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Abstract

The deviance information criterion (DIC) has been widely used for Bayesian model
comparison. In particular, a popular metric for comparing stochastic volatility
models is the DIC based on the conditional likelihood—obtained by conditioning on
the latent variables. However, some recent studies have argued against the use of the
conditional DIC on both theoretical and practical grounds. We show via a Monte
Carlo study that the conditional DIC tends to favor overfitted models, whereas the
DIC calculated using the observed-data likelihood—obtained by integrating out the
latent variables—seems to perform well. The main challenge for obtaining the latter
DIC for stochastic volatility models is that the observed-data likelihoods are not
available in closed-form. To overcome this difficulty, we propose fast algorithms for
estimating the observed-data likelihoods for a variety of stochastic volatility models
using importance sampling. We demonstrate the methodology with an application
involving daily returns on the Standard & Poors (S&P) 500 index.
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1 Introduction

Stochastic volatility models are widely used for modeling financial time series, and have
more recently become important in macroeconometric modeling following the seminal
work of Cogley and Sargent (2005) and Primiceri (2005). As a result, there is now a large
and growing family of flexible stochastic volatility models (see, e.g., Chib, Nardari, and
Shephard, 2002; Koopman and Hol Uspensky, 2002; Jensen and Maheu, 2010; Nakajima
and Omori, 2012; Chan, 2013; Mumtaz and Zanetti, 2013; Eisenstat and Strachan, 2014,
to name but a few examples). Given the wide range of model candidates, it has become
increasingly important to be able to discriminate between competing models for a given
application.

One popular metric for Bayesian model comparison is the deviance information criterion
(DIC) proposed by Spiegelhalter, Best, Carlin, and van der Linde (2002). Celeux, Forbes,
Robert, and Titterington (2006) later point out that there are numerous alternative
definitions of the DIC depending on different concepts of the likelihood. In particular,
the DIC based on the conditional likelihood—obtained by conditioning on the latent
variables—has been widely used for comparing stochastic volatility models, following the
influential paper by Berg, Meyer, and Yu (2004). The popularity of the conditional DIC
in this setting is partly due to its trivial computation and its implementation in standard
software packages, including WinBUGS. It has been used to compare a wide variety of
stochastic volatility models in empirical applications; recent studies include Yu and Meyer
(2006), Abanto-Valle, Bandyopadhyay, Lachos, and Enriquez (2010), Vo (2011), Mumtaz
and Surico (2012), Tsiotas (2012), Brooks and Prokopczuk (2013) and Wang, Choy, and
Chan (2013).

Despite its popularity, some recent papers have criticized the use of the conditional DIC on
both theoretical and practical grounds. Li, Zeng, and Yu (2012) argue that the conditional
DIC should not be used as a model selection criterion, as the conditional likelihood of the
augmented data is nonregular and hence invalidates the standard asymptotic arguments
that are needed to justify the DIC. On practical grounds, Millar (2009) provides a Monte
Carlo study in which various Poisson models are compared, and the conditional DIC
almost always favors the Poisson-gamma model instead of the Poisson-lognormal model,
even when data are simulated from the latter. In another study, Chan and Grant (2014)
show—through empirical examples involving macroeconomic and financial data—that the
conditional DICs typically have large numerical standard errors. Hence, it might not be
computationally feasible to estimate the conditional DIC accurately enough to be useful
as a model comparison criterion. In light of this finding, they recommend that numerical
standard errors of the DIC estimates should be reported, which is rarely done in empirical
research.

We contribute to this line of research by showing via a Monte Carlo study that the con-
ditional DIC tends to prefer overfitted stochastic volatility models. This is an important
finding given that the conditional DIC is widely used in empirical applications. In con-
trast, the DIC based on the observed-data likelihood—obtained by integrating out the
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latent variables—seems to be able to select the correct model. This result is not surpris-
ing as standard asymptotic arguments for justifying the DIC apply to the observed-data
DIC. The main challenge for obtaining the latter DIC for stochastic volatility models
is that the observed-data likelihoods are not available in closed-form, which is the main
reason why it is not used in practice. We take a first step to address this difficulty by
proposing efficient algorithms for estimating the observed-data likelihoods for a variety
of stochastic volatility models using importance sampling. A key feature of our approach
is that it draws on recent advances in band matrix algorithms rather than using the con-
ventional Kalman filter. By carefully constructing a good importance sampling estimator
for the observed-data likelihood, we show that the observed-data DIC can be accurately
estimated. Furthermore, these observed-data likelihood estimators can be used in other
settings, such as in developing more efficient Markov chain Monte Carlo (MCMC) sam-
plers for estimation and algorithms for computing the marginal likelihood.

The rest of this paper is organized as follows. Section 2 outlines the concept of de-
viance and two definitions of the DIC. In Section 3 we discuss various stochastic volatil-
ity models that are widely used in the literature and their estimation. In Section 4 we
propose importance sampling algorithms—based on fast matrix routines—for estimating
the observed-data likelihoods for stochastic volatility models. The proposed methods are
demonstrated via a Monte Carlo study in Section 5. Moreover, the behavior of the condi-
tional and observed-data DICs are also examined. Section 6 illustrates the methodology
with an application involving daily returns on the S&P 500. Directions for future research
are briefly discussed in Section 7.

2 Deviance Information Criterion

The seminal paper by Spiegelhalter, Best, Carlin, and van der Linde (2002) introduces
and develops the concept of deviance information criterion (DIC) for model comparison.
This criterion is based on the deviance, which is defined as

D(θ) = −2 log f(y |θ) + 2 log h(y),

where f(y |θ) is the likelihood function of the parametric model and h(y) is some fully
specified standardizing term that is a function of the data alone. The effective number of
parameters pD of the parametric model is defined to be

pD = D(θ)−D(θ̃),

where
D(θ) = −2Eθ[log f(y |θ) |y] + 2 log h(y)

is the posterior mean deviance and θ̃ is an estimate of θ, which is typically taken as the
posterior mean or mode. Then, the deviance information criterion is defined as the sum
of the posterior mean deviance, which can be used as a Bayesian measure of model fit or
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adequacy, and the effective number of parameters that measures model complexity:

DIC = D(θ) + pD.

Hence, the DIC may be viewed as a trade-off between model adequacy and complexity.
For model comparison, the function h(y) is often set to be unity for all models. Therefore,
the DIC becomes

DIC = −4Eθ[log f(y |θ) |y] + 2 log f(y | θ̃).

Given a set of competing models for the data, the preferred model is the one with the
minimum DIC value.

For latent variable models, such as stochastic volatility models, Celeux, Forbes, Robert,
and Titterington (2006) point out that there are numerous alternative definitions of the
DIC depending on different concepts of the likelihood. In particular, suppose we augment
the model f(y |θ) with a vector of latent variables z with density f(z |θ) such that

f(y |θ) =

∫
f(y |θ, z)f(z |θ)dz =

∫
f(y, z |θ)dz,

where f(y |θ, z) is the conditional likelihood and f(y, z |θ) is the complete-data likeli-
hood. We refer to the likelihood f(y |θ) as the observed-data likelihood or the integrated
likelihood.

Naturally, one can define the DIC using the observed-data likelihood and we call this the
observed-data DIC:

DICobs = −4Eθ[log f(y |θ) |y] + 2 log f(y | θ̂), (1)

where the estimate θ̃ of θ is set as the posterior mode θ̂. The term Eθ[log f(y |θ) |y] can
be estimated by averaging the log-observed-data likelihoods log f(y |θ) over the posterior

draws of θ. In addition, the posterior mode θ̂ is often approximated by the draw that
has the highest value of f(y |θ)f(θ) among the posterior draws, where f(θ) is the prior
density.

One main difficulty in computing DICobs is that the observed-data likelihood f(y |θ) is
typically time-consuming to evaluate for a wide variety of latent variable models (although
important exceptions exist, see, e.g., Chan and Grant, 2014). Since the latent variable
structure is usually chosen so that the conditional likelihood f(y |θ, z) is available in
closed-form, one can alternatively define the DIC using the conditional likelihood and we
refer to this version as the conditional DIC:

DICcon = −4Eθ,Z[log f(y |θ,Z) |y] + 2 log f(y | ẑ, θ̂), (2)

where (ẑ, θ̂) is the joint maximum a posteriori (MAP) estimate of the pair (z,θ) given the
data y. As before, the expectation Eθ,Z[log f(y |θ,Z) |y] can be estimated by averaging
the log-conditional likelihoods log f(y |θ, z) over the posterior draws of the pair (z,θ).
Moreover, the joint MAP estimate can be approximated by the best pair among the
posterior draws, i.e., the pair that has the highest value of f(y, z |θ)f(θ).
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Following the influential paper by Berg, Meyer, and Yu (2004), the conditional DIC is
widely used for comparing stochastic volatility models, whereas the observed-data DIC is
not computed in practice due to the difficulty in evaluating the observed-data likelihood.
However, despite its popularity, in Section 5 we show via a Monte Carlo study that the
conditional DIC tends to favor overfitted models. In contrast, the observed-data DIC
seems to perform well and is better able to choose the correct model.

3 Stochastic Volatility Models

In this section, we first discuss various stochastic volatility models that are widely used
in the literature for modeling financial and macroeconomic time series. Then we outline
some efficient algorithms for fitting these models that build on fast band matrix routines.

3.1 The Models

We consider five different stochastic volatility models. The first model is the standard
stochastic volatility model, which we denote as SV:

yt = µ+ εyt , εyt ∼ N (0, eht), (3)

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, ω2
h). (4)

The log-volatility ht follows a stationary AR(1) process with |φh| < 1 and is initialized
with h1 ∼ N (µh, ω

2
h/(1− φ2

h)).

Under the second model considered, which we refer to as SV2, the observation equation
is the same as in (3), but instead of the log-volatility ht following an AR(1) process as in
(4), it follows a stationary AR(2) process:

ht = µh + φh(ht−1 − µh) + ρh(ht−2 − µh) + εht , εht ∼ N (0, ω2
h), (5)

where we assume the roots of the characteristic polynomial associated with (φh, ρh) lie
outside the unit circle. Further, the process is initialized by

h1, h2 ∼ N

(
µh,

(1− ρh)ω
2
h

(1 + ρh)((1− ρh)2 − φ2
h)

)
.

The third model considered allows for the possibility of infrequent “jumps” in the data
series, which may be important for high frequency financial data. Under the stochastic
volatility model with jumps (SVJ), the observation equation becomes:

yt = µ+ ktqt + εyt , εyt ∼ N (0, eht), (6)

where qt is a Bernoulli jump random variable with success probability P(qt = 1) = κ and
the jump size kt is modeled as log(1+kt) ∼ N (−0.5δ2, δ2) so that its expectation is zero.
The log-volatility ht follows the same AR(1) process as in (4).
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Another variant is the stochastic volatility in mean (SVM) model of Koopman and Hol Us-
pensky (2002), which is often used to study volatility feedback. Specifically, under the
SVM model, the stochastic volatility enters the observation equation as a covariate:

yt = µ+ αeht + εyt , εyt ∼ N (0, eht). (7)

As before, the log-volatility follows the same AR(1) process as in (4).

The final model considered is a version of the stochastic volatility models with moving
average errors in Chan (2013). Specifically, consider the following first-order moving
average model with stochastic volatility:

yt = µ+ εyt , (8)

εyt = ut + ψut−1, ut ∼ N (0, eht), (9)

where we assume that u0 = 0 and the invertibility condition is satisfied, i.e., |ψ| < 1.
Again the log-volatility ht is assumed to follow the AR(1) process as in (4). This stochastic
volatility model is referred to as SVMA. We summarize the five stochastic volatility
models in Table 1.

Table 1: List of stochastic volatility models.

Model Description
SV standard stochastic volatility model where ht follows a stationary AR(1)
SV2 same as SV but ht follows a stationary AR(2)
SVJ same as SV but the observation equation contains a “jump” component
SVM same as SV but ht enters the observation equation as a covariate
SVMA same as SV but the observation error follows an MA(1)

We now discuss the set of priors considered under each of the models. For the standard
SV, we assume the following independent priors for µ, µh, φh and ω2

h:

µ ∼ N (µ0, Vµ), µh ∼ N (µh0, Vµh),

φh ∼ N (φh0, Vφh)1l(|φh| < 1), ω2
h ∼ IG(νh, Sh),

(10)

where IG(·, ·) denotes the inverse-gamma distribution. Note that we impose the station-
arity condition |φh| < 1 through the prior on φh. For the SV2, we use the same priors
for µ, µh and ω2

h as in (10), but replace the prior for φh with a prior for θh = (φh, ρh)
′:

θh ∼ N (θh0,Vθh)1l(θh ∈ A), whereA ⊂ R2 is the set where the roots of the characteristic
polynomial defined by θh lie outside the unit circle.

For each of the remaining models, the priors for µ, µh, φh and ω2
h are exactly the same

as in (10). In addition, under the SVJ, the jump intensity κ is assumed to have a beta
distribution and the jump variance δ follows a log-normal distribution: κ ∼ B(ka, kb) and
log δ ∼ N (δ0, Vδ). For the SVM, the coefficient of the volatility is assumed to have a
normal distribution: α ∼ N (α0, Vα). Finally, the MA(1) coefficient in the SVMA has a
normal distribution truncated within the unit interval: ψ ∼ N (ψ0, Vψ)1l(|ψ| < 1).
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3.2 Bayesian Estimation

In this section, we discuss a general approach for fitting all the stochastic volatility models
in Section 3.1. The main difficulty in the estimation is the step where one simulates
from the joint distribution of h = (h1, . . . , hT )

′ conditional on the data and other model
parameters, as the observation equation is nonlinear in h. A key feature of our approach
is that it builds upon fast band and sparse matrix algorithms rather than using the
conventional Kalman filter. Recent papers using the former approach include Rue (2001)
for linear Gaussian Markov random fields; Chan and Jeliazkov (2009) and McCausland,
Miller, and Pelletier (2011) for linear Gaussian state space models; Rue, Martino, and
Chopin (2009) for nonlinear Markov random fields; and McCausland (2012), Chan, Koop,
and Potter (2013), Chan (2014) and Djegnéné and McCausland (2014) for nonlinear state
space models.

More specifically, our approach exploits the special structure of the problem, namely, that
the Hessian of the log-conditional density of h is a band matrix—i.e., it contains only a few
nonzero elements along a narrow diagonal band. This feature is important in developing
efficient sampling algorithms. In addition, the same approach can be used for obtaining
efficient importance sampling estimators as discussed in Section 4. For concreteness,
we focus on the estimation of the standard stochastic volatility model in (3)–(4), with
modifications of the main algorithm for fitting the other models discussed in Appendix A.
Let y = (y1, . . . , yT )

′. Then posterior draws can be obtained by sequentially sampling
from:

1. p(h |y, µ, µh, φh, ω
2
h);

2. p(µ |y,h, µh, φh, ω
2
h) = p(µ |y,h);

3. p(µh |y, µ,h, φh, ω
2
h) = p(µh |h, φh, ω

2
h);

4. p(ω2
h |y, µ,h, µh, φh) = p(ω2

h |h, µh, φh);

5. p(φh |y, µ,h, µh, ω
2
h) = p(φh |h, µh, ω

2
h).

In Step 1, the joint conditional density p(h |y, µ, µh, φh, ω
2
h) is high-dimensional and non-

standard. For the standard stochastic volatility model, this step can be accomplished
using the auxiliary mixture sampler of Kim, Shepherd, and Chib (1998). However, this
approach is model specific and cannot be easily generalized to estimate other stochastic
volatility models such as the SVM. Here we discuss a direct method to simulate from this
density using the acceptance-rejection Metropolis-Hastings algorithm (see, e.g., Tierney,
1994). More specifically, we note that the Hessian of log p(h |y, µ, µh, φh, ω

2
h) is a band

matrix. Consequently, using fast band matrix routines we can quickly obtain a Gaus-
sian approximation as a proposal density. Furthermore, by construction, the precision
matrix—i.e., the inverse of the covariance matrix—of the Gaussian proposal density is
also a band matrix. As such, candidate draws can be obtained quickly via the precision
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sampler in Chan and Jeliazkov (2009) instead of Kalman filter-based algorithms. The
computation details are given in Appendix A.

Steps 2, 3 and 4 can be easily completed, as all the conditional distributions are standard.
In particular, it is easy to check that

(µ |y,h) ∼ N (µ̂, Dµ), (µh |h, φh, ω
2
h) ∼ N (µ̂h, Dµh), (ω2

h |h, µh, φh) ∼ IG(νh+T/2, S̃h),

where S̃h = Sh + ((1− φ2
h)(h1 − µh)

2 +
∑T

t=2(ht − µh − φh(ht−1 − µh))
2)/2,

D−1
µ = V −1

µ +
T∑

t=1

e−ht , µ̂ = Dµ(V
−1
µ µ0 +

T∑

t=1

e−htyt),

D−1
µh

= V −1
µh

+X′

µh
Σ−1

h Xµh , µ̂h = Dµh(V
−1
µh
µh0 +X′

µh
Σ−1

h zµh),

with Xµh = (1, 1 − φh, . . . , 1 − φh)
′, zµh = (h1, h2 − φhh1, . . . , hT − φhhT−1)

′ and Σh =
diag(ω2

h/(1− φ2
h), ω

2
h, . . . , ω

2
h).

Lastly, one can sample from p(φh |h, µh, ω
2
h) using an independence-chain Metropolis-

Hastings step with proposal N (φ̂h, Dφh)1l(|φh| < 1), where D−1
φh

= V −1
φh

+ X′

φh
Xφh/ω

2
h

and φ̂h = Dφh(V
−1
φh
φh0 + X′

φh
zφh/ω

2
h), with Xφh = (h1 − µh, . . . , hT−1 − µh)

′ and zφh =
(h2 − µh, . . . , hT − µh)

′.

4 Importance Sampling for the Observed-Data Like-

lihoods

The popularity of the conditional DIC for comparing stochastic volatility models is partly
due to its straightforward computation and its implementation in standard software such
as WinBUGS. On the other hand, computing the observed-data DIC is less straightfor-
ward. In a recent paper, Chan and Grant (2014) derive analytical expressions for the
observed-data likelihoods for a variety of linear latent variable models. However, for the
stochastic volatility models discussed in Section 3, the observed-data likelihoods are not
available in closed-form. One option, at least in principle, is the auxiliary particle filter
proposed in Pitt and Shephard (1999), which can be used to evaluate the observed-data
likelihood for general nonlinear state space models. In practice, however, the auxiliary
particle filter is computationally intensive and it might not be feasible to be employed
in our setting as the observed-data likelihood needs to be evaluated tens of thousands
of times. To overcome this difficulty, in this section we consider fast algorithms for es-
timating the observed-data likelihoods for stochastic volatility models using importance
sampling (see, e.g., Kroese, Taimre, and Botev, 2011, Chapter 9.7).

Recall that the observed-data or integrated likelihood is given by

f(y |θ) =

∫
f(y |θ, z)f(z |θ)dz,
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where f(y |θ, z) is the conditional likelihood and f(z |θ) is the prior density of the latent
variables z. Let g(z) be a density that dominates f(y |θ, z)f(z |θ), i.e., g(z) = 0 implies
f(y |θ, z)f(z |θ) = 0. Then, the observed-data likelihood can be rewritten as

f(y |θ) =

∫
f(y |θ, z)f(z |θ)

g(z)
g(z)dz.

Hence, if Z1, . . . ,ZR are independent samples from the importance density g(z), then

̂f(y |θ) =
1

R

R∑

i=1

f(y |θ,Zi)f(Zi |θ)

g(Zi)
(11)

is an unbiased, simulation-consistent estimator of the observed-data likelihood f(y |θ).
The quality of the importance sampling estimator in (11) depends critically on the choice
of the importance density g(z). It can be shown that the conditional density of the
latent variables f(z |y,θ) ∝ f(y |θ, z)f(z |θ) gives rise to a zero-variance importance
sampling estimator (see, e.g., Kroese, Taimre, and Botev, 2011, Chapter 9.7.1). An
obvious difficulty is that the evaluation of the optimal importance density f(z |y,θ) is
not possible for stochastic volatility models as the normalization constant is not known.
However, it provides guidance for choosing a good importance density. In particular, we
would like to choose g(z) to be “close” to the optimal importance density f(z |y,θ). In
what follows, we focus on the standard stochastic volatility model, with the importance
densities for the other stochastic volatility models discussed in Appendix B.

For the standard stochastic volatility model in (3)–(4), the latent variables are the log-
volatilities h. Therefore, we wish to approximate the conditional density

p(h |y, µ, µh, φh, ω
2
h) ∝ f(y |µ,h)f(h |µh, φh, ω

2
h)

to obtain a good importance density g(h) for the estimator in (11). In fact, we have al-
ready discussed such an approximation when we outlined the estimation of the stochastic
volatility model in Section 3.2. Specifically, we considered (for details see Appendix A)

the Gaussian approximation with mean vector ĥ and precision matrix Kh, where ĥ is
the mode of p(h |y, µ, µh, φh, ω

2
h) and Kh is the negative Hessian evaluated at the mode.

Note that this approximating Gaussian density is the same as the one proposed in Durbin
and Koopman (1997), although we obtain the approximation via band matrix routines
instead of the Kalman filter.

In addition, note that Kh is a band matrix. As such, draws from N (ĥ,K−1
h ) can be

efficiently obtained using the precision sampler in Chan and Jeliazkov (2009), where the
computation cost of obtaining an additional draw is only O(T ). This is a crucial feature
as multiple draws from the high-dimensional importance density are required to construct
the estimator in (11). In addition, this importance density can be quickly evaluated at
any point as its precision matrix Kh is a band matrix. Choices of importance densities
for the other stochastic volatility models are discussed in Appendix B.
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5 A Monte Carlo Study

In this section, we examine the behavior of the conditional and observed-data DICs via a
simulation study. The main objective is to assess whether the conditional and observed-
data DICs are able to pick the correct model from which the data are generated. More
specifically, simulated data are generated from three models: a constant variance model
where observations are drawn independently from N (0, σ2), the SV model and the SVJ
model. Three hundred datasets each comprised of T = 500 observations are produced
from each of these three models. For each dataset, we estimate the three models by
constructing Markov chains of length 20000 after a burn-in period of 1000. To compute
the observed-data likelihoods for the two stochastic volatility models, we sample R = 50
draws from the importance density at every iteration of the MCMC run.

The parameter values are chosen to be comparable to those estimated from financial
daily returns data (measured in decimals). They are also similar to those used in other
simulation studies, such as those in Chib, Nardari, and Shephard (2002) and Berg, Meyer,
and Yu (2004). In particular, we set µ = 0 for all models. Parameters for the log-volatility
transition are set to be µh = −10, φh = 0.97 and ω2

h = 0.22 for both the SV and SVJ
models. Moreover, parameters for the jump component are selected to be κ = 0.03 and
δ = 0.03. Finally, σ2 is set so that it is comparable to the variance in the stochastic
volatility models: σ2 = e−µ = e−10.

The priors discussed in Section 3.1 are considered. We choose the same hyperparameters
for parameters that are common across models. Moreover, the hyperparameters are
selected so that the implied prior means are similar to the estimates from typical financial
daily returns data. In particular, we have µ0 = 0, µh0 = −10, Vµ = Vµh = 10, φh0 = 0.97,
Vφh = 0.12, νh = 5, Sh = 0.16, ka = 2, kb = 100, δ0 = −3.07 and Vδ = 0.149. These
values imply Eµ = 0, Eµh = −10, Eφh = 0.908, Eω2

h = 0.22, Eκ = 0.0196 and Eδ = 0.05.

In the first experiment, 300 datasets are generated from the constant variance (Const-
Var) model. Given each dataset both the conditional and observed-data DICs of the two
stochastic volatility models are computed. They are then compared to the (observed-
data) DIC of the Const-Var model. Specifically, we subtract the latter DIC from the
DICs of both the SV and SVJ models, and the results are reported in Figure 1. Recall
that a model is preferred if it has a smaller DIC value. Hence, according to the conditional
DIC both the SV and SVJ models are favored relative to the correct model for all the
generated datasets. In contrast, for the majority of datasets (94.3% and 100% for the
SV and SVJ models, respectively), the observed-data DIC favors the correct model. It is
worth noting that among the two stochastic volatility models, the conditional DIC tends
to prefer the more complex SVJ model.
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Figure 1: DICs of a given model minus that of the correct model (the Const-Var model).
A positive value indicates that the correct model is favored.
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Figure 2: DICs of a given model minus that of the correct model (the SV model). A
positive value indicates that the correct model is favored.

In the second experiment, datasets are generated from the SV model, which includes the
Const-Var model as a special case and is also nested within the SVJ model. The DICs

11



relative to the SV model are reported in Figure 2. Both the conditional and observed-
data DICs favor the SV model relative to the Const-Var model. However, the conditional
DIC tends to favor the overfitted SVJ model: for 99.9% of the datasets the SVJ model
is preferred relative to the correct model. In contrast, the observed-data DIC favors the
correct model for 98.3% of the datasets. It is also interesting to note that the differences
in observed-data DICs between the SV and the SVJ models are small compared to the
differences between the SV and Const-Var models, reflecting a small penalty for overfit
relative to “underfit”—a model’s inability to fit the data well.

In the last simulation experiment, we generate datasets from the SVJ model, which
includes both the Const-Var and SV models as special cases. As before, we report the
DICs relative to the correct model, and the results are presented in Figure 3. In this
example, both the conditional and observed-data DICs tend to pick the correct, more
general SVJ model. In particular, comparing between SV and SVJ, the conditional DIC
prefers the correct model for 99.3% of the datasets while the figure for the observed-data
DIC is 89% of the datasets. It seems that it is relatively more difficult to discriminate
between the SV and SVJ models as the jumps occur only rarely (about 3% of the sample).
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Figure 3: DICs of a given model minus that of the correct model (the SVJ model). A
positive value indicates that the correct model is favored.

Overall, this Monte Carlo Study provides evidence that the conditional DIC tends to pick
overfitted models whereas the observed-data DIC seems to perform well.
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6 An Empirical Application

In this section we illustrate the methodology for estimating the observed-data likelihood
with an application that involves the daily returns (in decimals) on the S&P 500 index.
The sample period is January 2007 to December 2012, with a total of T = 1509 ob-
servations. The time series plot of the data is presented in Figure 4. We estimate the
stochastic volatility models listed in Table 1 using the S&P 500 data, and we assess which
model fits the data best while taking model complexity into account.

2007 2008 2009 2010 2011 2012 2013

−0.1

−0.05

0

0.05

0.1

0.15

Figure 4: Daily returns on S&P 500 (in decimals) from January 2007 to December 2012.

We use the priors given in Section 3.1 and set the same hyperparameters for parameters
that are common across models. For the SV and SVJ models, the same hyperparameters
as in the Monte Carlo study in Section 5 are used. For the remaining models, we choose
ρh0 = 0, Vρh = 1, ψ0 = 0, Vψ = 1, α0 = 0 and Vα = 1002.

For each model, posterior results are based on 10 parallel chains each of which is of length
10000 after a burn-in period of 1000, with a total of 100000 posterior draws. To compute
the observed-data likelihood, we obtain R = 50 draws from the importance density
at each MCMC iteration. The estimated DICs, their numerical standard errors and
computation times (in minutes) are reported in Table 2. The algorithms are implemented
using Matlab on a desktop with an Intel Core i7-870 @2.93 GHz processor.

A few broad conclusions may be drawn. Firstly, the observed-data and conditional DICs
favor very different models. For example, the SVMA model is ranked as the best by the
observed-data DIC, whereas the conditional DIC ranks it as the worst. In fact, the latter
DIC prefers the SVJ model, which is ranked only as the fourth by the former. Hence,
erroneous conclusions might be drawn if the conditional DIC favors overfitted models, as
suggested by the Monte Carlo study in Section 5.
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Table 2: Estimated DICs, numerical standard errors and computation times (in minutes).

Observed-data DIC Rank Time Conditional DIC Rank Time
SV -9080.8 3 32.7 -9305.0 4 9.4

(0.56) (6.18)
SV2 -9057.5 5 38.1 -9315.4 2 13.6

(1.20) (5.55)
SVJ -9079.6 4 192.7 -9342.2 1 25.9

(0.91) (26.6)
SVM -9086.9 2 30.0 -9310.1 3 9.5

(0.58) (5.16)
SVMA -9087.8 1 55.5 -9296.7 5 20.2

(0.51) (5.06)

Secondly, according to the observed-data DIC, both the volatility feedback (SVM) and
moving average (SVMA) components seem to be useful additions to the basic SV model.
In contrast, the jump component and the AR(2) transition for the log-volatility are
apparently not as useful in modeling the returns on the S&P 500.

Thirdly, the numerical standard errors of the conditional DICs are typically quite large,
even after averaging 100000 posterior draws. This highlights the need to report numerical
standard errors of the conditional DICs, which is often not done in empirical research.
On the other hand, the observed-data DICs are more accurately estimated at a slightly
higher computational cost. For instance, when computing the DICs for the SV model,
the estimate of the observed-data DIC is about 423 times ((6.18)2/9.4 × 32.7/(0.56)2)
more accurate—in terms of variance reduction—than that of the conditional DIC after
accounting for the computation times.

Next, we report the posterior means and standard deviations of the parameters in Table 3.
The parameters governing the transition of the log-volatility have similar estimates across
models. In particular, all show high persistence with the posterior mean of φh estimated
to be between 0.95 to 0.986. In addition, an AR(1) transition seems to be sufficient
given that the posterior mean of the AR(2) coefficient ρh is very small (0.022), which
also supports the ranking of the observed-data DIC—it ranks the SV2 model below the
SV model (the conditional DIC ranks the SV2 model higher, but the numerical standard
errors are too large to be conclusive).

Interestingly, the posterior estimates of κ, α and ψ all seem to support the ranking of the
observed-data DIC (but not that of the conditional DIC). For example, recall that when
ψ = 0, the SVMAmodel reduces to the SV model. Since the observed-data DIC favors the
SVMA model relative to the SV model, one would expect that the posterior distribution
of ψ has little mass around zero. In fact, the 95% credible interval of ψ is estimated to be
(−0.126,−0.020), which excludes 0. Similarly, when α = 0, the SVM model reduces to
the SV model. The 95% credible interval of α is estimated to be (−9.411,−1.158), which
is consistent with the ranking of the observed-data DIC that favors the SVM model over
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the SV model. However, the observed-data DIC does not seem to be able to discriminate
between the SV and SVJ models, which is reflected in the small posterior mean of κ
relative to its posterior standard deviation.

Table 3: Parameter posterior means and standard deviations (in parenthesis).

SV SV2 SVJ SVM SVMA
µ 0.0008 0.0009 0.0008 0.0013 0.0008

(0.0002) (0.0002) (0.0002) (0.0003) (0.0002)
µh -9.109 -9.161 -9.168 -8.832 -9.113

(0.431) (0.567) (0.477) (0.967) (0.438)
φh 0.985 0.950 0.986 0.984 0.985

(0.006) (0.091) (0.006) (0.006) (0.006)
σ2
h 0.039 0.059 0.037 0.040 0.038

(0.008) (0.015) (0.008) (0.008) (0.008)
ρh – 0.022 – – –

– (0.096) – – –
κ – – 0.017 – –

– – (0.015) – –
δ – – 0.026 – –

– – (0.010) – –
α – – – -5.224 –

– – – (2.097) –
ψ – – – – -0.073

– – – – (0.027)

7 Concluding Remarks and Future Research

We have proposed novel importance sampling algorithms for estimating the observed-data
likelihoods under a variety of stochastic volatility models, with the goal of computing
the observed-data DICs. It is illustrated via a Monte Carlo study that the observed-
data DICs based on the proposed importance sampling estimators are able to select the
correct model, whereas the conditional DIC tends to favor overfitted models. In the
empirical application involving daily returns on the S&P 500, we found that according
to the observed-data DIC, both the volatility feedback and moving average components
seem to be useful additions to the standard SV model. Moreover, the estimation results
support the model ranking of the observed-data DIC but not that of the conditional DIC.

The proposed importance sampling estimators for observed-data likelihoods can be used
in other settings, such as for computing the marginal likelihood and for developing more
efficient MCMC algorithms (e.g., as an input for particle MCMC methods; see Andrieu,
Doucet, and Holenstein 2010). We leave these possibilities for future research. In addition,
we have only considered a few popular univariate stochastic volatility models. It would

15



be useful to develop similar importance sampling algorithms for other univariate and
multivariate stochastic volatility models. We leave these extensions for future research.

Appendix A: Estimation Details

In this appendix we provide the estimation details for fitting the stochastic volatility
models discussed in Section 3.1.

Standard Stochastic Volatility Model

Section 3.2 presents an outline of a Markov sampler for estimating the standard stochas-
tic volatility model. Here we fill in the details of Step 1: sampling from the conditional
density p(h |y, µ, µh, φh, ω

2
h). Following Chan (2014), we first obtain a Gaussian approx-

imation of p(h |y, µ, µh, φh, ω
2
h) and use this approximation as a proposal density in the

acceptance-rejection Metropolis-Hastings algorithm (see, e.g., Tierney, 1994), where can-
didate draws are obtained via the precision sampler in Chan and Jeliazkov (2009) instead
of Kalman filter-based algorithms.

To approximate p(h |y, µ, µh, φh, ω
2
h) using a Gaussian density, note that

p(h |y, µ, µh, φh, ω
2
h) ∝ p(y |µ,h)p(h |µh, φh, ω

2
h).

Hence, we first derive explicit expressions for the densities p(y |µ,h) and p(h |µh, φh, ω
2
h).

It can be shown that the latter density is Gaussian (see, e.g. Chan, 2014). Let Hφh be
the following lower triangular matrix:

Hφh =




1 0 0 · · · 0
−φh 1 0 · · · 0
0 −φh 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −φh 1



.

Then, we have (h |µh, φh, ω
2
h) ∼ N (δh, (H

′

φh
Σ−1
h Hφh)

−1), where Σh = diag(ω2
h/(1 −

φ2
h), ω

2
h, . . . , ω

2
h) and δh = H−1

φh
δ̃h with δ̃h = (µh, (1 − φh)µh, . . . , (1 − φh)µh)

′. Hence,
its log-density is given by

log p(h |µh, φh, ω
2
h) = −

1

2
(h′H′

φh
Σ−1
h Hφhh− 2h′H′

φh
Σ−1
h Hφhδh) + c1, (12)

where c1 is a constant independent of h.

Next, we approximate p(y |µ,h) by a Gaussian density in h. To that end, expand

log p(y |µ,h) =
∑T

t=1 log p(yt |µ, ht) around a given point h̃ = (h̃1, . . . , h̃T )
′ ∈ RT by
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a second-order Taylor expansion (the choice of h̃ is discussed below):

log p(y |µ,h) ≈ log p(y |µ, h̃) + (h− h̃)′f −
1

2
(h− h̃)′G(h− h̃)

=−
1

2
(h′Gh− 2h′(f +Gh̃)) + c2, (13)

where c2 is a constant independent of h, f = (f1, . . . , fT )
′ and G = diag(G1, . . . , GT ) with

ft =
∂

∂ht
log p(yt |µ, ht)|ht=h̃t , Gt = −

∂2

∂h2t
log p(yt |µ, ht)|ht=h̃t .

That is, G is the negative Hessian of the log-density evaluated at h̃. For the standard
stochastic volatility model, G is diagonal (hence a band matrix). In particular, since the
log-density of yt given µ and ht is given by

log p(yt |µ, ht) = −
1

2
log(2π)−

1

2
ht −

1

2
e−ht(yt − µ)2,

it is easy to check that

∂

∂ht
log p(yt |µ, ht) =−

1

2
+

1

2
e−ht(yt − µ)2,

∂2

∂h2t
log p(yt |µ, ht) =−

1

2
e−ht(yt − µ)2.

Now, combining (12) and (13), we have

log p(h |y, µ, µh, φh, ω
2
h) = log p(y |µ,h) + log p(h |µh, φh, ω

2
h) + c3,

≈ −
1

2
(h′Khh− 2h′kh) + c4, (14)

where c3 and c4 are constants independent of h, Kh = H′

φh
Σ−1
h Hφh + G and kh =

f+Gh̃+H′

φh
Σ−1
h Hφhδh. The expression in (14) is in fact the log-kernel of the N (ĥ,K−1

h )

density, where ĥ = K−1
h kh (see, e.g., Kroese and Chan, 2014, p. 238). Therefore,

p(h |y, µ, µh, φh, ω
2
h) can be approximated by the Gaussian density with mean vector ĥ

and precision matrix Kh. It is important to note that Kh is a band matrix; in fact,
its nonzero elements appear only on the main diagonal and the diagonals above and
below the main diagonal. Consequently, ĥ can be computed quickly by solving the linear
system Khx = kh for x, and draws from N (ĥ,K−1

h ) can be efficiently obtained using the
precision sampler in Chan and Jeliazkov (2009). This Gaussian approximation is then
used as the proposal density in the acceptance-rejection Metropolis-Hastings algorithm.

Finally, the point h̃ used in the Taylor expansion in (13) is chosen to be the mode of
p(h |y, µ, µh, φh, ω

2
h), which can be quickly obtained by the Newton-Raphson method (see,

e.g., Kroese, Taimre, and Botev, 2011, pp. 688-689). First, note that from (14) it follows

that the negative Hessian of log p(h |y, µ, µh, φh, ω
2
h) evaluated at h = h̃ is Kh and the
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gradient at h = h̃ is −Khh̃+kh. Hence, we can implement the Newton-Raphson method
as follows: initialize with h = h(1) for some constant vector h(1). For l = 1, 2, . . . , use
h̃ = h(l) in the evaluation of Kh and kh, and compute

h(l+1) = h(l) +K−1
h (−Khh

(l) + kh) = K−1
h kh.

Repeat this procedure until some convergence criterion is reached, e.g., when ‖h(l+1) −
h(l)‖ < c for some prefixed tolerance level c.

Stochastic Volatility Model with AR(2) State Transition

Estimation of this variant with an AR(2) transition equation requires only minor modi-
fications of the main algorithm for the standard stochastic volatility model. Specifically,
let Hθh be the following lower triangular matrix:

Hθh =




1 0 0 0 · · · 0
0 1 0 0 · · · 0

−ρh −φh 1 0 · · · 0
0 −ρh −φh 1 · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · −ρh −φh 1




.

Then, we can rewrite the state equation of ht in (5) as:

Hθhh = γ̃h + εh, εh ∼ N (0,Ph)

where εh = (εh1 , . . . , ε
h
T )

′, γ̃h = (µh, µh, (1− φh − ρh)µh, . . . , (1− φh − ρh)µh)
′ and Ph is a

diagonal matrix in which the first two diagonal elements are the unconditional variance
(1 − ρh)ω

2
h(1 + ρh)

−1((1 − ρh)
2 − φ2

h)
−1 and the remaining T − 2 elements equal ω2

h. It
follows that (h |µh, φh, ρh, ω

2
h) ∼ N (γh, (H

′

θh
P−1
h Hθh)

−1), where γh = H−1
θh
γ̃h. Hence, we

have

log p(h |µh, φh, ρh, ω
2
h) = −

1

2
(h′H′

θh
P−1
h Hθhh− 2h′H′

θh
P−1
h Hθhγh) + c5, (15)

where c5 is a constant independent of h. Therefore, we only need to replace (12) by
(15), and the main algorithm for the standard stochastic volatility model can be directly
applied. Minor modifications to the main algorithm are also needed to sample θh, µh and
σ2
h.

Stochastic Volatility Model with Jumps

To estimate the stochastic volatility model with jumps, a few modifications of the main
algorithm are needed. Firstly, it is easy to see that the first and second derivatives of the
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conditional likelihood with respect to ht are respectively

∂

∂ht
log p(yt |µ, kt, qt, ht) =−

1

2
+

1

2
e−ht(yt − µ− ktqt)

2,

∂2

∂h2t
log p(yt |µ, kt, qt, ht) =−

1

2
e−ht(yt − µ− ktqt)

2.

Then, h can be sampled as before. Secondly, we need additional steps to sample k =
(k1, . . . , kT )

′, q = (q1, . . . , qT )
′, κ and δ from the appropriate conditional distributions.

Following Chib, Nardari, and Shephard (2006), we sample k and δ jointly as follows.
First, let ζt = log(1+kt) and stack ζ = (ζ1, . . . , ζT )

′ over t. If kt is small, as is the case for
high frequency financial returns that are measured in decimals, exp(ζt) ≈ 1 + ζt, which
implies ktqt ≈ ζtqt. Recall that the prior for the jump size kt is given by ζt = log(1+kt) ∼
N (−0.5δ2, δ2). Hence, we can integrate out ζt analytically. This allows us to sample δ
marginally of ζ from the density

p(δ)
T∏

t=1

φ(yt |µ− 0.5δ2qt, δ
2q2t + eht)

by the MH algorithm, where p(δ) is the prior density of δ and φ(x | a, b) is the Gaussian
density with mean a and variance b evaluated at x. Once δ is sampled, we can draw
ζ1, . . . , ζT sequentially as follows: if qt is zero, we sample ζt from the prior N (−0.5δ2, δ2);

otherwise we sample from N (ζ̂t, Dζt) where D−1
ζt

= δ−2 + e−ht and ζ̂t = Dζt(−0.5 +

e−ht(yt−µ)). Next, note that q1, . . . , qT are conditionally independent given the data and
other parameters and they can be sampled individually. In particular, each qt follows a
Bernoulli distribution with

P(qt = 1 | yt, ζt, ht, κ) ∝ κφ(yt |µ+ eζt − 1, eht)

P(qt = 0 | yt, ζt, ht, κ) ∝ (1− κ)φ(yt |µ, e
ht).

Finally, we sample (κ |q) ∼ B(ka +
∑T

t=1 qt, kb + T −
∑T

t=1 qt).

Stochastic Volatility in Mean Model

To estimate the stochastic volatility in mean model, we only need to make two modifi-
cations of the main algorithm. Firstly, the first and second derivatives of the conditional
likelihood with respect to ht become

∂

∂ht
log p(yt |µ, α, ht) =−

1

2
−

1

2
α2eht +

1

2
e−ht(yt − µ)2,

∂2

∂h2t
log p(yt |µ, α, ht) =−

1

2
α2eht −

1

2
e−ht(yt − µ)2.

Then, h can be sampled as before. Secondly, we replace Step 2 of the main algorithm
with the joint sampling of (µ, α) from p(µ, α |y,h, µh, φh, ω

2
h) = p(µ, α |y,h). To that
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end, let β = (µ, α)′, Vβ = diag(Vµ, Vα), β0 = (µ0, α0)
′ and

Xβ =



1 eh1
...

...
1 ehT


 .

Then, by standard results, we have (µ, α |y,h) ∼ N (β̂,Dβ), where D−1
β = V−1

β +

X′

βΣ
−1
y Xβ and β̂ = Dβ(V

−1
β β0 +X′

βΣ
−1
y y) with Σy = diag(eh1 , . . . , ehT ).

Stochastic Volatility Model with MA(1) Errors

A few modifications of the main algorithm are needed to fit this variant with MA(1)
errors in the observation equation. Firstly, by appropriately transforming the data, we
can sample h as before. Specifically, let

Hψ =




1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 ψ 1



.

Then, (9) can be written as

εy = Hψu, u ∼ N (0,Σy),

where Σy = diag(eh1 , . . . , ehT ). Hence, if we transform the data y via ỹ = H−1
ψ (y − µ1),

where 1 is a T × 1 column of ones, then (ỹ |h, ψ, µ) ∼ N (0,Σy). Therefore, by applying
Step 1 to the transformed data ỹ, we can sample h as before.

Next, to sample µ, observe that it follows from (8) and (9) that (y |µ,h, ψ) ∼ N (µ1,Ωy),
where Ωy = HψΣyH

′

ψ. Note that Ωy is a band matrix with only a small number of non-
zero elements along the main diagonal band. Consequently, computations involving Ωy

are fast. For computation details see Chan (2013). By standard linear regression results,
we have (µ |y,h, ψ) ∼ N (µ̂, Dµ), where D

−1
µ = V −1

µ +1′Ω−1
y 1 and µ̂ = (V −1

µ µ0+1′Ω−1
y y).

Lastly, we sample ψ using an independence chain Metropolis-Hastings step as described
in Chan (2013).

Appendix B: Importance Sampling for Observed-Data

Likelihoods

In this appendix we provide the details of the importance sampling algorithms. For the
SV2, SVM and SVMA models, the only latent variables are the log-volatilties. For each
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of these models, we can use the Gaussian approximation of the conditional density of
h given the data and other parameters as the importance density (see Appendix A for
details). For example, under the SV2 model, we replace the prior density in (12) by (15)
and the Gaussian approximation of p(h |y, µ, µh, φh, ρh, ω

2
h) can be obtained following

the same procedure as in Section 4. Moreover, all the Gaussian approximations can be
quickly evaluated at any point as their precision matrices are all band matrices.

For the SVJ model, one needs to integrate out the log-volatilties h, the jumps q and
the jump sizes ζ through importance sampling. Specifically, we simulate h, q and ζ as
below. First, given the current posterior mode ĥ = (ĥ1, . . . , ĥT )

′ and other parameters,
we generate each qt from the Bernoulli distribution with

P(qt = 1) ∝ κφ(yt |µ− 0.5δ2, δ2 + eĥt)

P(qt = 0) ∝ (1− κ)φ(yt |µ, e
ĥt).

Then, given the simulated draw q∗, we draw ζ1, . . . , ζT sequentially as follows: if q∗t is

zero, we sample ζt from the prior N (−0.5δ2, δ2); otherwise we sample from N (ζ̂t, Dζt)

where D−1
ζt

= δ−2 + e−ĥt . Lastly, given q∗ and ζ∗, we generate a draw from the Gaussian
approximation of p(h |y, µ, ζ∗,q∗, µh, φh, ω

2
h), obtained as described in Appendix A. In

this case, it is also easy to evaluate the importance density, which is a product of Bernoulli
and Gaussian densities.
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