first attempts to disaggregate the electricity@eict a CGE model. It was first used in
ORANI (see Adams et al., 1991) and then modified @sed again in GTEM (see Pant,
2007). The technology bundle approach disaggredhteelectricity sector between
generation and non-generation activities. Impdiyart both allows for different

! LCOE is often cited as a convenient summary measfithe overall competiveness of different geriegat
technologies. It represents the per-kilowatt-hoostqin real dollars) of building and operating engrating
plant over an assumed financial life and duty cykley inputs to calculating LCOE include capitakts fuel
costs, fixed and variable operations and mainteng@®&M) costs, financing costs, and an assumedatibn
rate for each plant type.

2 For this reason the Logit function is often useddstimating elasticities related to substitutietween fuels.
See for example Dahl and Ko (1998), Ko and Dah0{30and EIA (2012).
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assumptions about substitutability between compegeneration technologies, and follo
from standard economic thec

3 The Technology Bundle Approach
3.1 Overview

Under the technology bundle approach, electrisitgy homogenous good producec
aggregating Generatig@®EN) and O&M and Distribution (OMD)as shown in Figure 1
The GEN activity ighe key component of this -up that allows foa bundle o
heterogaeous and competirelectricity generation technologiehe role of the (MD is to
aggregate other general goods that are importaieatricityproduction but not specific tc
generation technologies.

Figure 1: Aggregate8tructure of the ElectricitSectorUsing a Technology Bund

Approach

) Function

O&M and
Distribution Generation

Fossil Fuel Fossil Fuel Non-Fossil
Technology 1 [N Technology n Fuel

1
Conventional Thermal Carbon Capture & Storage
Sub-Technology Sub-Technology

In order to construct the technology bundle, commgetlectricity technologies are combir
through theCRESH function.Use of the CRESH function allows fdiffering levels of
substitution between each of the generation tecigms. All of thetechnologies ar
comprised of primary factor inputs and intermediafrits specific to that parular
technology. Fossil fuel technologies allow foe fhossibility olcarbon cature and storage
(CCS) sub-technologies) combination with conventional thermal -technologie

Primary factor inputs include labor and caf, which are used by all technologies, as we
“fixed-factor” energy resourceused only by carbon-free technologiéEhe intermediat:
goods include fossil fuelzised bycarbon-emitting technologiesefined uraniur (nuclear),

% Following Sue Wing (2008), these fix-factor energy resources are understood as tld area with incident
insolation, atmospheric boundagyer follow in the case of solar and wind, topghically-determined
hydrostatic potential in the case of hydroeledlyjadr geologicall-determined hot dry rock in the case
geothermal energy.
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or agricultural feedstock (biomass). Intermedgdeds are the output of other sectors of the
economy, and may be produced domestically or ineplotiut are specific to each technology.
As an example, consider a U.S. natural gas techgol®his combines domestic labor and
capital (the primary factors) with natural gas tisatither domestically produced or imported
from Canada (the intermediate good). We show béhatthe GEN activity is a
generalization of Sue Wing (2006, 2008).

The OMD activity aggregates intermediate inputs #ma used to produce electricity, but
which are not specific to a particular generatechhology. It is a combination of the TD and
OH activities of Sue Wing (2006, 2008). The OMDidty reflects the fact that power

plants require non-technology-specific activiti®sch as construction and daily maintenance,
and that they are connected to end-users throegirielty transmission grids.

3.2 Mathematical Details

At the top level electricity productiork} is a Leontief function of the GEN activity and
OMD activity (Y):

E = Min{A, - X,B, - Y}.

Here,A; andB; are scale factors representing the efficiencyasheactivity, and/in is the
minimum operator. This operator indicates thattéi@ activities are non-substitutable, so
that the outputs of GEN and OMD are combined iediyproportions.

Generation

The generation activity combines different techgae through a CRESH function, as
shown on the right-hand side of Figuré EorX units of generation, the demand for each
technology Q;) satisfies:

Yi(Qi/X)%-D;/d; =k ).

In this equationd; is a parameter with a value less than 1 but nadleg zero, each;
parameter associated with a particular technolegsitive, and th®; values and are
normalized such thal; D; = 1. The set-up generalizes the CES framework of\Sing
(2006, 2008); in the special case where wiies d for all i, the CRESH function collapses
to the CES function:

alr

— [ZQ)*-Dla=X ()
Given total demand for generatiaoXi)(and production costs for each technology, (the
electricity producer chooses demand for each tdoggdQ;) to minimize total cost; Q; -
P, = C, subject to equation (1). The linearized solutmithis problem yields:

* The CRESH function is due to Hanoch (1971) andnigghematical derivation is available from Dixonaét
g1997), p. 64-76.

The first-order conditions from this problem reguihat:

P+ A-(Q;/X)%-D;/Q; =0 (f),
whereA is the Lagrange multiplier. Log-linearizing eqoas (1) and (f1) gives:
pi=A+d;i-(qi—qx) —q (f2),



q;i = qx — a; - (p; — Px) (3),

wherea; = — ,pX Yia;i*S; pi,andS; = Q; - P;/Y; Q; - P; (the cost share of technology

). Here,pl, ql, andqx are the percentage change®,01Q;, andX, respectively. Equation (3)
shows that demand for each technology dependstopalrdemand for generation,
production costs for each technology, and vari@rapeters.

Thea; parameter in equation (3) is particularly impottianthis context because it
summarizes substitution between technologies. ddmsbe shown beginning with price
elasticities of demand for each technology and timkmg them to different definitions for
elasticities of substitution.

Hanoch (1971, p. 697-699) defines expressions®ctossy; ;) and own §; ;) price
elasticities of demand for each technology undelGRESH demand function as:

= a(in Q)/3(InP)) = ;Saka (4),
and
i =0(nQ)/a(In P) _;S“Zl — g (5).

These can be linked to the Morishima elasticitgastitution ¥1;;), which summarizes the
change in relative demands for two technologiesmia change in their relative prices when
one price is fixed (Chambers, p. 93-97, 1988):

Myj = 9 (in )/a(ln )

Equation (6) associates a particular definitiontfa elasticity of substitution between two
technologies with the; parameters and technology cost shasgs (A variant of the
Morishima elasticity of substitution is more comrhoused. This shadow elasticity of
substitution §; ;) is defined similarly, but holds consumption (&etl, and can also be tied
back to the cost shares:

gy =0(ng5) /o (i)

= &;j — & (6),
fixing Pj

fixing S +S] Ml] + 1\/[]',1' (7)

and

Y@ —ax) - (Qi/X)%-D;=0  (f3).

Here,p;, q;, qx andA are the percentage change®01Q;, X, andA, respectively. Substituting (f1) into (f3)
yields:

%iqi-Si=qx (f4),

whereS; = Q; - P;/Y.; Q; - P; is the cost share of technoloigultiplying (f1) by%, summing over ail, and
using equation (f4) gives:

A=Yia;- S pi+qx (f5),
Substituting equation (f5) into equation (f1) yielequation (3) above.
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Irrespective of the definition, the key points #rat the parameters of the CRESH function
are directly linked to substitutability betweenhrologies, and that because the parameters
differ between technologies, so can the elasticitiesubstitutiorf. The fact that the CRESH
framework allows heterogeneity in substitution bedw technologies is consistent with
econometric studies of such elasticities, and drtbeobenefits of using the technology
bundle approach.

A concern with the CRESH approach is that for @gimumber of technologies there are the
same numbers of parameters available to caliblasté@ties. However, the number of
elasticities exceeds the number of technologieauserthere are own-price elasticities as
well as cross-price elasticities that must be catddl (see equations (4) to (7)).

Conventional Thermal and CCS Technologies

A fossil fuel technology combines conventional thal and CCS sub-technologies through a
CES function, as shown at the bottom of Figureat.@ units of generation, the demand for
each sub-technology)( ;) satisfies:

T

[Zi(Qi,j)g . Di,j]: =Q; (8)

wherer is the shadow elasticity of substitution, and echis a positive parameter. Given
total demand for a fossil fuel technolody; X and production costs for each sub-technology
(P;;), the electricity producer chooses demand for sathtechnologyd; ;) to minimize

total cos®; Q; ; - P;; = C;, subject to equation (8). The linearized solutmthis problem
yields:

q;=q -7 (pij — i) (9).
Additivity of Technologies and Sub-Technologies

The electricity produced by differing technologie® homogenous good. This leads to
another drawback when using CRESH or CES functicimsnges in electricity output depend
upon changes in production from each technologlyateweighted by cost shares (see
equation f4 above). This leaves the possibility that output from easthnology as

measured in physical units may not equal totaltetety output. The problem is aggravated
by CES aggregation of the fossil sub-technologies.

We add a uniform adjustment factdid() to all non-fossil technologies in equation (3) to
ensure additivity in physical units:

q; = qx — a; - (p; — px) + Adj.

The adjustment factor is also added to all fosgigechnologies in equation (9):

® In the CES case whef) = d for all i, this implies that;; = a; the expressions above simplify so that
gi=(s;— 1 a; &) =Sja=¢g;foranyi # k, andM; ; = §;; = a for anyi, j. That is, the degree of

substitution between any two competing technologiessumed to be the same.
" Because the CES function is a special case dERESH function it is subject to the same problem.
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qij=qi— 7 (pij —pi) + Adj.

This adjustment factor is endogenously calculateehsure the additivity of enon-fossil
technologies and fossil subehnologiesinto a single industrial outpuk}.2

Technology Production

Below the generation activity and within each sfietechnolog' or subtechnolog, we
assume a fixedoefficients production function qprimary factorcomposite(F) and
intermediate inputsy):

Q; = Min{4, - F, B, - G}.

In this equatioM, andB, are scale factors representing the efficiency ohestivity, and
Min is the minimum operato The factor composite is aggregate of labor, capi, and the
fixed-factor eergy resources (if applicabl This is consistent with the -up in Sue Wing
(2006) and shown in Figure

Figure 2:Production Structure of an Electricity Technol Within the Generation Activi

Technology

1
[ |
--------
intermediate input 1 intermediate input n
[ I .
1

|
[ 1
Factor 1
CEC - J' 8 O

Sourcel | Source n

Each of the intermediatepnts is an aggregate of imported and domestic gddux
aggregation is represented by a CES funi, which allows imperfect substitution betwe

imported and domestic goo,; ™ andGPo™:

8 Introducing the adjustment factor does not chantm-technology substitution responses to price char
because for two technologies we hi

qi—q;=—a;-(pi—px) +aj- (pj -px) (f6),

which is free of the adjustment fac



a
o-17g-1

o-1
G = pDom(GiDom) o + plmp(GiImp) ’

Here,o is commonly known as the Armington elasticity obstitution between importe
and domestic goods, apg,,, andp;,,,, are budget share parameterge 8urfisher (. 75,

2011) for additional detailsThe imported goodi""” isa CES composite of shipments fr

various sources.”T":

Im, Im = #
G = [err(Gr,i ok l .

wherep, is budget share parameter, m is the elasticity of substitution amoimports
from different sources.

The OMD Sector

The OMD activity shown in Figure :is a Leontief function of notechnolog-specific
intermediate inputs:

Y = Min{Bs - G}.

B; is ascale factor representing the efficiency of eintermediate inpuandMin is the
minimum operatar As before theintermediate inputs are aggregates of domestic
imported goods.

Figure 3:Production Structure of O&M and Distributi

O&M and Distribution
|
1
| |

Leontief function

Non-technology-specific | Non-technology-specific
intermediate input 1 intermediate input n
CES function
1

Ly |

1

CES function
1
| | |
-------- Source n




4 |mplementation of the Technology Bundles

In this section we describe implementation of #ehhology bundle approach outlined above.
We begin by considering the appropriate levelsatéidi for power generation technologies
and then describe calibration of elasticities distilution. Our implementation uses the
GTAP 8 database and other available data fromBAeahd EIA?

4.1 Allocating the Output, I nputs and Emissions of Electricity into Technologies

The first practical challenge in implementing teettnology bundle approach is allocating
the output, inputs, and emissions of the elecyrgtctor into technologies in a manner
consistent with a CGE model’s social accountingrixatChoosing the appropriate level of
output and input detail for power generation tedbgies in each region of the model is
particularly challenging.

In terms of output, the IEA world energy balandaégrovides production data on more than
20 electricity technologies for over 100 regiongéinational Energy Agency, 2007). This
balance table is available for purchase from theWebsite. EIA’s International Energy
Outlook (2013) provides a cost-free alternativeliquids, gas, coal, nuclear, hydro, wind,
solar, geothermal, and other renewables for 15ayl@gions Either of these sources can
be used in disaggregating regional electricity atgp Because the GTAP 8 database lumps
both electricity and heat into a single sectorhaee chosen to use the IEA world energy
balance table which accounts for both electricitgt heat.

For ease of implementation, we group into 10 tetdgies: coal, oil, gas, nuclear, hydro,
wind, solar, biomass, waste, and other renewalble.fdssil technologies (coal, oil and gas)
are further divided into conventional coal, oil ayas, and their counterparts with carbon
capture and storage (CCS). This structure folloigsifeé 1 and is outlined in sub-section 2.2.
In the 2007 world energy balance table there ar@agounts for CCS sub-technologies,
hence we have assumed that the CCS sub-technobrgi@s004% of their conventional
counterpartd! For full detail, Table Al in the online appengixows world electricity and
heat generation in terawatt-hours (TWH) for 200%H®/ 10 technologies we have chosen in
each region.

The challenge on the input side is deciding the@pyate weights for each factor of
production and technology-specific intermediateuinin terms of the capital and labor split
for each technology, EIA provides estimates of night capital and O&M (variable and
fixed) costs for various electricity generatingteaclogies in the United States (EIA, 2013a).

°® We use a regional aggregation that includes ti$e (USA), rest of North America (RNA), South Amexric
(SAM), Europe (EUR), China (CHN), rest of East AGREA), India (IND), rest of Asia (ROA), former Siet
Union (FSU), Oceania (OCN), middle-East (MDE), @fdca (AFR).

1 Another alternative is at:
http://www.eia.gov/cfapps/ipdbproject/iedindex3.eid=2&pid=alltypes&aid=12&cid=regions&syid=2007&e
yid=2007&unit=BKWH. However, this has only one account for converatithermal, which lumps coal, oil
and gas together.

1 Global CCS Institute (2013) suggests that arouhthje-scale integrated projects (LSIP) in power
generation are being planned across the world.dsiimated these facilities will capture more tBanmillion
tonnes of CO2 each year, around 0.004% of 2007agl6®2 emissions from the power sector. This ssigge
that CCS technologies will be of a similar sharéoital fossil fuel generation. Because these ptsjare not yet
in operation, we hold CCS constant in the modelgations until the carbon price is sufficiently hig
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We use the U.S. values for the other regions imrthdel in lieu of better data. To

reconcile our electricity technologies with EIA'sexification we assume that oil power
generation is better represented by conventiorsbdaombined cycle technology, and gas-
fired technologies by advanced gas/oil combinedectgchnology. Table A2 in the online
appendix shows the cost structure of various tecignes.

We interpret overnight capital as the “capitaltie GTAP 8 database, and assume that
variable and fixed O&M costs consist entirely dida, which makes up the “labor” in the
GTAP 8 database. Using these cost estim@g¢sé auxiliary weights, we disaggregate
GTAP capital and labor input&f4”>. ...) by the following formula:

ectricity

GTAP _ GTAP . Qi
Fi — Lelectricity .
2iQiC;

The fixed-factor energy resources used by carbeatiechnologies are not available from the
GTAP 8 database. Therefore, we follow Sue Win@&@nd assume these resources
compose 20% of capital input and are split fromdégital account in constructing the
database. The capital and resource outputs iG> 8 database are also modified to
maintain consistency.

For the technology-specific intermediate input:)-fi@errous metal and mineral products are
associated with nuclear, agricultural goods argased to biomass, and all fuels are allocated
to coal, gas and oil accordingly. The emissionsaficeated in the same manner as the fuels.
To distinguish conventional thermal and CCS fosgls sub-technologies we assume CCS
sub-technologies use 20% more fuels and emit 98%®&HG gases for the same amount of
generation. This is consistent with the estimai®GC (2005).

All other intermediate inputs are allocated to @D activity. It should be noted that we
have split intermediate inputs into those thattacbnology-specific, and those that are used
by the OMD activity, exclusively. This enables asstmplify the process of disaggregating
the GTAP inputs into electricity.

4.2 Calibration of Electricity Generation Elasticities of Substitution

Once the appropriate level of detail in technologuts and outputs is chosen, estimates of
substitutability between technologies can be sptifGiven the cost sharg;) of each
technology, the crosg,(;) and own §; ;) price elasticities of demand are functions ofdhe
values according to equations (4) and (5). Asassussed in sub-section 2.2, the CRESH
function does not allow for exact calibration df@n and cross-price elasticities of demand
together. Specifically, there are aPvalues that can be set (one each for coal, al, ga
nuclear, hydro, wind, solar, biomass, waste, ahdratenewables), but there are a total of
100 own and cross-price elasticities. Because ltaeg been extensively studied in the
literature, we focus on substitution between felkaged technologies.

Our ultimate goal in calibration is to reflect finds in Dahl and Ko (1998), Ko and Dahl
(2001), and EIA (2012) for the U.S. electric powector. Calibration of elasticities related

1270 extend our simplified approach we can use lempentary information (if available) to infer thest-of-
generation for other non-U.S. regions from the Gdddatabaseh(tp:/en.openei.org/apps/TCDB/Yhis is an
open-source database that compiles historicalafegéneration, projections, and distributions & #stimates
for each technology. Data is collected from thA,HPCC, and other sources.
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to coal and gas are prioritized, because oil oogpants for a minor share of U.S. power
generation. Taking account of the fact that thé&eGR function requires all; values to be
positiv?é in all regions we choose final parame&tdues of 0.6 for coal, 0.5 for oil, and 1.75
for gas.

Table 1 shows the U.S. cross {) and own §; ;) price elasticities of demand as implied by
our parameter settings and the GTAP 8 databas0fdf, and compares them with estimates
from the literature.The rows in the table are technology demands amddlumns are
technology prices; diagonal cells represent ownepelasticities, and the remainder are
cross-price elasticities. For instance, the istetien of the “Coal Demand” row and “Gas
Price” column is the cross elasticity of coal powemand with respect to the gas power
price.

There are five estimates in each cell. “AC” is #hasticity as implied by our parameter
settings; “DKT"” is the estimate of Dahl and Ko (BY@sing the translog model; “DKL” is

the estimate of Dahl and Ko (1998) using the lagidel; “KD” is the estimate of Ko and
Dahl (2001) using the translog model; and “ElAthe estimate of EIA (2012) using the logit
model. For example, the cross-price elasticitgazl demand with respect to the natural gas
price in our calibration (AC: 0.22) implies that iP&rease in the price of gas power will
lead to 0.22% increase in the demand for coal powars is higher than both the EIA
estimate (EIA: 0.17) and those of Dahl and Ko (DR1t4, DKL: 0.2), but lower than Ko

and Dahl's (KD: 0.28).Overall, our choice of parameters leads to eldsscthat are within
the range found in empirical studies.

Table 1: U.S. Cross and Own Price Elasticities efmand
Between Coal, Oil, and Gas Generation Technologies

Elasticity £ Coal Price Oil Price GasPrice
AC: -0.46 AC: 0.03 AC: 0.22
DKT: -0.16 DKT: 0.02 DKT: 0.14
Coal Demand DKL: -0.26 DKL: 0.06 DKL: 0.2
KD: -0.57 KD: 0.29 KD: 0.28
EIA: -0.11 EIA: -0.06 EIA: 0.17
AC: 0.12 AC: -0.48 AC: 0.18
DKT: 0.74 DKT: -0.72 DKT: 0.02
Oil Demand DKL: 0.29 DKL: -1.04 DKL: 0.75
KD: 3.21, KD: -3.05 KD: -0.15
EIA: 1.89 EIA: -1.26 EIA: 0.82
AC: 0.42 AC: 0.08 AC: -1.12
DKT: 0.28 DKT: 0.21 DKT: -0.49
Gas Demand DKL: 0.75 DKL: 0.25 DKL: -1.0
KD: 1.54 KD: -0.08 KD: -1.46
EIA: 0.14 EIA: 0.14 EIA: 0.29

Except for nuclear, the; values are set to 2.7 for carbon-free technologigss leads to
own price elasticitiess(;) of renewable technologies around 2.6, consistéhtJohnson

13 For numerical stability of the model, these par@mealso need to be significantly greater tham.zeFhe
drawback of this approach is that we are assuminggions have the sam& values as the U.S., but it is a
useful starting point. A Python script is availablpon request from the authors to implement thlib@ation..
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(2014)** Thea; value for nuclear is set to 1, resulting in an qwice elasticity of 0.8. This
relatively low value reflects public safety conceabout nuclear power generation.

Table A3 in the online appendix summarizes the tr&s and own price elasticities of
demand between all generation technologies asaahply our parameter settings and the
GTAP 8 database for 2007. The table shows thatgutions to carbon-free technologies
can be sizable when the costs of fossil fuels axze

As for the substitution between conventional andSGassil fuels, the elasticities of
substitution in the CES functions)(are set to 5 for coal and oil, and 10 for gabese are ad
hoc settings chosen because sufficient data isailahle, and we leave this for future
research. Our simulation results suggest thaetpasameter settings lead to rather
conservative estimates of future CCS expansion.

5 Application and Discussion

In this section we illustrate the technology buraid@roach through model simulations. We
consider the impacts of the Clear Power Plan Rhdewas released by the U.S.
Environmental Protection Agency (EPA) in June 20B4.2030 the proposed rule requires
the U.S. power sector to reduce carbon dioxide goms by 30% on 2005 levels.

We use the CSIRO Trade and Energy Model (CTEMe@momy wide, multi-regional
dynamic recursive CGE mode with origins in the Wwyeesed GTAP CGE model (Hertel,
1997). CTEM features disaggregated modelling efdiectricity sector through the
technology bundle approach (see Cai et al., 20Edy.comparison, we construct another
model (CTAP) that is otherwise identical to CTEM{ lvhich does not use an electricity
technology bundle. Figures 1 and 4 show the prilmlustructures of electricity in both
models.

CTEM's technology bundle approach allows substituthetween fossil generation
technologies and renewable alternatives. A caprime causes a wedge between fossil
generation and renewable generation prices, stimglthe uptake of clean energies. In
contrast, CTAP does not have a technology bundiealbows for substitution between a
primary factor composite (labor, capital, and fix&ttor energy resources) and a fuel
composite (coal, petroleum, and gas). This fuelmasite is a CRESH function of fossil fuels,
which allows for substitution among fossil fuel geation technologies as in CTEM.

14 Johnson (2014) finds the price elasticity of reakle electricity capacity to be 2.67; the 95% oberiice
interval ranges from 1.74 to 3.60.
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Figure 4 Production Structure Electricity in CTAP
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We usewo versions of the CTAP moc. The first, CTAP-Oassumes that primary factc
are complementary to fossil fuels in electricitywgetion (through the Leontief functio
CTAP-0 represents axtreme case of CTEwherefossil fuel technologies are n
substitutable by carbaoinee alternative Comparisons between CTAPa@d CTEM allow
an assessent of the importan: that the potential for switching has for model its

The second version, CTAPZ).assumes primary dtors are imperfect substitu to fossil
fuels in electricity generation (throua CES function).This model specification mimics tl
uptake of clean energies through substitution ffossil fuels to capital and fix-factor
energy resources, as iITEM. But it considers electricity production \a single technolog
The elasticity of substitution is set to b2. This is the same elasticity that McKibbin et
(2014) assume for the substitution between capéiabr, energy and materidn a study of
the U.S. power sector carbon mitiga. The comparisabetween CTA-0.2 and CTEM
allow us to investigatthe impacts of modelling electricity productionheologies a:
homogenous.

To minimize differences between models we use @ineesparamets for the CES aggregs
of primary factors in electricity generatic For the CRESH aggregate of fu in CTAP-0
and CTAP-0.2we use the sana; values for coal, petroleum, and natural gas asetfar
coal, ol and gas technologies in CTE All other parameters of the thremdels are
identical. Each model isuilt upon the GTA 8 database, and @te simulated on a ye-to-
year basis from 2007 throu2030.

5.1 Basdlines

The baselines of the thresodels are calibrated to reflea ‘business-agssual’ scenario witl
no carbon policies. The population estimate isrgkem the medium variant of the Unit
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Nations’ World Population ProspectsWe also follow Hertel et al. (2008) to set theein
factor elasticities of substitution such that ttveg-term supply elasticities of coal, oil and gas
are consistent with the estimates of Beckman ¢@l1) and EIA (2013b). The GDP
trajectories are based on the recent IMF World Booo Outlook (up to 2017) and our
assumptions about future economic growth. Oweiptriod from 2010 to 2030, the average
annual GDP growth rates are 2.2% for the U.S., fot%he E.U., 6.3% for China, 5.9% for
India, and 3.0% for the world.

The baseline calibration is implemented in two etad he first stage derives the path of
economy-wide input-augmenting productivities inteawodel which yield the baseline GDP
estimates. These input-augmenting productivity kh@ee applied uniformly to all sectors in
each region. In the context of energy inputs sugcbaal, oil, gas and electricity, the input-
augment productivity shocks are commonly undersesdutonomous energy efficiency
improvements (AEEI). To match the historical tréRaahi et al., 2011, Figure 11), an extra
0.25% input-augmenting productivity shock is adttedll energy used in production,
making the global average of AEEI roughly 1% pearnyer the three models.

Given assumptions for population and economic gnotite second stage is to specify long-
term average growth rates for each region’s enprggluction and consumption. We match
these growth rates to EIA’s International Energyl@ak (2013). This is implemented in all
models by varying productivity on fossil fuel pradion and preferences in energy
consumption, respectively.

5.2 Policy Scenario

We implement the Clear Power Plan Rule in each iMmgsolving for a carbon price path
such that the power sector achieves the same ctimeudamissions by 2030 as if there were a
linear decline in emissions. This approach folldeKibbin et al. (2014), and ensures the
total amount of emissions reductions from 2015G8®are the same in each model while
still meeting the specified target of a 30% redution 2005 levels. The different pathways
of power sector emissions in the United Stateshosvn in Table A4 of the online appendix

The carbon price can be interpreted either askaoaax or the market price of an emissions
permit in the U.S. power sector. The carbon prideincrease by 4%, roughly the value of
the nominal interest rate each year. This so-@dHmtelling Rule” mimics the expected
behavior of an efficient market that allows for thenking and borrowing of emissions rights,
which minimizes the business cost of mitigation Kvbin et al., 2009).

5.3 Overview of Results

Carbon prices associated with the declining enmissprofiles in each model are displayed in
Figure 5. In 2015 the starting price is $31 in ®FA.2, $34 in CTEM, and $43 in CTAP-0.
These are all higher than the estimate of McKildtial. (2014), who simulate a 42%
reduction on 2005 levels by 2030, with prices 8tatt at $23 in 2012 and reach $26 in 2015.

15 Seehttp://esa.un.org/wpp/
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Figure 5: U.S. Carbon Price for the Electricity ®ec
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Source: Author calculations.

The imposition of a carbon price raises the co$osdil feed-stocks to power generation
[shown in Figure Al of the online appendix]. Besawoal is the cheapest and most
polluting of the fuels considered, it has the latgecrease in feedstock prices across models.
As of 2030, there is a nearly 200% increase in CTA&l prices, and the cost of coal rises by
more than 150% in both CTEM and CTAP-0.2. Theqwiof both natural gas and oil rise as
well in all three models.

The carbon price is passed on to consumers and fisrough higher electricity prices
(Figure A2, online appendix). CTAP-0 results segjghat the U.S. electricity price rises by
about 45% through 2030, whereas CTEM and CTAP-hjegt an increase around 30%,
although CTAP-0.2 is slightly higher than CTEM. e@ter reductions in electricity
consumption are observed in the CTAP-0 as a réEalltle 2).

Table 2: Deviation of U.S. Electricity Consumptiivom the Baseline Under a Carbon Price

Deviation in TWH
2015 2020 2025 2030
(Deviation in %)
-273 -334 -414 -528
CTEM (-5%) (-6%) (-7%) (-8%)
-330 -413 -517 -662
CTAP-0 (-6%) (-7%) (-9%) (-10%)
-261 -330 -418 -541
CTAP-0.2 (-5%) (-6%) (-7%) (-8%)

Source: Author calculations.

Higher electricity prices raise the cost of prodwctand consumption. This will spread to all
economic sectors and reduce national outptithe aggregate level, all three models see a
decline in Gross Domestic Product (GDP) (Table@J.AP-0 projects real GDP (2007%)
losses in excess of 31 billion each year on aveirage 2015 through 2030, CTAP-0.2
estimates average annual losses of 23 billion @Q@vhile CTEM comes in at an average of
12.5 billion (2007$) over this time period.
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Table 3: Deviation of Real U.S. GDP from the BamszlUnder a Carbon Price

Deviation Billion 2007$

(Deviation in %) 2015 2020 2025 2030 Average
4.0 9.8 15.1 -20.92 125
CTEM (-0.03%) (-0.05%) (-0.08%) (-0.10%) (n.a.)
-17.0 -26.1 355 -48.1 -31.3
CTAP-0 (-0.11%) (-0.15%) (-0.18%) (-0.22%) (n.a.)
126 -19.2 -26.4 -36.0 -23.3
CTAP-0.2 (-0.08%) (-0.11%) (-0.13%) (-0.16%) (n.a.)

Source: Author calculations.

The average annual reductions in GDP from the thvegels all fall within the range found
by the EPA and the U.S. Chamber of Commerce. Efifnates that annual compliance
costs for the Clear Power Rule will peak in 203@oaghly 8.1 billion (2007$)° A rough
back-of-the-envelope calculation suggests the drawggiage costs are around 6.5 billion
(2007%). The U.S. Chamber of Commerce (2014) tigete the economic consequences of
reducing U.S. power sector CO2 emissions 40% b@b levels by 2030. They find the
annual average cost of mitigation to be about #4®bi(2007$)*’

5.4 Discussion of M odelling Differences

The level of the electricity sector carbon pricetilghout the simulations is greater in CTAP-
0 than either CTAP-0.2 or CTEM. One reason is @iBAP-0 has a higher trajectory of
baseline emissions than the other models. Moreitaptly, fossil fuels are considered a
supplement to primary factors in CTAP-0. Thathg model does not allow substitution
from electricity produced by fossil technologiesetectricity produced by carbon-free
alternatives. These carbon-free alternatives iaeetty modelled in CTEM, and
approximated by substitution to primary factor&€inAP-0.2. Thus, power generation
cannot be decoupled from emissions, and the onjytavaneet the mitigation target is by
reducing electricity consumption (induced by a leigbarbon price).

This is in contrast to both CTEM and CTAP-0.2, vhpower generation can use a non-
emitting renewable (CTEM) or substitute to priméagtors (CTAP-0.2), leading to a lower
carbon price. The remaining differences betweeBRMWCTAP-0.2 and CTAP-0 reflect
these variations in carbon prices.

The CTAP-0.2 and CTEM estimates for carbon pribesiselves are -higher than that of
McKibbin et al. (2014) which achieved a tighterwetion target of 42% reduction on 2005
levels. This is because McKibbin et al. (2014 uass an earlier introduction of the carbon
price (2012). Furthermore, the G-Cubed model lsellicKibbin et al. (2014) assumes
forward-looking expectations (see McKibbin and Wien, 1999). This means future rises
in carbon prices impact current energy consumpgahancing mitigation effects.

The differences in outcomes between CTAP-0.2 andNL, Thowever, reflect the assumption
about homogenous or heterogeneous technologidsatnieity generation. The way that
CTAP-0.2 treats electricity production via a singgehnology averages the cost

®See State Compliance under Option 1 of Table ESage ES-8 at:
http://www2.epa.gov/sites/production/files/2014-@§uments/20140602ria-clean-power-plan. pdf
7 https://www.uschamber.com/press-release/energititesteport-finds-potential-new-epa-carbon-
regulations-will-damage-us
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characteristics of different technologies. Witlstlaveraged” technology, the fuel intensities
of fossil technologies are diluted, while the sithbns between primary factors and fuels
are exaggerated. This will raise the impacts db@amprices on carbon mitigation, thus
leading to lower carbon prices for the same miidgatarget. Furthermore, the carbon-free
technologies are “forced” to require some foss#ll fmput and to share the burden of carbon
price. This will raise the impacts of carbon psi@a the electricity price and consumption,
leading to higher economic costs of mitigation.

In contrast, CTEM treats electricity production sidbundle of heterogeneous technologies.
All fossil fuels are accrued to a single technolagyd no substitution between primary
factors and fuel is allowed. Therefore, higheboarprices are required to achieve the same
mitigation target. However, the electricity producan avoid the burden of carbon prices by
substituting to carbon-free technologies. Thid mitluce the impacts of carbon prices on
electricity prices and consumption, leading to loeeonomic costs of mitigation.

Another benefit of the technology bundle approacshiown in Table 4, which displays the
changes from base in electricity production by tetbgy in applying the Clean Power Rule.
Models that do not distinguish between generatchrologies are unable to account for
changes in electricity production in terms of umglag changes in those technologies.

Table 4: Deviation of U.S. Electricity Generatioorh the Baseline in CTEM Under a
Carbon Price

Deviation in TWH 2015 2020 2025 2030
(Deviation in %)
-438 -524 -643 -802
Coal (-19%) (-21%) (-25%) (-29%)
-1 -2 -2 -3
Oil (-1%) (-2%) (-3%) (-3%)
-142 -198 -271 -378
Gas (-13%) (-17%) (-21%) (-27%)
119 146 182 233
Nuclear (12%) (13%) (15%) (18%)
139 184 248 333
Hydro (35%) (41%) (51%) (65%)
7 8 11 14
Wind (38%) (45%) (55%) (70%)
0.3 0.4 0.5 0.7
Solar (35%) (41%) (51%) (65%)
21 25 31 38
Biomass (40%) (47%) (57%) (73%)
15 17 20 24
Waste (43%) (50%) (62%) (79%)
7 9 10 12
Other Ren. (42%) (50%) (61%) (78%)
0.0000 0.0408 0.1082 0.2264
Coal + CCS (0%) (47%) (124%) (260%)
0.0000 0.0002 0.0006 0.0011
Oil + CCS (0%) (7%) (16%) (32%)
0.0000 0.0190 0.0549 0.1406
Gas+ CCS (0%) (49%) (142%) (363%)
-273 -334 -414 -528
Total (-5%) (-6%) (-7%) (-8%)

Source: Author calculations.
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As expected, coal-based generation shows largedpbsat so does natural gas. Specifically,
coal power sees the largest absolute reductior? (Ff8UH), followed by gas power (-378
TWH). However, in percentage terms, the redudtiogas power (-27%) is almost the same
as that in coal (-29%), even though the coal grniceease in CTEM is more than double that
of natural gas. The reason is that the own piizgtieity of demand for gas power (-1.12) is
two and half times higher than that of demand @@l power (-0.46), consistent with
empirical estimates.

Our simulation results suggest that the reducticglextricity generation via fossil fuel
technologies will be partially made up by genematiorough carbon-free technologies. In
particular, both nuclear and hydro power see residerincreases from the baseline.

In terms of nuclear, uprates have the potentialdoease U.S. nuclear capacity by as much as
20% without building new reactors according to EfANuclear growth in the simulations
peaks at 18% in 2030. As for hydro-power, a recent study conducted by Qidge

National Laboratory (ORNL) for the U.S. DepartmehEnergy found that 61 gigawatts

(GW) of hydroelectric power potential exists in the52° This can potentially generate 200
TWH of electricity per year, assuming the curresgpacity factor of 40%. Raising
assumptions about the capacity factor to 75% cae potential generation to the 333 TWH
shown in the simulations in 2030.

Biomass and waste power also see an increase,aisdosolar, and other renewables.
Although small when measured in TWH, the expansaijritese technologies are large in
terms of percentage changes, primarily becausestiagtyfrom a low base. However, they
appear quite plausible when compared to the grofthean energy in Australia over the last
decade (Clean Energy Council, 2012).

The growth rates of CCS technologies are minomaaiing for less than 0.1% of the
reduction in the conventional thermal sub-techniel®g Such a pace of switching is rather
conservative.

6 Conclusion

The manner in which electricity generation is mtstetan lead to different quantitative
estimates of the costs and benefits of environnheotecies. This paper clarifies, expands,
and illustrates the “technology bundle” approacHisaggregated modelling of the electricity
sector in Computable General Equilibrium (CGE) nisde

We provide an intuitive interpretation of the “techogy bundle”, describe the mathematical
structure of the CRESH function, and establisimla tietween parameters of the CRESH
function and elasticity estimates. We also show tiee input and output structure of the
electricity sector in the GTAP 8 database can bagijregated using data from international
agencies. Finally, we simulate the proposed U.8aPower Rule under using different
levels of disaggregation in the electricity se@od highlight the differences.

18 Source: http://www.eia.gov/todayinenergy/detaih@fd=7130

19 Additionally, U.S. nuclear plants are running asgacity factor of 90% on average, thus improvemen
capacity factor can also contribute to the growithuzlear power:
http://www.eia.gov/electricity/monthly/epm_tableagher.cfm?t=epmt_6 07. b

2 Sourcehttp://www.eia.gov/todayinenergy/detail.cfm?id=1705
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Appendix: Online Figuresand Charts

Table Al: World Electricity and Heat Generatiorrdigatt-hours) in 2007 by Technology
and Region

Technology USA RNA | SAM EUR CHN REA IND ROA | FSU OCN | MDE | AFR | Total
Coal 2176.5| 150.3] 112.7 1226.2 33739 659/7 570.0 153@6.0 185.5| 1434 2959 9873.7
Oil 87.6 66.2 97.2 201.8 93.5 239.5 35.8 94|1 173.9 2{5213.7 | 56.7 1362.1
Gas 968.8 182.3] 142.3 11245 51.0 406.[7 69|6 282.9 .99D539.8 411.8| 1404 5726.0
Nuclear 838.9 110.8| 66.1 1073.f 67.8 438.8 20)9 63.3 300.82.9 90.9 40.5 3144.9
Hydro 298.7 387.9| 571.8 503.7 4084 1156 95/0 81.3 260.69.0 53.3 67.5 2882.1
Wind 14.3 1.0 15 57.6 1.7 14 5.0 2.2 1.6 1.0 0.7 11 928
Solar 0.6 0.0 0.1 0.9 0.1 0.0 0.0 0.1 0.3 0.0 0.1 0.5 2.6
Biomass 43.6 11.1 194 89.1 7.2 115 2.1 6.7 18.5 1.4 51 .6 2| 218.2
Waste 31.2 0.8 5.7 77.9 26.4 13.7 5.3 3.9 27.0 0. 3.8 1 3] 199.6
Other

Renewables | 15.5 7.0 4.4 15.6 10.5 5.2 2.1 16.4 25 3.1 1.4 1/985.9
Coal +CCS | 0.2 0.0 0.0 0.1 0.3 0.1 0.1 0.0 0.1 0.0 0.0 0.0 1.0
Oil + CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Gas+ CCS 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0. 0.6
Total 4476.0| 917.5 1021. 4371)3 4040.9 1891.8 805.3 67p4516.8| 305.9 924.5 6103 23584.0

Source: IEA World Energy Balance Table (2007) amithar calculations.
Note: For each region, the numbers are scaledthatithe sum of all technologies coincides
with total electricity output in the GTAP 8 databas
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Table A2: U.S. Cost Characteristics of Electriéignerating Technologies

Technology EIA Specification Overnight Capital Cost Fixed O& M Variable O& M Cost
($/kW) Cost ($kW-yr) | ($IMWh)

Coal Scrubbed Coal New $2,925 $31 $4
Conv. Gas/Oil Comb

Qil Cycle $915 $13 $4

Gas Advanced Gas/Oil CC $1,021 $15 $3

Nuclear Adv Nuclear $5,501 $93 $2
Conventional

Hydro Hydroelectric $2,435 $15 $3

Wind Onshore Wind $2,213 $40 $0

Solar Photovoltaic $3,564 $25 $0

Biomass Biomass CC $4,114 $106 $5

Waste Municipal Solid Waste $8,312 $393 $9

Other

Renewables | Geothermal $2,494 $113 $0
Dual Unit Advanced PC

Coal CCS with CCS $6,567 $73 $8

Oil CCS Advanced CC with CCS| $2,084 $32 $7

GasCCS Advanced CC with CCS| $2,084 $32 $7

Source: EIA (2013a).
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Table A3: U.S. Cross and Own Price Elasticitie®emand Between All Generation
Technologies

Elasticit Coal oil Gas | Nuclea | Hydro | Wind Solar Bio. | Waste O;Zir
y & Price Price Price | r Price Price Price Price Price Price Pricé
Coal A
Demand -0.46 0.03 0.22 0.12 0.04 0.002 0.0001 0.01 0.03 004D
Dema%ljl 0.12 -0.48 0.18 0.10 0.04 0.002 0.0001 0.01 0.02 00D
Gas L
Demand 0.42 0.08 -1.12 0.35 0.12 0.01 0.0004 0104 0.08 10.0
I;\Ieunﬁger?(; 0.24 0.04 0.36 -0.80 0.07 0.004 0.0002 0.02 0.05 010.
Dg'ni’gr:g 065| 012/ 094 055 251 001 00006 007 013 20.0
Wind L
Demand 0.65 0.12 0.98 0.55 0.19 -2.69  0.0006 007 0.13 20.0
Solar 0.65| 012 0.98 055 019 001 -2y0 olor 013  0.02
Demand ' ' : Y : . -2. . )
Demirlwtt)j. 0.65 0.12 0.98 0.55 0.19 0.01 0.0p1 -2163 0.13 D.02
Devr\1/12§§ 0.65 0.12 0.98 0.55 0.19 0.01 0.0p1 0l07 -4.57 D.02
Other
Ren. 0.65 0.12 0.98 0.55 0.19 0.01 0.0p1 007 0.13 -2.68
Demand

Source: GTAP 8 database for 2007 and author cdicosa
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Table A4: Path of U.S. Power Sector Carbon Dio¥dassions (1000 Million Tonnes of

CO2) Before and After Clean Power Rule

Scenarios 2015 2020 2024 203p
CTEM _Basdline 2.91 3.01 3.13 3.29
CTEM_Linear (Annual Target) 2.84 2.54 2.25 1.95
CTEM_Linear (Cumulative) 2.84 16.14 27.91 38.3p
CTEM_Policy (Annual) 2.40 2.401 2.39 2.3
CTEM_Policy (Cumulative) 2.40 14.39 26.31 38.21
CTAP-0_Basdline 3.10 3.25 3.41 3.59
CTAP-0_Linear (Annual Target) 3.00 2.65 2.30 1.95
CTAP-0_Linear (Cumulative) 3.00 16.93 29.17 39.57
CTAP-0_Policy (Annual) 2.38 2.45 2.49 2.50
CTAP-0_Policy (Cumulative) 2.38 14.52 26.91 39.39
CTAP-0.2_Baseline 3.09 3.25 3.40Q 3.59
CTAP-0.2_Linear (Annual Target) 2.99 2.65 2.30 1.95
CTAP-0.2_Linear (Cumulative) 2.99 16.92 29.11 39.56
CTAP-0.2_Policy (Annual) 2.39 2.45 2.48 2.48
CTAP-0.2_Policy (Cumulative) 2.39 14.54 26.8¢ 39.28

Source: Author calculations.

Note: These numbers are higher than the EIA staibecause the GTAP 8 database lumps
both electricity and heat into a single sectoroAlse CTEM CQ emissions database has
been scaled up by a factor of 1.155 to match ti9& 2tnissions of RCP8.5 (Riahi et al.,

2011).
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Figure Al: Deviation of U.S. Fossil Feedstocks tavBr Generation from Baseline Under a
Carbon Price
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Figure A2: Deviation of U.S. Electricity Price frotne Baseline Under a Carbon Price
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