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1 Introduction

In recent years (dynamic) factor models have become increasingly popular for macro-

economic analysis and forecasting in a data-rich environment.1 A serious limitation

of the standard approximate factor model is that it assumes the common factors

to affect all variables of the system. As argued by Boivin and Ng (2006) the ef-

ficiency of the Principal Component (PC) estimator may deteriorate substantially

if groups of variables are included that do not provide any information about the

factors, that is, the corresponding factor loadings of some subgroups of variables are

equal to zero. Similarly, if factors are ignored that affect a subset of variables only,

the respective idiosyncratic components may be highly correlated, resulting in poor

(PC) estimates of those factors which load on all variables.

There are natural examples for models with factors loading on subgroups of vari-

ables only. In an international context, for example, factors may represent regional

characteristics, and it may be of independent interest to analyze these “regional fac-

tors” in addition to “global factors” linking all variables in the model. Alternatively

(or in addition), a block structure may represent economic, cultural or other char-

acteristics. A natural way to deal with such block structures is to extract “regional

factors” from various subgroups of data (data associated with specific “regions”) sep-

arately. However, if there exist at the same global factors that affect all regions in

the sample, a separate analysis of the regions will mix up regional and global factors

which hampers identification of the factors and involves a severe loss of efficiency.

A characterizing feature of such model structures is that the loading matrix of the

common factors is subject to blocks of zero restrictions and the technical challenge is

to take into account such restrictions when estimating the common factors. Estimat-

ing the state space representation of the model employing Bayesian methods is most

popular Kose, Otrok and Whiteman (2003), Moench, Ng and Potter (2013), Kauf-

mann and Schumacher (2012) and Francis, Owyang and Savascin (2012).2 Other

recent papers adapt frequency domain PCs (Hallin and Liska (2011)), a two-step

quasi maximum likelihood (ML) estimator (Banbura, Giannone and Reichlin (2010),

Cicconi (2012)), two-stage PC approaches (e.g. Beck et al. (2009), Beck, Hubrich

1For forecasting applications see, e.g., Stock and Watson (2002a), Stock and Watson (2002b),

Eickmeier and Ziegler (2008). For structural macro applications see, e.g., Bernanke, Boivin and

Eliasz (2005), Eickmeier (2007), Eickmeier and Hofmann (2013), Beck, Hubrich and Marcellino

(2009), Kose, Otrok and Whiteman (2003).
2The latter two papers assume that the groups of variables are unknown and are determined

endogenously in the model. By contrast, the two former papers as well as the present paper

determine a priori which variables are associated with which group.
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and Marcellino (2011), Aastveit, Bjoernland and Thorsrud (2011)) or a sequential

PC approach (Wang (2010)).3

In this paper we make several contributions. First, we provide a comprehen-

sive comparison of existing estimation approaches for multi-level factor models and

propose two very simple alternative estimation techniques based on sequential least

squares (LS) and canonical correlations. The sequential LS algorithm is equivalent

to the (quasi) ML estimator assuming Gaussian i.i.d. errors and treating the com-

mon factors as unknown parameters. It is closely related toWang (2010)’s sequential

PC approach and the quasi ML approach of Banbura et al. (2010). The estimator

based on a canonical correlation analysis (CCA) avoids any iterations and can be

computed in two steps. In particular, we employ this computationally convenient

and consistent estimator for initializing the LS algorithm in order to ensure that the

procedure starts in the neighborhood of the global minimum.

These estimation techniques provide (point) estimates in less than 002 seconds

(in typical macroeconomic settings) compared to a Bayesian estimator that requires

several hours. Moreover, our Monte Carlo simulations suggest that, in some circum-

stances, the sequential LS and the CCA estimators tend to outperform alternative

estimation methods such as the two-step PC estimator and the quasi ML estimator

based on the EM algorithm.

The two-step PC estimator involves estimating, in the first step, the global factors

as the first PCs of the full dataset. In a second step the global factors are purged

of all variables and the regional factors are extracted applying regional-specific PC

analyses to the residuals. In Section 2.4.1 we argue that for the consistency of this

estimator we need to assume that the number of regions tends to infinity, whereas

in empirical practice the number of groups is typically small (often less than 10). In

such cases, the largest eigenvalues may correspond to dominating regional factors

so that identification of the global factors by the largest eigenvalues breaks down.

We also extend the sequential LS estimation approach to a three-level factor

model (with, for example, global factors, regional factors and factors specific to

types of variables) with overlapping blocks of factors. Such factor structures are

challenging as they cannot be estimated one level after another (which is the ratio-

nale for Wang (2010)’s sequential PC approach).

A final contribution are three applications in which we study international co-

movements of business and financial cycles as well as asymmetries over the business

3Other studies estimate small-dimensional multi-level factor models (e.g. Gregory and Head

(1999)). In our paper we focus, however, on large-dimensional models and, therefore, do not

differences between those papers and ours further.
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cycle. The first and third applications use the two-level factor model, while the

second application uses the three-level factor model assuming an overlapping factor

structure.

In the first application we (basically) replicate the study by Hirata, Kose and

Otrok (forthcoming) and apply several estimation methodologies for two-level factor

models to an annual real activity dataset of more than 100 countries between 1960

and 2010. We estimate global and regional factors which turn out to be similar

across methods. We confirm Hirata et al. (forthcoming)’s main finding that re-

gional (business cycle) factors have become more important and global factors less

important over time.

In the second application, we use a large quarterly macro-financial dataset for

24 countries between 1995 and 2011. We estimate a global factor, regional factors,

as well as factors specific to types of variables (i.e. macro and financial factors).

We find that financial variables strongly comove internationally, to a similar extent

as macroeconomic variables. Macroeconomic and financial dynamics share common

factors, but financial factors independent frommacro factors also matter for financial

variables. Finally, the temporal evolution of the estimated financial factors looks

plausible.

In the third application, we use a large US dataset comprising monthly macro

and financial variables over 1959-2011. We estimate factors which are common to all

periods ("symmetric" factors) as well as phase-specific ("asymmetric") factors which

drive the variables in recession or expansion phases only. Hence, this application

differs from the previous ones where factors common to a subset of variables rather

than points in time were considered. We find non-negligible asymmetries over the

business cycle. However, the bulk of common dynamics is stable over time. The

overall comovement between the variables is higher during recessions than during

expansions. The first recession factor is highly correlated with monetary and finan-

cial variables whereas the first symmetric and the first expansion factors are related

to real activity variables.

The remainder of the paper is organized as follows. We first present the two-level

factor model in Section 2.1. In Sections 2.2 and 3 we then suggest a sequential LS

estimator for the two-level factor model and, as an extension, the three-level factor

model. In Section 2.3 we propose a CCA estimator. We show in Section 2.4.1 that

the two-stage PC approach which has been used in the literature works well only

under specific conditions. In Sections 2.4.2 and 2.4.3 we compared the sequential

LS approach with the sequential PC and the quasi ML approaches. In Section 4
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we investigate the relative performance of alternative estimators by means of Monte

Carlo simulations. For ease of exposition we assume in the methodological sections

that we work with a large international dataset. We label factors associated with

all variables as "global factors" and factors associated with specific groups "regional

factors" and/or "variable type-specific factors". However, the models are, of course,

more general and can be applied to other empirical setups with variables being

associated with other groups as well. In Section 5 we present our applications, and

we conclude in Section 6.

2 The two-level factor model

2.1 The model

Consider the following two-level factor model

 = 0 + 0 +   (1)

where  = 1   indicates the region, the index  = 1      denotes the the

’th variable of region  and  = 1      stands for the time period. The vector

 = (1     0)
0 comprises 0 global factors and the × 1 vector  collects

the  regional factors in region . The idiosyncratic component is denoted by

, where the usual assumptions of an approximate factor model (e.g. Bai (2003))

apply. In vector notation, the factor model for region  is written as

· = Γ + Λ + · (2)

=
³
Γ Λ

´Ã



!
+ ·  (3)

where · = (1     )
0 and Γ, Λ and · are defined conformably. The

entire system representing all  regions results as

⎛⎜⎜⎝
1·
...

·

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
Γ1 Λ1 0 · · · 0

Γ2 0 Λ2 · · · 0
...

. . .
...

Γ 0 0 · · · Λ

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝



1

2
...



⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝
1·

2·
...

·

⎞⎟⎟⎟⎟⎟⎠ (4)

 = Λ∗  ∗ +   (5)

4



where  ∗ = (0
 

0
1     

0
)

0. We normalize the factor space by imposing the

following assumptions:

(i) −1
P

=1
0
 = 0

and −1
P

=1 
0
 = 

for all .

(ii) −1Γ0Γ and 
−1Λ0Λ are diagonal matrices which coincides with the respec-

tive assumption of the PC estimator, see e.g. Breitung and Choi (2013).

(iii) −1
P

=1 
0
 = 0 for all .

As shown by Wang (2010) these restrictions ensure that all parameters are iden-

tified. We do not need to assume that the regional factors from different regions

are uncorrelated. This assumption is often imposed for a Bayesian analysis of the

multi-level factor model (e.g. Kose, Otrok and Whiteman (2003)) and it implies an

over-identified model structure.

2.2 The sequential least-squares estimator

Assume that the idiosyncratic components are identically and independent normally

distributed (i.i.d.) across ,  and  with E(2) = 2.4

Treating the factors and factor loadings as unknown parameters yields the log-

likelihood function

L( ∗Λ∗ 2) = const − 

2

Ã
X
=1



!
log(2)− 1

22

X
=1

( − Λ∗ ∗ )
0( − Λ∗ ∗ )

where  ∗ = ( ∗1      
∗
 )
0. The maximization of this likelihood function is equivalent

to minimizing the sum of squared residuals (RSS)

( ∗Λ∗) =
X
=1

( − Λ∗ ∗ )
0( − Λ∗ ∗ )

=

X
=1

X
=1

X
=1

( − 0 − 0)
2

Assume that we have available suitable initial estimators of the global and regional

factors, denoted by b(0) = ( b(0)
1      b(0)

 )
0 and b (0)

 = ( b (0)
1     

b (0)

 )
0. The asso-

ciated loading coefficients are estimated from
P

=1  time series regressions of the

form

4The assumption that the errors are i.i.d. is a simplifying assumption that is used to obtain a

simple (quasi) likelihood function. The estimator remains consistent if the errors are heteroskedas-

tic and autocorrelated, cf. Wang (2010).
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 = 0 b(0)
 + 0 b (0)

 + e  (6)

Denote the resulting estimates as b(0) ,
b(0) and the respective matrices as

bΓ(0) =

(b(0)1     b(0)
)0 and bΛ(0) = (b(0)1     

b(0)
)0. The loading matrix for the full system

is constructed as

bΛ∗(0) =
⎛⎜⎜⎜⎜⎜⎝
bΓ(0)1 bΛ(0)1 0 · · · 0bΓ(0)2 0 bΛ(0)2 · · · 0
...

. . .
...bΓ(0) 0 0 · · · bΛ(0)

⎞⎟⎟⎟⎟⎟⎠ 

An updated estimator for the vector of factors is obtained from the least-squares

regression of  on bΛ∗(0) yielding

b ∗(1) =
⎛⎜⎜⎜⎜⎜⎝
b(1)
b (1)
1

...b (1)



⎞⎟⎟⎟⎟⎟⎠ =
³bΛ∗0(0)bΛ∗(0)´−1 bΛ∗0(0)  (7)

where in each step the factors are normalized to have a unit variance by multiplying

the vector of factors with the matrix
³
−1

P

=1
b ∗(1) b ∗0(1)´−12.

Next, the updated factors can be used to obtain the associated loading coefficients

from the least-squares regression (6), yielding the updated estimator bΛ∗(1) which in
turn yields the updated factors b ∗(2). It is easy to see that

S( b ∗(0) bΛ∗(0)) ≤ S( b ∗(1) bΛ∗(0)) ≤ S( b ∗(1) bΛ∗(1)) ≤ · · ·

since in each step the previous estimators are contained in the parameter space

of the subsequent least-squares estimators. Hence the next estimation step cannot

yield a larger RSS and, therefore the sequence of least-squares regressions eventually

converges to a minimum.

To ensure that the iterative algorithm converges quickly to the global minimum,

we initialize the algorithm with suitable starting values for the factors. In our Monte

Carlo experiments and in the empirical applications we employ the CCA estimator,

which is considered in Section 2.3.

So far we have assumed that the idiosyncratic variances are identical for all

variables and regions. Although the resulting LS estimator is consistent in the case

of heteroskedastic errors (since the LS estimators are robust against heteroskedastic
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errors), the asymptotic efficiency may be improved by using a generalized least-

squares (GLS) approach (cf. Breitung and Tenhofen (2011)).

It is important to notice that the proposed algorithm does not impose a particular

normalization. Therefore, although the vector of common components  = Λ∗ ∗
is identified and consistently estimated, whereas the factors and loading matrices

are estimated consistently up to some arbitrary rotation. In order to impose the

normalization proposed in Section 2.1 we first regress the final estimators of the

regional factors b ( = 1     ) on b. The residuals from these regressions yield

the orthogonalized regional factor. In order to adopt the same normalization as in

the PC analysis, the normalized global factors can be obtained as the  PCs of

the estimated common components resulting from the nonzero eigenvalues and the

associated eigenvectors of the matrix

bΓÃ 1


X
=1

b
b0


!bΓ0 
The PC normalization of the regional factors can be imposed in a similar manner

by using the covariance matrix of the respective common components.

2.3 The CCA estimator

We start with estimating the = 0+ global and regional factors in each region

separately by a PC analysis yielding the vector of factors b+
 which is a consistent

estimator for the factor space of the ×1 vector of factors (0
 

0
)

0. Since the PCs

of two different regions share a common component (the global factor), we apply

a CCA to determine the linear combination bG =  0 b+
 that is most correlated

with the linear combination bG =  0 b+
 of some other region . This problem is

equivalent to solving the generalized eigenvalue problem¯̄̄̄
¯̄ X

=1

b+

b+0
 −

X
=1

b+

b+0


Ã
X
=1

b+

b+0


!−1 X
=1

b+

b+0


¯̄̄̄
¯̄ = 0

The eigenvectors associated with the 0 largest eigenvalues provide the weights of

the linear combination bG =  0 b+
 which serves as an estimator of the global factors

. As in the appendix of Breitung and Pigorsch (2013) it can be shown that as

 → ∞ and  → ∞ the linear combination bG (or bG) converges in probability
to , where  is some regular 0 ×0 matrix. Hence, bG yields a consistent
estimator of the space spanned by .
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Obviously, there are 2(− 1)2 possible pairs ( b+

b+
) that can be employed

for a CCA. We suggest to choose the linear combination with the largest canonical

correlation (resp. eigenvalue) as the preferred estimate of . In the next step the

estimated global factors are purged of all variables and from  region-specific PC

analyses the regional factors are extracted.

2.4 Relation to existing (non Bayesian) approaches

2.4.1 Two-step PC estimators

Since the set of regional factors {1     } is assumed to be uncorrelated with
the vector of global factors , the regional factors may be treated as idiosyncratic

components yielding the reduced factor model

 = 0 + 

where  = 0 + . Accordingly, the global factors may be estimated by

the first 0 PCs of the matrix −1 0 , where  = (1     ) and  = () is

the  ×  data matrix of region . In a second step, the regional factors may be

estimated again with PCs from the covariance matrix of the resulting idiosyncratic

components associated with a specific region. We refer to this estimator as the “top-

down PC estimator” as this estimator starts from a PC analysis of the entire system.

In empirical studies this top-down PC estimator is employed by Beck et al. (2011),

Beck et al. (2009), Aastveit et al. (2011) and Thorsrud (2013). A problem with this

estimator is that the regional factors give rise to a strong correlation among the

regional clusters of idiosyncratic components. Let   = max E(||). Since
the errors possess a factor structure it follows that

P
=1

P
=1   = (2) and,

therefore,
X
=1

X
=1

X
=1

  = 

Ã
X
=1

2

!


As shown by Bai (2003) consistent estimation of the factors requires that

1³P

=1 

´ X
=1

X
=1

X
=1

  ≤ ∞

and, thus,
P

=1 
2

P

=1  needs to be bounded. Obviously, this condition is

fulfilled if  is fixed and →∞. In empirical practice, however,  is large relative
to  so that an asymptotic framework assuming  → 0 is inappropriate in
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typical empirical applications.

An identical estimator would be obtained by an alternative two-stage PC esti-

mator. Let e denote the vector of the first 0 +  PCs of the region-specific

covariance matrix −1 0
. The global factor is estimated by a second PC ana-

lysis of the covariance matrix of the estimated factors −1
P

=1 
0
  where   =³ e 0

1    
e 0


´0
. This estimator may be refereed to as the “bottom-up PC estima-

tor”. A problem with the last PC step is that the number of regions is often too

small in practice, violating the conditions established by Bai (2003) and Bai and Ng

(2002) for consistent estimation of the (global) factors.

For illustration, consider the model with a single global factor . The equiva-

lence to the bottom-up and top-town PC estimators results from the fact that for

the eigenvalue problem we have

max


0 0 
0

= max


P

=1 
0


0
P

=1 
0


= max
1

X
=1

max


0
0


0

¯̄̄
subject to

X
=1

 = 1

= max
1

X
=1

 b 2
  (8)

where  = (1     )
0 and  = 0

P

=1 
0
. Accordingly, the first PC of the

full sample results as a linear combination of the  region-specific PCs and the

maximum is obtained as the largest eigenvalue of the sample covariance matrix

of the vector ( b 0
1    

b 00
. It follows that the bottom-up and the top-down PC

estimators are equivalent.

2.4.2 The sequential PC approach

Wang (2010) proposes a sequential PC estimator for maximizing the log-likelihood

estimator which is also based on the minimization of the RSS of the two-level factor

model.

S( ∗Λ∗) =
X
=1

X
=1

X
=1

( − Λ∗ ∗ )
0( − Λ∗ ∗ )

with respect to  ∗ = ( ∗1      
∗
 )
0 and Λ∗.

Assume that we have a suitable initial estimator of the global factors, denoted byb(0) = ( b(0)
1      b(0)

 )
0. Conditional on these initial estimates it is straightforward

to obtain initial estimators of the regional factors in region . All variables are

9



purged of the global factor by running regressions of the variables on the estimated

global factor. Then regional factors are estimated as the first  PCs of the sample

covariance matrix bΣ(0) =
1



X
=1

 0
 (0)  (9)

where  = () is the  ×  matrix of observations from region  and  0 =
 − b(0)( b(0)0 b(0))−1 b(0)0. Denote the  × matrix of the resulting PCs as b (0)

 .

To eliminate the regional factors from the sample the following  regressions are

performed

 = b (0)
  + for  = 1 2      (10)

Note that at this stage the assumption is imposed that the regional factors are

orthogonal to the global factor (that enters the residual of this regression). Letc =

(c1    c)
0 denote the  × (P

=1 ) matrix of residuals from the  regressions

(10). The updated estimates of the global factors b(1)
 are obtained as the first 0

PCs obtained from the sample covariance matrix

bΩ(1) = 1


c 0c

With the updated estimate of the global factors the matrix bΣ(0) can be computed

as in (9) but using  (1) instead of  (0) in order to obtain the updated estimateb (1)
 . These steps are repeated until convergence.

Wang (2010) initializes the algorithm either with global factors obtained with

the top-down PC approach considered in the Section 2.4.1 or, alternatively, with

a confirmatory factor analysis given the set of admissible rotations of the regional

PCs.

Since both sequential LS and PC approaches minimize the sum of squared errors,

the fix point is identical, and the approaches should yield the same estimates. The

main advantage of the LS estimator is that it can be straightforwardly generalized

to more than two factor levels with overlapping factor structures (as we will show

in Section 3), whereas the sequential PC estimator is confined to hierarchical factor

models. Second, the LS estimator is computationally less demanding and tends

to be faster. Third, in models with heteroskedastic or autocorrelated errors, the

sequential LS technique can be used to compute the implied ML estimator that is

equivalent to minimizing the weighted sum of squared residuals (cf. Breitung and

Tenhofen (2011)), which is equivalent to the (pseudo) ML estimator. It is unclear

how this could be achieved with the sequential PC approach.
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2.4.3 The quasi ML approach

A related estimation procedure based on quasi ML is employed in Banbura et al.

(2010). The conceptual difference to the sequential LS approach is that their ap-

proach assumes that the factors are normally distributed random variables yielding

a log-likelihood function which includes — besides our RSS — an additional expression

that is due to the distribution of the vector of factors. To maximize the likelihood

function an EM algorithm is adapted that was originally proposed for the stan-

dard factor model without block structures. This approach gives rise to a shrinkage

estimator for the vector of factors given by

b (1)
 = (bΛ∗00 bΛ∗0 + ̄20)

−1bΛ∗00   (11)

where ̄20 = ( )−1( b ∗(0) bΛ∗(0)). As  → ∞ we have Λ0Λ + (2) →
lim→∞Λ0Λ and, therefore, the estimators (7) and (11) are asymptotically equiv-

alent.

3 The three-level factor model

The factor model can be extended to include further (overlapping) levels. Assume

an international macro-financial panel, where the variables are clustered accord-

ing to some additional criteria. For example, the variables may be grouped into

output-related variables (e.g. production indices, employment), price variables (e.g.

consumer prices, producer prices, wages) and financial variables (e.g. interest rates,

stock returns). Accordingly, an additional index  = 1     is introduced and the

factor model is written as

 = 0 + 0 + 0 +  (12)
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where  is a  × 1 vector of additional factors. The system can be casted

(period-wise) as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11·
...

1·

12·
...

2·
...

1·
...

·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ11 Λ11 0 · · · 0 Θ11 0 · · · 0

Γ21 0 Λ21 · · · 0 Θ21 0 · · · 0
...

. . .
...

...
...

Γ1 0 0 · · · Λ1 Θ1 0 · · · 0

Γ12 Λ12 0 · · · 0 0 Θ12 · · · 0

Γ22 0 Λ22 · · · 0 0 Θ22 · · · 0
...

. . .
...

...
...

Γ2 0 0 · · · Λ2 0 Θ2 · · · 0
...

. . .
...

...
...

Γ1 Λ1 0 · · · 0 0 0 · · · Θ1

Γ2 0 Λ2 · · · 0 0 0 · · · Θ2

...
. . .

...
...

...

Γ 0 0 · · · Λ 0 0 · · · Θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



1
...



1

...



⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11·
...

1·
...

1·
...

·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

 = Λ∗∗  ∗∗ +   (13)

To identify the parameters we assume that E(
0
) = 

as well as E(
0
) =

0 and E(
0
) = 0. The least-squares principle can be applied to estimate the

factors and factor loadings, where the iteration adopts a sequential estimation of

the factors , 1     , and 1     . In what follows we focus on the

sequential LS procedure which is convenient to implement. Consistent starting val-

ues can be obtained from a CCA of the relevant subfactors (see below). Let b(0)
 ,b (0)

1     
b (0)

 , and
b(0)
1     

b(0)

 denote the initial estimators. The elements of the

loading matrices can be estimated by running regressions of  on the initial fac-

tor estimates b(0)
 ,

b (0)
1     

b (0)

 , and
b(0)
1     

b(0)

. The resulting least-squares

estimators for the loading coefficients are organized as in the matrix Λ∗∗, yielding

the estimator bΛ∗∗. An update of the factor estimates is obtained by running a re-
gression of  on bΛ∗∗ yielding the updated vector of factors, b(1)0

  b (1)0
1     

b (1)0
 ,

and b(1)
1     

b(1)

. With this updated estimates of the factors we are able to obtain

improved estimates of the loading coefficients by running again regressions of 

on the estimated factors. This sequential LS estimation procedure continues until

convergence.

The last step involves orthogonalizing the two vectors of factors
³ b 0

1    
b 0


´
12



and
³ b 0

1    
b 0


´
. Although this orthogonalization step is not necessary for

identification of the factors, it enables us to perform a variance decomposition of

individual variables with respect to the factors. Orthogonalizing the factors can

be achieved by regressing
³ b 0

1    
b 0


´
on
³ b 0

1    
b 0


´
(or vice versa) and

taking the residuals as new estimates of
¡
 0
1     

0


¢
(or of

¡
 0
1     

0


¢
).

We note that the results may depend on whether we regress
³ b 0

1    
b 0


´
on³ b 0

1    
b 0


´
or
³ b 0

1    
b 0


´
on
³ b 0

1    
b 0


´
.

The initialization for the three-level factor model works as follows. We first esti-

mate the global factor as the first0 PCs and the global factors are eliminated from

the variables by running least-squares regressions of the variables on the estimated

global factors.5 In the next step the CCA is employed to extract the common compo-

nent among the + estimated factors from region , group  and the estimated

vectors from the same region  but different group 0. This common component is

the estimated regional factor. Similarly, the estimated factor  is obtained from a

CCA of the factor of region , group  and a different region 0 but the same group.

These initial estimates are used to start the sequential LS procedure.

The overall estimation procedure outlined for the three-level factor model with an

overlapping factor structure can be generalized straightforwardly to allow for further

levels of factors (provided that the number of units in each group is sufficiently large).

Furthermore, the levels may be specified as a hierarchical structure (e.g. Moench

et al. (2013)), that is, the second level of factors (e.g. regions) is divided into a

third level of factors (e.g. countries) such that each third level group is uniquely

assigned to one second level group. For such hierarchical structures the CCA can be

adapted to yield a consistent initial estimator for a sequential estimation procedure

that switches between estimating the factors and (restricted) loadings.

4 Monte Carlo simulations

4.1 Two-level factor model

In this section we first examine the small sample properties of the LS estimation

procedure for the two-level factor model (Section 2.2). We compare them to those of

5Alternatively, a CCA between (i) the variables in region  and group  and (ii) the variables

in group 0 and 0 with  6= 0 and  6= 0 may be employed to extract the common factors. In
our experience the two-step top-down estimator used in our simulation performs similarly and has

the advantage that the starting values are invariant with respect to a reorganization of the levels

(that is interchanging regions and groups).
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the simple CCA approach (which provides us with starting values for the sequential

LS approach), the two-step PC estimation procedure considered in Section 2.4.16

and the quasi ML approach7. An advantage of all these approaches is that they

do not take long. By contrast, the Bayesian method requires many hours for a

single estimation. Therefore, we are not able to include Bayesian methods in our

Monte Carlo study, but we will compare the sequential LS estimation and the other

procedures to the Bayesian approach in the first empirical application in Section

5.1.

The Monte Carlo setup is as follows. The factors are generated (independently)

by a first order autoregressive process, where the autoregressive coefficient is 0.5.

The idiosyncratic components are also generated independently and follow an AR(1)

process with an autoregressive parameter of 0.1.8 The innovations of the global fac-

tor(s) and the idiosyncratic errors are independently standard normally distributed.

The innovations of the regional factors are also independently normally distributed;

the standard deviations are set to stdfacreg ∈ {05 1 2} in order to study the
effect of the importance of the regional factors (relative to the global factor(s)). All

factor loadings are generated as (1 1), following Boivin and Ng (2006). We finally

multiply the idiosyncratic components by a scalar which yields idiosyncratic and

common components, which are about equally important. We note that all results

improve as the idiosyncratic component gets less important relative to the com-

mon component. However, the relative performances of the different methodologies

remain unchanged.

We consider  ∈ {2 4} regions with  ∈ {20 50 80} variables in each region,
and one global and one regional factor in each region. The time dimension is  ∈
{50 200}. For each of the experiments we determine the R2 (or trace R2) of a
regression of the actual on the estimated factors based on 1000 replications of the

model.

From the Monte Carlo experiments presented in Table 1 it turns out that the

performance of the two-step PC estimator crucially depends on the relative impor-

tance of the global and regional factors. Only if the variance of the global factor

is large relative to the variance of the regional factors (stdregfac = 05), the two-

6We have shown in Section 2.4.1 equivalence of the top-down and the bottom-up PC approaches

and therefore, only show Monte Carlo results for one of them.
7We are grateful to Domenico Giannone for providing us with his Matlab codes.
8Note that (apart from the two-step PC estimator which requires the additional assumption

that →∞) all estimators are consistent if the factors and idiosyncratic components are weakly
autocorrelated and heteroscedastic.
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step PC estimator yields reliable estimates for the global factors, whereas the global

factors are not well estimated if the regional factors dominate (stdregfrac = 2).

The CCA estimator for the global factor is less sensitive to the relative impor-

tance of the global and regional factors and performs reasonably well for all values

of stdfacreg. This is due to the fact that if the regional factors are more important

than the global factor, the largest eigenvalue may correspond to a regional factor

instead of the global factor and the two-step PC estimator may confound global

with regional factors. In contrast, our two-step estimator identifies the global fac-

tors by CCA of the (standardized) factors, which does not depend on the relative

importance of the factors.

While the simple CCA approach performs already well, iterations tend to lead

to small improvements on average. The sequential LS estimator (which uses CCA-

based starting values) produces even more realiable estimates of the global factor in

sample sizes typically encountered in macroeconomic datasets. The quasi ML ap-

proach, finally, also delivers reliable global factor estimates. The average correlation

between true and estimated global factors is never smaller than 079 and in general

larger than 09

In small samples, the regional factors are less precisely estimated by all methods

when they are less important than the global factors. Those estimates tend to im-

prove substantially as the sample size increases. However, as the standard deviation

of the regional factors relative to the global factor increases and as the sample size

grows, the regional factors are less precisely estimated with the quasi ML approach.

For  = 50,  = 200 and  = 2, we also compare the estimated density

functions of the R2 (resp. trace R2) of the global and regional factors as well as the

computing time across methods (on average over the simulations). Figure 1 shows

that not only the correspondence between the factors obtained with the two-step PC

approach tends to be smaller than the one obtained with the other methods, but also

the variance is larger. The sequential procedures yield better factor estimates, but

in few cases (for stdfacreg= 2), the quasi ML approach delivers rather inaccurate

solutions.

We have also looked at the average (trace) R2 (means and distributions) of

the sequential PC approach suggested by Wang (2010) and of the sequential LS

approach, where we employ the two-step PC approach to generate the starting

values for the factor estimates. As expected, we obtain virtually the same results as

for the sequential LS approach with CCA-based starting values and, hence, do not

show them here.
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Among the two methods with no iteration, the two-step PC approach is slightly

faster than the CCA approach. It takes, on average over all iterations, between 0006

and 0007 seconds (depending on stdfacreg) compared to 0008−0009 seconds with
the CCA. Notwithstanding, the sequential LS approach with CCA starting values

tends to be faster (between 0016 and 0021 seconds) than the sequential LS approach

starting with the two-step PC approach (between 0019 and 0027 seconds). This

suggests that, although the starting values do not seem to matter for the precision

of the factor estimates, using improved (CCA-based) starting values leads to faster

convergence of the algorithm. The sequential PC approach takes longer than both

sequential LS approaches, especially as the regional factors become more important

(between 004 and 012 seconds). The quasi ML approach is slower than the other

methods. It takes between 030 and 108 seconds.

4.2 Three-level factor model

We next carry out simulations for the three-level factor model using the sequential

LS approach. Third-level factors (e.g. factors specific to certain types of variables)

are generated just like the regional factors. We consider stdfacreg∈ {05 1 2} and
stdfacvar∈ {05 1 2} to study the importance of the regional factors and the
factors specific to certain types of variables relative to the global factors, respectively.

We further assume that each variable is driven by 0 = 1 global factor,  = 1

regional factor and  = 1 variable type-specific factor. We consider  = 2 regions

with  ∈ {20 50 80} variables in each region and 2 variables in each of the

 = 2 groups. The time dimensions are  ∈ {50 200}. Again, we multiply the
idiosyncratic components by a scalar so that common components are about equally

important.

Overall, our simulation results suggest that in reasonably large samples the LS

approach yields very precise estimators of the factors. In small samples, global

factors are also quite precisely estimated, whereas the precision of regional and

variable type-specific factor estimates depends on the importance of those factors.

5 Applications

In this section, we provide three applications of our methodology to study interna-

tional business and financial comovements and business cycle asymmetries in the

US. The first application serves to compare the methods for estimating a two-level
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factor model presented in Section 2 with the Bayesian approach. The second appli-

cation makes use of the three-level factor model with an overlapping factor structure

as outlined in Section 3. The third application uses the sequential LS approach for

estimation of the two-level factor model (Section 2.2). But rather than considering

factors which are common to specific groups of variables (as in first two applications),

we consider factors which are common to specific periods.

5.1 International business cycle comovements

There is an interest reaching far back in describing and understanding the inter-

national synchronization of business cycles. Examples for key questions that have

been addressed in the literature are: Does increased trade and financial integration

lead to more or less synchronization of business cycles (something which is theoreti-

cally unclear)?9 Has there been a decoupling of emerging economies from advanced

economies in recent years, for instance due to regional or bilateral integration agree-

ments or similar policies within regions and, hence, emergence of regional cycles?10

We basically replicate the analysis conducted by Hirata et al. (forthcoming)

using the sequential LS and CCA methodologies, in comparison to their Bayesian

approach (and to the two-step PC and the quasi ML approaches). From their dataset

of annual consumption, investment and GDP growth for 106 countries11, we estimate

global and regional factors for the entire period 1960-2010 and separately for 1960-

1984 and 1985-2010. We initially follow Hirata et al. (forthcoming) and estimate

one global factor and one factor for each of seven regions (North America, Europe,

Oceania, Latin America and the Carribean, Asia, Sub-Saharan Africa, Middle East

and North Africa). Hirata et al. (forthcoming) also estimate country factors. We use

a simplified model with no country factors given the small number of series available

for each country. Nevertheless, the assumptions on the idiosyncratic components in

our model are fairly flexible to account for weak correlation across variables (also

within a country).

To apply the LS approach we do not need to make assumptions on the processes

for the factors and idiosyncratic components nor do we need to choose priors for

the parameters. When adopting the Bayesian approach we specify our model as in

Hirata et al. (forthcoming) and refer to their study for details. The regional factors

9See, e.g., Kose, Otrok and Whiteman (2003), Kose, Otrok and Prasad (2008), Kose, Prasad

and Terrones (2003), Kose, Prasad and Terrones (2007).
10See, e.g., Hirata et al. (forthcoming), Kose et al. (2008).
11We are grateful to Ayhan Kose for kindly sharing his dataset with us.
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are normalized to be positively correlated with GDP growth in a large country

in each region (here: US, Germany, Australia, Brazil, Japan, South Africa and

Morocco), and the global factor is normalized to be positively correlated with US

GDP growth.

Figure 2 shows the global and regional factors estimated over the entire period

1960-2010 obtained using the different methodologies. Overall, the sets of factor

estimates are similar. The LS approach suggests a somewhat less severe global re-

cession at the end of the sample than the other approaches. All approaches attribute

some of the Great Recession to the global factor, but for all regions but Africa and

the Middle East another important part is attributed to the regional factors. There

are also some minor differences between the levels of the African factors estimated

using the Bayesian and the other methodologies over parts of the sample period.

Table 2 reveals that the regional factors estimated based on the LS approach are

notably correlated across regions. The highest correlations of above 0.4 in absolute

terms are found for the pairs North America with Europe and with Oceania and

Africa with Latin America. Most correlations are positive, some are negative, but

rather small.12

Table 3 shows the variance decomposition of GDP growth estimated based on

the sequential LS method on average over all countries in each region for the entire

sample period and the two subsamples. We find that the regional factors have

become more important over time in almost all regions, and in the second subsample,

they are more important than the global factor. Moreover, the importance of the

global factor has declined over time in most regions except for the Middle East and

Africa. In the latter two regions the shares accounted for by the global factor have

broadly doubled (from low shares though).

The shares explained by the common global and regional factors tend to be

larger than those estimated by Hirata et al. (forthcoming). A reason might be that

Hirata et al. (forthcoming) also estimate country factors while comovements among

variables within a country in our approach are only implicitly accounted for by

cross-correlated idiosyncratic components.

As a robustness check, we also estimated the model using the sequential LS

method by allowing for two global and two regional factors. The overall common-

12We have also verified correlations between regional factors estimated with the Bayesian ap-

proach. Those are correlated to a similar extent (which is not surprising given that factor estimates

are similar), although uncorrelated factors are assumed in the underlying model. The explanation is

that the Bayesian approach involves overidentifying assumptions (namely that the regional factors

are uncorrelated across regions), which are generally not satisfied by the estimated factors.
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ality rises by 15 percentage points compared to the model with one global factor

and one regional factor in both subsamples. A comparison between the two sub-

samples confirms the main result from the model with one global factor and one

regional factor, i.e. that higher business cycle synchronization is due to a greater

variance share explained by regional factors.13 Hence, overall we confirm Hirata

et al. (forthcoming)’s main results that the increased business cycle synchroniza-

tion we have observed in the last decades is due to "regionalization" rather than to

"globalization".

5.2 International financial linkages

In the second application, we broadly extend the previous analysis to financial cy-

cles at the global level. We address the following main questions. (i) How strongly

do financial variables in different countries comove? (ii) Are macroeconomic and

financial dynamics at the global level driven by the same common factor(s)? Or are

there (global) financial factors independent of macroeconomic factors? (iii) Is there

something like a "financial cycle", i.e. do different groups of financial variables share

a common factor, or are there factors specific to individual groups of financial vari-

ables? (iv) Are financial factors associated with financial developments in advanced

or rather emerging economies or both?

It is far from clear what answers we should expect. While the global financial

crisis affected financial markets and economic growth worldwide, other financial

crises (such as the Asian crisis in 1997 or the Argentinian crisis in 1999-2002) only

mainly affected the neighbouring emerging countries. Financial variables do not

only move together during financial busts, but also in boom periods. For example,

prior to the latest crisis, many countries experienced simultaneously housing and

credit booms. The strong international comovement among financial variables can

be explained with financial globalization having led to capital flows, an equalization

of asset prices through arbitrage and confidence effects, and cross-border lending

and global banks. Moreover, monetary policy has become increasingly similar, at

least in advanced countries.14

13One global factor looks almost identical to the one estimated before. The other one seems to

match oil price movements fairly well. It has its largest trough around the first oil price shock in

1973/74 and another deep trough around the second oil price shock in 1979/80 (there are no major

troughs around the Gulf war and the war with Iraq 1991 and 2003, respectively). Factor plots and

variance shares are available upon request.
14There has been a general change in the strategy towards inflation targeting. Central banks

now tend to react to output growth and inflation which comove internationally. And recently,

monetary policy was coordinated explicitly or implicitly to fight the crisis.
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We broadly use the dataset built by Eickmeier, Gambacorta and Hofmann (forth-

coming). It comprises overall 348 quarterly series from 11 advanced and 13 emerging

market economies over 1995-2011. 207 series are financial and 141 macroeconomic

series. The macroeconomic block includes, for each country (if available for a suffi-

ciently long time span) price series (consumer prices, producer prices, GDP deflator)

and output series (GDP, consumption, investment). The financial block contains

stock and house prices, domestic and cross-border credit, interest rates (money

market rates, long-term government bond yields), monetary aggregates M0 and M2

as well as implied stock market volatility. All series enter in year-on-year growth

rates, except for interest rates and implied stock market volatility which enter in

levels. Also, each series is demeaned, and its variance is normalized to one.15

We now apply our three-level factor model to the dataset. We estimate a "global

factor" , which is common to all variables in our dataset. Moreover, we estimate

regional factors , i.e. a factor specific to all variables in advanced countries ("ad-

vanced economies’ factor") and one specific to all variables in emerging economies

("emerging economies’ factor").16 We consider only two regions because we have

less countries in our sample than in the previous application.17 Finally, we estimate

variable type-specific factors . It is unclear a priori how to divide the variables.

Hence, we consider several (variable-wise) splits of the data leading to different

models18:

• real activity series; price series; financial series (all other variables) (model 1)

• real activity series; price series; financial price series (comprising house and
stock prices and implied volatility); financial quantities (comprising money

and credit aggregates) (model 2)

• real activity series; price series; interest rates; stock prices; house prices; credit;
15The dataset used originally by Eickmeier et al. (forthcoming) also comprises lots of - less stan-

dard - US financial series as well as overnight rates and lending rates for different countries, which

are not included here. Overnight and lending rates are not included in order not to give interest

rates in our dataset a too large weight. Asset prices are included here, but not in the baseline

model of Eickmeier et al. (forthcoming). For more details on the dataset and transformations we

refer to their analysis.
16Those factors are normalized to be positively correlated with US GDP (global and advanced

economies’ factors) and GDP of Hong Kong (emerging economies’ factor).
17Our application is an extension of Eickmeier et al. (forthcoming) who extract factors common

to all financial variables and identify them as a global monetary policy factor, a global credit supply

factor and a global credit demand factor, but do not consider regional factors.
18The variables can certainly be split also in other ways. We leave systematic assessment of the

best split to future research.
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monetary aggregates; implied stock market volatility.19 (model 3)

The orthogonalization of variable type-specific and regional factors is achieved

by regressing the regional factors on the variable type-specific factors.

One advantage of a finer level of disaggregation is that factors are more easily

interpretable. Figure 3, hence, shows the financial factor estimates from model 3

(which are estimates conditional on the global and regional factors). The temporal

evolution looks broadly plausible. The financial boom in the mid-2000s is charac-

terized by below average interest rate and implied volatility factors and an above

average stock price factor early in the boom, as well as above average credit, money

and - to a less clearer extent - house price factors later in the boom. This is consis-

tent with various explanations for the boom and subsequent crisis, including loose

monetary policy (in the US and worldwide) (Taylor (2009), Hofmann and Bogdanova

(2012)), the "global saving glut" (Bernanke (2005)) (which may have led to lower

bond yields), strong credit growth due to deregulation on financial markets (Eick-

meier et al. (forthcoming)) and major changes in the housing sector. It is interesting

that the housing boom is indeed reflected somewhat in the global housing factor,

even though the increase in house prices was not shared by some major emerging

and advanced countries (e.g. Thailand, Malaysia, Germany, Japan and Korea) (An-

dré (2010), Ferrero (2012)). During the global financial crisis, the implied stock

market volatility factor shows the greatest peak, and stock and house price factors

display the deepest troughs. At the end of the sample period, we observe that the

interest rate factor is still far below average, suggesting a very loose monetary policy

stance. The evolution of all factors indicate sharp reversals towards improvements

in financial markets, but only conditions in global stock markets seem to have fully

recovered after the global financial crisis (at least temporarily).

We are now ready to answer the questions raised at the beginning of this section.

(i) Financial variables worldwide strongly comove, with variance shares explained

by common factors of more than 40 percent on average over all financial variables

(Table 4). The degree of synchronization among financial variables worldwide is

similar to the degree of synchronization among macroeconomic variables. There is,

however, a lot of heterogeneity across variables. The commonality is particularly

high for fast-moving financial variables such as stock prices and interest rates and

19The factors were normalized to be positively correlated with US GDP (macro factor and real

activity factor), the US GDP deflator (price factor), US stock prices (stock price factor), US house

prices (house price factor), US domestic credit (credit factor), US M2 (money factor) and Chinese

GDP (emerging factor), US money market rate (interest rate factor), US implied stock market

volatility (implied stock market volatility factor).
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considerably lower for monetary and credit aggregates as well as house prices. The

finding for house prices is not surprising given that houses are not tradable and that

regulation and financing in housing markets differ across countries. Interestingly, the

commonality is relatively low for stock price volatility. One possible explanation is

that the high observed degree of worldwide comovement of financial stress or general

uncertainty, which should be reflected in the volatility series, is already captured by

other common (global or regional) factors.

(ii) Macroeconomic and financial dynamics are driven by the same (global and

regional) factors, which explain together more than 20 percent and roughly 30 per-

cent of the variation in macro and financial variables, respectively. This is in line

with Claessens, Kose and Terrones (2012) who illustrate strong linkages between

different phases of macro and financial cycles. We find, however, that financial fac-

tors independent from macro factors also matter for financial variables, explaining

between 10 and 24 percent, depending on the model. Global factors tend to be more

important for financial variables than regional factors.

(iii) The overall commonality in the data (all data, but also only financial data)

(i.e. the data fit) remains remarkably similar if financial variables are explained by

factors specific to individual types of financial variables rather than by one single

common financial factor. This is remarkable, given that we would have expected

more disaggregated factors to be more highly correlated with individual series and,

hence, the explained part to increase with a higher level of disaggregation. (The dis-

aggregated financial factors in model 3 explain indeed a larger share of fluctuations

in interest rates and asset prices compared to model 2, but the overall commonality

does not increase (because the shares explained by the regional factors are lower in

model 3 compared to model 2).) That this is not the case might suggest that it is

sufficient to split the data into real activity, prices and financial variables (model 1)

or real activity, prices, financial quantities and prices (model 2) (or, put differently,

it might suggest existence of a "financial cycle" or a "financial quantity cycle" and

a "financial price cycle") and that a finer split may not be necessary. This is useful

information for modellers who study the international synchronization of financial

variables.

(iv) We also find that the financial factors load highly on variables from many

advanced and emerging countries simultaneously with no clear regional pattern (re-

sults are not shown, but available upon request). This underlines the global nature

of financial market developments.

Our main results are broadly robust once we let the sample end before the global
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financial crisis and once we alter the last estimation step and orthogonalize regional

and variable type-specific factors by regressing variable type-specific on regional

factors rather than regressing regional on variable type-specific factors, as before.

5.3 Asymmetries over the business cycle in the US

There exists ample evidence for asymmetries in economic dynamics over the business

cycle. On the empirical side, such asymmetries are typically confirmed by studies

using regime switching time series models (e.g. Peersman and Smets (2002), Good-

win (1993), Chauvet and Hamilton (2006), Nason and Tallman (2012)). Also, a

general finding in the forecasting literature is that it is particularly hard to predict

recessions (and turning points more generally) compared to business cycle move-

ments during expansions20, which also suggests that there are instabilities over the

business cycle. Most recently the difficulty in predicting financial crises (which often

coincide with recessions and have unique features (Reinhart and Rogoff (2011)) has

been re-emphasized. On the theoretical side, agency problems between lenders and

borrowers, capacity constraints or the presence of menu costs are listed as possible

explanations for asymmetric dynamics over the business cycle.21

In this third application, we apply the two-level factor model to a large monthly

US macroeconomic and financial dataset to investigate business cycle asymmetries.

The dataset is taken from Stock and Watson (forthcoming). It contains real activity

measures, prices, interest rates and spreads, monetary and credit aggregates and ex-

change rates between January 1959 and August 2011. The original dataset includes

138 variables, but we only use series which are available for the entire period and,

hence, work with 108 variables. The series are transformed as in Stock and Watson

(forthcoming), i.e. differences or log differences are taken if necessary to make them

stationary, and they are standardized to have a zero mean and a unit variance.22

We aim to estimate a factor which is common to all variables at each point

in time ("symmetric factor") as well as a factor which only exists in recessions

20Elliott and Timmermann (2013) on p. 297 focus on predictions around turning points, because

"downturns and recoveries pose the greatest challenge for economic forecasters".
21Capacity constraints or the presence of menu costs (Ball and Mankiw (1994)) give rise to a

convex short-run aggregate supply function and, consequently, changes in aggregate demand will

have stronger effects on output and weaker effects on inflation in recessions than in expansions.

Another reason for asymmetries may be agency problems between lenders and borrowers that are

greater in recession (or financial crisis) than in normal times due to binding collateral constraints

and increased information asymmetries between lenders and borrowers (Kiyotaki and Moore (1997),

Bernanke, Gertler and Gilchrist (1999), Guerrieri and Iacoviello (2012)).
22See Stock and Watson (forthcoming) for details on the dataset.
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("recession factor") and one which only exists in expansions ("expansion factor").

We use the NBER dating for recessions. The recession (expansion) factor is assumed

not to load on the variables in the dataset during expansions (recessions). Hence,

unlike in the previous application, there are (phase-specific) factors which are not

common across all  rather than all . This is equivalent to estimating a factor model

with factor loadings which vary across different business cycle phases. However, the

variables are also driven by a factor, movements of which have a stable impact on

the variables. The empirical analysis will attribute movements in the variables to

the symmetric and the phase-specific factors. In this way it will inform us about

the extent economic dynamics are instable and the characteristics of the instability.

The estimation is performed in several steps. First, we apply the two-level factor

model using the sequential LS methodology to the transpose of the  ×  data

matrix (where  equals the number of variables in the entire dataset). This yields

us loadings of each variable associated with the symmetric factor, the recession factor

and the expansion factor. Second, we apply a cross-section regression of our data

on the estimated loadings associated with the symmetric factor and the recession

(expansion) factor at each point in time during recessions (expansions) to obtain the

global factor as well as the recession (expansion) factor. This delivers phase-specific

and global factors which are not necessarily orthogonal. In order to carry out a

variance decomposition, we (third) regress each phase-specific factor (separately for

recession and expansion phases) on the global factor, and the residuals represent the

new phase-specific factor estimates (which are now orthogonal to the global factor).

Fourth, we re-estimate the loadings. As the loadings associated with the symmetric

factor are constant over the sample period, whereas the loadings associated with

the phase-specific factors differ across phases, we first regress each variable on the

symmetric factor which yields us loadings associated with the symmetric factor. We

then regress the difference between each series and the fitted value of that regression

on the recession factor during recessions and the expansion factor during expansions.

This yields us loadings associated with the phase-specific factors.

We address the following questions. (i) How large is the comovement among

variables in recessions compared to expansions? (ii) How important are the phase-

specific (recession and expansion) factors compared to the symmetric factor? (iii)

Is the recession factor associated with different variables than the expansion factor

or the symmetric factor?

(i) To measure the comovement between variables in the two phases, we compute

the sum of the shares of the variances explained by the symmetric and the phase-
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specific factors. On average over all variables there tends to be higher commonality

during recessions than during expansions (Table 5) (see D’Agostino and Giannone

(2012) and Liebermann (2012) for a similar finding). During recessions, the common

factors explain 24 percent compared to 18 percent during expansions.

(ii) The phase-specific factors seem to matter. They explain 7 and 8 percent of

the variation on average over all variables in expansions and recessions, respectively.

This indicates that there are indeed non-negligible asymmetries over the business

cycle. However, the bulk of the variation is still explained by the symmetric factor

which has a time-constant impact on the variables. This holds for both expansions

when the symmetric factor explains 11 percent and recessions when it explains 16

percent and suggests that the bulk of the common dynamics is stable over time.

(iii) Table 6 shows the variables with the highest 10 absolute loadings associated

with the factors. The symmetric factor is mainly related to labor market variables,

and the expansion factor to industrial production as well as credit spreads. The

recession factor loads most highly on reserves and monetary aggregates as well as

interest rates and spreads. There are several possible interpretations of this latter

finding. One is that monetary and financial variables are particularly affected and

comove particularly strongly in recessions. Also, financial frictions may be partic-

ularly relevant during recessions. Another possible interpretation is that recessions

are strongly driven by developments in financial markets.23 Four of the eight re-

cessions in our sample period coincide with financial crises (following the dating for

financial crises by Lopez-Salido and Nelson (2010)). As loadings can be interpreted

as both effects factor movements have on certain variables and weights of variables

in the factors, we cannot ultimately discriminate between the explanations.

We carry out several robustness checks. First, to assess to what extent our results

are driven by the global financial crisis, we re-estimate our model for the pre-crisis

period 1959-2007. The overall comovement slightly declines; the sum of the variance

shares explained by the phase-specific and the symmetric factors are now at 19 and

16 percent for recessions and expansions, respectively. Otherwise, results remain

very similar, and we make them available upon request.

Second, the shares explained by one symmetric factor and one phase-specific fac-

tor for recessions and expansions are, overall, quite low. Therefore, we re-estimate

the model with two and three symmetric, two and three recession and two and three

23This would be in line with Del Negro and Schorfheide (2012), Faust, Gilchrist, Wright and

Zakrajsek (2012) and Gilchrist and Zakrajsek (forthcoming). They find usefulness of financial

frictions (Del Negro and Schorfheide (2012)) and credit spreads (all three) for forecasting output

during the global financial crisis period.
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expansion factors. For brevity, we only show results on variance shares explained by

three (symmetric, recession and expansion) factors in Table 5. The overall common-

ality rises to 46 percent on average over all variables during recessions and 37 percent

during expansions. Hence, the model with more factors confirms the main previ-

ous findings: variables comove more in recessions than in expansions; instabilities

matter, but the symmetric factors are still more important that the phase-specific

factors.

6 Concluding remarks

In this paper we have compared alternative estimation procedures for multi-level

factor models which impose blocks of zero restrictions on the associated matrix of

factor loadings. For the two-level factor model we have suggested an estimator

based on CCA and a simple sequential LS algorithm that minimizes the total sum

of squared residuals. The latter estimator is related to Wang (2010)’s sequential PC

estimator and to Banbura et al. (2010)’s quasi ML approach, and it is much simpler

and faster than Bayesian approaches previously employed in the literature. The

sequential LS and CCA estimation approaches can be applied to block structures

of two or higher levels of factors (with either overlapping or hierarchical factor

structures). Monte Carlo simulations suggest that the estimators perform well (in

terms of precision of factor estimates and computing time) in typical sample sizes

encountered in the factor analysis of macroeconomic data sets.

We have applied the methodologies to study international comovements of busi-

ness and financial cycles as well as asymmetries over the business cycle in the US. We

first basically replicate the study by Hirata et al. (forthcoming) and also find that

regional cycles have become more important and global cycles less important over

time. Our factor estimates (based on sequential LS or CCA) and their (Bayesian)

factor estimates are similar. We then move on to analyze the comovement of fi-

nancial variables at the global level. We find that the estimated financial factors

plausibly evolve over time. The international synchronization of financial variables

is comparable to the comovement of macro variables. Both types of variables share

common factors, but independent financial factors also seem to matter. Finally, we

demonstrate that the sequential LS approach can be applied to estimate factors that

are specific not only to certain groups of variables, but also to certain periods (such

as recession and expansions). This idea is adopted in the third application. We find

that there are notable asymmetries over the US business cycle, but that the bulk
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of common dynamics is stable over time. The comovement of variables is larger in

recessions than in expansions. Finally, the recession factor is most highly correlated

to monetary and financial variables, where as expansion and symmetric factors are

mostly related to real activity variables.
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Table 1: Monte Carlo simulation results: R² (or trace R²) of a regression of actual on esti-
mates factors 
 

(a) Two-level factor model  

 
 

 

  

2-step PC CCA Sequential LS Quasi ML
nr T R stdregfac G F G F G F G F
20 50 2 0.5 0.92 0.67 0.91 0.64 0.95 0.69 0.95 0.66
20 50 2 1 0.68 0.73 0.85 0.82 0.92 0.85 0.92 0.83
20 50 2 2 0.18 0.69 0.64 0.85 0.79 0.89 0.72 0.83
20 50 4 0.5 0.96 0.73 0.97 0.71 0.98 0.72 0.98 0.71
20 50 4 1 0.86 0.85 0.95 0.86 0.96 0.86 0.96 0.85
20 50 4 2 0.33 0.84 0.84 0.89 0.89 0.90 0.89 0.89
50 50 2 0.5 0.95 0.82 0.96 0.82 0.98 0.84 0.98 0.83
50 50 2 1 0.74 0.82 0.94 0.91 0.97 0.92 0.97 0.90
50 50 2 2 0.18 0.77 0.85 0.93 0.92 0.94 0.87 0.86
50 50 4 0.5 0.98 0.86 0.99 0.85 0.99 0.85 0.99 0.85
50 50 4 1 0.88 0.91 0.98 0.92 0.98 0.93 0.98 0.91
50 50 4 2 0.34 0.89 0.94 0.94 0.96 0.94 0.95 0.90
80 50 2 0.5 0.95 0.87 0.98 0.88 0.99 0.89 0.99 0.87
80 50 2 1 0.74 0.83 0.96 0.93 0.98 0.94 0.98 0.90
80 50 2 2 0.19 0.78 0.90 0.94 0.95 0.95 0.92 0.85
80 50 4 0.5 0.98 0.90 0.99 0.90 0.99 0.90 0.99 0.89
80 50 4 1 0.89 0.92 0.99 0.94 0.99 0.94 0.99 0.92
80 50 4 2 0.35 0.90 0.96 0.95 0.97 0.95 0.97 0.88
20 200 2 0.5 0.93 0.73 0.92 0.70 0.96 0.74 0.96 0.74
20 200 2 1 0.72 0.79 0.87 0.86 0.93 0.88 0.93 0.88
20 200 2 2 0.17 0.74 0.72 0.90 0.84 0.92 0.81 0.90
20 200 4 0.5 0.96 0.77 0.97 0.76 0.98 0.76 0.98 0.77
20 200 4 1 0.88 0.88 0.95 0.88 0.96 0.89 0.97 0.88
20 200 4 2 0.35 0.87 0.88 0.92 0.91 0.92 0.91 0.92
50 200 2 0.5 0.95 0.86 0.97 0.86 0.98 0.88 0.98 0.88
50 200 2 1 0.76 0.86 0.95 0.94 0.97 0.94 0.97 0.93
50 200 2 2 0.17 0.81 0.87 0.96 0.93 0.96 0.92 0.91
50 200 4 0.5 0.98 0.89 0.99 0.89 0.99 0.89 0.99 0.89
50 200 4 1 0.90 0.94 0.98 0.95 0.99 0.95 0.99 0.94
50 200 4 2 0.39 0.92 0.95 0.96 0.97 0.96 0.96 0.94
80 200 2 0.5 0.95 0.90 0.98 0.91 0.99 0.92 0.99 0.91
80 200 2 1 0.77 0.88 0.97 0.96 0.98 0.96 0.98 0.93
80 200 2 2 0.17 0.83 0.92 0.97 0.96 0.97 0.95 0.90
80 200 4 0.5 0.98 0.92 0.99 0.92 0.99 0.93 0.99 0.92
80 200 4 1 0.90 0.95 0.99 0.96 0.99 0.96 0.99 0.95
80 200 4 2 0.40 0.93 0.97 0.97 0.98 0.98 0.98 0.92
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Table 1: Monte Carlo simulation results cont. 

 

(b) Three-level factor model (LS method) 

 

Notes: Based on 1000 replications. For details on the simulation design, see the text. G: global factor, F: regional 
factor, H: variable-specific factor.  

nr T stdregfac stdvarfac G F H nr T stdregfac stdvarfac G F H
20 50 0.5 0.5 0.91 0.51 0.51 20 200 0.5 0.5 0.94 0.66 0.67
20 50 0.5 1 0.86 0.35 0.74 20 200 0.5 1 0.90 0.53 0.84
20 50 0.5 2 0.61 0.13 0.71 20 200 0.5 2 0.76 0.18 0.85
20 50 1 0.5 0.86 0.74 0.34 20 200 1 0.5 0.90 0.84 0.52
20 50 1 1 0.82 0.71 0.70 20 200 1 1 0.87 0.81 0.81
20 50 1 2 0.56 0.42 0.71 20 200 1 2 0.74 0.63 0.87
20 50 2 0.5 0.62 0.72 0.13 20 200 2 0.5 0.76 0.84 0.17
20 50 2 1 0.54 0.70 0.42 20 200 2 1 0.74 0.86 0.62
20 50 2 2 0.41 0.66 0.66 20 200 2 2 0.64 0.82 0.82
20 50 0.5 0.5 0.96 0.60 0.68 20 200 0.5 0.5 0.97 0.71 0.81
20 50 0.5 1 0.91 0.40 0.80 20 200 0.5 1 0.95 0.57 0.91
20 50 0.5 2 0.60 0.17 0.68 20 200 0.5 2 0.78 0.16 0.85
20 50 1 0.5 0.94 0.81 0.53 20 200 1 0.5 0.95 0.86 0.73
20 50 1 1 0.91 0.77 0.83 20 200 1 1 0.94 0.83 0.89
20 50 1 2 0.55 0.46 0.69 20 200 1 2 0.80 0.64 0.89
20 50 2 0.5 0.84 0.85 0.19 20 200 2 0.5 0.89 0.90 0.37
20 50 2 1 0.79 0.85 0.62 20 200 2 1 0.88 0.90 0.81
20 50 2 2 0.54 0.78 0.72 20 200 2 2 0.80 0.86 0.90
50 50 0.5 0.5 0.97 0.77 0.77 50 200 0.5 0.5 0.98 0.84 0.85
50 50 0.5 1 0.95 0.63 0.88 50 200 0.5 1 0.96 0.78 0.93
50 50 0.5 2 0.85 0.26 0.88 50 200 0.5 2 0.91 0.53 0.95
50 50 1 0.5 0.95 0.89 0.63 50 200 1 0.5 0.96 0.93 0.79
50 50 1 1 0.94 0.88 0.87 50 200 1 1 0.95 0.92 0.91
50 50 1 2 0.84 0.74 0.90 50 200 1 2 0.91 0.85 0.95
50 50 2 0.5 0.84 0.87 0.24 50 200 2 0.5 0.91 0.95 0.50
50 50 2 1 0.83 0.90 0.73 50 200 2 1 0.90 0.95 0.85
50 50 2 2 0.71 0.86 0.86 50 200 2 2 0.86 0.93 0.93
50 50 0.5 0.5 0.98 0.80 0.86 50 200 0.5 0.5 0.99 0.86 0.91
50 50 0.5 1 0.97 0.67 0.91 50 200 0.5 1 0.98 0.81 0.96
50 50 0.5 2 0.85 0.29 0.85 50 200 0.5 2 0.95 0.55 0.97
50 50 1 0.5 0.98 0.91 0.77 50 200 1 0.5 0.98 0.94 0.88
50 50 1 1 0.97 0.89 0.92 50 200 1 1 0.98 0.92 0.95
50 50 1 2 0.87 0.77 0.90 50 200 1 2 0.95 0.86 0.97
50 50 2 0.5 0.93 0.92 0.36 50 200 2 0.5 0.96 0.96 0.71
50 50 2 1 0.92 0.93 0.84 50 200 2 1 0.95 0.96 0.92
50 50 2 2 0.79 0.90 0.88 50 200 2 2 0.93 0.94 0.96
80 50 0.5 0.5 0.98 0.84 0.85 80 200 0.5 0.5 0.98 0.90 0.90
80 50 0.5 1 0.97 0.76 0.92 80 200 0.5 1 0.98 0.85 0.95
80 50 0.5 2 0.90 0.37 0.91 80 200 0.5 2 0.95 0.69 0.97
80 50 1 0.5 0.97 0.92 0.76 80 200 1 0.5 0.98 0.96 0.85
80 50 1 1 0.96 0.91 0.91 80 200 1 1 0.97 0.94 0.94
80 50 1 2 0.91 0.84 0.94 80 200 1 2 0.94 0.90 0.97
80 50 2 0.5 0.90 0.91 0.37 80 200 2 0.5 0.94 0.97 0.68
80 50 2 1 0.91 0.93 0.83 80 200 2 1 0.94 0.97 0.90
80 50 2 2 0.84 0.91 0.91 80 200 2 2 0.91 0.96 0.96
80 50 0.5 0.5 0.99 0.87 0.90 80 200 0.5 0.5 0.99 0.91 0.94
80 50 0.5 1 0.98 0.79 0.94 80 200 0.5 1 0.99 0.87 0.97
80 50 0.5 2 0.92 0.41 0.90 80 200 0.5 2 0.97 0.72 0.98
80 50 1 0.5 0.99 0.93 0.85 80 200 1 0.5 0.99 0.96 0.92
80 50 1 1 0.98 0.92 0.94 80 200 1 1 0.98 0.95 0.97
80 50 1 2 0.94 0.86 0.94 80 200 1 2 0.97 0.91 0.98
80 50 2 0.5 0.95 0.94 0.49 80 200 2 0.5 0.97 0.97 0.82
80 50 2 1 0.95 0.95 0.90 80 200 2 1 0.97 0.97 0.94
80 50 2 2 0.90 0.93 0.93 80 200 2 2 0.95 0.96 0.97
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Table 2: Application 1 - Correlation between regional factors 1961-2010 (sequential LS) 

  
 
Table 3: Application 1 - Variance shares of GDP growth explained by global and regional fac-
tors in percent (sequential LS) 

 
Note: Based on 1 global factor and 1 regional factor. 

(1) (2) (3) (4) (5) (6) (7)
North America (1) 1
Latin America (2) 0.16 1
Europe (3) 0.47 0.12 1
Africa (4) 0.02 0.44 0.22 1
Asia (5) -0.01 0.14 0.02 -0.12 1
Middle East (6) -0.13 0.15 -0.28 -0.09 -0.12 1
Oceania (7) 0.46 -0.02 0.33 0.25 0.00 -0.05 1

1960-2010 1960-1984 1985-2010
Glob Reg Glob+Reg Glob Reg Glob+Reg Glob Reg Glob+Reg

World 15 16 31 11 19 30 9 28 37
North America 28 58 86 35 47 82 19 73 92
Latin America 12 18 31 13 25 38 7 23 30
Europe 35 19 54 18 31 49 9 52 61
Africa 7 8 15 7 9 16 12 13 24
Asia 18 23 41 13 14 27 7 38 45
Middle East 9 16 25 4 17 21 9 22 31
Oceania 8 44 52 18 43 60 13 54 67
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Table 4: Application 2 - Variance shares explained by the common factors on average over 
all and over groups of variables in percent for 1995-2011 (sequential LS) 

 

Global Regional Variable-spec. Idio
Model 1
All variables 14 13 17 56
Advanced countries 10 12 20 58
Emerging market economies 18 14 13 54
All macro 11 10 26 53
All financial 17 15 10 58
All interest rates 33 17 9 41
All stock prices 11 11 38 40
All house prices 9 12 4 75
All credit 17 16 11 56
All money 11 19 4 66
All implied volatility 12 13 6 69
Model 2
All variables 15 12 18 56
Advanced countries 12 10 20 58
Emerging market economies 18 13 15 54
All macro 11 9 25 55
All financial 18 13 13 56
All interest rates 38 18 5 39
All stock prices 11 18 26 45
All house prices 5 11 1 83
All credit 15 14 14 57
All money 12 11 18 59
All implied volatility 13 10 12 64
Model 3
All variables 17 4 20 59
Advanced countries 15 5 22 58
Emerging market economies 19 3 18 60
All macro 19 4 15 62
All financial 16 4 24 57
All interest rates 7 2 40 50
All stock prices 32 1 34 33
All house prices 25 2 31 41
All credit 16 8 13 63
All money 17 4 15 64
All implied volatility 11 5 11 73
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Table 5: Application 3 - Variance share explained by the factors on average over all variables 
in percent (sequential LS) 

 

Notes: m0: number of symmetric factors, mr: number of phase-specific (i.e. recession and expansion) factors. 
 

Table 6: Application 3 - Variables associated with the factors exhibiting the 10 largest abso-
lute loadings (sequential LS) 

 

  

Recessions Expansions
m0 = mr = 1
Symmetric factor 16 11
Phase-spec. factor 8 7
Symm.+phase-specific 24 18
m0 = mr = 3
Symmetric factor 30 23
Phase-spec. factor 15 14
Symm.+phase-specific 45 37

Symmetric factor Expansion factor Recession factor
Unemp Rate IP: Dur Cons. Goods TotRes
Urate:Age>20 Men IP: Auto BAA Bond
BAA-GS10 IP: Consumer goods Mbase
Urate_ST Capu Man. Com Paper
Emp: Private IP: Total index TM-6MTH
Emp:Nonfarm IP: Final products TB-1YR
Emp:Goods AAA_GS10 TB-3Mth
Emp: mfg GS10_tb3m S&P 500
AAA_GS10 IP: Dur gds materials AAA Bond
Urate: Age>20 Women BAA-GS10 DJIA
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Figure 1: Smoothed distributions of R² (or trace R²) of a regression of true on estimated fac-
tors (or trace R²) 
 

 
Note: For T = 200, ng = 50, R = 2. Based on 1000 replications. 
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Figure 2: Application 1 - Estimates for global and regional factors of international business 
cycles (black: sequential LS, magenta dashed: CCA, red dotted: Bayesian, blue dashed: 
quasi ML, green dotted dashed: two-step PC) 
 

(a) Global factor 

 
(b) Regional factors 

 
Notes: The Bayesian approach is based on 1,000 burnins and 10,000 draws (which already yields plausible re-
sults). We show the posterior means obtained with the Bayesian approach. Model with 1 global factor and 1 re-
gional factor for each country.  
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Figure 3: Application 2 - Variable-specific factor estimates from model 3 (sequential LS) 

 
Notes: The factors are normalized as described in the main text. 
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