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1 Introduction

Vector autoregressions (VARs) are widely used for modeling and forecasting in macroe-

conomics. In particular, VARs have been used to understand the interactions between

macroeconomic variables, often through the estimation of impulse response functions

that characterize the effects of a variety of structural shocks on key economic variables.

In recent years there has been much interest in extending the traditional constant coef-

ficient VARs to time-varying parameter VARs (TVP-VARs) where the VAR coefficients

are allowed to gradually evolve over time (see, among many others, Cogley and Sargent,

2005; Cogley, Primiceri, and Sargent, 2010; Koop, Leon-Gonzalez, and Strachan, 2011;

Koop and Korobilis, 2013). This approach is motivated by a growing body of empirical

evidence that demonstrates the importance of accommodating time-varying structures

for model fitting and forecasting.

However, even for a moderate size VAR, the number of parameters in the model can

be quite large relative to the number of observations. This can lead to imprecise es-

timation of impulse response functions and poor forecast performance. This problem

is exacerbated in TVP-VARs, which are much higher dimensional than constant co-

efficient VARs. The potential problems associated with parameter proliferation have

led many researchers to use Bayesian shrinkage in VARs to improve estimates preci-

sion and forecast performance (e.g., Banbura, Giannone, and Reichlin, 2010; Carriero,

Clark, and Marcellino, 2011; Koop, 2011; Korobilis, 2011). Applying shrinkage to time-

varying parameter models is less straightforward and it often requires computationally

demanding algorithms (Chan, Koop, Leon-Gonzalez, and Strachan, 2012; Nakajima and

West, 2013) or approximate inference (Koop and Korobilis, 2012). A related issue is

model specification and model selection; although empirically a TVP-VAR that allows

all VAR coefficients to change over time typically perform better than a constant coeffi-

cient VAR, it is plausible and even likely that a TVP-VAR where only some coefficients

are time-varying while others are time-invariant will perform better than both alterna-

tives.1 Reducing the number of time-varying parameters thereby achieves a degree of

parsimony. However, it is unclear how one can decide a priori which coefficients are fixed

and which are time-varying.

1A referee has suggested another direction for extending such models that allows coefficients to vary
some of the time but not necessarily all of the time. This approach would provide useful new information
on the nature of time variation and could follow from the approach in Chan, Koop, Léon-Gonzalez and
Strachan (2012). However, we do not attempt this extension in this paper.
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The main goal of this paper, following the interesting work of Frühwirth-Schnatter and

Wagner (2010) and Belmonte, Koop, and Korobolis (2014) (hereafter FSW and BKK,

respectively), among others, is to develop a new methodology to nest both time-varying

and time-invariant VARs that is applicable to high-dimensional settings. Our starting

point is the stochastic model specification search (SMSS) framework introduced in FSW.

Specifically, for each VAR coefficient, we introduce an indicator that chooses between a

time-varying against a time-invariant parameter. This allows the model to automatically

switch to a more parsimonious specification when the time-variation of the coefficient

is “small”. One computational challenge in this setup is that in a typical VAR, the

number of values the indicators can take can be very large — e.g., for a small VAR with

3 variables and 4 lags, the number of combinations is 239 ≈ 5.5 × 1011. To circumvent

this computation problem, we introduce a new hierarchical prior for the indicators under

which the stochastic model specification search can be performed efficiently. In addition,

this new approach also incorporates the hierarchical Lasso prior in BKK that provides

additional shrinkage, while maintaining the natural and intuitive framework in FSW.

The proposed approach therefore adds to the growing literature on efficient methods of

ensuring parsimony in potentially over-parameterized TVP-VARs.

Another advantage of the proposed approach is that it can be used to shrink the TVP-

VAR to a stationary, constant coefficient VAR. In macroeconomic applications it is often

necessary to impose stationarity conditions to avoid explosive impulse-response functions

or forecasts. However, imposing stationarity conditions in a TVP-VAR implies inequal-

ity constraints on the time-varying coefficients, which results in a nonlinear state space

model where conventional Kalman filter-based algorithms cannot be used. As pointed

out in Koop and Potter (2011), the common way to impose stationarity in such settings

— estimating the unconstrained TVP-VAR using Kalman filter-based algorithms and

discarding any draws that do not satisfy the stationarity conditions — may lead to in-

valid inference. On the other hand, the single- and multi-move samplers proposed in

Koop and Potter (2011), though sampling from the correct posterior distribution, can

be computationally demanding. The proposed approach therefore provides a compu-

tationally feasible alternative for imposing the stationarity conditions probabilistically.

By shrinking the TVP-VAR towards a stationary VAR, the model has the features of a

stationary model, while still allowing some weight on nonstationarity to capture (poorly

modeled) nonlinearities or extreme events.

In the second contribution of the paper we demonstrate the overall approach with a top-

ical application. In particular, we investigate the dynamic responses of output growth
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and government revenues and expenditure to a government spending shock. We gener-

alize earlier work by Blanchard and Perotti (2002) by allowing for general time variation

in the model parameters. We study the dynamic effects of structural shocks in govern-

ment spending on U.S. taxes and GDP during a period where the interest rate is close

to zero. In doing so we compare the inference obtained from the SMSS and the standard

TVP-VAR specifications. We find that the SMSS generally offers more accurate esti-

mates. In particular, our results from the SMSS show clearer evidence of an implication

of Ricardian equivalence that the evolution of taxes generally follows that of spending.

This phenomenon is much more difficult to detect with the standard TVP-VAR alone

where the impulse responses are much less precisely estimated. In contrast, the SMSS

leads to a distinct, clear pattern of long run government spending and taxes changing

by the same amount during the period under examination. Overall, it appears that the

SMSS is able to efficiently allocate time variation among the model parameters such as

to strike a balance between parsimony and flexibility: most parameters are restricted

to be essentially constant, while a select few are allowed to have a large degree of time

variation.

The rest of the article is organized as follows. In Section 2 we first extend the stochastic

model specification search approach of FSW to a multivariate setting. We then introduce

a new hierarchical prior on the indicators and highlight its advantages over competing

approaches. Section 3 outlines the posterior computation. We then discuss in Section 4

two important extensions — allowing for stochastic volatility and a full error covariance

matrix for state transition. The hierarchical prior we employ is particularly important

in implementing the latter as neither the FSW nor the BKK specifications would suffice

for this purpose. Section 5 presents the application to responses of macro variables to

fiscal policy shocks and Section 6 contains some final comments.

2 SMSS and State Space Models

A popular approach for allowing for time-varying coefficients in time series models is

through the state space specification. Specifically, suppose yt is an n × 1 vector of

observations on the dependent variables, X t is an n × m matrix of observations on

explanatory variables and βt is an m × 1 vector of states. Then a generic state space
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model can be written as:

yt =X tβt + εt, (1)

βt = βt−1 + ηt, (2)

where εt ∼ N (0,Σ), ηt ∼ N (0,Ω), and Ω is typically assumed to be a diagonal matrix

Ω = diag(ω2
1, . . . , ω

2
m). In Section 4 we generalize this state space model to include a

full covariance matrix in the state equation and stochastic volatility in the measurement

equation. The errors εt and ηt are assumed to be independent at all leads and lags.

Finally, the state equation (2) is initialized with β0 = α, where α ∼ N
(
α0,A

−1
0

)
. In a

TVP-VAR setting, we have X t = In ⊗ x′
t, where In is the n× n identity matrix and xt

is a k × 1 vector of deterministic terms and lagged observations (hence m = nk).

This general state space framework encompasses a wide variety of commonly used time-

varying parameter (TVP) regression models in macroeconomics and has become a stan-

dard framework for analyzing macroeconomic data. However, recent research has raised

the concern that over-fitting might be a problem for these highly parameterized models.

Moreover, these high-dimensional models typically give imprecise estimates, making any

form of inference more difficult. Motivated by these concerns, researchers might wish

to have a more parsimonious specification that reduces the potential problem of over-

parameterization, while maintaining the flexibility of the state space framework that

allows time-variation in the coefficients. For example, one might wish to have a default

model with time-invariant coefficients, but where each of these coefficients can switch

to being time-varying when there is strong evidence for time-variation. In this way, one

can maintain a parsimonious specification that leads to more precise estimates, while

minimizing the risk of model misspecification.

In what follows, we first outline two existing methods for performing a stochastic model

specification search with the aim of shrinking the model towards a more parsimonious

specification. We then present a new method to undertake the specification search,

which has theoretical and computational advantages over existing approaches.

2.1 Existing Approaches

In an important paper Frühwirth-Schnatter and Wagner (2010) (FSW) propose the

following framework for nesting both time-varying and time-invariant coefficient speci-
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fications. To set the stage, consider again the generic state space model in (1)–(2), and

recall that βt = (β1,t, . . . , βm,t)
′ is the state vector at time t, β0 = α = (α1, . . . , αm)

′ is

the vector of initial states, and Ω = diag(ω2
1, . . . , ω

2
m) is the covariance matrix for the

state transition in (2). To proceed, reparameterize γj,t = (βj,t−αj)/ωj for j = 1, . . . , m,

so that (1)–(2) can be rewritten as

yt =X tα+X tΩ
1

2γt + εt, (3)

γt = γt−1 + η̃t, (4)

where εt ∼ N (0,Σ), η̃t ∼ N (0, Im), and Ω
1

2 = diag(ω1, . . . , ωm). It is clear that

when ω1 = · · · = ωm = 0, the above specification reduces to a standard time-invariant

regression model. By allowing the ωj’s to have different values, the model (3)–(4) can

therefore accommodate the possibility that some coefficients are time-varying, whereas

others are constant over time. More importantly, by specifying a suitable prior for the

ωj’s, this framework provides a convenient way to shrink the TVP state space model to

a more parsimonious constant coefficient regression.

Specifically, FSW propose the following independent normal priors each with a point

mass at 0:

p(ωj) = π0j1(ωj = 0) + (1− π0j)φ(ωj;µj, τ
2
j ), (5)

where π0j is the a priori probability that ωj equals 0, and φ(·;µ, σ2) denotes the normal

density with mean µ and variance σ2. These priors can be equivalently specified by

introducing the indicators

dj =

{
0 with probability π0j ,

1 with probability 1− π0j ,

and ω̃j ∼ N (µj, τ
2
j ). Then, ωj = djω̃j has the desired distribution in (5).

Each vector d = (d1, . . . , dm)
′ corresponds to a model in which some coefficients — specif-

ically those with dj = 1 — are time-varying while others are not. Hence, the stochastic

variable selection approach of George and McCulloch (1993, 1997) can be adopted to

perform the stochastic model specification search. Particularly, FSW derive a Markov

Chain Monte Carlo (MCMC) algorithm for sampling the indicators simultaneously with

the models parameters. However, the main drawback of this approach is that it becomes

computationally infeasible when m is large. Specifically, in one step of the MCMC al-

gorithm it is required to compute the joint probability that d1 = i1, . . . , dm = im given
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the data and all the other parameters except the ωj’s, where (i1, . . . , im) ∈ {0, 1}m.

This step becomes computationally infeasible when m is large as there are altogether

2m combinations.

In view of this difficulty, Belmonte, Koop, and Korobolis (2014) (BKK) specify an

alternative hierarchical Lasso prior directly on the ωj’s as follows:

(ωj | τ
2
j ) ∼ N

(
0, τ 2j

)
,

τ 2j ∼ E

(
λ2

2

)
, (6)

λ2 ∼ G (λ01, λ02) , (7)

where E and G denote respectively the Exponential and the Gamma distributions. This

Lasso prior circumvents the model proliferation problem by removing the indicators, and

at the same time provides additional shrinkage towards the time-invariant model.

While the specification of BKK addresses the computation issue, this comes at the cost

of losing two attractive features of the FSW specification. First, while it is true that

“if ωj is shrunk to 0... then we have a model with a constant parameter on predictor

j”, the probability of such shrinking ever occurring is in fact zero, i.e., Pr(ωj = 0) = 0.

Second, the probability that the indicator dj = 0 has an intuitive interpretation: it is the

probability that the corresponding coefficient does not change over time. As such, this is

useful for prior elicitation — e.g., some coefficients might be more likely to vary over time

than others apriori. On the other hand, prior elicitation in BKK’s specification is more

difficult. Further, given the posterior draws of the indicators in FSW’s specification, it is

easy to compute posterior model probabilities for model selection or other probabilities

to assess various hypotheses — e.g., output persistence does not change over time —

whereas these probabilities are more difficult to compute under the specification of BKK.

2.2 A Tobit Prior

Both the FSW and BKK prior specifications have attractive features: the former has

a natural, intuitive interpretation that is useful for prior elicitation and computing a

variety of interesting posterior quantities, whereas the latter provides additional shrink-

age and leads to a computationally feasible MCMC sampler even when the dimension

of the states is large. We therefore aim to have a setup that has the advantages of both
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specifications, while circumventing their drawbacks. More specifically, we propose the

following censored or Tobit prior on the ωj ’s. For j = 1, . . . , m, introduce the latent

variable

ω∗
j ∼ N

(
µj, τ

2
j

)
,

and set

ωj =

{
0 if ω∗

j 6 0

ω∗
j if ω∗

j > 0.

It is easy to see that the marginal density of ωj unconditional of ω
∗
j is given by

p(ωj | τ
2
j ) = Φ

(
−
µj

τj

)
1(ωj = 0) + φ(ωj;µj, τ

2
j )1(ωj > 0), (8)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Additionally, we assume τ 2j has the prior as in (6)-(7) to incorporate the Lasso structure.

This proposed prior specification has several appealing features. First, it incorporates

the essential elements of both the priors in FSW and BKK. To see the connection to

FSW, let π0j = Φ
(
−µj

τj

)
and rewrite the proposed prior in (8) as

p(ωj | τ
2
j ) = π0j1(ωj = 0) + (1− π0j)φ(0,∞)(ωj;µj, τ

2
j ),

where φX(·;µ, σ2) denotes the density of the truncated N (µ, σ2) distribution with sup-

port in X. Therefore, it allows for both a non-trivial probability of a certain parameter to

be time-invariant and simultaneously the hierarchical shrinking that BKK so strongly ar-

gue for in forecasting applications. Moreover, the fact that ωj is automatically restricted

to be positive under the Tobit prior—in contrast to both FSW and BKK—turns out

to play in important role in extending this approach to state space settings with a full

covariance matrix in the state equation, as discussed in further detail in Section 4.

Second, the proposed specification imposes a sensible relationship between the probabil-

ity of time-invariance π0j and the distribution of ωj in the time-varying case. Specifically,

the farther the truncated mean (normalized by standard deviation) is away from zero,

the lower the probability that ωj is zero, and vice-versa. This means that for values

of ωj that are close to zero, the prior elicits a strong preference for a time-invariant

specification, while at the same time, penalizing situations where a high degree of time

variation (i.e., a large ωj) would be associated with a high probability of time invariance.

In doing so, it imposes an important and desirable element of shrinkage on the model
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space. On the other hand, setting µj = 0 implies that π0j is constant and equal to

0.5. Consequently, tuning the hyper-parameters λ01, λ02 such that τ 2j is “large” with

probability ≈ 1 leads to the FSW specification where dj is zero with probability 0.5 and

ω̃j follows a half-normal, weakly-informative distribution.

Lastly, this prior leads to a straightforward Gibbs sampler. Importantly, in contrast to

the MCMC sampler in FSW that becomes computationally intensive in high-dimensional

state space models, this Gibbs sampler is fast and is applicable to such settings.

3 Priors and Posterior Computation

To complete the model specification, we assume the following standard independent

priors for α and Σ:

α ∼ N (α0,A
−1
0 ), Σ ∼ IW(ν0,Σ0),

where IW denotes the inverse Wishart distribution. In what follows, we outline the

posterior computation using MCMC, and we give the details in Appendix B. First,

define the m × 1 vectors ω∗ = (ω∗
1, . . . , ω

∗
m)

′, ω = (ω1, . . . , ωm)
′ and τ = (τ1, . . . , τm)

′,

and stack

y =




y1
...

yT


 , X =




X1

...

XT


 , γ =




γ1
...

γT


 , ε =




ε1
...

εT


 .

Then, posterior draws are obtained by sequentially sampling from:

1. p(α |y,γ,ω∗,Σ, τ , λ);

2. p(γ |y,α,ω∗,Σ, τ , λ);

3. p(Σ |y,α,γ,ω∗, τ , λ);

4. p(ω∗ |y,α,γ,Σ, τ , λ);

5. p(τ |y,α,γ,ω∗,Σ, λ);

6. p(λ |y,α,γ,ω∗,Σ, τ ).
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We note that each ωj is completely determined by ω∗
j . In fact, under the Tobit prior

discussed in Section 2.2, we have ωj = 0 if ω∗
j ≤ 0 and ωj = ω∗

j otherwise. Now, given

ω, the model in (3)–(4) is a conventional TVP-VAR. Hence, Steps 1-3 are standard, and

we leave the details to Appendix B. Here we discuss the implementations of Steps 4-6.

One feasible approach to sample ω∗ from its full conditional distribution is to simulate

each element ω∗
j at a time. To that end, first recall that X t = In ⊗ x′

t, and xt =

(x1,t, . . . , xk,t)
′ is a k × 1 vector of deterministic terms and lagged observations. Now,

defining Gt =X t diag(γt), let

G =




G1

...

GT


 .

Stack (3) over t and rewrite the measurement equation as

y =Xα+Gω + ε. (9)

Further, let gj denote the j-th column ofG, and accordingly, letG\j be the Tn×(m−1)

matrix obtained by deleting the j-th column in G. Similarly, let ω\j represent ω with

the j-th row removed. Then,

vj ≡ y −Xα−G\jω\j = gjωj + ε.

Compute further the following posterior quantities:

τ̂ 2j =
(
τ−2
j + g′j(IT ⊗Σ−1)gj

)−1

µ̂j = τ̂ 2j
(
µj/τ

2
j + g′j(IT ⊗Σ−1)vj

)

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)

τ̂j
τj

exp

{
1

2

(
µ̂2
j

τ̂ 2j
−
µ2
j

τ 2j

)}

π̂j = (1 + ψ̂j)
−1.

Then, the conditional density of ω∗
j is the following 2-component mixture of truncated

normals

p(ω∗
j |y,α,γ,ω

∗
\j ,Σ, τ , λ) = π̂jφ(−∞,0)

(
ω∗
j | µj, τ

2
j

)
+ (1− π̂j)φ(0,∞)

(
ω∗
j | µ̂j, τ̂

2
j

)
.
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The derivations can be found in Appendix B. A draw from the above mixture distribution

can be obtained as follows. First, get a Bernoulli draw Z with P(Z = 0) = π̂j . If Z = 0,

sample ω∗
j from the truncated N (ω∗

j ;µj, τ
2
j ) distribution with support (−∞, 0); if Z = 1,

sample ω∗
j instead from the truncated N (ω∗

j ; µ̂j, τ̂
2
j ) distribution with support (0,∞).

Finally, τ 2j and λ conditional on ω∗
j may be sampled exactly as discussed in BKK:

(τ−2
j | λ, ω∗

j ) ∼ IG

(√
λ2

(ω∗
j − µj)2

, λ2

)
,

(λ2 | τ ) ∼ G

(
λ01 +m, λ02 +

1

2

m∑

j=1

τ 2j

)
,

where IG denotes the inverse Gaussian distribution.

4 Extensions

In this section we discuss two important extensions of the basic framework in (1)–(2).

Firstly, we allow the error covariance matrix in the state equation to be a full matrix as

opposed to a diagonal matrix. This is a main departure from both FSW and BKK, who

only consider the case of a diagonal error covariance matrix. Secondly, we generalize

the homoskedastic state space model to include stochastic volatility in the measurement

equation (1).

Now, consider the following TVP-SVAR:

B0,tyt =X
∗
tβ

∗
t + εt, (10)

β∗
t = β

∗
t−1 + η

∗
t , (11)

where εt ∼ N (0,Σt) and η∗
t ∼ N (0, Ω̃) are independent of each other for all leads

and lags and B0,t is a lower unitriangular matrix—i.e., a lower triangular matrix with

unit diagonal elements.2 Since the model (10)–(11) is in the structural form, we may

assume that Σt is diagonal with diagonal elements σ2
i,t = exp(hi,t), where defining ht =

2The advantage of the structural specification in the context of the Tobit prior is that it allows us
to work with a single block of coefficients, which greatly simplifies computation. In the course of our
empirical application, we compared estimates obtained under the benchmark TVP-SVAR (i.e. without
time invariance selection) to those of a reduced form TVP-VAR as in Primiceri (2005). We find the
two specifications to give very similar results.
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(h1,t, . . . , hn,t)
′ the log-volatilities follow a random walk:

ht = ht−1 + η
h
t , ηh

t ∼ N (0,R). (12)

We assume the random walk is initialized with h0 ∼ N (0,V h
0) and the prior on the

transition covariance is R ∼ IW(ν0,R0).

Since B0,t is lower unitriangular, (10)-(11) can be rewritten as (1)–(2) by appropriately

rearranging X∗
t to include contemporaneous values yt, as well as β

∗
t to include the free

elements in B0,t. The error covariance matrix Ω̃ is now a full matrix. We decompose it

as follows:

Ω̃ = Ω
1

2ΦΦ′Ω
1

2 ,

where Ω
1

2 = diag(ω1, . . . , ωm) is the same as defined in Section 2.1 and Φ is lower

unitriangular.

This type of covariance decomposition was used by Chen and Dunson (2003) and Kinney

and Dunson (2007) for a similar purpose in a random-effects setting, and constitutes an

extension of the Cholesky decomposition. Note, however, that in order for the decompo-

sition to be unique, sign restrictions must be imposed on ω1, . . . , ωm (see, for example,

Seber, 1977). In their approach, Chen and Dunson (2003) and Kinney and Dunson

(2007) ensure this by specifying truncated (i.e. above zero) normal priors on ωj. How-

ever, they do not consider hierarchical shrinkage. In our setting, building a hierarchy

upon the truncated normal distribution would lead to computational difficulties since

the hyper-parameters would enter the truncated normal integrand, thereby eliminating

conjugacy.3 Fortunately, as pointed out in Section 2, the Tobit prior automatically re-

stricts ωj ≥ 0 while still allowing for a straightforward implementation of hierarchical

shrinkage through the hyper-parameters of ω∗
j .

Applying the above decomposition, (3)–(4) becomes

yt =X tα+X tΩ
1

2Φγt + εt, (13)

γt = γt−1 + η̃t, (14)

where εt ∼ N (0,Σt) and η̃t ∼ N (0, Im) are independent of each other for all leads

and lags. The estimation algorithm described in Section 3 can be easily modified to fit

the more general model in (13)–(14). For example, to draw from the full conditional

3One alternative in this respect may be to consider the non-linear, non-Gaussian state space algo-
rithm of Chan and Strachan (2012).
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distribution of ω, we only need to redefine Gt = X t diag(Φγt) and proceed as before.

Similarly, to sample γ from its full conditional distribution, we can simply redefine

W t =X tΩ
1

2Φ and everything else follows identically.

To sample the free elements in Φ from its full conditional distribution, first define the

matrix

F t =




0 0 · · · 0

γ ′
1,t 0 · · · 0

0 γ ′
[1,...,2],t

...
...

. . . 0

0 · · · 0 γ ′
[1,...,m−1],t




,

where γ [1,...,j],t denotes the row vector (γ1,t, . . . ,γj,t). Let

φ = (φ2,1, φ3,1, φ3,2, . . . , φm,1, . . . , φm,m−1)
′,

i.e., the vector obtained by squeezing the zeros and unit diagonal elements out of vec(Φ′).

Then, rewrite (13) as

yt =X tα+X tΩ
1

2γt +X tΩ
1

2F tφ+ εt. (15)

Since (15) is linear in φ, if we assume a normal prior for φ, sampling φ can be done

using standard linear regression results (see, e.g., Kroese and Chan, 2014, pp. 237-240).

However, it is important to observe that φ will typically be very high-dimensional. For

example, with n = 3, p = 3, φ contains 741 elements. Therefore, some form of shrinkage

or a tight prior specification will typically be necessary to estimate (13)-(14). In our

application of Section 5, and consistent with the main theme of this paper, we specify

a Lasso prior on the individual elements of φ. Finally, sampling the log-volatilities can

also be done using standard algorithms. We follow Primeri (2005) in extending the

algorithm of Kim, Shephard, and Chib (1998) to a multivariate setting.

5 Application

In this section we investigate the effects of a fiscal shock on output, taxes and government

spending. We estimate the impulse responses of these variables to a shock to government

spending. Perotti (2005) and Gaĺı, Vallés and López-Salido (2007) point out that models

based upon different theories — neoclassical, Keynesian or neo-Keynesian — can make
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conflicting predictions about the responses of macro variables to fiscal shocks. When the

empirical evidence is imprecise little can be learned about the support for alternative

theories and therefore the likely effects of fiscal policy. The results from this section

provide improved inference by producing more precise estimates of impulse responses

of output, government spending and receipts to a spending shock. We estimate a VAR

for the vector of US variables wt = (tt, gt, yt)
′, where tt is a measure of government

revenue, gt is government expenditures, and yt is output. All variables are in logs of real

per capita values. Government expenditure consists of government consumption and

investment while government revenue is less government transfers. Following Blanchard

and Perotti (2002), we use real per capita figures and deflate the variables using the

GDP deflator.

As all of these variables display strong trending behaviors, and any test for a unit root

will support this conclusion, the temptation is to model them in differences. However

differencing removes information on the relationships among the levels of the variables.

It is reasonable to conclude that government expenditure should not exceed GDP nor

be negative. We can say something more than this as, in the US at least, government

expenditure tends to remain fairly stable as a proportion of GDP. There is also reason to

believe that government expenditures cannot wander too far from government receipts

for too long. We therefore respecify the VAR into a VECM in which we impose station-

arity of the difference tt − gt and gt − yt. Imposing the first of these relations expresses

a prior belief in Ricardian equivalence. This seems to be a reasonable restriction as

evidence on these constraints suggests they are I (0) , although the exact form of the

process may have structural breaks (see discussion in, for example, Martin, 2009).

Setting zt = (tt − gt, gt − yt)
′ , and assuming three autoregressive lags, the VECM has

the form

∆wt = β0,t + β1,tzt−1 +

3∑

l=1

β1+l,t∆wt−l + εt, (16)

where β0,t is a 3×1 vector of intercepts, β1,t a 3×2 matrix of coefficients, and β2,t, . . . ,β4,t

are 3× 3 matrices of coefficients. In terms of the model in (1), we have

yt = ∆wt =



∆tt

∆gt

∆yt


 , xt =




1

zt−1

∆wt−1

...

∆wt−3




, βt = vec
(
(β0,t, · · · ,β4,t)

′
)
.
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Furthermore, following the discussion in Section 4, we allow (16) to have time-varying

volatility and the transition equation for βt has a full error covariance matrix Ω̃.

More precisely, recall that B0,t is lower unitriangluar and Σt = diag(eh1,t , . . . , ehn,t)

is diagonal, where h1,t, . . . , hn,t are the log-volatilities. Then, εt ∼ N (0,Q−1
t ), where

Qt = B′
0,tΣ

−1
t B0,t. We refer to this specification as the TVP-SVECM model. This

setup is further motivated by the well documented importance of allowing parameters

to vary over time when analyzing macroeconomic data (see for example the survey in

Koop and Korobilis, 2010). Indeed, Blanchard and Perotti (2002) allow for limited time-

variation in the transmission mechanism through various trending specifications along

with a quarterly dependence of the parameters. Nevertheless, while they acknowledge

that allowing for more general time variation would be appropriate, they conclude that

doing so “would have quickly exhausted all degrees of freedom.”

Accordingly, we utilize this framework to compare the inference obtained from the SMSS

specification proposed in this article to the benchmark TVP-SVECM. In particular, we

seek to ascertain whether the Tobit prior can provide the necessary degree of parsimony

such as to yield sufficiently precise inference when the parameter-rich TVP-SVECM fails

to do so, while allowing for certain parameters to vary over time with some (nonzero)

probability. To this end, we complete the SMSS specification of the VECM outlined

above by setting the following hyper-parameters on the priors discussed in Section 3:

a0 = 0, A0 = Im,

h0 = 0, V h
0 = In,

ν0 = n+ 11, R0 = 0.012(ν0 − n− 1)In,

λ01 = 0.1, λ02 = 0.1.

For comparison, we also consider a version of the SMSS specification where the error

covariance matrices in the transition equations for βt and ht are diagonal. In the latter

case, hi,0 ∼ N (0, 1) and the transition variance for the ith equation is distributed as

r2i ∼ IG

(
ν0 − n+ 1

2
,
R0,i,i

2

)
,

which corresponds to the marginal distribution for Ri,i implied by the inverse-wishart

prior.

To estimate the standard TVP-SVECM, we employ the algorithm given in Chan and

Jeliazkov (2009), with the priors chosen to match as closely as possible the SMSS prior
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specification above. That is, we set β0 ∼ N (0, Im), ω
2
h ∼ IG(n + 3, 0.01) and hi,0, r

2
i

as given above. Finally, our data essentially coincide with that used by Blanchard and

Perotti (2002) but are extended to cover the sample period 1958Q3 to 2011Q4.

5.1 Identification Restrictions

Eliciting impulse response functions necessitates the estimation of structural shocks.

Blanchard and Perotti (2002) provide the restrictions needed to identify the structural

shocks in the VAR framework. It turns out that under these restrictions, structural

parameters can be readily recovered from the reduced form covariance matrix. Conse-

quently, we follow this strategy in simulating the posterior of the VECM given in (16)

directly, then recovering draws of the necessary structural parameters by solving a sys-

tem of nonlinear equations for each draw. We briefly discuss the utilized approach in

this section, with the details provided in Appendix A.

Specifically, for a fixed time t, equations (2)-(4) in Blanchard and Perotti (2002) may

be represented as




1 0 −a1

0 1 −b1

−c1 −c2 1






εtt

εgt

εyt


 =




1 a2 0

b2 1 0

0 0 1






s1 0 0

0 s2 0

0 0 s3






utt

ugt

uyt


 , (17)

where ujt ∼ N (0, 1) for j = t, g, y and εt = (εtt, ε
g
t , ε

y
t )

′ ∼ N (0,Q−1
t ) is the reduced form

disturbance in (16). Given a draw of Qt (constructed from draws of B0,t and Σt), there-

fore, it is possible to recover draws of the parameters in (17) by solving an appropriate

system of equations. There are two key components in the identification strategy set

forth by Blanchard and Perotti (2002) that make solving this system relatively straight-

forward:

1. a1 and b1 are given;

2. either (i) a2 = 0, b2 6= 0, or (ii) a2 6= 0, b2 = 0.

Blanchard and Perotti (2002) set by assumption b1 = 0 and compute a value for a1 = 2.08

(as the average within-quarter elasticity of net taxes with respect to output). Because we

consider our data to be sufficiently similar, and since our central concern is to compare

the precision in inferences obtained from the SMSS and TVP-SVECM specifications,
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these values are retained for the purpose of the impulse response analysis reported below.

Alternatively, one could specify non-degenerate distributions over a1 and b1, to reflect

less dogmatic prior information. Combining samples of a1, b1 from such distributions

with posterior draws of the model parameters (in simulating impulse response functions)

would essentially lead to an exercise in averaging over prior beliefs.

5.2 Results

We implement the Gibbs sampler described in Sections 3 and 4 to obtain 25,000 posterior

draws (after a 2,500 burn-in) of the parameters in the VECM model (16). In doing so, we

re-scale and re-center the three “first-differenced” series (i.e., ∆wt) to match the naive

priors. The two integration relations in zt are left untouched. Accordingly, all impulse

response functions reported below are appropriately adjusted such as to reverse these

transformations and match the original series.4 Our implementation of the algorithm

also utilizes the three Generalized Gibbs steps (Liu and Sabatti, 2000) discussed in

Appendix B. The stability of the algorithm was verified by tracking the inefficiency

factors of all sampled variables and replicating the simulation run several times.

To demonstrate the effect of the Tobit prior in controlling the time variation of the

parameters, we report two types of posterior quantities: (i) the time-invariance proba-

bility (TIP), which represents the estimated probability that a particular βj,t is constant

— i.e., Pr(ωj,t = 0 |y) — and (ii) the maximum time variation (MTV) in posterior

means, which is computed as the difference max{E(βj,t |y)}Tt=1−min{E(βj,t |y)}Tt=1. As

illustrated in Table 1, estimated TIPs under the SMSS specification with a full error

covariance matrix Ω̃ (SMSS-full) vary from 0.003 (effect of tax on GDP) to 0.923 (ef-

fect of third lag in tax on GDP). Consequently, both the magnitude of and variation

in the probabilities of time invariance give strong support to this approach over the

highly parameterized TVP-SVECM. This is further reinforced by comparing the MTVs

reported in Table 2, across the two specifications. Note that these in general follow the

same pattern for both the SMSS-full and the TVP-SVECM in the sense that parameter

estimates that exhibit relatively more time variation under the TVP-SVECM also vary

relatively more under the SMSS-full. Nevertheless, the SMSS-full specification evidently

4A similar approach to “standardizing” the series is undertaken by BKK and affects only the prior
specification, as long as the transformations are appropriately accounted for in posterior computations.
Alternatively, one may work with the original series and employ a training sample to specify the priors
(for example, as in Primiceri, 2005), although this is operationally more involved. It is worthwhile
noting that we apply the same standardization in both the SMSS and the TVP-SVECM specifications.
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leads to an overall reduction in time variation across the parameters. It is also worth

noting that the two versions of the SMSS specification — with a full or a diagonal error

covariance matrix — give fairly similar results.

Table 1: Estimated Time-Invariance Probabilities under the two versions of the SMSS
Specification

SMSS-diag SMSS-full
Tax Spend GDP Tax Spend GDP

Intercept 0.808 0.363 0.851 0.828 0.493 0.841
tt−1 − gt−1 0.566 0.569 0.617 0.588 0.605 0.679
gt−1 − yt−1 0.830 0.412 0.815 0.802 0.366 0.864

C
on

te
m Tax - 0.787 0.000 - 0.794 0.003

Spend - - 0.854 - - 0.873
GDP - - - - - -

1s
t
la
g Tax 0.733 0.732 0.768 0.727 0.782 0.843

Spend 0.858 0.792 0.856 0.861 0.793 0.906
GDP 0.687 0.153 0.819 0.652 0.234 0.879

2n
d
la
g Tax 0.838 0.845 0.398 0.839 0.873 0.495

Spend 0.720 0.808 0.833 0.738 0.854 0.879
GDP 0.783 0.709 0.774 0.763 0.756 0.838

3r
d
la
g Tax 0.252 0.850 0.873 0.345 0.873 0.923

Spend 0.804 0.846 0.809 0.827 0.869 0.865
GDP 0.629 0.856 0.870 0.682 0.900 0.914

There is likewise a strong link between the time-invariance probabilities and maximum

time variations (e.g., under SMSS-full): as expected, higher TIPs generally correspond

to lower MTVs. More interestingly, higher TIPs appear to be associated with more

substantial reductions in MTVs. However, at the lower end of the TIPs, time variation

actually increases. For example, the TIP related to the effect of the co-integration term

gt−1 − yt−1 on spending is estimated at 0.366, and the variation in its posterior mean is

0.832, while under the TVP-SVECM the maximum variation is only about 0.494.

The above results suggest that the Tobit prior does not only produce the effect of

reducing “unnecessary” time variation, but it also reallocates time variation across the

model parameters by reducing such variation in some parameters, while increasing it

in others. As made evident in Tables 1 and 2, the SMSS specification (relative to the

standard TVP-SVECM) tends to remove time variation from a majority of the model

parameters and concentrate it on a select few. Indeed, this highlights the mechanism by

which the Tobit prior induces parsimony in a time-varying parameter model.

To further illustrate the effectiveness of the SMSS approach, we compute impulse re-
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Table 2: Comparison of Maximum Time Variation in Posterior Means under the SMSS
and the TVP-SVECM Specifications

SMSS-diag SMSS-full TVP-SVECM
Tax Spend GDP Tax Spend GDP Tax Spend GDP

Intercept 0.047 0.718 0.024 0.041 0.637 0.057 0.268 0.504 0.190
tt−1 − gt−1 0.278 0.186 0.191 0.291 0.228 0.236 0.339 0.150 0.109
gt−1 − yt−1 0.039 0.609 0.050 0.065 0.832 0.043 0.358 0.494 0.332

C
on

te
m Tax - 0.052 1.337 - 0.057 1.342 - 0.324 1.256

Spend - - 0.022 - - 0.025 - - 0.300
GDP - - - - - - - - -

1s
t
la
g Tax 0.075 0.085 0.052 0.093 0.092 0.042 0.450 0.309 0.449

Spend 0.014 0.058 0.013 0.019 0.074 0.012 0.298 0.274 0.220
GDP 0.118 0.714 0.040 0.166 0.659 0.030 0.513 0.555 0.290

2n
d
la
g Tax 0.025 0.020 0.286 0.032 0.020 0.280 0.233 0.207 0.499

Spend 0.081 0.036 0.026 0.096 0.033 0.020 0.416 0.286 0.288
GDP 0.066 0.090 0.043 0.094 0.100 0.037 0.365 0.361 0.304

3r
d
la
g Tax 0.396 0.019 0.014 0.364 0.023 0.009 0.566 0.274 0.312

Spend 0.035 0.027 0.039 0.045 0.034 0.035 0.256 0.253 0.204
GDP 0.165 0.012 0.012 0.155 0.010 0.011 0.779 0.273 0.370

sponses to spending shocks for taxes, spending and GDP, in the spirit of Blanchard

and Perotti (2002). In particular, we employ the identification restrictions discussed in

Section 5.1, along with the procedure outlined in Appendix A, to decompose the re-

duced form covariance matrix Q−1
t . We then use the the resulting posterior draws of

the structural parameters (together with draws of β) to compute the percent changes

in taxes, spending and GDP to a one percent increase in spending. Therefore, in con-

trast to Blanchard and Perotti (2002), the impulse responses are expressed in terms of

elasticities rather than absolute levels. Moreover, because we are working in a time-

varying parameter context, we choose a specific (within-sample) time period — 2001Q1

to 2005Q4 (5 years/20 quarters) — to conduct the analysis.

The resulting impulse response functions are summarized in Figure 1: the the HPD

intervals (shaded regions) are constructed as [16%, 84%] while the estimated impulse

responses (solid lines) are posterior medians. In the figure, the top two rows contain the

impulse responses generated by the SMSS-diag and the SMSS-full specifications, while

in the bottom row are those corresponding to the standard TVP-SVECM. It is clear that

that the TVP-SVECM generally yields wider HPD intervals relative to both versions

of the SMSS. This is particularly evident for taxes and GDP (where incidentally SMSS

tends to assign higher probabilities of time-invariance). On the other hand, the two
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versions of the SMSS give very similar impulse responses. The more accurate inference

delivered by the SMSS approach is important since, as pointed out by Perotti (2005),

the effects of fiscal policy have become weaker over time and so it is important to have

a method that can distinguish when the effect is different from zero.
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Figure 1: Comparison of IRFs generated by the SMSS with a diagonal transition covari-
ance, the SMSS with a full transition covariance and the benchmark TVP-SVECM for
20 quarters following a 1% Shock in Spending in 2000Q1

The TVP-SVECM yields somewhat peculiar (median) impulse responses for taxes and

GDP, in contrast to the SMSS. For example, the TVP-SVECM predicts that both taxes

and GDP responses are initially negative and require about three years to cross into

positive territory, where they remain in the long run. This is counter-intuitive and

appears to be an artifact of the imprecision with which the TVP-SVECM estimates

the impulse responses. The reported HPD intervals contain zero for all of this initial

period. Under the two SMSS specifications, on the other hand, the responses of taxes

and GDP are estimated to be positive for the entire period in examination — a much
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more plausible result and one consistent with the conclusions drawn in Blanchard and

Perotti (2002).

Another interesting feature of the results is the clear effect of imposing of Ricardian

equivalence in the responses. This feature is imposed upon the three models and the

long run effect is obviously present in all models, but both versions of the SMSS give

much nicer bounds. To highlight the comparison, Figure 2 plots the median responses for

taxes and spending (without the HPD limits), as generated by the SMSS and standard

TVP-SVECM specifications. Indeed, it seems that taxes are always chasing spending

with a delayed response, until spending stabilizes and they converge. This is very clear

in the SMSS, but noticeably more distorted with the TVP-SVECM, where taxes dip

into the negative over the first five years. Based on the TVP-SVECM results alone,

therefore, distinguishing this effect is made difficult by the imprecision of the estimates

related to the parameter proliferation present in this specification. In contrast, em-

ploying the Tobit prior leads to a much clearer representation and greatly facilitates

economic interpretation of the simulation results.
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Figure 2: Median Impulse Response of Taxes (dotted lines) and Spending (solid lines)
to a 1% Shock in Spending in 2000Q1

6 Concluding Remarks

Time-varying VARs are widely used for studying the dynamic effects of structural shocks

on key economic variables through the estimation of impulse response functions. How-

ever, since these models are highly parameterized, inference is typically imprecise and

conclusions are often difficult to draw. In this paper we present a new method that al-

lows the data to decide whether parameters are time varying or time invariant in a VAR,

thus allowing the model to automatically switch to a more parsimonious specification

when the time-variation of the coefficient is small. By introducing a Tobit prior on the

21



variances in the state equations, the task of computing the many indicators is greatly

simplified.

We apply the new methodology and the computation scheme to a brief study of responses

in US government receipts, government expenditure and GDP to a fiscal policy shock.

Compared to those results obtained under an unrestricted TVP-SVECM, we find some

differences in the median response paths but the most significant improvement is in

the precision of estimation of the responses. This is an important result since these

effects have become weaker over time (Perotti, 2005) so greater precision in estimation

is necessary for accurate inference.
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Appendix A: Recovering Structural Parameters from

the Precision Matrix

In terms of (17), for a fixed time t, define ψ = −

(
a1

b1

)
, γ = −

(
c1 c2

)
, ∆ =

(
1 a2

b2 1

)
,

Ξ
1

2 =

(
s1 0

0 s2

)
and rewrite the system as

(
I ψ

γ 1

)
εt =

(
∆

1

)(
Ξ

1

2

s3

)
ut, ut

iid
∼N (0, I3).

Hence,

εt ∼ N
(
0, (K ′K)

−1
)
,

where

K =

(
Ξ− 1

2

1
s3

)(
∆−1

1

)(
I ψ

γ 1

)
.

Given posterior draws of B0,t and Σt, therefore, posterior draws of the structural pa-

rameters and variances (e.g., the six free parameters in K) can be obtained by solving

K ′K = Qt ≡ B
′
0,tΣ

−1
t B0,t. More precisely, partitioning

Qt =

(
Q11 q12

q′12 q3

)
,

and denoting Θ = (∆Ξ∆′)
−1

leads to the system of nonlinear equations:

Θ+
1

s23
γ ′γ = Q11 (18)

Θψ +
1

s23
γ ′ = q12 (19)

ψ′Θψ +
1

s23
= q3 (20)

As discussed in the text, the following two conditions make this system easy to solve:

1. a1 and b1 are given (more specifically, b1 = 0), and therefore, ψ is known

2. either (i) a2 = 0, b2 6= 0, which implies that ∆ is lower triangular with 1’s on the
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diagonal, or (ii) a2 6= 0, b2 = 0, which implies that ∆ is upper triangular with 1’s

on the diagonal.

Given this, γ, ∆, Ξ
1

2 , and s3 can be solved for in three steps:

1. Solve for s3:

ψ′Θψ +
1

s23
ψ′γ ′γψ = ψ′Q11ψ

ψ′Θψ +
1

s23
ψ′γ ′ = ψ′q12

ψ′Θψ +
1

s23
= q3,

implies that

q3 −
1

s23
+

1

s23

[
s23 (ψ

′q12 − q3)− 1
]2

= ψ′Q11ψ,

and therefore,

s3 =

√
ψ′Q11ψ − 2ψ′q12 + q3

ψ′q12 − q3
. (21)

2. Solve for γ, given s3:

Substituting (18) into (19) leads to

γ ′γψ − γ ′ + s23 (q12 −Q11ψ) = 0. (22)

It can be readily verified that the solution to (22) is of the form

γ ′ =
1±

√
1− 4s23ψ

′ (q12 −Q11ψ)

2ψ′ (q12 −Q11ψ)
(q12 −Q11ψ) . (23)

3. Solve for s1, s2 and either a2 or b2, given s3, γ:

From (18), we have

∆Ξ∆′ =

(
Q11 −

1

s23
γ ′γ

)−1

. (24)

Therefore,

(a) a2 = 0, b2 6= 0: s1, s2, b2 are found by the LDL decomposition of the 2 × 2

matrix
(
Q11 −

1
s2
3

γ ′γ
)−1

.
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(b) a2 6= 0, b2 = 0: s1, s2, a2 are found by the UDL decomposition of the 2 × 2

matrix
(
Q11 −

1
s2
3

γ ′γ
)−1

.

Of course, one caveat here is that the ± in (23) generates two possible values for γ.

Indeed, there are two solutions to (22). However, only one of these solutions leads to a

correct decomposition of
(
Q11 −

1
s2
3

γ ′γ
)−1

in Step 3. To solve this problem, we write a

script that computes both solutions from (23) and checks which one leads to a correct

solution of the entire system.

Appendix B: MCMC Sampler

In this appendix we provide the details of the MCMC sampler outlined in Section 3.

First, we derive the expression for ψ̂j . Note that the joint conditional density for (ω∗
j , ωj)

is given by

p
(
ω∗
j , ωj |y,α,γ,ω

∗
\j ,Σ, τ , λ

)
∝ φ

(
v; gjωj , IT ⊗Σ

)
φ
(
ω∗
j ;µj, τ

2
j

)
1(ω∗

j ≤ 0)1(ωj = 0)

+ φ
(
v; gjωj, IT ⊗Σ

)
φ
(
ω∗
j ;µj, τ

2
j

)
1(ω∗

j > 0)1(ωj = ω∗
j ).

Hence, marginalizing over ωj yields

p
(
ω∗
j |y,α,γ,ω

∗
\j,Σ, τ , λ

)
∝ φ (vj; 0, IT ⊗Σ)φ

(
ω∗
j ;µj, τ

2
j

)
1(ω∗

j ≤ 0)

+ φ
(
vj; gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj, τ

2
j

)
1(ω∗

j > 0)

∝ Φ

(
−
µj

τj

)
φ (vj; 0, IT ⊗Σ)φ(−∞,0)

(
ω∗
j ;µj, τ

2
j

)

+ Φ

(
µ̂j

τ̂j

)
φ
(
vj ; gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj, τ

2
j

)

φ
(
ω∗
j ; µ̂j, τ̂ 2j

) φ(0,∞)

(
ω∗
j ; µ̂j, τ̂

2
j

)

∝ φ(−∞,0)

(
ω∗
j ;µj, τ

2
j

)
+ ψ̂jφ(0,∞)

(
ω∗
j ; µ̂j, τ̂

2
j

)
,

where

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)
×
φ
(
vj ; gjω

∗
j , IT ⊗Σ

)
φ
(
ω∗
j ;µj, τ

2
j

)

φ (vj; 0, IT ⊗Σ)φ
(
ω∗
j ; µ̂j, τ̂ 2j

)

=
Φ(µ̂j/τ̂j)

Φ (−µj/τj)
×
τ̂j
τj

× exp

{
−
1

2

((
vj − gjω

∗
j

)′ (
IT ⊗Σ−1

) (
vj − gjω

∗
j

)

−v′
j

(
IT ⊗Σ−1

)
vj +

1

τ 2j

(
ω∗
j − µj

)2
−

1

τ̂ 2j

(
ω∗
j − µ̂j

)2
)}

.

(25)
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However, since

µ̂j

τ̂ 2j
−
µj

τ 2j
= g′j

(
IT ⊗Σ−1

)
vj

1

τ̂ 2j
−

1

τ 2j
= g′j

(
IT ⊗Σ−1

)
gj ,

(25) simplifies to

ψ̂j =
Φ(µ̂j/τ̂j)

Φ (−µj/τj)

τ̂j
τj

exp

{
1

2

(
µ̂2
j

τ̂ 2j
−
µ2
j

τ 2j

)}
.

Next, we provide the details of Steps 1-3 in the MCMC sampler. For Step 1, sample

(α |y,γ,ω∗,Σ, τ , λ) ∼ N
(
α̂, Â

−1
)
,

where

Â = A0 +X
′(IT ⊗Σ−1)X, α̂ = Â

−1 (
A0α0 +X

′(IT ⊗Σ−1)(y −Wγ)
)
,

and W is obtained by defining W t =XΩ
1

2 and stacking

W =




W 1

...

W T


 .

For Step 2, we first define

H =




Im

−Im Im
. . .

. . .

−Im Im



.

Then, sample

(γ |y,α,ω∗,Σ, τ , λ) ∼ N
(
γ̂, Γ̂

−1
)

using the precision-based sampler in Chan and Jeliazkov (2009), where

Γ̂ =H ′H +W ′(IT ⊗Σ−1)W , γ̂ = Γ̂
−1
W ′(IT ⊗Σ−1)(y −Xα).
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Finally, for a model with a time-invariant Σ, obtain

(Σ |y,α,γ,ω∗, τ , λ) ∼ IW
(
ν0 + T, Σ̂

)
,

where

Σ̂ = Σ0 +
T∑

t=1

(
yt −X t

(
α+Ω

1

2γt

))(
yt −X t

(
α+Ω

1

2γt

))′
.

In specifications with a time-varying Σt, this step is replaced by a routine stochastic

volatility draw, e.g., Primiceri (2005). For the remaining parameters, recall that the

details related to the conditional sampling of ω∗, τ , and λ (Steps 4-6) are provided in

Section 3.

A few remarks regarding this algorithm are in order. First, one may readily observe that

α and γ have an analytically tractable joint distribution of the form

(α,γ |y,ω∗,Σ, τ , λ) ∼ N
(
δ̂, ∆̂

−1
)
, (26)

where

∆̂ =

(
A0

H ′H

)
+

(
X ′

W ′

)
(
IT ⊗Σ−1

) (
X W

)

δ̂ = ∆̂
−1

((
A0a0

0

)
+

(
X ′

W ′

)
(
IT ⊗Σ−1

)
y

)
.

However, the mT ×mT matrix ∆̂ presents a number of computational difficulties. In

particular, while ∆̂ is indeed a sparse matrix, it does not inherit a very convenient spar-

sity structure; operations such as inversion and Cholesky decomposition (both crucial to

sampling from (26)) are computationally intensive, and in fact, quite inhibitive in large

dimensional settings.

On the other hand, sampling α and β sequentially — i.e., drawing (α |γ, · ) followed

by (γ |α, · ) — does not appear to generate significant autocorrelation in the MCMC

chain, to the extent that it would justify the additional computational burden necessary

to sample α and β in a single block. In fact, a battery of tests applied under various

settings and with various data consistently found that the computation time required

to achieve the same level of efficiency was much lower under the sequential sampling

scheme, in comparison to the blocking approach.
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Moreover, the efficiency of the proposed algorithm may be improved by augmenting

the six steps outlined in Section 3 with one or more Generalized Gibbs (GG) steps,

as proposed in Liu and Sabatti (2000). The basic idea of such an augmentation is

to transform the draws obtained by recursive, conditional sampling within a typical

Gibbs loop in such a way as to preserve the invariant target distribution of the Markov

chain. Because the transformation involves additional randomly sampled quantities, this

has the potential to introduce randomness into otherwise highly autocorrelated MCMC

chains, and hence, boost sampling efficiency.

To this end, we identify three potentially beneficial GG moves in our context. We present

these transformations assuming that µj = 0 — an assumption maintained in all practical

implementations of the algorithm outlined in Section 3. Generalizing to cases with non-

zero µj is conceptually straightforward, but requires more involved sampling procedures,

as subsequently discussed. In particular, assuming for the moment a diagonal error

covariance in the state equation, a combination of one or more of the following GG steps

have been found to improve the mixing of the MCMC chain generated by the proposed

Gibbs algorithm:

1. Given the current draws of γ, τ 2, λ2, sample for each j = 1, . . . , m

(ϑj |γj , τ
2
j , λ

2) ∼ GIG

(
T − 3

2
, τ 2j λ

2,γ ′
jH̃

′
H̃γj

)
, (27)

and apply the transformations

τ
2(new)
j = τ 2j /ϑj

ω
∗(new)
j = ω∗/

√
ϑj , ω

(new)
j = ω

∗(new)
j 1

(
ω
∗(new)
j > 0

)

γ
(new)
j = γj

√
ϑj ,

where γj is a T×1 vector of the elements in γ that correspond to the jth covariate,

and

H̃ =




1

−1 1
. . .

. . .

−1 1



.

Likewise, GIG( · ) denotes the Generalized Inverse Gamma distribution and may

be efficiently sampled from using the rejection method of Dagpunar (1989).
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2. Given the current draws of ω∗, τ 2
2, λ

2, sample

(ϑ |ω∗, τ 2
2, λ

2) ∼ G

(
λ01 +

m

2
, λ02λ

2 +
1

2

m∑

j=1

ω∗2
j

τ 2j

)
, (28)

and apply the transformations

λ2(new) = λ2ϑ, τ 2(new) = τ 2/ϑ.

3. Given the current draws of α,γ1,ω, and defining

Θ̂ = InT +Ω
1

2A0Ω
1

2 , ϑ̂ = Θ̂
−1
(
γ1 −Ω

1

2A0(α−α0)
)
,

where γ1 a m× 1 vector of the elements in γ that correspond to the period t = 1,

sample

(ϑ |α,γ1,ω) ∼ N
(
ϑ̂,Θ−1

)
,

and apply the transformations

α(new) = α+ ω ⊙ ϑ, γ(new) = γ − ϑ,

where ⊙ represents element-by-element multiplication.

It is worthwhile to note that transformations 1 and 2 incorporate a straightforward

extension of the scale group explicitly discussed in Liu and Sabatti (2000). The third

GG move presented above is based on an extension of the translation group, and in fact,

is nearly identical to the transformation applied in the context of state-space models in

example 4.1 of Liu and Sabatti (2000). Therefore, their Theorem 1 guarantees that the

target posterior is preserved under all three types of moves, given that µj = 0 holds.

To that end, GG move 1 can be similarly implemented in the case that µj 6= 0, but the

distributions (27) from which the scales {ϑj} are sampled would no longer be valid; the

resulting distributions that ensure the invariance of the target posterior (with µj 6= 0)

are of nonstandard from, and hence, would require alternative implementations of the

sampling algorithms. Moves 2 and 3, however, are not materially affected by the µj = 0

assumption (one would only require replacing ω∗
j with ω∗

j − µj in (28)).

In our experience, implementing all three moves into the Gibbs sampler of section 3,

and to the extension with stochastic volatility but a diagonal error covariance in the
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state equation, tends to increase execution time by approximately 10%. In exchange,

we have observed a reduction in inefficiency factors — in particularly favorable cases —

of up to 15 times. In other scenarios, however, the improvement in sampling efficiency

is much less pronounced. Therefore, the decision regarding whether or not to include

the GG moves into the sampler generally relies on trial and error. In the application of

section 5, we incorporate all three moves outlined above; doing so leads to reductions in

inefficiency factors of up to four times (depending on the variable) and noticeably more

stable posterior estimates (given the same number of retained and discarded simulation

draws).

It is important to point out, however, that Move 1 does not apply to the most general

model with a full Ω̃, and the presence of Φ as a result of the decomposition described

in Section 4 precludes a straightforward GG step in this case (nevertheless, GG Moves

2 and 3 above remain valid). As an alternative, Kinney and Dunson (2007) propose a

parameter expansion scheme by letting η̃j,t ∼ N (0, ζj) and introducing an additional step

to sample ζj conditional on other parameters. In our application, however, this does not

appear to improve mixing. The reason for this is likely related to the discussion in Wu

and Liu (1999) (see Remark 3 on p. 1268 regarding the conditional PX-DA algorithm)

and the fact that ωj is modeled with a hierarchical prior. More importantly, the Gibbs

sampler with Lasso priors on φ exhibits satisfactory mixing properties without parameter

expansion, and therefore, we do not pursue this issue further.

As a final remark, we emphasize that a certain amount of care should be taken in

handling the large matrices W (nT × mT ) and G (nT ×m) (and for the full Ω̃ case,

the mT × m(m − 1)/2 matrix F = (F ′
1, . . . ,F

′
T )

′). In particular, it should be noted

that it is unnecessary — and impractical — to reconstruct these matrices entirely at

each iteration of the Gibbs sampler. Rather, observing that both matrices are primarily

sparse in nature, a reasonable algorithm would proceed by pre-allocating space prior to

the commencement of the Gibbs loop and only updating the necessary elements in the

course of execution.

In model (3)-(4), for example, a prototype W can be preconstructed (say, by letting

W = InT ⊗ ι′m, where ιm denotes a m × 1 vector of ones), with the indices of the mT

nonzero elements stored in wnz. Then, at each iteration, it is only required to update

the nonzero elements as

W (wnz) = vec
(
X ⊙

(
ω · · · ω

))
, (29)
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where it is assumed thatW (wnz) represents the mT × 1 vector of the nonzero elements

in W (e.g. this notation is consistent with the syntax of a variety of popular scripting

software, such as Matlab).

A similar approach provides an efficient procedure for handling G as well, except in this

case it is operationally easier to work directly with its transpose G′. Accordingly, one

may initialize the sampler by setting G′ = X ′. Storing the indices of the mT nonzero

elements in g′nz, these elements are updated at each iteration as

G′(g′nz) = vec(X)⊙ γ. (30)
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G. Koop. Forecasting with medium and large Bayesian VARs. Journal of Applied
Econometrics, 28(2):177–203, 2013.

G. Koop and D. Korobilis. Bayesian multivariate time series methods for empirical
macroeconomics. Foundations and Trends in Econometrics, 3(4): 267–358, 2010.

G. Koop and D. Korobilis. Large time-varying parameter VARs. Journal of Economet-
rics, 2013. DOI: 10.1016/j.jeconom.

G. Koop and S. M. Potter. Time varying VARs with inequality restrictions. Journal of
Economic Dynamics and Control, 35:1126–1138, 2011.

G. Koop, R. Leon-Gonzalez, and R.W. Strachan. On the evolution of the monetary
policy transmission mechanism. Journal of Economic Dynamics and Control, 33(4):997–
1017, 2011.

D. Korobilis. VAR forecasting using Bayesian variable selection. Journal of Applied
Econometrics, 2011. DOI: 10.1002/jae.1271.

D. P. Kroese and J. C. C. Chan. Statistical Modeling and Computation, Springer, New
York, 2014.

J. S. Liu and C. Sabatti. Generalised Gibbs sampler and multigrid Monte Carlo for
Bayesian computation. Biometrika, 87(2):353–369, 2000.

32



J. S. Liu and Y. N. Wu. Parameter expansion for data augmentation. Journal of the
American Statistical Association, 94(448): 1264–1274, 1999.

J. Nakajima and M. West. Bayesian analysis of latent threshold dynamic models. Jour-
nal of Business and Economic Statistics, 31(2):151-164, 2013.

R. Perotti. Estimating the effects of fiscal policy in OECD countries. Proceedings,
Federal Reserve Bank of San Francisco, 2005.

G. E. Primiceri. Time varying structural vector autoregressions and monetary policy.
Review of Economic Studies, 72(3):821–852, 2005.

G. A. F. Seber. Linear regression analysis. New York: Wiley, 1977.

33


	23_Eisenstat_Chan_Strachan Coversheet.pdf
	CAMA
	Centre for Applied Macroeconomic Analysis


