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Faster extended Kalman filter estimations of zero lower bound models of the
term structure are possible if the analytic properties of the Jacobian matrix for the
measurement equation are exploited. I show that such results are straighforward to
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1 Introduction

This article shows that faster extended and iterated extended Kalman filter estimations
of Black (1995) zero lower bound (ZLB) models of the term structure are possible if the
analytic properties of the Jacobian matrix for the measurement equation are exploited.

As background, interest rates for multi-factor Black (1995) models do not have closed
form analytic solutions. Hence, calculating a set of model yields for a given set of state
variables at time ¢ and the parameters within a Black (1995) model, what I will call
an implementation, necessarily requires numerical methods. For example, Black (1995)
models using Gaussian affine term structure models to represent the shadow term struc-
ture (hereafter B-GATSMs) have been implemented with finite-difference grids, interest
rate lattices, and Monte Carlo simulations; Kim and Singleton (2012), Richard (2013),
and Bauer and Rudebusch (2013) are recent respective examples. Recent advances in
Priebsch (2013) and Krippner (2013a) offer faster B-GATSM implementations, respec-
tively via a close second-order approximation evaluated with numerical methods, and a
Monte Carlo simulation with a control variate. The control variate is itself an alternative

*Reserve Bank of New Zealand and Centre for Applied Macroeconomic Analysis.  Email:
leo.krippner@rbnz.govt.nz.

!The terminology “zero lower bound/ZLB” is standard in the literature, even though a non-zero
lower bound may be appropriate in practice to accommodate central bank policy rate preferences and/or
institutional frictions; see Jarrow (2013) on the latter. Non-zero lower bounds can readily be incorporated
into ZLB models; e.g. see Krippner (2013c) p. 5 or Wu and Xia (2013) eq. 1.



shadow/ZLB-GATSM framework proposed in Krippner (2012, 2013), which I hereafter
call the K-GATSM.?

When estimating B-GATSMs, implementations will be required for each observation
of yield curve data, and the complexity is further compounded by shadow/ZLB-GATSM
measurement equations having a non-linear dependence on the shadow-GATSM state
variables. Hence, B-GATSM estimations often employ the extended Kalman filter (EKF)
with numerically evaluated Jacobian matrices at each observation to calculate the value
of the log-likelihood function for a given set of parameters; e.g. see Kim and Singleton
(2012) and Bauer and Rudebusch (2013) p. 10 as referenced earlier.> Such estimations
are therefore very time consuming given N + 1 implementations or 2N + 1 implementa-
tions (where N is the number of factors) are required respectively for a first-difference
or central-difference Jacobian approximation. In addition, because each implementation
of a B-GATSM is subject to numerical approximation error, taking differences between
implementations to obtain the Jacobian elements numerically could result in significant
error magnification.

Fortunately, I show that it is easy to exploit the analytic properties of the B-GATSM
measurement equation to obtain the Jacobian using the numerical implementations al-
ready undertaken for the central value of the state variables. That principle has already
been exploited for K-GATSMs in Krippner (2013c) and Wu and Xia (2013), as I briefly
illustrate in section 3 after outlining the appropriate notation for shadow/ZLB-GATSMs
in section 2. In section 3, I first show that the same principle holds for the generic
B-GATSM, and then illustrate how that result applies in practice to the estimation of
B-GATSMs implemented with Monte Carlo methods. I conclude in section 5, noting that
the IEKF estimations with analytic Jacobians are likely to be preferable to the EKF or
unscented Kalman filter for B-GATSM estimations.

2 Shadow/ZLB-GATSMs and estimation

I adopt the generic GATSM specification from Dai and Singleton (2002) pp. 437-38 to
define the shadow-GATSM. Hence, the shadow short rate is:

r(t) = ao+ bz (1) (1)

where ag is a constant, by is a constant N x 1 vector containing the weights for the IV state
variables z,, (t), and « (t) is an N x 1 vector containing the N state variables x,, (t). Under
the physical P measure, x (t) evolves as the following correlated vector Ornstein-Uhlenbeck

e do (t) = &[0 — = ()] dt + odW (2) 2)

where 6 is a constant N X 1 vector representing the long-run level of z (¢), k is a constant
N x N matrix that governs the deterministic mean reversion of x (t) to 6, o is a constant

2The Wu and Xia (2013) model is a discrete-time version of the K-GATSM, although it is derived
differently. K-GATSMs are much quicker to implement than B-GATSMs, because they only require
univariate numerical integration regardless of the number of factors, and they have been shown to give an
acceptable approximation to B-GATSMs in practice; see Krippner (2013c), Christensen and Rudebusch
(2013a, b), and Wu and Xia (2013).

3Kim and Singleton (2012) method confirmed by personal correspondence with the authors. Richard
(2013) evaluates the log-likelihood function with a derivative-free method numerical methods, but re-
peated implementations are still required at each observation.



N x N matrix representing the potentially correlated volatilities of z (t), and dW (t) is
an N x 1 vector with independent Wiener components dWW,, (£) ~N(0,1) v/dt.

The market prices of risk are linear with respect to the state variables, i.e.:*

() =0 [y+ Tz (1) (3)

where v and I' are respectively a constant N x 1 vector and constant N x N matrix.
Under the risk-adjusted Q measure, the process for x (t) is:

da (t) = & {é . (t)] dt + odW (t) (4)

where & = k+ T and 6 = &' (k0 — 7).

For the purposes of the brief discussion of K-GATSMs in section 3, it is sufficient to
note that the system described above produces closed form analytic solutions for shadow
forward rates f[z (¢) , A, u] and annualized option volatilities w [A, u], as a function of the
state variables z (t), the parameter set A ={x,60,0,7,I'}, and the time to maturity u (see
Krippner (2013c) pp. 14-15 for details). For B-GATSMs, the path of the shadow short
rate under the risk-adjusted Q measure, r(t + u), may be obtained from the solution to
equation 4 (e.g. see Meucci (2010) p. 3), i.e.:

z(t+u) = 0 + exp (—Fu) [x (t) — 9} + /ttﬂ exp (—& [u — v]) edW (v) (5)

which gives:

r(t+u) =ag+ by {é + exp (—F~u) [m (t) — 6’] + /tt+u exp (—F& [u — v]) odW (U)} (6)

Regarding the estimation of shadow/ZLB-GATSMs, the state equation is that of the
shadow-GATSM, i.e. the linear expression:

Tl = 0 + exp (—l{At) (ZEt — 9) + Et+1 (7)

where At is the time increment between observations, the subscript ¢ is an integer index for
the time series of term structure observations, and €, is the N x 1 vector of innovations
to the state variable vector x;, .
The measurement equation for both the K-GATSM and B-GATSM may be represented
as:
R, = Rz, Al + 1, (8)

where Ry is the K x 1 vector of interest rate data R[t, 7| for the K" maturities at time index
t, n, is the K x 1 vector of components unexplained by the shadow/ZLB-GATSM, and
Rz, A] is the K x 1 vector of shadow/ZLB-GATSM rates Rz, 7] for each maturity.
The latter are obtained from an implementation of either the K-GATSM or B-GATSM,
where z;; is the estimate of the state variable vector at time index ¢ and iteration ¢ of the
IEKF (the EKF sets i = 0). The K-GATSM uses interest rates defined by equation 11 in
section 3, while the B-GATSM uses interest rates defined by equation 14 in section 4.

4This is the “essentially affine” specification from Duffee (2002), but for a model with full Gaussian
dynamics. Also see Cheridito, Filipovi¢, and Kimmel (2007) for further discussion on market price of risk
specifications.



Estimating the K-GATSM or B-GATSM via the EKF or IEKF requires the K x N
Jacobian matrix H;; for Rlx;;, A]. Omitting the parameter dependence hereafter and
concentrating on a single maturity 7, each row of H,; is defined as:

0
Hyjp = =——=Rlz(t), 74 (9)
Oz (t) w(t)=m1,
I provide H,;; for the K-GATSM in section 3 and derive H,;; for the B-GATSM in
section 4.

3 K-GATSM term structures and Jacobian

K-GATSM forward rates are defined as (see Krippner (2013c) p. 16):
fo (0l = flo (00 [T oo [0 g

w [u] w [u]
where ® [-] and ¢ [-| are respectively the cumulative normal and marginal normal density
functions. The interest rate for a given maturity 7 is obtained using the standard term
structure relationship:®

B[x(t),Tk]:i/Oka[x(t),u] du (11)

Tk

In practice, calculating R[z;;, 7x] for a given state variable vector x;; proceeds via uni-
variate numerical integration over time to maturity 7. That integration can be simplified
to averaging the elements of the sequence f[z;;,0], ... f[xe;, AT], ..., f[z:s, 7], which is
in turn obtained from the associated sequences of the closed form analytic calculations of
fl1;, A7) and w [A7] and the functions ® [-] and ¢ [-].°

As detailed in Krippner (2013c) pp. 53-55, calculating the partial differential of
Rz (t), 7] in equation 9 and making the substitution z () = x;; in the result gives
row k of the Jacobian H,, corresponding to R[z:;, 74, i.e.:

Hiip=— / byexp (—RT) - @ [f[:p“,u]] (12)
" (u)
The numerical evaluations of ® [-] are already required for the measurement equation,
i.e. the calculation of interest rates E[%‘t,@, 7x) from forward rates f[z;;, 7] in equation 11.
Therefore, no further implementations are required to obtain H, j.

4 B-GATSM term structures and Jacobian

B-GATSM bond prices for time to maturity 7 may be defined generically as (see Krippner

(2013c) p. 6):
Plz(t),7] = E [exp (—/OTr(tJru) du)] (13)

5 A reference for this standard term structure relationship and others I use subsequently in the article
is Filipovi¢ (2009) p. 7.

6@ [-] does not actually have a mathematical closed form analytic solution, of course, but it is so well
tabulated or approximated that it can be treated as having one. Also, it is more efficient in practice to
calculate a single sequence of f[z;;, AT] out to the longest maturity 7x, and then simply use the results
up to 7y for the shorter maturities; see Krippner (2013c¢) pp. 52-53.

4



where [, is the risk-adjusted expectations operator with r(t +u) = max {0, (t + u)},
where r(t + u) is as defined in equation 6 and max {0, -} is the mechanism that imposes
the ZLB.

B-GATSM interest rates R[x (¢) , 7] are obtained from P[z () , 7] with a standard term
structure relationship, i.e.:

R[s (1), 7) =~ log (P o (1) 7]} (149)

From equation 9, the row of the Jacobian H;; corresponding to an interest rate
R[z:;, 7] requires the partial differential of R[z (t) , 7%] with respect to z (t), i.e.:

0 0 1
Rl 0. = 50 (sl

0
= e Bl ).
(Chain rule) = —%m log{P [z (t), 7|} - af(ﬂp [z (1), Tk]

(Chain rule) = ————-——"E;

L § [ (e ) d ]} (19

The partial differential of r(¢ + u) with respect to x (t) is

8x(t)£<t+u> = %(t)max{o,r(t—l—u)}
0 ifr(t+u) <0
1640 = { olvwy a0 19

From equation 6 with the normalization 6 =0

r(t+u)—a0+bg{exp(—m)x@)+/tt+uexp( [u—v])o—dW(v)} (17)

and therefore:

9,
Ox (t)

r(t +u) = byexp (—kT) (18)

"Setting 6 = 0 is a common (and convenient) normalization for the identification and estimation of
GATSMs and shadow/ZLB-GATSMs; see, for example, Christensen and Rudebusch (2013a, b), Krippner
(2013c¢), and Wu and Xia (2013).



Substituting that result into equation 16 gives:

B 0 if r(t+u) <0
a(t+u) = { hexp (—AT) ifr(t+u)>0 (19)
and so the partial differential of R[x (¢), 71| with respect to x (t) result becomes:
O Ru@).ml=to 1 g e / (t+u) d / (t+u) d
T ) = = . X — T w) du | - w) au
or(t) M T Pl U 0 .
20

Therefore, H, ;) may be obtained by evaluating equation 20 directly using r(¢ + u) and
q(t + u) generated with x (t) = 2, in equation 17.

As an example of applying the generic B-GATSM Jacobian principle in practice, the
Monte Carlo implementation for a B-GATSM is:

M
I zexp[ S

where 1;,, is obtained from the Black ZLB mechanism r1;,, = max {0, r; m} with 1;,, =
ao + byx;m and z,,, generated from a suitably discretized simulation of the state variable
diffusion process under the Q measure, i.e.:

(21)

xj,m = l'j,m—l + K |:é — $j7m_1i| AT + oV Ang,m (22)

Regarding notation, J is the number of simulations, j is the index for each simulation, m
is the index for each step of the simulation, M = 7, /AT — 1 is the number of steps for
each simulation, &;,, are independent N(0, 1) draws, and z;¢ = z;.%

Row k of the Jacobian Hy; is therefore:

] 1 1 M—1 M—1
Hyip = P o] 7 2. exp [— 2. L, AT 2 9 AT (23)
where: 0 . <0
Gm = { b exp (—RT) ;f ij: >0 (24)

The important point is that, because q;,, is an elementary transformation of r;,,,
no further implementations are required to obtain the Jacobian beyond those already
employed for the measurement equation.

5 Conclusion

This article shows that the principles for obtaining the Jacobian directly from the measure-
ment equation calculations for the K-GATSM carries over to B-GATSMs. In particular,

8 Analogous to the comment for the K-GATSM in footnote 4, it is more efficient in practice to simulate
single paths of x;,, out to the longest maturity 7x, and then use the results up to 7, to obtain the
results required for shorter maturities. Also, to maintain precise correspondence with the continuous time
specification, the discretized &, say k¥, should actually be set to &* = [I — exp (—RAT)] /AT. However,
because exp (—RAT) ~ [ —KAT the difference between & and £* becomes practically negligible for suitably
small values of Ar.



only a single implementation per yield curve observation is required for the EKF, and
combining this result with the faster B-GATSM implementations described in Priebsch
(2013) or Krippner (2013a) should allow for much faster EKF estimations of multi-factor
B-GATSMs.

More importantly, only a single implementation is also required to obtain the Jacobian
per IEKF iteration, and the IEKF has been shown to provide more robust results than
the EKF when estimating K-GATSMs (due to the high non-linearity in shadow/ZLB-
GATSMs; see Krippner (2013c) pp. 23-25). Faster B-GATSM implementations with
several iterations of the IEKF should therefore provide more robust B-GATSM estimations
than present EKF estimations. In addition, IEKF estimation should be faster than using
the unscented Kalman filter estimation, as employed in Kim and Priebsch (2013), because
the latter requires 2N + 1 implementations for each observation of yield curve data.
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