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We highlight how detrending within Structural Vector Autoregressions (SVAR) is

directly linked to the shock identification. Consequences of trend misspecification are

investigated using a prototypical Real Business Cycle model as the Data Generating

Process. Decomposing the different sources of biases in the estimated impulse response

functions, we find the biases arising directly from trend misspecification are not trivial

when compared to other widely studied misspecifications. Our example also illustrates how

misspecifying the trend can also distort impulse response functions of even the correctly

detrended variable within the SVAR system.
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1 Introduction

While trends are ubiquitous in macroeconomic time series, dealing with them is often not

straightforward. A subtle reality is that within Structural Vector Autoregression (SVAR)

frameworks, assumptions regarding the trend play an important role in the identification of

structural shocks in a system. Contributions by Pagan and Pesaran (2008) and Fisher et al.

(2013) highlight how choices pertaining to the handling of trends impact upon the

identification of whether shocks in a system are transitory or permanent. As an example,

assuming output evolving according to a stochastic trend implies at least one structural shock

within the system has a permanent impact on the level of output. The main contribution of

the paper focuses on how a chosen detrending methodology has implications for the

identification of shocks in SVARs and the estimation of structural impulse response functions.

We thereafter quantify different sources of biases induced by trend misspecifications. To this

end, we offer a novel decomposition of the sources of these biases.

A decision whether to difference or deterministically detrend variables cannot be a

whimsical one. It is a prior stand by the researcher on how the variables respond to different

identified shocks. Unfortunately, our reading of the literature suggests this is an

underappreciated point.1 Some methods of identification in an SVAR framework range from

placing restrictions on contemporaneous relationships, long-run relationships, imposing

directional responses of variables to particular shocks or some combination of those just

mentioned. Each has implications for inferences when studying the response of the economy to

different structural shocks. For instance, a common means of orthogonalising the shocks in an

SVAR system is to impose short-run, often zero, restrictions on the contemporaneous response

of variables to particular shocks. Suppose the orthogonalisation happens on a variable like the

difference of real output, with differencing occurring prior to estimation in order to detrend the

variable. Without any other restrictions, all shocks will impose a long-run impact on the level

of real output. We define this type of shock with a long-run impact on the level of at least one

variable in the system as a permanent shock.2 While shocks having a permanent long-run

impact is consistent with some shocks discussed within the macroeconomic literature (i.e.

productivity shocks), they are inconsistent with a large class of shocks (e.g. demand shocks,

monetary shocks, etc).

In this paper, our Monte Carlo experiments are set up as follows. We utilise standard Real

Business Cycle (RBC) models in the spirit of Hansen (1985) as the Data Generating Process

(DGP) to draw attention to the role of trend misspecification. The RBC model under

consideration differ only with regard to the trend specification induced by the underlying

1As anecdotal support to this statement, a plethora of empirical studies (see e.g. Peersman and Van Robays,
2012; Cover and Mallick, 2012; Finlay and Jääskelä, 2014) first difference time series as a matter of routine
or taking guidance from stationarity tests, which are known to be susceptible to low power. A more recent
development in empirical macroeconomics has been the use of large datasets to extract factors for use within the
FAVAR framework (see e.g. Bernanke et al., 2005). Users of such methods usually routinely first difference all
their trending data as a matter of practicality, often with a failure to acknowledge the explicit link of inducing
permanent shocks in all these variables.

2The impact of a shock, ζ, of size 1, at time t to a variable w at time t+ i is
∂wt+i

∂ζt
. A shock is transitory on w

if limi→∞
∂wt+i

∂ζt
= 0. Otherwise, it is permanent. If w was first differenced, then limi→∞

∂wt+i

∂ζt
=

∑∞
j=0

∂�wt+j

∂ζt
.

Unless a prior restriction is imposed, this sum will in general not equal to zero, implying a permanent effect on
w.
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technology shock process. Output specified in the DGP will then either evolve according to a

stochastic or deterministic trend depending on the properties of the technology shock in the

underlying DGP. Our experiments are to estimate a bi-variable SVAR using artificial data to

identify a generic technology and non-technology shock. Given a DGP with some unknown

trend specification, a trend assumption about output is made prior to estimation by the

econometrician. The trend property of output is however incorrectly specified. Given the link

between identification and trend specification, assuming the wrong trend process will also

cause a misspecification with the shock identification of the SVAR. Our question is then how

serious are such trend misspecifications for subsequent inference and characterise the sources of

these biases.

It is worth clarifying our contribution to avoid potential confusion. The model setup will

no doubt be familiar to those acquainted with a large empirical literature, starting with Gaĺı

(1999), questioning the effect of technology shocks on hours worked. Apart from the model

features, this is where any similarity ends. The empirical approach in that body of work

almost always assumes a stochastic trend in productivity with the fiercest debates regarding

the specification of hours worked (see e.g. Christiano et al., 2003) and whether VARs are useful

tools for recovering theoretical models (see e.g. Chari et al., 2008; Lindé, 2009). We have no

significant contribution to the hours worked technology shock debate. Our sole interest is the

role of trend misspecification in output or productivity. In particular, we also study

deterministic trends, concepts which are not considered in that body of work.

A feature of our analysis is that we partition our bias into three additive components in

order to present a clear trichotomy between them. We first distinguish between biases which

are and are not a consequence of the trend misspecification, namely the detrending bias and

the non-detrending bias. We can think of the detrending bias as consisting of two components;

the direct detrending bias and the indirect detrending bias. As mentioned, there is an explicit

link between detrending and shock identification, since misspecifying the trend will induce

errors in the latter. Therefore, while the direct detrending bias is aptly described, the indirect

detrending bias is a direct consequence of shock identification errors brought about by

misspecifying the trend. The remainder non-detrending bias refers to the usual studied biases

arising from the DSGE to VAR mapping, which are documented in various sources (see e.g.

Christiano et al., 2003; Ravenna, 2007; Chari et al., 2008; Carlstrom et al., 2009). Within our

conceptual framework, if the data is appropriately detrended, both components of the

detrending bias disappear. Our illustrative example demonstrates that the biases induced both

directly and indirectly by trend misspecification, compared to the well studied non-detrending

bias, are not trivial. This emphasises incorrect assumptions about trend processes can cause

considerable biases in the estimated impulse response functions, further highlighting the

importance about the choice of detrending within an SVAR framework.

As an SVAR is a system of interdependent equations, the corresponding impulse response

functions of a correctly detrended variable, like hours worked in our study, are also distorted if

the trend in output is misspecified. That is, there can be significant spillover from trend

misspecification of the trending variable to the correctly detrended variable within the system.

While we caution against generalising claims on dealing with trends from our work, the
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illustrative example of the simple RBC model suggests trend misspecification can be the key

source of bias in SVAR studies. Researchers using SVARs for empirical work should at least be

mindful of the implicit assumptions within their models.

The remainder of the paper is as follows. Section 2 describes the theoretical model and the

identification of the model within an SVAR setting. Section 3 explicitly links the theoretical RBC

model with features of the SVAR to motivate the design of the simulation study. The simulation

setup and the decomposition of biases to study the consequences of trend misspecification are

then discussed in Section 4. The results are presented in Section 5 before some concluding

remarks in Section 6.

2 Theoretical Model and Identification

We study an RBC model similar to that used by Hansen (1985). The parsimony of the model

structure appeals with fewer identifying restrictions for the SVAR. The following subsections

present the theoretical RBC model used as a DGP and a discussion of the SVAR identification.

2.1 The Theoretical Model

Under this framework, the households’ problem is given by

max
{Ct,Ht,Kt+1}

E0

∞∑
t=0

βt

{
lnCt − (Ht/Bt)

1+η

(1 + η)

}

subject to

Ct + It = RtKt +WtHt (1)

It = Kt+1 − (1− δ)Kt (2)

ln(Bt+1) = ρB ln(Bt) + εB,t+1 (3)

where β ∈ (0, 1) is a discount factor, η > 0 is an inverse Frisch elasticity of labour supply,

δ ∈ (0, 1) is a depreciation rate of capital, ρB ∈ (0, 1) is a measure of persistence and εB,t+1 ∼
N (0, σ2

B) is an exogenous Gaussian shock process.

Households in this economy optimise their expected discounted lifetime utility by choosing

each period consumption (Ct), hours worked (Ht) and next-period capital holdings (Kt+1)

subject to their budget constraint (1), a capital accumulation equation (2) and a stationary

AR(1) exogenous process (Bt). The shock process, εB,t, presented in Equation (3) can be

interpreted as either a shock to labour supply, preference, or demand of households. In this

paper, we refer to this innovation as a non-technology shock. Furthermore, as the process is

stationary, the shock has a transitory impact upon variables in the system. Households earn

income by supplying capital and labour services to firms. Income is either consumed or

invested. Let It be investment, Rt be the rental rate of capital and Wt be the wage rate at
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period t. The First Order Conditions for households’ utility maximisation are

1

Ct
= βEt

{(
1

Ct+1

)
(Rt+1 + 1− δ)

}
(4)

1

Ct
=

Hη
t

B1+η
t Wt

(5)

These necessary conditions characterise optimal decision rules for households. Equation (4)

is an Euler equation for consumption stating that the marginal rate of substitution between

consumption at period t and consumption at period t + 1 equals the return of capital.

Equation (5) is a labour supply equation stating that the marginal rate of substitution

between consumption and leisure must equal the wage rate.

We can write the problem for firms as

max
{Kt,Ht}

{Yt −RtKt −WtHt}

subject to

Yt = Kα
t (ZtHt)

1−α (6)

where α ∈ (0, 1) is a capital share and Zt is a technology innovation to productivity.

The firms maximise their profit subject to the labour-augmenting Cobb-Douglas production

function. Here revenue is obtained by selling goods to households, denoted by Yt, while costs

are incurred from renting households’ capital and labour services. The First Order Conditions

for firms’ profit maximisation are then given by

Rt = αKα−1
t (ZtHt)

1−α (7)

Wt = (1− α)Z1−α
t Kα

t H
−α
t . (8)

Equations (7) and (8) imply that the rental rate of capital and the wage rate are set equal

to the marginal productivity of an additional unit of capital and labour respectively.

Technology Shock Process

The aim of the theoretical model is to generate the aforementioned RBC model with a

technology shock which can be either transitory or permanent. We therefore consider two

specifications of the technology shock to achieve this. The permanent and transitory

technology shock process entail a stochastic and deterministic trend process respectively. The

stochastic trend specification can be represented as

Z̃t+1 =
Zt+1

Zt

ln(Z̃t+1) = (1− ρz) ln(γ) + ρz ln(Z̃t) + εz,t

where γ is the average growth rate, ρz is persistence in the growth rate of the technology shock

and εz,t ∼ N (0, σ2
z) is a Gaussian shock. Under this specification, the technology innovation
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has a permanent impact on the level of Yt, Ct,Kt,Wt and Zt causing these variables to inherit

unit roots. Therefore, one can obtain stationary variables with the following transformation;

Ỹt = Yt
Zt
, C̃t = Ct

Zt
, K̃t+1 = Kt+1

Zt
and W̃t = Wt

Zt
. Note that Kt+1 is detrended by Zt as it is

determined within period t. Hereinafter, we refer to this model as RBC-rw.

On the other hand, the deterministically trending process assumes that the technology

innovation grows at a constant rate γ. The process can be represented as

Zt = γtZ̃t

ln(Z̃t+1) = ρz ln(Z̃t) + εz,t+1

ln(Zt) = t ln(γ) + ρz ln(Z̃t−1) + εz,t.

We obtain the stationary equilibrium condition by detrending the variables with the

deterministic trend γ. The transformed variables are then given by Ỹt = Yt
γt , C̃t = Ct

γt ,

K̃t+1 = Kt+1

γt and W̃t =
Wt
γt . Unlike the RBC-rw specification, the technology shock considered

here only has a transitory impact to all variables in the system. The variables are thus trend

stationary. We refer this model as RBC-dt.

Competitive Equilibrium Definition

The competitive equilibrium is defined as follows. In a competitive equilibrium, households

choose allocations of {Ct, Ht,Kt+1}∞t=0 and firms will choose allocations of {Kt, Ht}∞t=0 such that,

given a sequence of prices {Wt, Rt}∞t=0 and exogenous shocks to {Zt, Bt}∞t=0, households and firms

optimise their utility and profit respectively with the market clearing such that Yt = Ct + It.

Data Generating Process

Given this framework, we have X̃t = (K̃t, Z̃t, Bt)
′ as unobserved state variables, Q̃t = (Ỹt, Ht)

′

as observable variables and εt = (εz,t, εB,t)
′ as exogenous shocks where t = 1, 2, . . . , T . By

implementing the first-order approximation, a stable Rational Expectation Equilibrium solution

to the log-linearised system of an RBC model has the following linear state-space representation,

x̃t+1 = Rx̃t + Sεt+1

q̃t = Mx̃t (9)

where x̃t and q̃t are column vectors of log-deviation state variables and observable variables from

the steady state values, R, S and M are matrices of reduced-form parameters and εtε
′
t = Σε is

a diagonal covariance matrix.

Given x̃0, we can simulate data of output and hours worked Q = {Yt, Ht}Tt=0. Hours worked

is always integrated of order zero, Ht ∼ I(0). The time series properties for output however

depends on the underlying trend process. If the trend process is a deterministic trend as in

the case of RBC-dt, output is trend stationary and integrated of order zero, Yt ∼ I(0). On the

other hand, output is integrated of order one, Yt ∼ I(1), when the underlying trend process

is a stochastic trend as in the case of RBC-rw. The characteristics of the structural shocks

in the system also differ across model specifications. While the non-technology shock always
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has transitory impacts, the technology shock has transitory impact only under RBC-dt. In the

alternative RBC-rw case, technology shocks have a permanent impact upon the level of output.

The values of structural parameters used in the DGPs are summarised in Table 1. Most

of these parameter values are standard in the literature (see, e.g. Lindé, 2009). Some of these

choices are set with respect to the objective of our study. In particular, we set the magnitude of

the standard deviation of technology shocks to be twice that of the non-technology shock. It is

well known that the larger the relative magnitude and persistence of any particular shock, the

easier it is to recover properties of the said shock from the SVAR. (see e.g. Erceg et al., 2005;

Paustian, 2007; Chari et al., 2008). We set the magnitude of these two shocks apart so as to

isolate them within our analysis. It will be apparent later on that since the comparison within

our Monte Carlo study is with respect to technology shocks, this is a natural choice.

2.2 Structural VAR Identification

Let Q̂t = (Ŷt, Ĥt)
′ be a column vector of (demeaned) observable variables where these “hat”

variables represent time series generated from one of the DGPs described in the previous section.

Define q̂t as a vector of transformed observable variables, either by first differencing or linear

detrending. The VAR in the transformed variable is

Φ(L)q̂t = ut (10)

= Aνt (11)

where Φ(L) is a lag polynomial, I − Φ1L − Φ2L
2 − . . . − ΦpL

p of finite lag order p. A is a

matrix of contemporaneous impact multipliers. ut and νt are the reduced-form and structural

innovations with covariance matrix Σu and Σν respectively. We define the structural shocks

in this system as a technology (νTt ) and a non-technology (νNT
t ) shock. Σν is diagonal by

assumption, embedding the idea that the structural shocks in the model are orthogonal. The

econometrician can estimate Φ(L) consistently using least squares. However, the identification

issue arises because there is one free parameter in this bi-variate system due to assuming the

structural innovations are orthogonal (i.e. Σν is diagonal whereas Σu is not).

Therefore, while the reduced-form VAR in Equation (10) can be easily estimated by least

squares, the econometrician can only estimate the SVAR in Equation (11) by invoking some

identifying restrictions. A common way to view this problem is the econometrician can compute

impulse response functions with knowledge of both Φ(L), which is estimated by least squares,

and A, which comes about after making some identifying assumptions. As the following will

make clear, identifying strategies are linked to the trend assumption which the econometrician

makes.

Long-Run Restrictions

Suppose the econometrician believes that output exhibits a unit root solely due to a long-run

impact from a technology shock while hours worked is an I(0) process. Blanchard and Quah

(1989) offer an identification strategy to impose this long-run restriction in an SVAR framework.
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As output is assumed to be an I(1) process, the series enters the SVAR in first difference to

achieve stationarity. To impose this restriction, first let the vector q̂t = (Δŷt, ĥt)
′, where ŷt and

ĥt are logged output and hours worked respectively. We can rewrite the VAR in Vector Moving

Average (VMA) form as follows. From Equation (11), we have

q̂t = Φ−1(L)Aνt (12)

= Ψ(L)νt (13)

where Ψ(L) = Φ−1(L)A. Expanding (13) and substituting in the elements of the vector q̂t and

νt, we obtain (
�ŷt

ĥt

)
= Ψ(L)

(
νTt

νNT
t

)

=

(
ψ11(L) ψ12(L)

ψ21(L) ψ22(L)

)(
νTt

νNT
t

)

=

⎛
⎜⎜⎜⎜⎝

∞∑
i=0

ψi
11ν

T
t +

∞∑
i=0

ψi
12ν

NT
t

∞∑
i=0

ψi
21ν

T
t +

∞∑
i=0

ψi
22ν

NT
t

⎞
⎟⎟⎟⎟⎠ .

By assuming only the technology shock has a long-run impact on output, the required restriction

is then ψ12(1) =
∑∞

i=0 ψ
i
12 = 0. After imposing this restriction on Ψ(L), it is straightforward to

recover A.

Short-Run Restrictions

If the econometrician believes that both output and hours worked are I(0) processes, all

structural shocks in the system are assumed to be transitory, with output transitory around a

deterministic trend. Output is linearly detrended before estimation and thus q̂t = (ŷt − λt, ĥt)
′

where λ represents the coefficient on the deterministic trend. Regardless of the identification

procedure here, shocks will always be transitory on the variables in q̂t, namely detrended

output and hours worked. In order to invoke one identifying restriction, we place one zero

restriction directly on the contemporaneous matrix, A. A natural way to identify a technology

shock is to assume that a non-technology shock has no contemporaneous impact on output.

This will almost by construction allow a large share of the forecast error variance to be

explained by the technology shock. Our identification also directly appeals to the intellectual

foundations of RBC models, where technology shocks are the dominant drivers of the business

cycle.

This restriction amounts to identification with a Cholesky decomposition of the covariance

matrix, ordering output first. By assumption, output will not respond contemporaneously to

non-technology shocks. Given a restriction is imposed on the short-run dynamics in the model,

namely the impact response to non-technology shocks, we refer to this as imposing short-run
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restrictions. From Equation (11), the proposed identification of this system is then given by(
ŷt − λt

ĥt

)
= Φ−1(L)

(
A11 0

A21 A22

)(
νTt

νNT
t

)
.

3 Link Between RBC and SVAR

Before discussing the simulation setup, it is worth discussing the link between the theoretical

RBC model, which we use as a DGP, and the SVAR identification. The Blanchard Quah

identification using long-run restrictions allows for permanent shocks given that output is

differenced prior to estimation. One can reconcile features of the long-run restrictions here

with the RBC-rw. The non-technology shock in the theoretical RBC-rw model does not have

any long-run impact on output, which is also used as the restriction to identify both shocks.

With the Cholesky decomposition, all shocks are assumed to be transitory. All the

variables are thus assumed to be fluctuating either around a deterministic trend or an

unconditional mean. Therefore, the features of the theoretical RBC-dt model, where all shocks

are transitory, are consistent with using short-run restrictions.3 However, there is still a

misspecification with the Cholesky decomposition since output is restricted not to react

contemporaneously to a non-technology shock upon impact. While this is not consistent with

the theoretical RBC-dt model, we view this restriction as providing the linearly detrended

SVAR with the “best” shot at matching the theoretical model, as technology shocks are the

dominant shocks in the theoretical structure of the model.4 We stress at this stage that,

despite the theoretical inconsistency, the Cholesky decomposition is largely able to recover the

properties of the transitory technology shock in our Monte Carlo simulation. The biases

induced by the Cholesky decomposition are thus trivial in our experiments when the

deterministic trend is properly specified. At the same time, the bias decomposition exercise

described in the next section will make comparisons relative to correctly specifying the trend

possible. Moreover, we view imposing a Cholesky decomposition for identification as a

plausible strategy from an empirical perspective within the SVAR literature.

Another discrepancy is that the theoretical models under both trend specifications have a

state variable, capital (Kt), which is omitted in the VAR estimation, implying an infinite order

VAR is the correct specification to map the theoretical model to the SVAR (see e.g Kapetanios

et al., 2007; Ravenna, 2007; Chari et al., 2008; Poskitt and Yao, 2012). A finite order VAR

will thus be biased from lag length truncation. We deal the lag truncation on three dimensions.

First, we estimate a VAR of a long lag order which obviates this issue to a large extent. Second,

we already set the magnitude of the non-technology shock to be small relative to the technology

shock in the DGPs as discussed in Section 2.1. This is with guidance from Chari et al. (2008)

3Note this does not in anyway imply short-run restrictions necessarily identify transitory shocks. The shocks
here are transitory because of the detrending, though this impacts upon the choice to impose an identifying
restriction on the short-run dynamics of the model. Another popular identification procedure is to impose impact
sign restrictions on variables (e.g. Uhlig, 2005). Such restrictions do not tie down the long-run properties of the
shocks. Therefore, using sign restrictions on differenced data without additional restrictions must entail these are
also by construction permanent shocks.

4Carlstrom et al. (2009) study a similar issue by investigating the consequence of using Cholesky identification
when it is not consistent with a theoretical New Keynesian DSGE model.
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who show that, in a two-variable SVAR system, truncation bias can be reduced if the variance of

one of the shocks in the system is large relative to the others. Third, and more importantly, we

decompose the components of the biases which are a direct consequence of detrending, and the

component which is not. The latter includes issues that plague SVARs even if the detrending

methods are sound, and is relevant to the prior discussion on lag length truncation and the

imperfect ability of the Cholesky decomposition to recover the theoretical model’s impulses.

Therefore, our experimental setup keeps biases which are not a consequence of detrending to

a minimum and goes a step further by isolating these components for the analysis through

our decomposition. This tool allows a comparison of the components which are due to trend

misspecification. The decomposition is described within the next section.

4 Simulation Setup

As previously discussed, the long-run and short-run restrictions should correctly recover the

correct shock properties for the RBC-rw and RBC-dt respectively. We label these cases as

having the correct trend specification. The purpose of this paper is to determine the

magnitude of the distortion in the estimated impulse response functions which trend

misspecification in an SVAR induces. We therefore design experiments to answer the question

as summarised in Table 2. Under our first trend misspecification study, output is generated

I(0) by an RBC model with a deterministic trend (RBC-dt). The econometrician then wrongly

first differences the series and identifies the SVAR using long-run restrictions. In the second

misspecification, output is generated I(1) by an RBC model with a stochastic trend (RBC-rw).

However, the econometrician wrongly detrends the series and implements short-run restrictions

to identify the SVAR. Hours worked is correctly specified in levels, consistent with both DGPs.

As mentioned earlier, responses to the non-technology shock are misspecified under the

short-run, zero contemporaneous, restriction. The responses to this shock are thus not a fair

comparison to study trend misspecification. Our analysis is therefore based on the estimated

impulse response functions to a technology shock.

4.1 Bias Decomposition

In this paper, the bias due to trend misspecification is measured by a total bias, defined as

the average of the difference between the estimated impulse response functions derived from a

misspecified SVAR and the true ones deduced from the corresponding RBC model. For example,

in Trend Misspecification 1, the total bias in the estimated impulse response functions is

Total Bias =
1

N

N∑
i=1

[
ÎRF

(i)
(rw, LR)− IRF (RBC-dt)

]
(14)

where the first term is the estimated impulse response functions from an SVAR assuming a

random-walk process and imposing long-run restrictions as a shock identifying strategy and

the second term is true responses from an RBC model with a deterministic trend process and

N = 10, 000 is the number of simulations.

To study the consequences of trend misspecification, we quantify the size of these components
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by linearly decomposing the total bias in Trend Misspecification 1 expressed in Equation (14)

as follows.

Total Bias =
1

N

N∑
i=1

[
ÎRF

(i)
(rw, LR)− ÎRF

(i)
(dt, SR)

]
︸ ︷︷ ︸

Detrending Bias

+

1

N

N∑
i=1

[
ÎRF

(i)
(dt, SR)− IRF (RBC-dt)

]
︸ ︷︷ ︸

Non-Detrending Bias

. (15)

The decomposition in Equation (15) distinguishes between two sources of biases. Biases as a

consequence of detrending are termed detrending bias, while biases which are not a

consequence of detrending are termed non-detrending bias. The non-detrending bias occurs

due to the imperfect ability of the SVAR to mimic the theoretical impulses for a variety of

reasons not linked to detrending. Recall these include issues ranging from lag length

truncation to a degree of identification bias given the inability to perfectly pin down the

matrix of impact multipliers, A. It should be clear that if the SVAR is correctly detrended, the

detrending bias disappears. Hence, the non-detrending bias in Trend Misspecification 1 equals

the bias incurred in Correct Trend Specification 2, when the data is correctly linearly

detrended. Similar decomposition of the total bias can also be done for Trend Misspecification

2. Likewise, the non-detrending bias in this case measures the bias which occurs with Correct

Trend Specification 1. The decomposition enables us to isolate the non-detrending bias, while

also keeping it small through the experimental design. This will allow our analysis to cleanly

draw out the implications of trend misspecification. If we further expand Equation (15),

Total Bias =
1

N

N∑
i=1

[
ÎRF

(i)
(rw, LR)− ÎRF

(i)
(dt, LR)

]
︸ ︷︷ ︸

Direct Detrending Bias

+

1

N

N∑
i=1

[
ÎRF

(i)
(dt, LR)− ÎRF

(i)
(dt, SR)

]
︸ ︷︷ ︸

Indirect Detrending Bias

+

1

N

N∑
i=1

[
ÎRF

(i)
(dt, SR)− IRF (RBC-dt)

]
︸ ︷︷ ︸

Non-Detrending Bias

.

The detrending bias is now further decomposed into two components, namely the direct

detrending bias and the indirect detrending bias. The direct detrending bias is the average

difference between the estimated impulse response functions of the correct and incorrect

detrending procedure as implied by a corresponding RBC model, keeping constant the

identifying restrictions assumed by the econometrician. This is isolated from the subsequent

identification problem which occurs because of the wrong detrending procedure in the first

step. We term this the indirect detrending bias. This bias is due to imposing incorrect

identifying restrictions as a consequence of detrending and captured by the second component.

This bias component is computed as the average difference between the estimated impulse
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response functions with different identifying restrictions, given a detrending procedure

consistent to that of the corresponding RBC model.

Intuitively, from Equation (12), the responses of transformed variables q̂t to structural

innovations νt are influenced by both the estimated reduced-form coefficients Φ(L) and the

matrix A. Specifically, an incorrect assumption about the trend process in output leads to

trend misspecification and in turn causes estimation bias in the reduced-form coefficients,

Φ(L). The bias in the coefficient estimates is also exacerbated by the nonlinear mapping

involved with imposing identifying restrictions in the matrix A as it is also a function of the

estimated coefficients. Furthermore, the incorrect trend assumption also leads to an error in

identifying structural shocks and hence affects the way an econometrician imposes restrictions

on the matrix A (i.e. imposing long-run or short-run restrictions). Another way of thinking

about this bias is as follows. If detrending did not lead to a change in the matrix of impact

multipliers of the shocks, namely A, then it is straightforward to see that the second

component of the total bias would be eliminated since detrending had no marginal impact in

distorting the identification of shocks. In sum, the decomposition offers a framework for

thinking about how detrending within the SVAR framework induces different biases in the

impulse response functions.

5 Results and Discussion

We first present the results from the baseline Monte Carlo study to first establish the role of

trend misspecification. Thereafter, the quality of inferences and the consideration of alternative

model set-ups is discussed.

5.1 Monte Carlo Simulation

Figure 1 depicts the simulation results under the correct trend specification while Figures 2 and

3 plot the ones under the misspecified trend. In all figures, the true responses derived from

the DGPs are presented by a dashed line with circles. Red area represents estimated impulse

response functions of the SVAR from 10,000 data sets of 200 observations.

Given the DGPs of interest, the dynamics of the true responses can be described as follows.

Under both trend specifications, output and hours worked increase in response to a positive

technology shock. The behaviour of these impulse response functions is however different

depending on the underlying trend process. To recap, a transitory technology shock emerges

from a deterministic trend specification while a unit root technology shock has permanent

impact on the level of output. In the deterministic trend case, the impulse response function

converges back to zero in the long-run due to the transitory nature of the shock. Contrast

against the stochastic trend case, the impulse response function increases and reaches a new

steady state level instead of converging back to zero. Hours worked, on the other hand, has a

transitory response under both specifications. A stochastic trend specification reveals a

hump-shape behaviour of hours worked rather than a sharp increase as per the response of

output depicted under a deterministic trend specification. This is due to households’

expectation of higher productivity in the future. Households are thus motivated to substitute
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some of their time toward current leisure and do not initially increase their labour supply as

much as in the case of a deterministic trend specification. Later on, hours worked is adjusted

to cope with a new long-run level of output.

Under the correct trend specification, Figures 1a and 1b present impulse response functions

estimated using long-run and short-run restrictions respectively. As we can see from Figure 1a,

these true responses from RBC-rw are well captured by an SVAR using long-run restrictions as

the true responses lie neatly within the red area. However, there is greater sampling uncertainty

about the estimated response of hours worked to a technology shock. This can be seen in the

wide range of red lines which also indicates a nonzero probability of having a negative response

upon impact when the true response is in fact positive. Specifically, the probability of inferring

an incorrect sign upon the initial impact is 0.1793. In the case of short-run restrictions presented

in Figure 1b, the estimated impulse response functions can capture the behaviour implied by

RBC-dt. We note that these estimated responses have a tendency to be biased slightly upward

initially and then slightly downwards. On the basis of Figures 1a and 1b, the evidence does

suggest, subject to the trend being correctly specified, that the SVAR is largely able to recover

the DGP impulse response functions. In other words, the experimental design has kept the

non-detrending bias to a minimum. This is a good reference point for comparison as we move

on to study the role of trend misspecification.

Mishandling the trend in output unsurprisingly affects the behaviour of estimated impulse

response functions. Figure 2a plots the estimated impulse response functions from a

misspecified SVAR using long-run restrictions along with the true responses derived from

RBC-dt. As the econometrician incorrectly first differences output and imposes long-run

restrictions, the estimated impulse response functions of output to a positive technology shock

converges to a new steady state instead of exhibiting the transitory behaviour implied by the

underlying DGP. Furthermore, on average, the estimated responses are biased upward except

upon impact. The bias decomposition presented in Figure 2b suggests that the main source of

bias is the direct detrending bias. The error in estimating impulse response functions is thus

mainly due to mishandling the trend. Comparatively, the indirect detrending bias contributes

a smaller fraction to the total bias and only distorts the short-run dynamics. In sum, biases

stemming from incorrect detrending are non-trivial.

We consider our other misspecification. Wrongly imposing short-run restrictions will cause

the estimated impulse response functions of output to decay over time even though the true

response exhibits a permanent response as implied by RBC-rw. As the zero long-run impact of

the output response to technology shock is imposed by the detrending, and then identification,

procedure, we should expect a downward bias in the estimated impulse response functions. The

downward bias should also get larger at longer horizons because detrending imposes a long-run

effect on the system. Figure 3b shows this is indeed the case. The direct detrending bias is the

dominant source of error at all horizons and is particularly noteworthy at longer horizons. Our

simulations also show that the reversion of the output level to zero can be slow to take effect,

perhaps reflecting the permanent shock in the underlying DGP. However, this is insufficient to

prevent the obvious downward bias due to mishandling the trend in output.

Spillovers to the correctly detrended variable from trend misspecification also occurs. That
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is, the trend misspecification does not only affect the estimated impulse response functions of

output to a technology shock. The estimated impulse response functions of hours worked to a

technology shock are also distorted as the system is interdependent. In both misspecifications we

consider, the shapes of the impulse response function of hours worked are fairly well preserved.

Even so, they both have a tendency to exhibit upward bias in the initial periods after the

technology shock. The response in Trend Misspecification 2 though, has a tendency to follow

up upward biases with downward biases about 10 periods after the shock. Unlike the estimated

impulse response functions of output, the dominant source of biases for hours worked differs

and is generally split between the direct and indirect detrending bias. Even so, this serves to

reinforce our point that mishandling the trend can lead to severely biased impulse response

functions.

The results from our Monte Carlo study should be sufficient to raise warning flags. Issues

like lag length truncation and identification of SVARs receive much attention given their role

in allowing the researcher to interpret the data within the context of their chosen model. Even

so, our Monte Carlo simulations reveal that trend misspecification is non-trivial, and could even

potentially be a greater source of bias compared to these widely studied biases. While it would

be tempting to conclude on the basis of Figures 2b and 3b that a misspecified SVAR with short-

run restrictions provides larger distortion than a misspecified SVAR with long-run restrictions,

we regard such an interpretation as premature. The illustrative example we consider is a very

stylised one. Empirical reality dictates richer and larger model structures. It is an empirical

question whether the patterns from our Monte Carlo study carry over. One needs to keep in mind

that richer systems are inherently plagued by identification issues, which can be challenging to

isolate even before considering the role of trend misspecification (see e.g. Carlstrom et al., 2009;

Castelnuovo, 2012, for examples of models with typical identifying strategies). Our experiment

nevertheless illustrates that trend misspecification results in non-trivial biases in the impulse

response functions and these should be a relevant consideration for SVAR practitioners.

To sum up the results, our Monte Carlo experiments indicate that trend misspecification can

be a key source of bias. Spillovers of biases to correctly detrended variables within the system

are also non-trivial. Our results reiterate a reminder that researchers should be careful to link

their detrending procedures with the identification of the structural model they have in mind.

5.2 Implications for Inference

We explore the effect that trend misspecification has on inference. Statistical inferences are

often drawn based on the confidence intervals or confidence sets. Paradoxically, inferences can

still be equally valid with or without the statistical bias as long as the biased estimator produces

confidence intervals which still accommodate the true model parameters, producing what can

be termed unbiased inference. Therefore, while we have established the possibility of trend

misspecification severely biasing the estimated impulse response functions, it seems natural to

investigate whether this has an effect on biasing inference. To conduct this exercise, we generate

68% confidence intervals for the impulse response functions on each run of the Monte Carlo

simulation in order to investigate the coverage rate of the impulse response functions relative to
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the true DGP.5 The choice of 68% is motivated as per the typical choice of VAR practitioners.

Our approach of studying the coverage rates of misspecified models relative to the true DGP

has strong parrallels with Christiano et al. (2003) and Wiriyawit (2014).

In a repeated sampling exercise, if the estimators are unbiased and the measure of sampling

uncertainty sound, we can expect coverage rates will roughly coincide with the nominated

confidence interval, 68% in our exercise (i.e. the model has good size properties). Of course,

the models here are misspecified relative to the DGP derived from the RBC model on some

dimension. Recall even correctly detrending the data gives rise to sources of misspecification

leading to the truncation and identification biases in estimated impulse response functions as

discussed earlier. This means we can only study the marginal change in the quality of

inference for the same DGP moving from one with a properly specified trend to one with a

misspecified trend.

Table 3 presents the coverage rates of impulse response functions at selected horizons. We

first focus on the coverage rates at 10 and 20 periods after the shock. It is clear that trend

misspecification deteriorates the quality of inference. For example, in the case of the RBC-

dt, correctly linearly detrending and then applying the Cholesky decomposition yields coverage

rates for the response of hours worked at the horizons of interest of around 30-50%. This is poor

from the perspective of using 68% confidence intervals. However, the trend is misspecified by

differencing output and subsequently using long-run restrictions sees coverage rates fall to zero.

The coverage rate for the output response by correctly specifying a trend stationary process

at 10 and 20 periods after the shock is also around 35-50%. The corresponding coverage rates

for output response when incorrectly using long-run restrictions is 100%. Note that through

differencing, these output responses are cumulative impulse response functions. A consequence

of cumulative impulse response functions is that they are estimates of sums and therefore are

susceptible to large variances. This explains the excessively high coverage rate yielding less than

meaningful inferences.

The same pattern also emerges under RBC-rw as a DGP. Output and hours worked responses

at 10 and 20 periods ahead are poor and have coverage rates of less than 30% when wrongly

applying linear detrending instead of first differencing. This is a rapid deterioration from the

hours worked response when correctly assuming a random walk specification and using long-

run restrictions, whose coverage rates are between 30-45%. Once again, the coverage rates

of output response using long-run restrictions at these quarters are very high, reflecting the

use of cumulative impulse response functions. However, it should be sufficiently clear that

misspecifying the trend results in strictly worse inference at long horizons. That is, the variance

for the estimator at these horizons are either not large enough to mask deficiencies of the biased

point estimate and so often yield misleading inferences. Otherwise, the variances are so large

that meaningful inferences cannot be made.

5For each dataset generated by the DGP, we first estimate the VAR impulses. Thereafter, we take repeated
joint draws from a Normal-Wishart distribution based on the OLS estimator of the reduced-form VAR parameters.
We then apply the relevant detrending and identification strategy to generate the distribution of the impulse
response functions. This is analogous to drawing from a Bayesian posterior with a flat prior. Since the prior
contains no information, the error bands are constructed entirely from the VAR likelihood and are so interpretative
from a frequentist perspective. We then count the proportion of simulations where the 68% confidence interval
contains the true DGP responses.
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If we turn to shorter run responses, from impact to four quarters, it is not immediately clear

that trend misspecification strictly deteriorates the quality of inference. For example, in the case

of having RBC-dt as a DGP, the hours worked response achieves close to the nominal coverage of

68% upon impact to the third quarter even when the trend is misspecified. Therefore, it appears

that, while long-run inference is strictly improved when properly specifying the trend, this claim

is ambiguous at shorter run horizons. It is worth investigating further because researchers may

only be concerned with shorter run responses by arguing that long-run responses contain too

much uncertainty to be interpreted in a sensible manner. For one to make valid inferences at

shorter run horizons, it is prudent that contemporaneous responses, or the impact multipliers

of shocks, and the more recent lag orders are estimated with sufficient precision. These are also

incidentally quantities most affected by the quality of the instruments when casting the SVAR

in an Instrumental Variables (IV) setting. We defer the full exposition of the link between the

IV estimator and the SVAR to the appendix. In brief, the identifying strategies we consider in

this paper require the VAR residuals from the output equation to be used as instruments for

contemporaneous output in the hours worked equation under both identification strategies. In

addition, ht−1 is also required as an instrument for the output equation when we implement

long-run restrictions. The output equation using the short-run restrictions, on the other hand,

can be estimated directly using least squares. We adopt the approach of Fry and Pagan (2005) by

studying the distribution of the contemporaneous, or impact, responses to evaluate the quality

of these instruments.

Figure 4 presents the distribution of the impact responses of both output and hours worked

to a technology shock under both DGPs and subsequent identification strategies. In the case of

RBC-rw presented in Figure 4a, the misspecified linearly detrended model is strangely able to

produce an unbiased estimator of the output response to the technology shock. Confidence in this

result is however misplaced because this is an artefact of the experiment setting the variance of

the technology shock to be large relative to that of the non-technology shock.6 That said, even

if the IV estimator is largely unbiased for the output response under trend misspecification,

the quality of instruments is poor for the hours worked equation as the distribution of the

corresponding contemporaneous responses is situated far away from the true value. This explains

why there is a large bias in the corresponding impulse response functions presented in Figure

3. Even if the output response is precisely pinned down on impact, this materialises into a

large bias from the first quarter onwards given that there is a feedback mechanism from hours

back to output after a lag. While the correctly detrended model still exhibits instruments which

are slightly biased, they are better relative to the misspecified case, which experiences a sharp

deterioration in the quality of instruments.

We now move to the case of RBC-dt as a DGP presented in Figure 4b. The distribution

of the contemporaneous responses under trend misspecification in this case does not show a

clear deterioration of the instrument quality compared to the one when the trend is properly

specified. If anything, the instrument quality is poor in both cases. Therefore, estimated short-

6Given estimation of the output equation will omit contemporaneous hours and estimate the corresponding
equation by least squares, the output response to technology is just the standard deviation of the residual. Output
is largely driven by technology shocks due to the relatively larger variance of the said shock. Therefore, it is not
surprising this approach can recover the variance quite well. This result effectively disappears if the variance of
the non-technology shock increases. We provide this result upon request.
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run responses perform, unsurprisingly, quite similarly (poor) as per their respective coverage

rates. However, it is important to reiterate that, at long-run horizons, the inferences are strictly

worse when the trend is misspecified.

In sum, we note that it is not at all obvious that the quality of instruments deteriorates once

the trend is misspecified. In cases where it does, we can expect inference to be strictly worse

at all horizons. If the instrument quality does not deteriorate, then the misspecified model may

still yield inference of comparable quality relative to a properly specified trend model in the

shorter run. Even so, at longer run horizons, correctly specifying the trend will always yield

better inferences.

5.3 Alternative Experimental Set-up

We examine alternative experimental set-ups to explore scenarios that an econometrician may

face. These settings range from setting different parameter values used in the DGPs to

alternative detrending strategies the econometrician might employ.

Degree of Persistence in the Permanent Technology Shock

In contrast to the theoretical responses we have in the previous section, some empirical studies

suggest that a positive permanent technology shock should lead to a fall in hours worked instead

of an increase (see e.g. Gaĺı, 2004; Francis and Ramey, 2005; Kimball et al., 2006). As shown by

Lindé (2009), a reparameterisation of the model by increasing the persistence of the permanent

technology shock can produce a negative response of hours worked to a technology shock. We

therefore repeat the simulation exercises with RBC-rw as a DGP and increase the persistence

in the permanent technology shock from 0.25 to 0.5. Other parameter values remain the same

as used previously. In this subsection, the SVAR with long-run restrictions is the correct trend

specification.

Figure 5 presents the result if we misspecify the trend as a deterministic trend and use the

Cholesky decomposition to identify the technology shock. The output response to a technology

shock is badly biased in Figure 5a, similar to that in Figure 3a. The results also reveal that

none of the impulse response functions are able to capture the fall in hours worked as per

the reparameterised DGP. The decomposition reveals that the predominant sources of biases is

the indirect detrending bias for hours worked and a mix of both types of detrending bias for

output. However, the absolute bias is much larger than in Figure 3a, the specification with less

persistence in the growth rate of the technology shock. Note that there is a large degree of

non-detrending bias. This suggests that even if the trend was properly specified, the total bias

would still be large. This is not entirely surprising. Given a more persistent growth rate of the

shock in the DGP, it is going to be the case that a higher lag order is needed to fully model the

dynamics. The truncation of the lag length is thus going to be significant, and so unsurprisingly

feeds into the non-detrending bias component. Even so, the source of this bias is still not as

dominant as the ones induced from mishandling the trend.
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Degree of Persistence in the Transitory Technology Shock

We investigate the sensitivity of a more persistent technology shock under RBC-dt. The shock

persistence is increased to 0.95 relative to the lower persistence of 0.25 considered in the main

Monte Carlo study. As a consequence, both output and hours worked takes at least 40 periods

to revert to the steady state. We then conduct an experiment as in Trend Misspecification 1.

That is, the output series is incorrectly first differenced and long-run restrictions are imposed.

The bias decomposition is presented in Figure 6. The dashed line represents the total bias in

Trend Misspecification 1 given the lower persistence in the transitory technology shock as a

comparison. We can see that at longer horizons, the direct detrending bias is the predominant

source of bias. This is similar to the case of lower persistence in the transitory technology shock

except for one difference; the horizon which the direct detrending bias dominates the source of

biases kicks in much later as the persistence of the technology shock increases. The total bias

on average unexpectedly shrinks at shorter horizons. The reason is that, once the degree of

persistence approaches 1, the deterministic trend process behaves more like a unit root process.

Assuming a stochastic trend specification in this case can therefore still capture features of the

underlying process, but only in the short-run. The direct detrending bias due to incorrectly first

differencing eventually expands, resulting in larger total biases at longer horizons. In essence,

this reveals the fact that assuming a permanent shock, and thus first differencing still results in

an inability to mimic the transitory long-run behaviour of the underlying DGP even though the

persistence of the technology shock has increased. The general conclusion is still similar to that

shown previously. That is, detrending biases are still the main source of error when wrongly

assuming a stochastic trend.

Alternative Detrending Strategies

The Hodrick-Prescott (1997) (HP) filter is a widely-used tool in empirical studies to extract

the cyclical component of the series (see e.g. Leu, 2011; Kato and Miyamoto, 2013). It is

therefore worth investigating the performance of the filter in estimating the true impulse response

functions when the econometrician does not have adequate information regarding the underlying

trend process in output. We consider a case where an econometrician employs the HP filter on

the output series as a detrending methodology, and then implements short-run restrictions to

identify structural shocks in the system.7 Figure 7 plots the total bias given the DGPs of interest

with different degrees of persistence in the technology process.8 We find that the performance

of the HP filter depends on the degree of persistence in the technology shock. This is not

surprising. As discussed in Canova and Ferroni (2011), the relatively persistent shock process

in an RBC model would produce the variability of the series at longer horizons. The HP filter

however attributes the low frequency cycle as the non-cyclical component, and thus measures

the true cyclical component with error. As a consequence, the higher the persistence in the

technology shock, the larger the detrending bias induced by the HP filter. Another way of

7As we simulate quarterly data, the smoothness parameter for the HP filter is set to 1600 as Hodrick and
Prescott (1997) recommend.

8In this exercise, the degrees of persistence used under RBC-dt are 0.25 and 0.9 for low and high persistence
respectively. Under RBC-rw, 0.25 and 0.5 are set respectively for low and high persistence in the growth rate of
a technology shock.
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thinking about this is if there is a persistent component in the cycle, the HP filter will mistake

part of this persistent cycle as a trend and systematically filters it. If one expects the persistence

of technology shocks to be large empirically, we should not expect the performance of the filter

to be satisfactory.

At this stage, one might suspect that estimating all series in differences may be flexible

enough to consider both transitory and permanent shocks without the econometrician taking a

stand. While differencing does conceptually produce permanent shocks, it is possible that

empirical exercises may produce impulse response functions which are transitory. We therefore

consider a common empirical strategy of just first differencing and imposing a Cholesky

decomposition to identify the technology shock. Note that such an approach has no theoretical

support as both shocks are permanent. We therefore generate the RBC model with two

transitory shocks, RBC-dt, and then first difference output and take a Cholesky decomposition

to explore whether the original transitory technology shock can be recovered. Figure 8

suggests that confidence in recovering underlying transitory shocks despite first differencing

may be misplaced. In particular, none of the impulse response functions are able to recover the

underlying transitory response of output. Moreover, the impulse response functions are badly

biased, missing both the short and long-run properties of the underlying DGP. The intuition is

similar to that of Fisher et al. (2013). By not distinguishing between permanent and transitory

shocks, the identification mixes up both the transitory and permanent components. This

reveals an uncomfortable reality of SVAR practitioners. Taking a stand on the underlying

shock properties and modelling them as such is mandatory. As this is an identification

exercise, the data cannot speak without imposing any structure. First differencing as an

empirical strategy, with the intention of being agnostic about the transitory or permanent

nature of shocks, is unfortunately misguided.

6 Conclusion

In this paper, we highlight that the choice of detrending is linked to SVAR identification. While

identification in SVARs receive much attention given its role for sensible empirical analysis, trend

misspecification remains a possible blindspot for researchers using SVARs. In an illustrative

example using a Monte Carlo study, we demonstrate that the biases directly attributable to

trend misspecifications can be non-trivial. While our example can be construed as being model,

or even parameter, specific, this raises the empirical possibility of significant biases emanating

from trend misspecification as the key source of biases in the SVAR.

We are deliberately minimalist with the SVAR structure. More work is needed before general

prescriptive advice on detrending in SVARs is possible. Our approach is largely designed for

the purpose of isolating the different sources of biases by keeping any potential known biases to

a minimum. This serves in keeping the analysis tractable while drawing attention to the role

of trend misspecification. A natural question is how important are then these sources of biases

within richer and larger model environments. To this end, the decomposition of the biases which

we put forward in this paper is a useful tool for addressing these questions in future research.
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Appendix

A An Instrumental Variable Approach to the SVAR

In this section, we demonstrate the explicit link between the estimated SVAR and Instrumental

Variables (IV). Some relevant references are Shapiro and Watson (1988) and Pagan and Pesaran

(2008).

To fix ideas, we return to Equation (11),

Φ(L)q̂t = Aνt

A−1Φ(L)q̂t = νt

Π(L)q̂t = νt (A.1)

where Π(L) = Π0−Π1L−Π2L
2+ . . .−ΠpL

p. νt has a diagonal covariance matrix Σν as defined

earlier. We first focus on the Cholesky decomposition. We first linear detrends the data and

thus q̂t = (ŷt−λt, ĥt)
′. Define πi

jk as the (j, k)th element of Πi. We then expand the system and

write the equations individually as

ŷt − λt = π0
12ht +

p∑
i=1

πi
11[ŷt−i − λ(t− i)] +

p∑
i=1

πi
12ht−i + νTt (A.2)

ht = π0
21(ŷt − λt) +

p∑
i=1

πi
21[ŷt−i − λ(t− i)] +

p∑
i=1

πi
22ht−i + νNT

t . (A.3)

The Cholesky decomposition imposes π0
12 = 0. Equation (A.2) can be estimated by least

squares given the restriction implies it only has terms that are predetermined (i.e. lag terms)

on the righthand side. Given (ŷt − λt) is on the righthand side of Equation (A.3), it can be

estimated using the residual, ν̂Tt , as an instrument for (ŷt − λt). When we cast an SVAR in

this framework, the implications for the instruments and identification are clear. The impact

response for detrended output to a one standard deviation technology shock depends only on the

OLS estimator of the standard deviation of the residual in Equation (A.2). It should be clear

precisely estimating the impact response of hours worked to technology shocks depends on two

quantities. First, the identification strategy needs to precisely recover the standard deviation

of the technology shock through least squares. Second, the residual from the first equation is a

good instrument for contemporaneous detrended output in the second equation to precisely pin

down π0
21.

In the case of long-run restrictions, we can expand Equation (A.1) into the following,

�ŷt = π0
12�ht +

p∑
i=1

πi
11�ŷt−i +

p−1∑
i=1

⎧⎨
⎩

i∑
j=0

πj
12

⎫⎬
⎭�ht−i +

(
p∑
i

πi
12

)
ht−p + νTt (A.4)

ht = π0
21�ŷt + π1

22ht−1

p∑
i=1

πi
21�ŷt−i +

p∑
i=1

πi
22ht−i + νNT

t . (A.5)
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Note Equation (A.4) is just a reparametrisation of the original equation.9 Equation (A.5) is

an expanded version of the second equation without performing any transformation. The long-

run restriction imposes
∑p

i π
i
12 = 0 (see Fry and Pagan, 2005, for details). With the coefficient

on ht−p eliminated, there are p coefficients estimated on �ht−i where i ∈ [0, 1, . . . p − 1] with

p unknowns in πi
12, i ∈ [0, 1, . . . p − 1], which will allow us to recover the original structural

equation as long as Equations (A.4) can be estimated. Given contemporaneous terms on the

righthand side of both equations, they both need to be estimated using IV. Equation (A.4) can

be estimated using ht−1 to instrument for �ht since it is included in the second equation, but

excluded from the first. The residual of Equation (A.4) can then be used to instrument for

�yt in Equation (A.5). Therefore, it should be sufficiently clear that if we fail to pin down the

response of output to a one standard deviation technology shock, this must be in part ht−1 is

a poor instrument for �ht. Similarly, failure to pin down either the standard deviation of the

technology shock and/or the technology shock series is a poor instrument for �yt will mean that

the hours response to technology shocks will be poorly estimated.
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Table 1: List of Parameters Specified in the Model

Structural parameters True Value

β Discount factor 0.99
α Capital share 0.33
δ Depreciation rate of capital 0.025
η Inverse short-run labor elasticity 0
γ Average growth rate of technology shock 1.0074
ρz Persistence in technology shock 0.25
ρB Persistence in non-technology shock 0.8
σz Standard deviation of technology shock 0.007
σB Standard deviation of non-technology shock 0.003

Table 2: Monte Carlo Simulation

SVAR DGP

RBC-rw: Yt ∼ I(1) RBC-dt: Yt ∼ I(0)

Long-Run Restrictions Correct Trend Specification 1 Trend Misspecification 1

Short-Run Restrictions Trend Misspecification 2 Correct Trend Specification 2

Table 3: Coverage Rates of Impulse Response Functions to a Technology Shock

DGP RBC-rw: Yt ∼ I(1) RBC-dt: Yt ∼ I(0)

SVAR
Long-Run Short-Run Short-Run Long-Run
Restrictions Restrictions Restrictions Restrictions

(C1) (M2) (C2) (M1)

Variable Period Coverage Rates

Output 0 0.6713 0.4879 0.2551 0.7084
(Yt) 1 0.5264 0.4877 0.3017 0.8952

2 0.6234 0.4786 0.3292 0.9599
3 0.7431 0.4302 0.3899 0.9937
4 0.8334 0.3572 0.3703 0.9997
10 0.9762 0.2903 0.3805 1.0000
20 0.9912 0.2533 0.5672 1.0000

Hours Worked 0 0.6099 0.0000 0.0373 0.6765
(Ht) 1 0.6190 0.0000 0.1824 0.7198

2 0.6495 0.0359 0.2736 0.6136
3 0.6442 0.1648 0.3869 0.5499
4 0.6517 0.3486 0.4220 0.2562
10 0.4672 0.2936 0.4824 0.0138
20 0.3019 0.1142 0.3158 0.0000

Note: C1 and C2 are Correct Trend Specification 1 and 2 whereas M1 and M2 are Trend
Misspecification 1 and 2 in our Monte Carlo exercises.
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Figure 1: Impulse Response Functions to a Positive Technology Shock under Correct Trend
Specification

(a) Implementing Long-Run Restrictions Given RBC-rw as the DGP (Correct Trend Specification 1)

(b) Implementing Short-Run Restrictions Given RBC-dt as the DGP (Correct Trend Specification 2)
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Figure 2: Monte Carlo Simulations Implementing Long-Run Restrictions Given RBC-dt as the
DGP (Trend Misspecification 1)

(a) Impulse Response Functions to a Positive Technology Shock

(b) Total Bias Decomposition
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Figure 3: Monte Carlo Simulations Implementing Short-Run Restrictions Given RBC-rw as the
DGP (Trend Misspecification 2)

(a) Impulse Response Functions to a Positive Technology Shock

(b) Total Bias Decomposition
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Figure 4: Distribution of Contemporaneous Responses

(a) Given RBC-rw as the DGP, imposing long-run restrictions is labelled as the correct trend specification
while implementing short-run restrictions is considered as a trend misspecification.

(b) Given RBC-dt as the DGP, imposing short-run restrictions is labelled as a correct trend specification
while implementing long-run restrictions is considered as a trend misspecification.
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Figure 5: Monte Carlo Simulations Implementing Short-Run Restrictions Given RBC-rw as
the DGP (Trend Misspecification 2) where Hours Worked Responses Negatively to a Positive
Technology Shock

(a) Impulse Response Functions to a Positive Technology Shock

(b) Total Bias Decomposition
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Figure 6: Total Bias Decomposition Given a High Persistence in the Technology Shock with
RBC-dt as the DGP (Trend Misspecification 1)

Figure 7: Total Bias Using the HP Filter and Implementing Short-Run Restrictions
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Figure 8: Monte Carlo Simulations Using First Difference and Implementing Short-Run
Restrictions
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