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ture seems valid. In this paper we develop solutions for linearised models with
structural changes under a variety of assumptions regarding agents’ beliefs about
those structural changes. We put the solutions in state space form and use the
Kalman filter to construct the likelihood function. We apply the techniques to
three examples: an inflationary program, a disinflation program and a transitory
slowdown in trend growth.
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1 Introduction

Standard solution methods for linear rational expectations models, like Anderson [1997],
Blanchard and Kahn [1980], Binder and Pesaran [1995], King and Watson [1998], Klein
[2000], Sims [2001] and Uhlig [1997], deal with the case where the parameters of the struc-
tural model are constant. These methods are at the heart of likelihood-based estimation
of such models. In practice, the magnitude of changes in the properties of observable
variables is used to help define sub-samples for which a time-invariant structure seems
valid, and estimation is then done with these sub-samples.1 The analysis of Lubik and
Schorfheide [2004], for instance, is based on the assumption that the target inflation
rate in the United States – like other structural parameters – stayed constant in the
pre-Volcker years, but then possibly shifted in the early 1980s, based on the estimates of
steady-state inflation in each of the sub-samples.

Findings of structural instabilities seem to apply to many models of macroeconomic
aggregates. While we cannot do justice to the complete literature, one can point to
the work of Clarida et al. [2000] who find a significant difference in the way monetary
policy was conducted pre- and post-late 1979 in the United States; Ireland [2001] who
detects shifts in the discount factor; Inoue and Rossi [2011] who show that the Great
Moderation was due to both changes in shock volatilities and policy and private sector
parameters; Stock and Watson [2007] who provide evidence of changes in the variance of
shocks to trend inflation; to Liu et al. [2011] who, using a Markov-switching approach,
find evidence in favor of a model with two regimes in shock variances; and to Bianchi
who shows that the monetary and fiscal regime has evolved over time.

Our objective here is to develop solutions for linear stochastic models with model con-
sistent expectations in the presence of structural changes that are possibly foreseen. The
solution extends one recently proposed by Cagliarini and Kulish [2013] in two important
ways: 1) it provides an econometric representation, namely a state space form, to which
the Kalman filter can be applied to construct the likelihood function of the data; and 2)
it allows a difference between beliefs and reality to exist for a period of time before, after
or during a sequence of structural changes. This extension allows us to capture situations
of imperfect credibility in which policy announcements may be carried out as announced,
but are not necessarily incorporated into expectations formation. As we show below, in
every case, the reduced-form solution takes the form of a time-varying coefficients VAR
to which the Kalman filter can be applied. The drifts of the time-varying coefficients
are functions of the underlying structural changes and of beliefs about the structure’s
evolution.

In the basic case we assume that expectations are formed in such a way as to be
consistent with whatever structure (model) holds at each point in the sample. This
is analyzed in Section 3 by looking at cases where the structural changes are either
unknown in advance or where there is some foresight about them. In this scenario a
second structure (model) will hold at some given future date and, because agents know
what that date is, they factor it into the formation of their expectations before the actual

1An interesting exception is Cúrdia and Finocchiaro [2005] who estimate a model for Sweden with a
monetary regime change. Their estimation, however, truncates the transition between regimes.
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date at which the change occurs. Examples of this latter situation could be a change
in inflation targets or an announcement about the introduction of a tax. Section 3 also
deals with the situation where beliefs about the structural change can be different from
the truth (reality). Thus, if one thinks of a single structural change in the sample,
expectations may be based on the first period model for some time into the second
period. Of course, eventually it seems reasonable (though not necessary) to think that
beliefs must centre upon the second period model. We specify when beliefs agree with this
second model and mostly abstract from describing exactly how these beliefs arise in order
to study the way in which structural change would affect the formation of expectations
and the solutions of macroeconomic models. The implications of many macroeconomic
models are initially studied under a given set of parameters and then questions of how
one would learn about these parameter values is introduced at a later point, and we follow
that tradition here. The argument for proceeding in two stages here is even more marked
than in the standard context where there is a single model and one has to discover its
parameters. One needs to determine when there are shifts in the model parameters and
what the magnitude of the shifts are. There is no one way of doing this and so it is
best left for another study. Nevertheless, we make some comments about the issue in the
conclusion.

The particular case in which the structure evolves and agents’ beliefs are fully aligned
with reality coincides with the problem posed by Cagliarini and Kulish [2013]. The
generalization of this paper involves allowing a difference between beliefs and reality to
exist for a period of time before, after or during a sequence of structural changes. This
generalization is useful for at least two reasons. Firstly, it is capable of capturing the
consequences of structural changes that may go temporarily unnoticed as, for example,
happened during the US productivity slowdown of the early 1970s. Secondly, it may
be used to capture the impact of policy announcements which are less than perfectly
credible.

Recently, Davig and Leeper [2007], Farmer et al. [2009] and Farmer et al. [2011]
have extended the rational expectations solution by allowing some parameters to follow
Markov-switching processes with given transition probabilities. The method we develop
in this paper is a useful tool for studying situations that cannot be easily captured
by Markov-switching models, such as the transition to an absorbing state at a non-
random time. Our method can be thought to combine the long tradition of perfect-
foresight analysis with the standard stochastic rational expectations approach. The kind
of structural changes that are well-suited to our solution are typically best thought of as
permanent and not as recurrent events, for which the Markov-switching approach may be
more appropriate. So even though our solution and the Markov-switching solution deal
with changes in the structural parameters, the two solutions have distinct implications
and each may be valid to study different circumstances. From the perspective of a policy
maker that wishes to announce and later implement a given policy, our solution yields
useful insights.

Many of the issues we address have long been recognize in the literature. In fact,
more than half a century ago Marschak [1953] noticed that, in the case of an anticipated
structural change, the purely empirical projections of observed past regularities into
the future would not be a reliable guide for decision making, unless past observations
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were supplemented by some knowledge of the way the structure was expected to change.
Since then the technical apparatus has changed a great deal, but these insights are just as
powerful today. In the context of estimating and solving dynamic stochastic models with
expectations, some knowledge of the structural changes that might have taken place in-
sample allows us to increase the number of observations that are usable in estimation, and
therefore has the potential for improving the quality of the estimation. But regardless
of what may be the situation in a particular application, this paper provides easy-to-
implement tools to accomplish maximum likelihood estimation of dynamic stochastic
economies with structural changes under a variety of assumptions regarding expectations
formation.

The paper is organized as follows. The next section reviews the Binder and Pe-
saran [1997] solution procedure for models with forward-looking expectations, which is
essentially an implementation of the method of undetermined coefficients. As mentioned
previously Section 3 then extends the solution to situations of structural change and de-
rives the likelihood for the implied model. Section 4 introduces three examples. The first,
looks at impulse responses in the case of a policy that increases the inflation target. The
second investigates estimation in the context of an anticipated credible disinflation pro-
gram, while the third looks at estimation in the event of a temporary fall in trend growth
happening alongside a looser monetary policy. Section 5 concludes and the Appendix
provides details of the construction of the likelihood with the Kalman filter.

2 Solution of Models with Forward-Looking Expec-

tations and No Structural Changes

Our solution method is a variant of Binder and Pesaran [1997]. Following that paper, a
linear rational expectations model of n equations can be written as

A0yt = C0 + A1yt−1 +B0IEtyt+1 +D0εt, (1)

where yt is a n×1 vector of state and jump variables and εt is a l×1 vector of exogenous
variables. With no loss of generality we take the latter to be white noise and to have
Il as their covariance matrix. All matrices in Equation (1) conform to the specified
dimensions.2 The formulation can be generalised as in Binder and Pesaran [1997] to
allow additional lags of yt as well as conditional expectations at different horizons and
from earlier dates.

2We may need to make a distinction between the original shocks of a dynamic stochastic model, et,
and the shocks εt in Equation (1). Often et are taken to be serially correlated. This can be captured
by writting such a system in the form of Equation (1) with lagged values of the endogenous variables
included in yt. This means that εt are the innovations to the shock processes et. There may be a numerical
advantage to working with et rather than εt, as that reduces the dimension of yt and, consequently, all
the matrices involved in finding a solution. But there are conceptual advantages in using the system we
work with. Our MATLAB function that computes the Binder Pesaran solution, ‘smatsbp.m’, does allow
us to work with an et that is described by a VAR process.
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If it exists and is unique, the solution to Equation (1) will be a VAR of the form

yt = C +Qyt−1 +Gεt. (2)

Given that this is the solution and IEtεt+1 = 0 we must have IEtyt+1 = C + Qyt.
Substituting this into Equation (1) and re-arranging terms produces

yt = (A0 − B0Q)−1(C0 +B0C + A1yt−1 +D0εt). (3)

Now (A0 − B0Q)−1 = (I − A−1
0 B0Q)−1A−1

0 and defining Γ ≡ A−1
0 C0, A ≡ A−1

0 A1, B ≡
A−1

0 B0 and D ≡ A−1
0 D0, Equation (3) becomes

yt = (I − BQ)−1(Γ + BC + Ayt−1 +Dεt).

Using the same logic as in the method of undetermined coefficients this must equal
Equation (2), establishing the equivalences

(I − BQ)−1(Γ + BC) = C, (4)

(I − BQ)−1A = Q, (5)

(I − BQ)−1D = G. (6)

Equation (5) implies that
A−Q+BQ2 = 0,

and so determines Q. Equation (4) implies that

C = [(I − (I − BQ)−1B]−1(I − BQ)−1Γ = (I − F )−1Λ,

where Λ = (I − BQ)−1Γ, F = (I − BQ)−1 B. Thus, once Q is found it is possible to
derive C and G, providing the solution to the model.

3 Solutions with Structural Changes

Before we discuss solutions to the different cases, it is useful to introduce some notation.
First, there is a sample of data running as t = 1, 2, ..., T . Second, we allow for a number
of structural changes over the sample period. Hence we begin by assuming that the first
structural change is at Tm and the last is at T ∗

m. Accordingly, the initial model is replaced
by a new one at Tm, following which there may be a sequence of models until T ∗

m, when a
final model is in place. After T ∗

m no further structural changes are assumed to take place
(and we will say that the structure has converged). Notice that, given these definitions,
if there is just a single structural change then it begins at Tm = T ∗

m, since the model after
the initial one is the final model.

Figure 1 illustrates one possibility. The arrows describe the evolution of the structure.
The sequence of structural changes begins in Tm and ends in T ∗

m. In Figure 1, just as
in our later examples, Tm and T ∗

m take place in-sample, although nothing about our
solutions requires this to be the case. Further, in practice, one might also have many
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Figure 1: Timing of Structural Changes
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structural changes in the model parameters (and these could possibly overlap); it suffices
to establish the solutions with a single sequence of structural changes.

A formal account of the description above follows. Formally it is being assumed that
before Tm the structure is stable at Equation (1). Then, during t = Tm, ..., T

∗
m − 1 the

structure evolves as

A0,tyt = C0,t + A1,tyt−1 +B0,tIEtyt+1 +D0,tεt, (7)

subsequently changing over during t = T ∗
m, ..., T to

A∗
0yt = C∗

0 + A∗
1yt−1 +B∗

0IEtyt+1 +D∗
0εt. (8)

Thereafter, there are no further structural changes and Equation (8) holds into the infinite
future.

To be concrete suppose there are two structural changes in the sample. In the first
interval (1 to Tm − 1) there is a model whose coefficients are θ = {A0, C0, A1, B0, D0}. In
the second interval (Tm to T ∗

m − 1) these change to θ̄ = {Ā0, C̄0, Ā1, B̄0, D̄0} and, in the
final interval (T ∗

m to T ), to θ∗ = {A∗
0, C

∗
0 , A

∗
1, B

∗
0 , D

∗
0}. The notation in Equation (7) allows

the parameters A0,t etc to vary according to the time period but in the two structural
change case A0,t = Ā0 etc from Tm to T ∗

m − 1 and, after that, the structure converges
to A∗

0, etc. In general, when a sequence of structural changes takes place in-sample, the
structural matrices are given by

{{A0, C0, A1, B0, D0}Tm−1
t=1 , {A0,t, C0,t, A1,t, B0,t, D0,t}T

∗
m−1

t=Tm
, {A∗

0, C
∗
0 , A

∗
1, B

∗
0 , D

∗
0}Tt=T ∗

m
}.

In the first numerical example of Section 4 we will consider a single structural change as
opposed to a sequence of them, and so we will often refer to the interval t = 1, ..., T ∗

m−1 as
the ‘first interval’ and t = T ∗

m, ... as the ‘second interval’. The second of our illustrations
in Section 4 refers to two structural changes.
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3.1 Regime Shifts with Beliefs Matching Reality

As seen in the solution method for models without structural change, a key element is
to replace the forward expectations with a function that is consistent with the existing
model and the information agents possess. Thus we need to specify how expectations
are to be formed at a point in time and what information is available to agents at that
point. We consider two cases. In the first case we take agents’ beliefs about the prevailing
structure to be accurate (i.e. beliefs match reality). The sequence of structural changes
given by Equations (7) and (8) are taken to be known once they occur. In the second
case it is assumed that the sequence of structural changes given by Equations (7) and (8)
is foreseen from Tm. In particular, from period Tm onwards agents know when all future
structural changes occur i.e. at the time of the first structural change they know exactly
when future changes will take place.3

3.1.1 Structural Changes Known Once They Occur

To begin, take the simple case of a single structural change. Up until Tm − 1 = T ∗
m − 1

agents will assume that the first interval model with coefficients θ = {A0, B0,...} is going
to continue indefinitely. Hence the solution is just that for the no structural change case
i.e. yt = C+Qyt−1+Dεt. From T ∗

m onwards agents form expectations with the final model
that has coefficients θ∗ = {A∗

0, B
∗
0 , ...} and so the solution will be yt = C∗+Q∗yt−1+D∗εt.

So one simply uses the model that holds at any point t to compute the solution for yt.
Clearly, the solution generalises to any number of structural changes.

3.1.2 Foreseen Structural Changes

Now consider what happens if, after the first structural change, agents know when all
future changes will take place. In this situation expectations need to be formed which
recognise that agents know that different model(s) will hold at some point in the future.
In general, from Tm onwards the solution for yt at any point in time will be a time varying
VAR of the form

yt = Ct +Qtyt−1 +Gtεt. (9)

Because the information about future structures (models) is taken to be certain and
non-stochastic, it follows that IEtyt+1 = Ct+1+Qt+1yt. Then, following the earlier solution
method, we would get the equivalent conditions to Equations (4) to (6) as

(I − BtQt+1)
−1(Γt +BtCt+1) = Ct (10)

(I − BtQt+1)
−1At = Qt (11)

(I − BtQt+1)
−1Dt = Gt, (12)

where, as before, Γt ≡ A−1
0,tC0,t, At ≡ A−1

0,tA1,t , Bt ≡ A−1
0,tB0,t and Dt ≡ A−1

0,tD0,t. There
are two key differences. One is the second condition, which now becomes

3It will be obvious from the solution method that we can handle situations where only some of the
future structural changes are known at Tm.
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At −Qt +BtQt+1Qt = 0, (13)

so that to solve for Qt we need to use a backward recursion. To do so, we start from the
solution of the final structure QT ∗

m
= Q∗, and choose the sequence {Qt}T

∗
m−1

t=Tm
that satisfies

Equation (13). The second difference is the first condition which can now be written as

Λt + FtCt+1 = Ct

where Λt = (I − BtQt+1)
−1 Γt and Ft = (I − BtQt+1)

−1 Bt . WithQt in hand it is possible
to solve for Ct through a forward recursion, giving Ct = Λt + FtΛt+1 + FtFt+1Λt+2 +
. . .Consequently our algorithm involves both a backward and forward step.

To illustrate, consider the case of two structural changes. From Tm onwards agents
know about any future structural changes. Starting with the final interval T ∗

m, ..., T ,
since the final model is in place from T ∗

m onwards one can apply the no structural change
solution method to get a VAR structure yt = C∗ + Q∗yt−1 + G∗εt. Accordingly, this
applies to the last interval and enables us to determine that QT ∗

m
= Q∗. At t = T ∗

m − 1
the second interval model with coefficients θ̄ is in place, but agents know that the final
model holds at T ∗

m onwards, so they account for this when forming expectations. Hence
one solves for QT ∗

m−1 using the backward recursion in Equation (13) but with At = Ā
etc. Before Tm the data are generated by the initial model with coefficients θ, that is by
the first interval VAR structure yt = C +Qyt−1 +Gεt.

Hence in the interval, t = Tm, . . . , T
∗
m − 1, the solution is a time-varying coefficient

VAR with the movements in its coefficients being pinned down by the way the structure
changes and is expected to change. Notice that the backward recursion implied by
Equation (13) makes Qt a function of Qt+1. This means that the weights use to form
expectations at time t are a function of current and future structures (models).

3.1.3 Announcement Effects

Announcement effects, such as happens with the introduction of a Goods and Services
Tax (GST), the formation of a common currency, etc, can be captured in the setup
above. In this instance the origin of beliefs is clear - it is the announcement of a change
in the parameters. The only question arising is when agents learn about the change.
If there is a single regime shift which is known in advance of when it occurs then the
initial model would hold for t = 1, ..., T ∗

m − 1 and the final model from t = T ∗
m, ..., T .

The date of the break, T ∗
m, is the time when the final model is in place. However agents

may only learn about the forthcoming change at, say, Ta. As before, we would choose
the sequence {Qt}T

∗
m−1

t=Ta
starting from QT ∗

m
= Q∗ such that A − Qt + BQt+1Qt = 0.

Although for t = Ta, . . . , T
∗
m−1, the structure remains constant (i.e A0,t = A0, C0,t = C0,

etc), the announcement itself triggers a drift in the reduced form. In fact, between the
announcement date, Ta, and the implementation date, Tm = T ∗

m, the reduced form drifts
from the first interval VAR structure yt = C + Qyt−1 + Gεt towards the final interval
VAR structure, yt = C∗ +Q∗yt−1 +G∗εt.
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3.2 Regime Shifts where Beliefs are Different from Reality

In the analysis above beliefs agree with reality. When the structural changes are unknown
until they occur, expectations are formed at each point in time using the model that
pertains to that period of time. When agents foresee the structural changes, and the
structural changes do take place, they know both the new and old models and therefore
form expectations by weighting the information appropriately at each point in time. In
this section we deal with the more general case in which this may not always be true. In
doing so we assume agents do eventually use the correct model but there may be a period
of time in which they are mistaken about which structure (model) holds. Hence, during
that interval, they may form incorrect expectations: expectations are model consistent,
but consistency may be with the wrong model for part of the sample period.

We introduce notation for the timing of beliefs. We denote by Tb the time when
agents update their beliefs about current and future structures and by T ∗

b the time when
beliefs agree with the final structure. We impose no restrictions between Tm and T ∗

m on
the one hand and Tb and T ∗

b on the other, so that beliefs may converge before or after
the structure has converged, and they may be updated before or after the first structural
change.

Figure 2: Timing of Structural Changes and Beliefs
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One possibility is illustrated in Figure 2. The lower arrows describe, as before, the
evolution of the structure while the upper arrows now describe the evolution of beliefs.
The sequence of structural changes begins in Tm and ends in T ∗

m, with beliefs being based
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on the wrong structure (model) for some time. Beliefs are first updated in period Tb,
after the structural changes begin, and converge in period T ∗

b , after the structure has
converged.

This generalisation allows us to consider situations in which agents do not get the
timing of the structural changes right, as well as capturing situations of imperfect cred-
ibility in which policy announcements may be carried out as announced, but are not
necessarily fully incorporated into expectations formation.

We assume the structure evolves as before: that is, before Tm the structure is stable
at Equation (1). Then, during t = Tm, ..., T

∗
m − 1, the structure evolves as in Equation

(7), subsequently changing for t ≥ T ∗
m to Equation (8). Agents’ beliefs, however, may

evolve differently. Before Tb expectations are based on Equation (1) while after Tb agents
believe that the structural coefficients will evolve as follows:

{
Ã0,t C̃0,t Ã1,t B̃0,t D̃0,t

}T ∗
b −1

t=Tb
. (14)

Subsequently beliefs change for t = T ∗
b , ..., T to Equation (8), the final structure. Equa-

tion (14) indicates that, in the period up to T ∗
b , agents may have inaccurate beliefs about

which model is generating the data. In the special case that A0,t = Ã0,t etc, Tm = Tb and
T ∗
m = T ∗

b beliefs are always accurate and the situation coincides with the one discussed
in Section 3.1.2.

In terms of our single structural change example, the period up to T ∗
b may have a

period of time over which the initial model holds and a further period in which the final
model holds. From max(T ∗

b , T
∗
m) onwards it is only the final model that generates the

data.
Given this departure from the standard rational expectations context, we assume

agents combine observed outcomes with their beliefs about the structure to compute the
time t conditional expectation, ĨEtyt+1, where the notation emphasises that expectations
are based on Equation (14).4 In this case, agents use their model beliefs to determine
weights to be applied to observed data when forming expectations. When agents believe
the structure will evolve as in Equation (14), one proceeds as before, starting from Q̃T ∗

b
=

Q∗ to find the sequence
{
Q̃t

}T ∗
b −1

t=Tb

such that

Ãt − Q̃t + B̃tQ̃t+1Q̃t = 0 (15)

The solution agents would infer for t = Tb, ..., T
∗
b − 1 is

yt = C̃t + Q̃tyt−1 + G̃tε̃t, (16)

which implies that ĨEtyt+1 = C̃t+1 + Q̃t+1yt. However, the actual path of the economy
obeys

A0,tyt = C0,t + A1,tyt−1 +B0,tĨEtyt+1 +D0,tεt. (17)

4One could alternatively assume that agents utilise their beliefs about the model to produce both
the weights and values for the endogenous variables themselves when computing expectations i.e. they
project a model consistent path for the endogenous variables which will be incorrect if model beliefs are
incorrect. There are other reasonable assumptions as well. For example, we could assume that either
only lagged outcomes are observed or that only some subset of the variables are observed at time t.
These extensions are left for further research.
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Using Equation (16) it is easy to show that the reduced-form VAR is given by

yt = Ĉt + Q̂tyt−1 + Ĝtεt (18)

where

Ĉt =
(
A0,t − B0,tQ̃t+1

)−1 (
C0,t +B0,tC̃t+1

)
,

Q̂t =
(
A0,t − B0,tQ̃t+1

)−1

A1,t,

Ĝt =
(
A0,t − B0,tQ̃t+1

)−1

D0,t.

The solution in this case also takes the form of a time-varying coefficient VAR with
movements in its coefficients being pinned down by the way the structure evolves as well
as agents’ beliefs about these structural changes.

When the structural changes begin before agents first update their beliefs (i.e. Tm <
Tb) as is the case in Figure 2, expectations are based on the initial structure in those
periods, that is ĨEtyt+1 = C +Qyt, so the economy in those periods follows

A0,tyt = C0,t + A1,tyt−1 +B0,t(C +Qyt) +D0,tεt.

With ĨEtyt+1 = C̃t+1 + Q̃t+1yt in hand, other cases, Tm > Tb or T
∗
m > T ∗

b , are straightfor-
ward to compute.

3.3 The Likelihood

As we have discussed above, a set of structural changes and assumptions about beliefs and
expectations formation map into a sequence of reduced-form matrices. If the structural
changes are unknown until they occur the solution is computed as in Section 3.1.1. If the
structural changes are foreseen the system follows Equation (9), and in the more general
formulation where beliefs may differ from reality, the system follows Equation (18). The
derivation of the likelihood is identical in each case since each involves a reduced form.
Therefore, with no loss of generality, let the reduced form be given by Equation (9):

yt = Ct +Qtyt−1 +Gtεt.

Now assume that we have in hand a sample of data, {zt}Tt=1, where zt is a nz × 1 vector
of observable variables that relate to the model’s variables by

zt = Hyt + vt. (19)

In Equation (19), vt is an iid measurement error with IE(vt) = 0 and IE (vtv
′
t) = V . The

observation equation, Equation (19), and the state equation, Equation (9), constitute a
state space model. Therefore, the Kalman filter can be used to construct the likelihood
function for the sample {zt}Tt=1, as outlined, for example, in Harvey [1989]. The Appendix
provides details of the derivation of the log-likelihood in Equation (20).

L = −
(
nzT

2

)
ln(2π)− 1

2

T∑
t=1

ln det
(
HΣ

t|t−1
H ′ + V

)
− 1

2

T∑
t=1

u′
t

(
HΣ

t|t−1
H ′ + V

)−1

ut

(20)
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In Equation (20), ut = zt− IEt−1zt is the prediction error, Σ
t|t−1

= IEt−1([yt− IEt−1yt][yt−
IEt−1yt]

′) is the covariance matrix of the state variables yt conditional on information at
t− 1, and covt−1(zt) = HΣ

t|t−1
H ′ + V .

With Equation (20) in hand, standard likelihood-based tests for parameter stability
and detection of date breaks are available.5

4 Numerical Examples

For the numerical examples that follow, we use a version of the standard New Keynesian
model described below in Equations (21)-(27).6

xt = (r − π)− (rt − IEtπt+1) + IEtxt+1 + (1− ω)(1− ρa)at (21)

πt = π + β (IEtπt+1 − π) + ψxt − et (22)

rt = r + ρr (rt−1 − r) + ρπ (πt − π) + ρg (gt − g) + ρxxt + εr,t (23)

xt = ŷt − ωat (24)

gt = g + ŷt − ŷt−1 + εz,t (25)

at = ρaat−1 + εa,t (26)

et = ρeet−1 + εe,t (27)

In the equations above, xt is the output gap, defined as the deviation of output from a
socially efficient level of output; πt is the gross rate of inflation, that is ln(pt/pt−1); rt
is the log of the gross nominal interest rate; gt is the growth rate of output; ŷt is the
percentage deviation from steady state of the log of the stochastically detrended level of
output, Yt/Zt; and Zt is total factor productivity. The log of Zt follows a unit root with
a drift. Finally, at is a demand shock, and et is a cost-push shock. The ε’s are identically
and independently distributed shocks. In steady state, πt = π, rt = r and gt = g; all
other variables settle on zero. The reason we choose to use some variables in levels, as
oppossed to percentage deviations from steady state, is because in the examples that
follow the steady states of these variables change.

4.1 Lifting the Inflation Target

Recently, the Bank of Japan announced its intentions to achieve an annual inflation
target of 2 percent in two years. The success of this policy, as we illustrate below,
depends crucially on its credibility through its impact on inflation expectations. In the
May 2013 minutes, some members of the Bank of Japan’s board have indeed noted that:
“ [...] it seemed difficult to achieve around 2 percent inflation towards the latter half of

5Under the null hypothesis of no structural change the likelihood ratio statistic, 2(L(θ̂U ) − L(θ̂R)),
is asymptotically distributed as a chi-square random variable with m = dim(θ̂U ) − dim(θ̂R) degrees of

freedom, where θ̂U is the unrestricted maximum likelihood estimate of the vector of structural parame-
ters and θ̂R is the restricted maximum likelihood estimate of the vector of structural parameters after
imposing the restrictions of no structural change. Detection of structural change is generally done with
a recursive likelihood ratio test.

6See Ireland [2004] for more details.
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Table 1: Lifting the Inflation Target
Parameter values
σr = 0.0017 σa = 0.0100 σe = 0.0018 σz = 0.0040
ρr = 0.7 ρπ = 0.3 ρg = 0.1 ρx = 0.05
β = 0.9975 ψ = 0.1 ω = 0.1 ρa = 0.85
ρe = 0.85 g = 0.005 π = 0.000 π∗ = 0.005
r = π + g − lnβ
Timing
Tm = 4 T ∗

m = 12 Tb = 4 T ∗
b = 20

the projection period, since it was highly uncertain whether inflation expectations would
lead to a rise in the actual rate of inflation [...]”

Figure 3: Impulse responses to a contractionary demand shock
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At the parameter values of Table 1, we compare impulse responses in the case in
which the announced plan to lift the inflation target is credibly anticipated by markets
and carried out as announced with those when there is imperfect credibility. In the latter
case the inflation target is increased in exactly the same way but agents do not anticipate
the plan and instead only gradually revise their views about the inflation target. In the
latter case, agents views about the target follow what the figure calls the tilde path.

Figure 3 shows impulse responses for the nominal interest rate, inflation and detrended
output to a contractionary demand shock. The economy begins in a steady state of zero
inflation. The shock hits in period 4 when the central bank announces its changed policy
and begins lifting the inflation target gradually from 0 to 2 percent over 8 quarters,
as shown in the bottom right-hand panel of figure 3. Figure 3 also shows conventional
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Table 2: A Credible Disinflation

Initial Structure
σr = 0.0017 σa = 0.0100 σe = 0.0018 σz = 0.0040
ρr = 0.7 ρπ = 0.3 ρg = 0.1 ρx = 0.05
β = 0.9975 ψ = 0.1 ω = 0.1 ρa = 0.85
ρe = 0.85 g = 0.005 π = 0.05 r = π + g − lnβ

Final Structure
σr = 0.0017 σa = 0.0100 σe = 0.0018 σz = 0.0040
ρ′r = 1.0 ρ′π = 0.8 ρ′g = 0.3 ρx = 0.05
β = 0.9975 ψ = 0.1 ω = 0.1 ρa = 0.85
ρe = 0.85 g = 0.005 π′ = 0.0125 r′ = π′ + g − lnβ

Announcement and sample size
T = 200 Ta = 140 T ∗

m = 160

impulse responses under the high and low inflation steady states. As one would expect,
in the absence of a policy that increases the inflation target, a contractionary demand
shock initially lowers inflation.

When the annoucement is credible and agents anticipate future increases of the in-
flation target, inflation rises on impact. The policy, when credible, is powerful enough
to offset the deflationary impact that the shock would otherwise have had. Thereafter,
within a few quarters inflation, the interest rate and output are already aligned to the
responses that would have prevailed in the 2 percent inflation steady state. The situation
is quite different in the imperfectly credible case: inflation falls initially as it would have
fallen and only starts to increase as beliefs about the inflation target rise.

4.2 A Credible Disinflation

In this example we consider a credible disinflation by simulating a sample of 200 observa-
tions from a system with the following characteristics. First, the initial structure (model
1) shown in Table 2 governs the system up to period 159. Second, at the beginning of pe-
riod 140, the monetary authority announces a disinflation program that involves a lower
inflation target (π = 0.0125) and a more aggressive response to deviations of inflation
from this target (ρπ and ρr increase). The response to deviations of growth from trend
also increase (ρg increases). This new policy will be implemented in period 160. Finally,
there are no further structural changes until the end of the sample in period 200. Agents
believe the announcement and revise their expectations accordingly. In terms of the sam-
ple parameters given earlier T = 200, Ta = 140 and T ∗

m = 160. The parameters of the
modified system are then shown in lower panel of Table 2 while data on the observable
variables, rt, πt and gt are shown in Figure 4.

In estimation, rt, πt, and gt are taken to be observed without noise, that is V = 0. For
our choice of observables ω is unidentified. Moreover, in practice it is typically the case
that β is not estimated. For these reasons we set these parameters prior to estimation.
The task is then to estimate the values of the remaining 17 parameters,
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Table 3: Maximum Likelihood Estimation
Parameter True MLE Standard

Value Error*
σr 0.0017 0.0017 0.00060
σa 0.0100 0.0106 0.00487
σe 0.0018 0.0016 0.00220
σz 0.0040 3×10−05 0.00331
ρr 0.70 0.7007 0.028
ρπ 0.30 0.2994 0.033
ρg 0.10 0.1001 0.068
ρx 0.05 0.0384 0.079
ψ 0.10 0.0739 1.749
ρa 0.85 0.8195 0.064
ρe 0.85 0.8684 0.072
g 0.0050 0.0048 0.0002
π 0.050 0.0501 0.0047
ρ′r 1.00 1.2964 0.214
ρ′π 0.80 0.8924 0.1704
ρ′g 0.30 0.3485 0.1038
π′ 0.0125 0.0122 0.0005
L 2449.62 2507.24 38.12

∗ based on 250 replications.

(
σr, σa, σe, σz, ρr, ρπ, ρg, ρx, ψ, ρa, ρe, g, π, ρ

′
r, ρ

′
π, ρ

′
g, π

′).
The results are given in Table 3. The point estimates obtained with the history

of observables in Figure 4 correspond to the MLE column in Table 3. The mean and
standard error of the maximum likelihood estimators are computed using the theoretical
bootstrap with 250 replications. That is, we generate, at the estimated values of the
parameters, 250 histories for the observables and estimate the parameters each time.

There are three distinct sub-samples in the data. The first 139 observations are
constructed using the initial structure (model 1), the last 41 observations are found using
the final structure (model 2), and the observations during the transition period – 140 to
159 – involve using both model 1 and model 2 weights when forming expectations. The
model parameters that change are those of the monetary policy rule, including the target
rate of inflation. As one would expect, because there are more observations generated
from the initial structure, the parameters of the initial policy rule are estimated more
precisely than those of the final structure. In contrast, because the new policy rule
penalises deviations from the new inflation target more strongly, the final inflation target
is estimated more precisely. This example illustrates an important point - even though
there are relatively fewer observations coming from the final structure, not all of its
parameters are estimated less precisely.

These outcomes are illustrated in Figure 5 which shows distributions of the estima-
tors of the inflation response for both structures, ρπ and ρ′π, and Figure 6 which shows
distributions of the estimators of the inflation targets, π and π′.
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Table 4: Slowdown in trend growth
Initial and Final Structures
σr = 0.001 σa = 0.0100 σe = 0.0030
ρr = 1.0 ρπ = 0.3 ρg = 0.2
β = 0.9975 ψ = 0.1 ω = 0.1
ρe = 0.85 g = 0.006 π = .00625
σz = 0.0080 gcb = 0.006 πcb = .00625
rr = 400(g − lnβ) = 3.4 ρa = 0.85
Temporary Structure
σr = 0.001 σa = 0.0100 σe = 0.0030
ρr = 1.0 ρπ = 0.3 ρg = 0.2
β = 0.9975 ψ = 0.1 ω = 0.1
ρe = 0.85 g′ = .0015 π = .00625
σz = 0.0080 gcb = .0060 π′

cb = .02500
rr′ = 400(g′ − lnβ) = 1.6 ρa = 0.85
Timing of breaks and sample size
T = 160 Tm = 32 T ∗

m = 64

4.3 A Slowdown in Trend Growth

For this example the monetary policy rule, Equation (23), is replaced with

rt = rt−1 + ρπ (πt − πcb) + ρg (gt − gcb) + εr,t (28)

This specification makes a distinction between the inflation and trend growth targets
of the central bank, πcb and gcb, and those of the private sector, π and g. For the initial
and final structures these are the same, that is πcb = π and gcb = g. At Tm = 32 there
is a structural change: g falls to g′ and πcb increases to π′

cb. There is another structural
change at T ∗

m = 64 when the parameters revert back to their original values. Unlike
the example above, in the period running from Tm = 32 to T ∗

m = 64, expectations are
(incorrectly) based on the first model. The reduced-form therefore follows Equation (18).
The parameters of this simulation are summarised in Table 4 along with the steady state
real interest rate for both structures, rr.

While the temporary structure is in place trend growth falls. However, the central
bank’s target for trend growth does not. At the same time, the central bank runs looser
monetary policy in an attempt to offset weaker growth outcomes. This is captured by an
increase in the central bank’s inflation target to π′

cb. Agents’ beliefs are never updated
and are based on the initial (and final) structure. So in this example, Ã0,t = A0 = A∗

0,
etc and A0,t = Ā0, etc. It is therefore unnecessary to specify Tb and T ∗

b . The reduced
form therefore follows Equation (18).

The results are given in Table 5. The point estimates associated with the history of
observables shown in Figure 7 correspond to the MLE column in Table 5. The mean and
standard error of the maximum likelihood estimator are, as before, computed using the
theoretical bootstrap with 250 replications. Figure 7 shows also the non-stochastic path
of the simulation which corresponds to the path the economy would have experienced in
the presence of structural changes but in the absence of random shocks.
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Table 5: Maximum Likelihood Estimation
Parameter True MLE Standard

Value Error*
σr 0.001 0.0011 0.0002
σa 0.010 0.0097 0.0030
σe 0.003 0.0034 0.0017
σz 0.008 1.4×10−5 0.0038
ρr 1.0 1.0166 0.0702
ρπ 0.3 0.3221 0.0569
ρg 0.2 0.2111 0.0344
ψ 0.10 0.1022 0.5059
ρa 0.85 0.8166 0.0647
ρe 0.85 0.8182 0.0826
g 0.0060 0.0054 0.0005
π 0.00625 0.0069 0.0005
g′ 0.0015 1.9×10−8 0.0003
π′
cb 0.0125 0.0254 0.0008
L 2109.95 2115.63 17.82

∗ based on 250 replications.

5 Conclusion

In this paper we develop a solution for linear models in which agents use model-consistent
expectations but their beliefs about the structure may or may not be consistent with the
correct model of the economy, at least for a period of time. The solution in each case
takes the form of a time-varying coefficient VAR. This can be put into a state space form
and the Kalman filter can be used to construct the likelihood.

In the case of an anticipated structural change standard estimation methods with
observed past regularities would not be a reliable guide, unless the estimation is sup-
plemented by some knowledge of the way the structure was expected to evolve. As we
have shown through numerical examples, knowledge of any in-sample structural changes
that have taken place can increase the number of observations which are usable and can
therefore substantially improve the quality of estimation. Even credible announcements
of structural changes that take place out-of-sample would serve to improve the estimates.

As we mentioned in the introduction, the paper made the assumption that agents
know the parameters of the models at some points in the sample space although they
may use incorrect values of the parameters after a structural change for some period
after it had occurred. The solution involved a backward-forward algorithm and the key
to it was that we could replace IEt(Qt+1yt) by Qt+1yt where Qt+1 was the time-varying
VAR(1) coefficient. If Qt+1 can be taken to be a constant or determined exogenously to
the system (as with an announcement) then IEt(Qt+1yt) can be replaced by Qt+1yt and our
algorithm applies directly. If, however, data are used to determine IEtQt+1 then one may
end up with a non-linearity in the VAR that accounts for the structural change and so the
system we deal with here that has it as a time-varying VAR would need to be extended.
Because the mapping of IEtQt+1 into data involves many choices about how agents would
learn about structural changes we leave it to future research. The fundamental idea that
structural change involves some form of backward-forward iteration, however, is likely to
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be common to the generalization.
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A The Kalman Filter Equations

Take the state equation
yt = Ct +Qtyt−1 +Gtεt

and the observation equation

zt = Hyt + vt.

Define IE (εtε
′
t) = Ω, IE (vtv

′
t) = V and

ẑt|t−j = IE (zt |zt−j, . . . , z1 )

ŷt|t−j = IE (yt |zt−j, . . . , z1 )

Σ
t|t−j

= IE
(
yt − ŷt|t−j

) (
yt − ŷt|t−j

)′
.

The recursion begins from ŷ1|0 with the unconditional mean of y1, in our case

IE(y1) = μ

where μ is the steady state under the initial structure, that is μ = (I −Q)−1 C and

Σ
1|0 = IE (y1 − μ) (y1 − μ)′

implies vec(Σ
1|0 ) = (I −Q⊗Q)−1 vec(GΩG′). Presuming that ŷt|t−1and Σ

t|t−1
are in

hand then
ẑt|t−1 = Hŷt|t−1 ,

and the forecast error will be

ut = zt − ẑt|t−1 = H
(
yt − ŷt|t−1

)
+ vt.

The latter implies that
IE (utu

′
t) = HΣ

t|t−1
H ′ + V.

Next, update the inference on the value of yt with data up to t as in Hamilton [1994]:

ŷt|t = ŷt|t−1 +
[
IE

(
yt − ŷt|t−1

) (
zt − ẑt|t−1

)′] [
IE

(
zt − ẑt|t−1

) (
zt − ẑt|t−1

)′]−1

ut

= ŷt|t−1 + Σ
t|t−1

H ′
(
HΣ

t|t−1
H ′ + V

)−1

ut.

This follows from

IE
(
yt − ŷt|t−1

) (
zt − ẑt|t−1

)′
= IE

(
yt − ŷt|t−1

) (
H

(
yt − ŷt|t−1

)
+ vt

)′
= Σ

t|t−1
H ′,

after using IE
(
vt
(
yt − ŷt|t−1

)′)
= 0. Equation (9) then implies

ŷt+1|t = Ct+1 +Qt+1ŷt|t−1 +Ktut,
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where Kt = Qt+1Σt|t−1
H ′

(
HΣ

t|t−1
H ′ + V

)−1

is the Kalman gain matrix.

This last expression, combined with Equation (9), implies that

yt+1 − ŷt+1|t = Ct+1 +Qt+1yt +Gt+1εt+1

−
(
Ct+1 +Qt+1ŷt|t−1 +Qt+1Σt|t−1

H ′
(
HΣ

t|t−1
H ′ + V

)−1

ut

)
(29)

= Qt+1

(
yt − ŷt|t−1

)
+Gt+1εt+1 −Qt+1Σt|t−1

H ′
(
HΣ

t|t−1
H ′ + V

)−1

ut

The associated recursions for the Mean Squared Error (MSE) matrices are given by,

Σ
t+1|t = Gt+1ΩG

′
t+1 +Qt+1

(
Σ

t|t−1
− Σ

t|t−1
H ′

(
HΣ

t|t−1
H ′ + V

)−1

HΣ
t|t−1

)
Q′

t+1.

If the initial state and the innovations are Gaussian, the conditional distribution of
zt is normal with mean Hŷt|t−1 and conditional variance HΣ

t|t−1
H ′ + V . The forecast

errors, ut, can then be used to construct the log likelihood function for the sample {zt}Tt=1

as follows:

L = −
(
nzT

2

)
ln(2π)− 1

2

T∑
t=1

ln det
(
HΣ

t|t−1
H ′ + V

)
− 1

2

T∑
t=1

u′
t

(
HΣ

t|t−1
H ′ + V

)−1

ut.

This is equation (20) in the text.
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Figure 4: Observables
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Figure 5: Precision of the Estimates: Inflation Response
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Figure 6: Precision of the Estimates: Inflation Target
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Figure 7: Observables: Slowdown in trend growth
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